Contrôle Continu 1, le 03/11/25 (durée 2h)

Exercice 1[Question cours]

- 1. Donner la définition d'un sous-groupe de $(\mathbb{Z}, +)$.
- 2. Les ensembles suivants sont-ils des sous-groupes de \mathbb{Z} ?
 - a. N
 - b. L'ensemble des multiples de 3.
 - c. L'ensemble des $n \in \mathbb{Z}$ tels que $n \equiv 1 \mod 3$.

Justifier vos réponses.

Exercice 2

- 1. Montrer que pour tout $n \in \mathbb{Z}$, (n-1)n(n+1) est divisible par 3. En déduire que $n^3 \equiv n \mod 3$.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, on a

$$\sum_{k=1}^{n} k(k-1) = \frac{n^3 - n}{3}.$$

Exercice 3

- 1. Calculer pgcd(33, 45) à l'aide de l'algorithme d'Euclide en précisant chaque étape.
- 2. Déterminer tous les couples $(x,y) \in \mathbb{Z}^2$ tels que

$$33x + 45y = 3$$
.

3. À quelle condition sur l'entier c, l'équation d'inconnue (x, y)

$$33x + 45y = c \tag{1}$$

admet-elle une solution entière? Dans ce cas, cette solution est-elle unique?

4. On considère l'application suivante

$$f: \quad \mathbb{Z}^2 \quad \to \quad \mathbb{Z}$$
$$(x,y) \quad \mapsto \quad 33x + 45y.$$

L'application f est-elle injective? surjective? Justifier vos réponses.

Exercice 4

- 1. Vérifier que $3^2 \equiv -1 \mod 10$ et $3^4 \equiv 1 \mod 10$.
- 2. Montrer que $3^{2025} \equiv 3 \mod 10$.
- 3. Quel est le dernier chiffre de l'expression de 3^{2025} en base 10.

Exercice 5

- 1. Donner les tables d'addition et de multiplication de $\mathbb{Z}/5\mathbb{Z}.$
- 2. Résoudre dans $\mathbb{Z}/5\mathbb{Z}$ les équations suivantes
 - (a) $\bar{x} \cdot \bar{2} = \bar{1}$.
 - (b) $\bar{x} \cdot \bar{3} = \bar{2}$.
- 3. Montrer qu'il n'existe pas d'entier x tel que $x^2 \equiv 3 \mod 5$.
- 4. On considère l'équation d'inconnues $(x,y) \in \mathbb{Z}^2$ suivante

$$x^2 + 4xy - y^2 = 5008.$$

Montrer que si $(x,y) \in \mathbb{Z}^2$ est solution de cette équation, alors $(x+2y)^2 \equiv 3 \mod 5$. Que peut-on conclure?

Exercice 6

1. Déterminer l'ensemble des classes de congruence $\bar{a} \in \mathbb{Z}/8\mathbb{Z}$ telles que l'équation

$$\bar{x}^2 = \bar{a}$$

admet des solutions dans $\mathbb{Z}/8\mathbb{Z}$.

2. Montrer qu'il n'existe pas de triplet d'entiers $(x, y, z) \in \mathbb{Z}^3$ tel que

$$x^2 + y^2 + z^2 \equiv 7 \mod 8.$$

3. Existe-t-il des entiers x, y, z tels que $x^2 + y^2 + z^2 = 2023$?