
L2 arithmétique 2025-2026

Correction CC2 Arithmétique

Exercice 1

1. cf cours
2. φ(4) = φ(22) = 22 − 2 = 2

φ(5) = 5− 1 = 4

φ(20) = φ(4)× φ(5) = 2× 4 = 8

φ(64) = φ(26) = 26 − 25 = 32

3. Remarque : Une démonstration est proposée ici mais le mieux est de se référer à ce que vous avez
dans votre cours.
Soit n ≥ 2. Par définition (question 1), on a

φ(n) =
∣∣Z/nZ×∣∣ = |{1 ≤ k ≤ n− 1 | pgcd(k, n) = 1}| .

En particulier, on a les équivalences :

φ(n) = n− 1 ⇐⇒ pour tout 1 ≤ k ≤ n− 1, pgcd(k, n) = 1
⇐⇒ pour tout nombre premier p ≤ n− 1, p ne divise pas n
⇐⇒ n est premier.

Le sens réciproque de la deuxième équivalence n’est a priori pas immédiat. Démontrons-le par
contraposée : supposons qu’il existe 1 ≤ k ≤ n−1 tel que pgcd(k, n) ̸= 1. En prenant un diviseur
premier de ce pgcd, on obtient un nombre premier p tel que p|n et p|k, donc p ≤ k ≤ n− 1.

Exercice 2

1. (i) Supposons que n est pair. Il existe alors q ∈ N tel que n = 2q. Notons que l’on a :

32 = 9 ≡ 1 (mod 8)

Ainsi,
3n =

(
32
)q ≡ 1 (mod 8)

On a ainsi montré que si n est pair, alors 3n ≡ 1 (mod 8).
(ii) Supposons désormais que n est impair. Il existe donc q ∈ N, tel que n = 2q + 1. On a alors

3n =
(
32
)q × 3 ≡ 3 (mod 8)

On a ainsi montré que si n est impair, alors 3n ≡ 3 (mod 8).
2. Soit m ≥ 3. Il existe q ∈ N tel que m = 3 + q. Puisque 23 = 8, alors 2m = 8× 2q, donc

2m ≡ 0 (mod 8).

En particulier, pour tout n ∈ N, on a

2m − 3n ≡ −3n (mod 8).

Or, la question précédente nous donne les valeurs des puissances de 3 modulo 8. Si n est pair, on
sait que

−3n ≡ −1 ≡ 7 (mod 8),

et si n est impair, on sait que
−3n ≡ −3 ≡ 5 (mod 8).
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Dans les deux cas, on a −3n ̸≡ 1 (mod 8). En particulier, on a

2m − 3n ̸= 1.

On en conclut que si un couple (m,n) ∈ N2 est solution de (1), alors m ≤ 2.

Remarque : Il faut faire attention aux passages de Z à modulo 8 et réciproquement. Si une égalité
est vraie dans Z, elle est vraie modulo 8, mais la réciproque n’est pas toujours vraie, par exemple,
8 ≡ 0 (mod 8) mais 8 ̸= 0. En revanche, c’est l’inverse pour une non-égalité : si deux entiers ne
sont pas congrus modulo 8, ils ne sont pas égaux dans Z, mais la réciproque est fausse (même
contre-exemple : 0 ̸= 8 mais 0 ≡ 8 (mod 8)).

3. On vient de voir que pour avoir une solution, il faut que m soit inférieur ou égal à 2. On peut
donc faire une disjonction de cas sur m.
• Cas 1 : m = 0

On a alors
2m − 3n = −3n

ce qui ne peut en aucun cas faire 1. Il n’y a donc pas de solution dans ce cas.
• Cas 2 : m = 1

On a alors
2m − 3n = 2− 3n

et

2− 3n = 1 ⇐⇒ 3n = 1 ⇐⇒ n = 0

Ainsi, (m,n) = (1, 0) est solution et c’est la seule solution lorsque m = 1.
• Cas 3 : m = 2

On a alors
2m − 3n = 4− 3n

et

4− 3n = 1 ⇐⇒ 3n = 3 ⇐⇒ n = 1

Ainsi, (m,n) = (2, 1) est solution et c’est la seule solution lorsque m = 2.

Finalement, on obtient que l’ensemble de solution de (1) est {(1, 0), (2, 1)}.

Exercice 3

1. Utilisons les décompositions en produits de facteurs premiers :

512 = 29, 98 = 2× 49 = 2× 72.

Ainsi, pgcd(512, 98) = 2 et ppcm(512, 98) = 29 × 72 = 25088.
2. On a 375 = 3× 53. Comme le pgcd de a et b divise b = 375, il existe n ∈ {0, 1} et m ∈ {0, 1, 2, 3}

tels que pgcd(a, b) = 3n × 5m.

Or,
8∑

i=0
10k, n’est pas divisible par 5, on peut le voir à l’aide du critère de divisibilité par 5 (son

chiffre des unités n’est ni 0 ni 5). On a donc m = 0.

Cependant,
8∑

i=0
10k est divisible par 3 grâce au critère de divisibilité par 3 (la somme des chiffres

est égale à 9 qui est divisible par 3). Ainsi, n = 1.
Finalement, on a donc que pgcd(a, b) = 3.

2



Exercice 4

Remarque : On rappelle qu’il y a beaucoup de façons de résoudre un tel système. On présente ici une
méthode, ainsi que le résultat mais nous n’étions pas obligé de procéder ainsi.
On cherche à résoudre dans Z le système :

x ≡ 3 (mod 7)
x ≡ 4 (mod 9)
x ≡ 1 (mod 11)

Les nombres 7, 9 et 10 sont deux-à-deux premiers entre eux, il existe donc une unique solution modulo
693 d’après le théorème des restes chinois.

Étape 1 : Trouvons u ∈ Z, une solution du système :

(E1) :


u ≡ 1 (mod 7)
u ≡ 0 (mod 9)
u ≡ 0 (mod 11)

⇐⇒
{

u ≡ 1 (mod 7)
u ≡ 0 (mod 99)

Supposons que u vérifie ce système. Il existe q ∈ Z tel que u = 99q. Avec la première ligne du système,
ceci nous donne :

99q ≡ 1 (mod 7)

q ≡ 1 (mod 7)

car 99 ≡ 1 (mod 7). Ainsi, u = 99× 1 = 99 convient.

Étape 2 : Trouvons v ∈ Z, une solution du système :

(E2) :


v ≡ 1 (mod 9)
v ≡ 0 (mod 7)
v ≡ 0 (mod 11)

⇐⇒
{

v ≡ 1 (mod 9)
v ≡ 0 (mod 77)

Supposons que v soit solution de (E2). Il existe q ∈ Z tel que v = 77q. Avec la première ligne du
système, ceci nous donne :

77q ≡ 1 (mod 9)

5q ≡ 1 (mod 9)

10q ≡ 2 (mod 9)

q ≡ 2 (mod 9)

(On effectue une multiplication par 2 à la troisième ligne car 2 est l’inverse de 5 modulo 9)
Ainsi, v = 77× 2 = 154 convient.

Étape 3 : Trouvons w ∈ Z, solution du système :

(E3) :


w ≡ 1 (mod 11)
w ≡ 0 (mod 7)
w ≡ 0 (mod 9)

⇐⇒
{

w ≡ 1 (mod 11)
w ≡ 0 (mod 63)

Supposons que w soit solution de (E3). Il existe q ∈ Z tel que w = 63q. Avec la première ligne du
système, ceci nous donne :

63q ≡ 1 (mod 11)

8q ≡ 1 (mod 11)

56q ≡ 7 (mod 11)

q ≡ 7 (mod 11)
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(On effectue une multiplication par 7 à la troisième ligne car 7 est l’inverse de 8 modulo 11)
Ainsi, w = 63× 7 = 441 convient.

Étape 4 : Conclusion.
Ainsi, 3× u+ 4× v + 1× w = 297 + 616 + 441 = 1354 est solution du système.
De plus, 1354 ≡ 661 (mod 693).
L’ensemble de solution dans Z est donc :

S = {x ∈ Z | x ≡ 661 (mod 693)}

Exercice 5

1. Soit a ∈ Z. L’équation (2) admet des solutions si et seulement si pgcd(20, 50) divise a, c’est-à-dire
si et seulement si 10 divise a. Ainsi,

A = {10q | q ∈ Z}

Soit a ∈ A. Il existe q ∈ Z tel que a = 10q. Cherchons à résoudre (2).
Cherchons tout d’abord une solution particulière. Pour cela, comme pgcd(20, 50) = 10, on peut
se ramener à regarder

20

10
x+

50

10
y =

10q

10

c’est-à-dire,
2x+ 5y = q.

Notons qu’une égalité de Bézout pour 2 et 5 est :

2× (−2) + 5× 1 = 1

Ainsi,
2× (−2q) + 5× q = q

Donc (−2q, q) est une solution particulière de (2). On obtient alors que l’ensemble de solution de
(2), pour a = 10q, est :

S = {(−2q + 5k, q − 2k)|k ∈ Z}

2. Procédons par contraposée. Soit a ∈ Z. Supposons que a /∈ B et montrons qu’il n’existe pas de
solution (x, y) ∈ N2 à (2).

Si a /∈ A, par la question précédente, l’équation (2) n’admet pas de solution dans Z2 donc, comme
N2 ⊂ Z2, on en déduit qu’elle n’admet pas de solution dans N2.

Supposons alors a ∈ A. On a a ∈ A \ B, c’est-à-dire a ∈ {10, 30}. Procédons par disjonction de
cas.
• Cas : 1 a = 10.
Supposons par l’absurde que (x, y) ∈ N2 soit une solution de (2). Par la question 1, il existe alors
k ∈ Z tel que x = −2 + 5k et y = 1− 2k.
D’une part, comme x ⩾ 0, on a :

−2 + 5k ⩾ 0 ⇐⇒ 5k ⩾ 2 ⇐⇒ 10k ⩾ 4

D’autre part, y ⩾ 0, d’où :

1− 2k ⩾ 0 ⇐⇒ 1 ⩾ 2k ⇐⇒ 5 ⩾ 10k
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En combinant ces deux inégalité, on obtient :

5 ⩾ 10k ⩾ 4

Or, il n’existe aucun multiple de 10 compris entre 4 et 5, ceci est donc absurde !
Ainsi, si a = 10, (2) n’admet pas de solution (x, y) ∈ N2.

• Cas 2 : a = 30.
De même, supposons par l’absurde que (x, y) ∈ N2 soit une solution de (2). Par la question 1, il
existe alors k ∈ Z tel que x = −6 + 5k et y = 3− 2k.
D’une part, comme x ⩾ 0, on a :

−6 + 5k ⩾ 0 ⇐⇒ 5k ⩾ 6 ⇐⇒ 10k ⩾ 12

D’autre part, y ⩾ 0, d’où :

3− 2k ⩾ 0 ⇐⇒ 3 ⩾ 2k ⇐⇒ 15 ⩾ 10k

En combinant ces deux inégalité, on obtient :

15 ⩾ 10k ⩾ 12

Or, il n’existe aucun multiple de 10 entre 12 et 15, ceci est donc absurde !
Ainsi, si a = 30, (2) n’admet pas de solution (x, y) ∈ N2.

Finalement, on a bien obtenu le résultat souhaité, et par contraposée, on en conclut que si
l’équation (2) admet une solution (x, y) ∈ N2, alors a ∈ B.

3. Soit a ∈ B. Montrons que (2) admet une solution (x, y) ∈ N2.
Notons tout d’abord qu’il existe q ∈ N \ {1, 3} tel que a = 10q.
De plus, par la question 1, les solutions de (2) dans Z2 sont de la forme (−2q + 5k, q − 2k), avec
k ∈ Z. Une solution dans N2 ⊂ Z2 aura donc la même forme.

Faisons une disjonction de cas :
• Cas 1 : Supposons que q est nombre pair.
Il existe alors n ∈ N tel que q = 2n. On a dans ce cas,

−2q + 5k ⩾ 0 ⇐⇒ −4n+ 5k ⩾ 0 ⇐⇒ 5k ⩾ 4n ⇐⇒ 10k ⩾ 8n

et,
q − 2k ⩾ 0 ⇐⇒ 2n− 2k ⩾ 2n ⩾ 2k ⇐⇒ 10n ⩾ 10k.

Ainsi, {
−2q + 5k ⩾ 0

q − 2k ⩾ 0
⇐⇒ 10n ⩾ 10k ⩾ 8n ⇐⇒ n ⩾ k ⩾

4

5
n

En prenant k = n, on a que (x, y) = (−2q + 5n, q − 2n) ∈ N2 est solution de (2).

• Cas 2 : Supposons que q est un nombre impair.
Il existe alors n ∈ N tel que q = 2n+ 1. Notons également que comme q /∈ {1, 3}, alors n ⩾ 2.
On a dans ce cas,

−2q + 5k ⩾ 0 ⇐⇒ −4n− 2 + 5k ⩾ 0 ⇐⇒ 5k ⩾ 4n+ 2 ⇐⇒ 10k ⩾ 8n+ 4

et,
q − 2k ⩾ 0 ⇐⇒ 2n+ 1− 2k ⩾ 2n+ 1 ⩾ 2k ⇐⇒ 10n+ 5 ⩾ 10k.
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Ainsi, {
−2q + 5k ⩾ 0

q − 2k ⩾ 0
⇐⇒ 10n+ 5 ⩾ 10k ⩾ 8n+ 4

Remarquons que, comme n ⩾ 2, on a :

10n = 8n+ 2n ⩾ 8n+ 4

Ainsi, en prenant k = n, on obtient une nouvelle fois que (x, y) = (−2q + 5n, q − 2n) ∈ N2 est
solution de (2).

4. On cherche à trouver toutes les solutions dans N2 de l’équation

20x+ 50y = 150.

Par les questions précédentes, cette équation admet des solutions dans N2 car 150 = 10×15 ∈ B,
et ce sont tous les couples (−2× 15 + 5k, 15− 2k) avec −30 + 5k ≥ 0 et 15− 2k ≥ 0. De plus,{

5k ⩾ 30
15 ⩾ 2k

⇐⇒
{

10k ⩾ 60
75 ⩾ 10k

⇐⇒ 75 ⩾ 10k ⩾ 60 ⇐⇒ 12 ≤ 2k ≤ 15

Il y a donc exactement deux solutions, pour k = 6 et k = 7, qui sont respectivement (0, 3) et
(5, 1).
Ainsi, les combinaisons possibles que la machine peut donner sont : 0 billets de 20e et 3 billets
de 50e ; 5 billets de 20e et 1 billet de 50e.
Remarque : on aurait pu trouver cette réponse directement sans faire toutes les questions de
l’exercice ! Le nombre de billets de 50e est 0, 1, 2 ou 3. Mais comme ni 150 ni 50 sont des
multiples de 20, ça ne peut pas être 0 ni 2. On vérifie ensuite que les deux autres cas fonctionnent.

Exercice 6

1. Soit x ∈ Z. Supposons que x est impair. Il existe donc q ∈ N tel que x = 2q + 1. On a alors :

x2 = 4q2 + 4q + 1 ≡ 1 (mod 4).

Ainsi, pour tout x ∈ Z impair, on a x2 ≡ 1 (mod 4).

Soit x ∈ Z tel que pgcd(x, 5) = 1. Comme 52 = 25, on a également pgcd(x, 25) = 1. Ainsi, par le
théorème d’Euler, on a :

xφ(25) ≡ 1 (mod 25).

On a de plus que :
φ(52) = 52 − 5 = 20

d’où,
x20 ≡ 1 (mod 25).

On en conclut que tout x ∈ Z tel que pgcd(x, 5) = 1 vérifie x20 ≡ 1 (mod 25).
2. Supposons que x est solution entière de (3).

(a) Par hypothèse, x vérifie :
x7 ≡ 27 (mod 100)

Comme 4 divise 100, on a

x7 ≡ 27 (mod 4)(
x2

)3
x ≡ 3 (mod 4)

x ≡ 3 (mod 4) d’après la question 1
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De même, 25 divise 100 donc

x7 ≡ 27 (mod 25)

x7 ≡ 2 (mod 25)(
x7

)3 ≡ 23 (mod 25)

x21 ≡ 8 (mod 25)

x ≡ 8 (mod 25) d’après la question 1

Finalement, on a bien obtenu que x ≡ 3 (mod 4) et x ≡ 8 (mod 25).
(b) Supposons que x soit solution de (3). Par la question précédente, on a que x est solution de{

x ≡ 3 (mod 4)
x ≡ 8 (mod 25)

Comme 4 et 25 sont premier-entre-eux, alors par le théorème des restes chinois, il existe une
unique solution modulo 100. Trouvons là !
La deuxième ligne nous donne x = 25q + 8 avec q ∈ Z. En injectant dans la première, on
obtient alors

25q + 8 ≡ 3 (mod 4)

q ≡ 3 (mod 4)

Ainsi, x = 25× 3 + 8 = 83 est solution du système, et l’ensemble des solution est

S = {x ∈ Z | x ≡ 83 (mod 100)}

On a ainsi que si x est solution de (3), alors x ≡ 83 (mod 100).

Réciproquement, supposons que x ≡ 83 (mod 100).
On veut montrer que x7 ≡ 27 (mod 100), ce qui est équivalent, par le théorème des restes
chinois, à montrer que x7 ≡ 27 (mod 4) et x7 ≡ 27 (mod 25).
• Comme x ≡ 83 (mod 100), alors

x ≡ 83 (mod 4)

c’est-à-dire x ≡ 3 ≡ −1 (mod 4). Ainsi,

x7 ≡ (−1)7 ≡ −1 ≡ 3 (mod 4).

Comme 27 ≡ 3 (mod 4), alors
x7 ≡ 27 (mod 4).

• De même, comme x ≡ 83 (mod 100), alors x ≡ 83 (mod 25), c’est-à-dire x ≡ 8 (mod 25).
Calculons les premières puissances de 8 modulo 25 :

8 ≡ 8 (mod 25); 82 ≡ 14 (mod 25); 83 ≡ 12 (mod 25); 84 ≡ 21 ≡ −4 (mod 25).

Or, 87 = 84 × 83, donc 87 ≡ −48 ≡ 2 (mod 25). Mais 27 ≡ 2 (mod 25), donc

x7 ≡ 27 (mod 25).

Finalement, on obtient bien que x7 ≡ 27 (mod 100). L’ensemble des solutions entières de
(3) est donc

S = {83 + 100k | k ∈ Z}.
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Exercice 7

On montre le résultat par double implication.

⇐ On suppose que n = 2k pour un certain k ∈ N∗. On sait alors que φ(n) = 2k − 2k−1. Or,

2k − 2k−1 = 2k−1 =
2k

2
=

n

2
.

Donc φ(n) = n
2 .

⇒ On suppose que φ(n) = n
2 . Comme φ(1) = 1 ̸= 1

2 , on sait que n ≥ 1. On écrit la décomposition
en produit de facteurs premiers de n :

n =
r∏

i=1

pαi
i

où r ∈ N∗, p1, . . . , pr sont des nombres premiers deux à deux distincts et α1, . . . , αr sont des
entiers non-nuls 1.
On a alors :

φ(n) =

r∏
i=1

(
pαi
i − pαi−1

i

)
=

r∏
i=1

pαi
i

(
1− 1

pi

)
= n

r∏
i=1

(
1− 1

pi

)
.

Comme φ(n) = n
2 , alors

r∏
i=1

(
1− 1

pi

)
=

1

2

ce qui se réécrit en passant à l’inverse

r∏
i=1

pi
pi − 1

= 2. (⋆)

D’un autre côté, on sait que n est pair puisque φ(n) = n
2 donc n = 2φ(n). Donc parmi les pi, 2

apparaît. Disons que c’est p1 (quitte à les renuméroter). L’équation (⋆) devient :

2

2− 1

r∏
i=2

pi
pi − 1

= 2 ⇐⇒
r∏

i=2

pi
pi − 1

= 1 ⇐⇒
r∏

i=2

pi =
r∏

i=2

(pi − 1) . (⋆⋆)

Supposons par l’absurde que r > 1, c’est-à-dire qu’il y a des termes dans les produit apparaissant
dans (⋆⋆), on a donc pour tout 2 ≤ i ≤ r, 0 < pi − 1 < pi, et alors

0 <

r∏
i=2

(pi − 1) <

r∏
i=2

pi.

Ceci est absurde d’après (⋆⋆). Donc r = 1, et on a alors n = pα1
1 = 2α1 . Donc n est bien de la

forme 2k avec k ∈ N∗.

1. Souvent, on autorise les exposants αi à être nuls pour simplifier les calculs de pgcd et ppcm, ici, on veut faire
apparaître uniquement les nombres premiers qui divisent n.
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