Colles CMI L2

Jad ABOU YASSIN

7 novembre 2025 ${\bf Alg\`ebre}$

Table des matières

Questions de cours	2
Exercice 1 - Sous-espaces vectoriels	2
Exercice 2 - Applications linéaires	2
Exercice 3 - Bases, coordonnées et dimension	2
Exercices	2
Exercice 4 - $\bigstar \star \updownarrow$ Changement de base	2
Exercice 5 - $\bigstar \star \bigstar$ Noyau et image d'une matrice	3
Exercice 6 - $\bigstar \bigstar \mathring{\mathbf{x}}$ Rotations dans \mathbb{R}^3	4
Exercice 7 - ★★★ Évaluation et interpolation	4

Questions de cours

Exercice 1 - Sous-espaces vectoriels

Soit E un espace vectoriel. Donner la définition d'un sous-espace vectoriel de E. Parmi les sous-ensembles suivants de \mathbb{R}^3 , lesquels sont des sous-espaces vectoriels?

$$F_1 = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}, \quad F_2 = \{(x, y, z) \in \mathbb{R}^3 \mid z = 1\}, \quad F_3 = \{(a + b, a, b) \mid a, b \in \mathbb{R}\}.$$

Exercice 2 - Applications linéaires

Soient E et F deux espaces vectoriels, et $f \in \mathcal{L}(E, F)$. Donner la définition du noyau de f, noté $\ker(f)$, et de l'image de f, notée $\operatorname{im}(f)$. Donner une condition sur $\ker(f)$ et/ou $\operatorname{im}(f)$ pour que f soit injective, surjective ou bijective.

Soit $A \in \mathcal{M}_{n,m}(\mathbb{R})$ une matrice. Donner la définition du noyau de A, noté $\ker(A)$, et de l'image de A, noté $\operatorname{im}(A)$. Quel est le lien entre matrice et application linéaire?

Exercice 3 - Bases, coordonnées et dimension

Soit E un espace vectoriel. Donner la définition d'une famille libre, d'une famille génératrice et d'une base de E. Définir la notion de dimension de E. Soit \mathcal{B} une base de E, et $u \in E$ un vecteur. Définir les coordonnées de u dans la base \mathcal{B} . Donner les bases canoniques de \mathbb{R}^3 , $\mathbb{R}_3[X]$ et $\mathcal{M}_2(\mathbb{R})$.

Exercices

$\uparrow \uparrow \uparrow \uparrow \uparrow$ Exercice 4 - Changement de base (solution \circlearrowleft)

1. Soit la famille de vecteurs suivante

$$\mathcal{B} = \left(\left(\begin{array}{c} 2 \\ -1 \\ 0 \end{array} \right), \left(\begin{array}{c} -1 \\ 0 \\ -1 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right) \right).$$

Montrer que \mathcal{B} est une base de \mathbb{R}^3 . En déduire la matrice de passage de la base canonique de \mathbb{R}^3 notée \mathcal{B}_c vers la base \mathcal{B} , notée $P_{\mathcal{B}_c \leftarrow \mathcal{B}}$.

2. Vérifier que la matrice de passage de la base \mathcal{B} vers la base canonique vers la base, notée $P_{\mathcal{B}\leftarrow\mathcal{B}_c}$, est la matrice suivante :

$$P_{\mathcal{B}\leftarrow\mathcal{B}_c} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ 1 & 2 & -1 \end{pmatrix}$$

3. On note $\mathcal{B}_c = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'application linéaire définie par :

$$f(e_1) = 5e_1 - e_2 + 2e_3;$$
 $f(e_2) = 6e_1 + 4e_3;$ $f(e_3) = -6e_1 + e_2 - 3e_3.$

Donner la matrice représentative de f dans la base canonique, notée M. Calculer la matrice représentative de f dans la base \mathcal{B} , notée D.

4. Soit $k \in \mathbb{N}$. Déduire de ce qui précède une expression de M^k en fonction de k, D et des matrices de passages calculées précédemment. Calculer M^k en fonction uniquement de k.

★★☆ Exercice 5 - Noyau et image d'une matrice (solution �)

Soit A la matrice de $\mathcal{M}_{4,5}(\mathbb{R})$ définie par

$$\left(\begin{array}{cccccc}
1 & -2 & 0 & 3 & -2 \\
-3 & 6 & 4 & -1 & -2 \\
3 & -6 & 2 & 4 & -1 \\
7 & -14 & 0 & -1 & 8
\end{array}\right).$$

- 1. Sans faire de calcul, déterminer 5 vecteurs dans im(A).
- 2. Parmi les vecteurs suivants de \mathbb{R}^5 , lesquels appartiennent à $\ker(A)$?

$$u_1 = (1, 1, 1, 1, 1), \ u_2 = (1, 1, 0, 1, 1), \ u_3 = (0, -1, 0, -2, -2).$$

- 3. Déterminer la forme échelonnée réduite de A.
- 4. Déterminer une base de $\ker(A)$, notée \mathcal{B}_1 et une base de $\operatorname{im}(A)$, notée \mathcal{B}_2 .
- 5. Exprimer les vecteurs de la question 1. qui appartiennent au noyau de A dans la base \mathcal{B}_1 .
- 6. Les vecteurs suivants sont-ils dans $\operatorname{im}(A)$? Si oui, les exprimer dans la base \mathcal{B}_2 .

$$v_1 = (1, 1, 5, 7), v_2 = (1, 2, 3, 4), v_3 = (0, 1, -2, -3).$$

$\bigstar \bigstar \mathring{\Box}$ Exercice 6 - Rotations dans \mathbb{R}^3 (solution 1)

On se place dans l'espace vectoriel $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3)$. On pose $\theta, \varphi \in \mathbb{R}$.

- 1. Soit $u = (x, y, z) \in E$. Donner les coordonnées du point $v \in \mathbb{R}^3$ obtenu à partir du point u après avoir effectué une rotation d'angle θ par rapport à l'axe $\{x = y = 0\}$ (« l'axe des z »). En déduire l'expression de la matrice de rotation d'angle θ par rapport à l'axe des z, notée $R_{\theta,z}$.
- 2. Sans faire de calcul, donner l'expression des matrices de rotation $R_{\theta,y}$ et $R_{\theta,x}$.
- 3. Montrer que ces matrices de rotation sont inversibles en calculant leur déterminant (on ne le fera que pour un des trois axes). Trouver la matrice inverse de $R_{\theta,z}$.
- 4. Calculer $R_{\theta,x}R_{\varphi,z}$.
- 5. On définit une matrice de rotation dans \mathbb{R}^3 comme étant toute matrice $M \in \mathcal{M}_3(\mathbb{R})$ telle que ${}^t\!MM = I_3$ et $\det(M) = 1$. Montrer que $R_{\theta,x}R_{\varphi,z}$ est une matrice de rotation.

★★★ Exercice 7 - Évaluation et interpolation (solution �)

Soit $n \in \mathbb{N}$. On note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n. On pose $\alpha = (\alpha_0, \dots, \alpha_n) \in \mathbb{R}^{n+1}$ tel que les coordonnées de α soient deux à deux distinctes. Enfin, on considère l'application

$$\operatorname{ev}_{\alpha}: \mathbb{R}_{n}[X] \longrightarrow \mathbb{R}^{n+1}$$

$$P \longmapsto (P(\alpha_{0}), \dots, P(\alpha_{n})).$$

- 1. Montrer que l'application ev $_{\alpha}$ est linéaire.
- 2. Montrer que l'application ev_{α} est injective. Rappeler la dimension de $\mathbb{R}_n[X]$ et, sans faire de calcul, montrer que cette application est surjective.
- 3. Exprimer la matrice représentative de $\operatorname{ev}_{\alpha}$ dans la base canonique de $\mathbb{R}_n[X]$, notée $\mathcal{P} = (1, X, \dots, X^n)$, et la base canonique de \mathbb{R}^{n+1} , qu'on notera $\mathcal{B} = (e_0, \dots, e_n)$ (attention au décalage d'indice).
- 4. Soit $i \in [0, n]$. Trouver l'antécédent de e_i par ev_{α} .

5. On pose pour tout $i \in [0, n]$ le polynôme

$$L_{i,\alpha}(X) = \prod_{0 \le j \ne i \le n} \frac{X - \alpha_j}{\alpha_i - \alpha_j}.$$

Montrer que la famille $\mathcal{F} = (L_{0,\alpha}, \dots, L_{n,\alpha})$ est une base de $\mathbb{R}_n[X]$.

6. Exprimer la matrice représentative de $\operatorname{ev}_{\alpha}$ dans la base \mathcal{F} de $\mathbb{R}_n[X]$ et la base canonique \mathcal{B} de \mathbb{R}^{n+1} . Soit $P \in \mathbb{R}_n[X]$. Quel est le lien entre les valeurs $(P(\alpha_0), \ldots, P(\alpha_n))$ et les coordonnées de P dans la base \mathcal{F} ?

Corrections

Solution 4 - Changement de base (exercice)

1. Pour montrer que \mathcal{B} est une base de \mathbb{R}^3 , on calcule le déterminant de la matrice obtenue plaçant en colonne les vecteurs de \mathcal{B} . On a par la règle de SARRUS :

$$\begin{vmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 0 + 0 + 0 - 0 - 1 + 2 = 1 \neq 0.$$

Donc la famille \mathcal{B} est une base de \mathbb{R}^3 . En particulier, la matrice

$$P_{\mathcal{B}_c \leftarrow \mathcal{B}} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

est la matrice de passage de la base canonique de \mathbb{R}^3 vers la base \mathcal{B} .

2. La matrice de passage de la base \mathcal{B} vers la base canonique de \mathbb{R}^3 est l'inverse de la matrice $P_{\mathcal{B}_c \leftarrow \mathcal{B}}$. On calcule le produit $P_{\mathcal{B}_c \leftarrow \mathcal{B}}P_{\mathcal{B} \leftarrow \mathcal{B}_c}$ pour vérifier qu'il s'agit bien de l'identité (inutile de faire le produit dans l'autre sens, c'est automatique!)

$$P_{\mathcal{B}_c \leftarrow \mathcal{B}} P_{\mathcal{B} \leftarrow \mathcal{B}_c} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ 1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Donc $P_{\mathcal{B}\leftarrow\mathcal{B}_c}$ est bien la matrice de passage de la base \mathcal{B}_c vers la base canonique.

3. La matrice représentative de f dans la base canonique s'obtient en plaçant en colonne les coordonnées dans la base canonique de $f(e_1)$, $f(e_2)$ et $f(e_3)$. On a donc

$$M = \left(\begin{array}{rrr} 5 & 6 & -6 \\ -1 & 0 & 1 \\ 2 & 4 & -3 \end{array}\right).$$

Pour obtenir la matrice représentative de f dans la base \mathcal{B} , il faut conjuguer M par les matrices de passages. Attention à l'ordre! On veut la matrice représentative de f dans la base \mathcal{B} , mais M est exprimée dans la base canonique. Il faut que les indices des matrices de passages soient cohérents avec les bases dans lesquels les matrices sont exprimées :

$$D = P_{\mathcal{B} \leftarrow \mathcal{B}_c} M P_{\mathcal{B}_c \leftarrow \mathcal{B}}.$$

6

Ce qui donne après calcul

$$D = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

4. On a donc $M = P_{\mathcal{B}_c \leftarrow \mathcal{B}} D P_{\mathcal{B} \leftarrow \mathcal{B}_c}$, et donc pour tout $k \in \mathbb{N}$, $M^k = P_{\mathcal{B}_c \leftarrow \mathcal{B}} D^k P_{\mathcal{B} \leftarrow \mathcal{B}_c}$. Or, D est une matrice diagonale, donc $D^k = \operatorname{diag}(2^k, (-1)^k, 1)$. On peut alors calculer M^k explicitement:

$$M^{k} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2^{k} & 0 & 0 \\ 0 & (-1)^{k} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ 1 & 2 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2^{k} & 2^{k} & -2^{k} \\ (-1)^{k} & 2(-1)^{k} & 2(-1)^{k+1} \\ 1 & 2 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 2^{k+1} + (-1)^{k+1} & 2^{k+1} + 2(-1)^{k+1} & -2^{k+1} + 2(-1)^{k} \\ -2^{k} + 1 & -2^{k} + 2 & 2^{k} - 1 \\ (-1)^{k+1} + 1 & 2(-1)^{k+1} + 2 & 2(-1)^{k} - 1 \end{pmatrix}.$$

Remarque : On calcule avec cette formule M^0 et M^1 pour vérifier rapidement le résultat obtenu!

Solution 5 - Noyau et image d'une matrice (ce exercice)

- 1. Les cinq colonnes de A sont des vecteurs dans $\operatorname{im}(A)$, chacun étant l'image par A d'un vecteur de la base canonique.
- 2. On calcule les produits Au_i pour $i \in \{1, 2, 3\}$:

$$Au_1 = (0, 4, 2, 0), Au_2 = (0, 0, 0, 0), Au_3 = (0, 0, 0, 0).$$

Donc $u_2, u_3 \in \ker(A)$ et $u_1 \notin \ker(A)$.

3. On applique l'algorithme du pivot de GAUSS à la matrice A. On ne détaille que les opérations

élémentaires dans cette correction.

$$\begin{pmatrix} 1 & -2 & 0 & 3 & -2 \\ -3 & 6 & 4 & -1 & -2 \\ 3 & -6 & 2 & 4 & -1 \\ 7 & -14 & 0 & -1 & 8 \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 + 3L_1 \atop L_4 \leftarrow L_4 - 7L_1} \qquad [\cdots]$$

$$\xrightarrow{L_3 \leftarrow L_3 - \frac{1}{2}L_2} \qquad [\cdots]$$

$$\xrightarrow{L_4 \leftarrow \frac{1}{2}L_2 \atop L_4 \leftarrow \frac{1}{22}L_4} \qquad [\cdots]$$
(Forme échelonnée non réduite)
$$\xrightarrow{L_4 \leftarrow L_4 - L_3} \begin{pmatrix} 1 & -2 & 0 & 3 & -2 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(Forme échelonnée réduite)
$$\xrightarrow{L_4 \leftarrow L_4 - L_3} \begin{pmatrix} 1 & -2 & 0 & 3 & -2 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(Forme échelonnée réduite)

4. On note B la forme échelonnée réduite de A obtenue à la question précédente. On a $\ker(A) = \ker(B)$. Calculons $\ker(B)$. Soit $(a, b, c, d, e) \in \mathbb{R}^5$. On a

$$B\begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} a - 2b + e &= 0 \\ c &= 0 \\ d - e &= 0 \\ 0 &= 0 \end{cases} \Leftrightarrow \begin{cases} a &= 2b - e \\ c &= 0 \\ d &= e. \end{cases}$$

Ainsi, on a

$$\ker(A) = \ker(B) = \{(a, b, c, d, e) \in \mathbb{R}^5 \mid a = 2b - e \text{ et } c = 0 \text{ et } d = e\}$$
$$= \{(2b - e, b, 0, e, e) \mid b, e \in \mathbb{R}\}$$
$$= \operatorname{Vect}((2, 1, 0, 0, 0), (-1, 0, 0, 1, 1)).$$

Les vecteurs (2, 1, 0, 0, 0) et (-1, 0, 0, 1, 1) étant non colinéaires, il s'agit bien d'une famille libre donc d'une base de ker(A).

Pour calculer l'image de A, on n'a pas l'égalité $\operatorname{im}(A) = \operatorname{im}(B)$. En revanche, on sait par le cours que $\operatorname{im}(A)$ est engendré par les colonnes de A à la même position qu'une conne de B qui contient un pivot, et que cette famille génératrice est libre (donc c'est une base). Les

colonnes pivot de B sont les colonnes numéros 1, 3 et 4, donc la famille

$$((1, -3, 3, 7), (0, 4, 2, 0), (3, -1, 4, -1))$$

est une base de im(A).

- 5. On a $u_2 = (2, 1, 0, 0, 0) + (-1, 0, 0, 1, 1)$, donc ses coordonnées dans la base \mathcal{B}_1 sont (1, 1). De même, on a $u_3 = -(2, 1, 0, 0, 0) 2(-1, 0, 0, 1, 1)$ (on peut le trouver en résolvant un système si on ne le remarque pas tout de suite), donc ses coordonnées dans cette base sont (-1, -2).
- 6. On a $v_1 = (1, -3, 3, 7) + (0, 4, 2, 0)$ donc $v_1 \in \text{im}(A)$ et ses coordonnées dans la base \mathcal{B}_2 sont (1, 1, 0). On cherche à savoir si v_2 s'exprime comme combinaison linéaire des vecteurs de la base \mathcal{B}_2 . On résout le système donné par l'égalité

$$a(1, -3, 3, 7) + b(0, 4, 2, 0) + c(3, -1, 4, -1) = (1, 2, 3, 4).$$

Après application des premières étapes de la méthode du pivot de GAUSS, on trouve le système

$$\begin{cases} a+3c = 1 \\ b+2c = \frac{5}{4} \\ c = \frac{5}{18} \\ c = \frac{3}{22}. \end{cases}$$

Or, $\frac{5}{18} \neq \frac{3}{22}$, donc ce système n'a pas de solution. Ainsi, v_2 n'appartient pas à l'image de A. Puisque $v_3 = v_2 - v_1$ et que v_1 appartient à l'image de A mais pas v_2 , alors v_3 n'appartient pas à l'image de A (sinon, $v_2 = v_1 + v_3$ appartiendrait à l'image de A).

Solution 6 - Rotations dans \mathbb{R}^3 (\mathbf{C} exercice)

1. La rotation étant effectuée autour de l'axe z, la coordonnée selon z de v est la même que celle de u, et la projection sur le plan z=0 de u (c'est-à-dire le vecteur (x,y,0)) subit une rotation dans ce plan d'angle θ , donc la projection de v sur ce plan est $(x\cos(\theta), y\sin(\theta), 0)$. Finalement, on a $v=(x\cos(\theta)-y\sin(\theta), x\sin(\theta)+y\cos(\theta), z)$ (Faire un dessin pour le voir!!) On en déduit l'expression de $R_{\theta,z}$ suivante :

$$R_{\theta,z} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

2. Par le même raisonnement que précédemment, on obtient que

$$R_{\theta,x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \quad \text{et} \quad R_{\theta,y} = \begin{pmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{pmatrix}.$$

3. On calcule le déterminant de $R_{\theta,z}$ par un développement selon la dernière ligne (ou colonne) :

$$\begin{vmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} = 1(\cos^2(\theta) + \sin^2(\theta)) = 1.$$

Donc $R_{\theta,z}$ est inversible puisque son déterminant est non nul. Il en est de même pour $R_{\theta,x}$ et $R_{\theta,y}$.

On intuite sur l'inverse d'une rotation d'angle θ autour de l'axe des z est une rotation d'angle $-\theta$ autour du même axe. On fait le calcul pour vérifier que $R_{-\theta,z}$ est bien l'inverse de R_{θ} .

$$R_{\theta,z}R_{-\theta,z} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) & 0 \\ \sin(-\theta) & \cos(-\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos^2(\theta) + \sin^2(\theta) & \cos(\theta) \sin(\theta) - \cos(\theta) \sin(\theta) & 0 \\ \cos(\theta) \sin(\theta) - \cos(\theta) \sin(\theta) & \cos^2(\theta) + \sin^2(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Donc $R_{-\theta,z}$ est bien la matrice inverse de $R_{\theta,z}$.

4. On effectue un calcul de produit de matrices

$$R_{\theta,x}R_{\varphi,z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \cos(\theta)\sin(\varphi) & \cos(\theta)\cos(\varphi) & -\sin(\theta) \\ \sin(\theta)\sin(\varphi) & \sin(\theta)\cos(\varphi) & \cos(\theta) \end{pmatrix}.$$

5. On note $M = R_{\theta,x}R_{\varphi,z}$ la matrice calculée précédemment. On calcule alors ${}^t\!MM$. Pour raccourcir les notations, on notera c pour cos et s pour sin.

$${}^t\!MM = \begin{pmatrix} \cos(\varphi) & \cos(\theta)\sin(\varphi) & \sin(\theta)\sin(\varphi) \\ -\sin(\varphi) & \cos(\theta)\cos(\varphi) & \sin(\theta)\cos(\varphi) \\ 0 & -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \cos(\theta)\sin(\varphi) & \cos(\theta)\cos(\varphi) & -\sin(\theta) \\ \sin(\theta)\sin(\varphi) & \sin(\theta)\cos(\varphi) & \cos(\theta) \end{pmatrix}$$

$$= \begin{pmatrix} c^2(\varphi) + s^2(\varphi) & c(\theta)c(\varphi)s(\varphi) - c(\theta)c(\varphi)s(\varphi) & c(\varphi)s(\theta)s(\varphi) - c(\varphi)s(\theta)s(\varphi) \\ c(\theta)c(\varphi)s(\varphi) & c^2(\theta)s^2(\varphi) + c^2(\theta)c^2(\varphi) + s^2(\theta) & c(\theta)s(\theta)s^2(\varphi) + c(\theta)s(\theta)c^2(\varphi) - s(\theta)c(\theta) \\ c(\varphi)s(\theta)s(\varphi) & c(\theta)s(\theta)s^2(\varphi) + c(\theta)c^2(\varphi)s(\theta) - c(\theta)s(\varphi) & s^2(\theta)s^2(\varphi) + c^2(\varphi)s^2(\theta) + c^2(\theta) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} .$$

La dernière égalité provient d'un usage intensif des relations $\cos^2 + \sin^2 = 1$. Enfin, il reste à calculer le déterminant de la matrice M. On applique la règle de SARRUS :

$$det(M) = c^{2}(\theta)c^{2}(\varphi) + s^{2}(\theta)s^{2}(\varphi) + c^{2}(\theta)s^{2}(\varphi) + c^{2}(\varphi)s^{2}(\theta)$$

$$= c^{2}(\theta)(c^{2}(\varphi) + s^{2}(\varphi)) + s^{2}(\theta)(c^{2}(\varphi) + s^{2}(\varphi))$$

$$= c^{2}(\theta) + s^{2}(\theta)$$

$$= 1$$

Finalement, la matrice $M=R_{\theta,x}R_{\varphi,z}$ est bien une matrice de rotation!

Remarque : Il est très difficile de trouver l'axe de rotation et l'angle de rotation de cette matrice!

Solution 7 - Évaluation et interpolation (exercice)

1. Soit $P, Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$. Pour tout $a \in \mathbb{R}$, on a l'égalité $(\lambda P + Q)(a) = \lambda P(a) + Q(a)$. Ainsi, on a

$$\begin{aligned}
\operatorname{ev}_{\alpha}(\lambda P + Q) &= ((\lambda P + Q)(\alpha_0), \dots, (\lambda P + Q)(\alpha_n)) \\
&= (\lambda P(\alpha_0) + Q(\alpha_0), \dots, \lambda P(\alpha_n) + Q(\alpha_n)) \\
&= \lambda(P(\alpha_0), \dots, P(\alpha_0)) + (Q(\alpha_0), \dots, Q(\alpha_n)) \\
&= \lambda \operatorname{ev}_{\alpha}(P) + \operatorname{ev}_{\alpha}(Q).
\end{aligned}$$

Donc l'application $\operatorname{ev}_{\alpha}$ est linéaire.

2. Pour montrer l'injectivité de l'application $\operatorname{ev}_{\alpha}$, on montre que son noyau est réduit au polynôme nul. Soit $P \in \mathbb{R}_n[X]$ tel que $P(\alpha_0) = \cdots = P(\alpha_n) = 0$. Alors P est un polynôme de degré n ayant n+1 racines distinctes. Donc P=0. Ainsi, $\operatorname{ev}_{\alpha}$ est injective.

Puisque la dimension de $\mathbb{R}_n[X]$ est égale à n+1, qui est aussi la dimension de \mathbb{R}^{n+1} , alors $\operatorname{ev}_{\alpha}$ est aussi surjective (donc bijective).

3. On calcule $\operatorname{ev}_{\alpha}(X^i)$ pour $0 \leq i \leq n$ dans la base canonique \mathcal{B} . On a par définition

$$\operatorname{ev}_{\alpha}(X^{i}) = (\alpha_{0}^{i}, \dots, \alpha_{n}^{i}).$$

Donc la matrice représentative de $\operatorname{ev}_{\alpha}$ dans le couple de bases $(\mathcal{P},\mathcal{B})$ est

$$\operatorname{Mat}_{\mathcal{P},\mathcal{B}}(\operatorname{ev}_{\alpha}) = \begin{pmatrix} 1 & \alpha_0 & \dots & \alpha_0^{n-1} & \alpha_0^n \\ 1 & \alpha_1 & \dots & \alpha_1^{n-1} & \alpha_1^n \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \alpha_{n-1} & \dots & \alpha_{n-1}^{n-1} & \alpha_{n-1}^n \\ 1 & \alpha_n & \dots & \alpha_n^{n-1} & \alpha_n^n \end{pmatrix}.$$

4. Soit $i \in [0, n]$, on cherche le polynôme de $\mathbb{R}_n[X]$, qu'on note $P_{i,\alpha}$, tel que $\operatorname{ev}_{\alpha}(P_{i,\alpha}) = e_i$. Cela signifie que $P_{i,\alpha}(\alpha_j) = 0$ si $i \neq j$ et $P_{i,\alpha}(\alpha_i) = 1$. En particulier, puisque les α_j pour $j \neq i$ sont tous racine de $P_{i,\alpha}$, on peut factoriser $P_{i,\alpha}$ par le produit $(X - \alpha_0) \dots (X - \alpha_{i-1})(X - \alpha_{i+1}) \dots (X - \alpha_n)$. Or, ce facteur est de degré n, donc il s'agit de $P_{i,\alpha}$ à un multiple scalaire près noté C. Trouvons ce scalaire : on a

$$P_{i,\alpha} = C \prod_{0 \le j \ne i \le n} (X - \alpha_j).$$

On sait que $P_{i,\alpha}(\alpha_i) = 1$, donc

$$1 = P_{i,\alpha}(\alpha_i) = C \prod_{0 \le j \ne i \le n} (\alpha_i - \alpha_j).$$

Ainsi, $C = \left(\prod_{0 \le j \ne i \le n} (\alpha_i - \alpha_j)\right)^{-1}$ (qui est bien défini puisque les α_i sont deux à deux distincts). Finalement, on a

$$P_{i,\alpha} = \prod_{0 \le j \ne i \le n} \frac{X - \alpha_j}{\alpha_i - \alpha_j}.$$

5. Le polynôme $L_{i,\alpha}$ est le polynôme $P_{i,\alpha}$ qu'on a trouvé à la question précédente. Il s'agit donc de l'antécédent de e_i par l'application $\operatorname{ev}_{\alpha}$. On montre que la famille \mathcal{F} est libre. Soit $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$ tels que $\lambda_0 L_{0,\alpha} + \cdots + \lambda_n L_{i,\alpha} = 0$. On applique l'application $\operatorname{ev}_{\alpha}$, et on obtient par linéarité : $\lambda_0 e_0 + \cdots + \lambda_n e_n = 0$. Or, la famille (e_0, \ldots, e_n) est une base de \mathbb{R}^{n+1} , donc elle est libre, et les scalaires λ_i sont tous nuls. Ainsi, la famille \mathcal{F} est aussi libre.

Puisque la famille \mathcal{F} est de cardinal n+1 dans $\mathbb{R}_n[X]$ qui est de dimension n+1, alors c'est une base de $\mathbb{R}_n[X]$.

6. Pour exprimer la matrice représentative de $\operatorname{ev}_{\alpha}$ dans les bases \mathcal{F} de $\mathbb{R}_n[X]$ et \mathcal{B} de \mathbb{R}^{n+1} , on écrit en colonne dans une matrice les coordonnées dans la base \mathcal{B} des images par $\operatorname{ev}_{\alpha}$ des vecteurs de la base \mathcal{F} . Or, on a pour tout $i \in [0, n]$, $\operatorname{ev}_{\alpha}(L_{i,\alpha}) = e_i$ par les questions précédentes. Donc :

$$\operatorname{Mat}_{\mathcal{F},\mathcal{B}}(\operatorname{ev}_{\alpha}) = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = I_{n+1}.$$

Il s'agit simplement de la matrice identité! En particulier, pour tout polynôme $P \in \mathbb{R}_n[X]$, ses coordonnées dans la base \mathcal{F} sont les valeurs $(P(\alpha_0), \dots, P(\alpha_n))$.