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Notations

Let n ∈ N∗. We note Sn the symmetric group of order n.

An element σ ∈ Sn is represented by its one line notation : σ(1)σ(2) . . . σ(n).
Example : S3 = {1 2 3, 2 1 3, 2 3 1, 1 3 2, 3 1 2, 3 2 1}.

System of generators : let τi be the simple transposition that exchanges i and i + 1.
We can write all permutations of Sn as a product of simple transposition.
Example :

id = 1 2 3 −→
τ1

2 1 3 −→
τ2

2 3 1 −→
τ1

3 2 1 = τ1τ2τ1

id = 1 2 3 −→
τ2

1 3 2 −→
τ1

3 1 2 −→
τ2

3 2 1 = τ2τ1τ2
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Coxeter elements

A Coxeter element is permutation c of Sn that is a great cycle of the form

(1, a1, . . . , ak, n, bl, . . . , b1)

where k + l = n − 2, a1 < · · · < ak and b1 < · · · < bl.

A Coxeter element is the data of a partition of {2, . . . , n − 1} : Lc = {a1, . . . , ak}
and Rc = {b1, . . . , bl}.

Examples : let n = 6, (1, 3, 4, 6, 5, 2), (1, 6, 5, 4, 3, 2), (1, 2, 3, 4, 5, 6), (1, 5, 2, 6, 3, 4) .
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Coxeter sortable elements

Let c be a Coxeter element. A permutation σ ∈ Sn is c-sortable [Rea05] if its one
line notation avoids the following patterns :

ki . . . j for i < j < k and j ∈ Lc j . . . ki for i < j < k and j ∈ Rc.

Example : let n = 4 and c = (1, 2, 4, 3). We have Lc = {2} and Rc = {3}.

1 2 3 4 1 2 4 3 1 3 2 4 1 3 4 2 1 4 2 3 1 4 3 2
2 1 3 4 2 1 4 3 2 3 1 4 2 3 4 1 2 4 1 3 2 4 3 1
3 2 1 4 3 2 4 1 3 1 2 4 3 1 4 2 3 4 2 1 3 4 1 2
4 2 3 1 4 2 1 3 4 3 2 1 4 3 1 2 4 1 2 3 4 1 3 2

We notice there are 14 c-sortable elements.
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Catalan

Let n ∈ N∗. For any Coxeter element c of Sn, there are Cn = 1
n + 1

(
2n

n

)
c-sortable elements.

This means the c-sortable elements are in bijection with all the objects enumerated by
the Catalan numbers.

Examples :

Dyck paths of length 2n Triangulations of (n + 2)-gons
Well parenthesized ex-
pressions of n+1 factors

((a(bc))d)(ef)
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Labeling the circle

Let n ∈ N∗ and place on a circle the numbers from 1 to
n such that :

1 is at the highest point and n is at the lowest
point,

no two numbers are on the same height,

reading from top to bottom the numbers are
increasing.

Example : n = 8
1 2

5
6

8

3
4

7

LcRc

c = (1, 2, 5, 6, 8, 7, 4, 3)

A c-labeling is a labeling such that on the left are the elements of Rc and on the right
the elements of Lc
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Non crossing partitions

A c-non crossing partition is a set of non crossing polygons with vertices the marked
points of a c-labeled circle. Single points and segments are considered as polygons.

Examples : n = 6 and c = (1, 2, 4, 6, 5, 3)

1
2

4

6

3

5

1
2

4

6

3

5

1
2

4

6

3

5
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Bijection with the c-sortable elements

Theorem ([Rea05])
The set of c-sortable elements is in bijection with the set of c-non crossing partitions
via an explicit map called ncc.

Example : let n = 7, c = (1, 3, 4, 6, 7, 5, 2) and σ = 3167425. It is a c-sortable element.

σ = 3167425 −→

1

3

4

6
7

2

5

= ncc(σ).
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Inverse map

The inverse map of ncc can be computed by selecting the polygons of a c-non crossing
partition in a specific order [Gob18].

Example : Let’s use the c-non crossing partition we computed in the previous slide.

1

3

4

6
7

2

5

−→

{3, 1}, {6}, {7, 4, 2}, {5} −→ 3167425 = σ
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Binary trees

A binary tree is either an empty tree or a node with exactly one left child and one right
child. The size of a binary tree is the number of nodes in the tree.

Examples :

A binary tree. A complete binary tree.

4

1

5

2

6

3

7

A labeled binary tree.
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Descending trees, binary search trees

A binary search tree is a labeled binary tree such that the label of each node is larger
than the labels of its left child and smaller than the labels of its right child.

Examples :

3

1

2

6

4

5

7

A binary search tree

7

6

4

5

3

1

2

7

2

1

6

4

3

5

Two descending trees of the same shape
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SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
Q is a descending tree of the same shape as T


Example : Let n = 7 and σ = 2154763.

T (σ) =

3

1

2

6

4

5

7

Q(σ) =

7

2

1

6

4

3

5
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3
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2

1

6

4

3

5

7

6
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Example : Let n = 7 and σ = 2154763. (position = 2)

T (σ) =

3

1

2

6

4

5

7

3

1 6

4

5

7

Q(σ) =

7

2

1

6

4

3

5

7

2 6

4

3

5
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1

6

4
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Sylvester congruence

SSA algorithm : σ ∈ Sn is encoded by (T (σ), Q(σ)).

What happens if we forget Q(σ)? Can we describe all σ′ ∈ Sn s.t. T (σ) = T (σ′)?

Yes! T (σ) = T (σ′) iff σ′ can be obtained from σ by a series of transformations of the
form ki . . . j ↔ ik . . . j with i < j < k −→ Sylvester congruence σ ≡ σ′.

Example, σ′ = 5421763 has the same binary search tree than σ = 2154763

2154763 → 2514763 → 2541763 → 5241763 → 5421763
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Link with c-sortable elements

If c = (1, 2, 3, . . . , n − 1, n), then we have the following one to one maps :

A binary tree

↔

3

1

2

4

A binary search tree

↔


2143
2413
4213


A sylvester class

↔ 2143

σ with no ki . . . j pattern
= a c-sortable element

The map from binary trees to c-sortable elements can be directly obtained with a
postfix reading of the associated binary search tree.
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Thank you for your attention!



Further questions

What about other Coxeter elements? −→ another tree structure : Cambrian
trees [CP17].

What about other finite Coxeter groups? −→ W -Catalan numbers [Rei97].

What about infinite Coxeter groups? −→ It’s complicated... Non crossing
partitions are well defined (in a more algebraic way) as well as Reading bijection,
but it never is surjective. In the affine type, there’s a hope to generalize the
c-sortable elements to a larger family that becomes in bijection with the
non-crossing partitions −→ my thesis.
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