CATALAN combinatorics from the perspective of COXETER sortable elements of the symmetric group

Jad ABOU YASSIN - Journées TOP

IDP Tours

May 13, 2025

Summary

$1.\ \mathrm{COXETER}$ sortable elements of the symmetric group

- Symmetric group
- COXETER sortable elements

2. Non crossing partitions

- Geometric non crossing partitions
- Bijection with the *c*-sortable elements

3. Binary trees

- Binary trees and SSA algorithm
- Link with *c*-sortable elements

Non crossing partitions

$1.\ \mathrm{COXETER}$ sortable elements of the symmetric group

- Symmetric group
- \blacksquare COXETER sortable elements
- 2. Non crossing partitions
- 3. Binary trees

Notations

Let $n \in \mathbb{N}^*$. We note \mathfrak{S}_n the symmetric group of order n.

An element $\sigma \in \mathfrak{S}_n$ is represented by its one line notation : $\sigma(1)\sigma(2)\ldots\sigma(n)$. Example : $\mathfrak{S}_3 = \{1 \ 2 \ 3, \ 2 \ 1 \ 3, \ 2 \ 3 \ 1, \ 1 \ 3 \ 2, \ 3 \ 1 \ 2, \ 3 \ 2 \ 1\}.$

System of generators : let τ_i be the simple transposition that exchanges i and i + 1. We can write all permutations of \mathfrak{S}_n as a product of simple transposition. Example :

$$\begin{aligned} \mathsf{id} &= 1\ 2\ 3 \xrightarrow[\tau_1]{} 2\ 1\ 3 \xrightarrow[\tau_2]{} 2\ 3\ 1 \xrightarrow[\tau_1]{} 3\ 2\ 1 = \tau_1 \tau_2 \tau_1 \\ \mathsf{id} &= 1\ 2\ 3 \xrightarrow[\tau_2]{} 1\ 3\ 2 \xrightarrow[\tau_1]{} 3\ 1\ 2 \xrightarrow[\tau_2]{} 3\ 2\ 1 = \tau_2 \tau_1 \tau_2 \end{aligned}$$

COXETER elements

A COXETER element is permutation c of \mathfrak{S}_n that is a great cycle of the form

$$(1, \boldsymbol{a}_1, \ldots, \boldsymbol{a}_k, n, \boldsymbol{b}_l, \ldots, \boldsymbol{b}_1)$$

where k + l = n - 2, $a_1 < \dots < a_k$ and $b_1 < \dots < b_l$.

A COXETER element is the data of a partition of $\{2, \ldots, n-1\}$: $L_c = \{a_1, \ldots, a_k\}$ and $R_c = \{b_1, \ldots, b_l\}$.

Examples : let n = 6, (1, 3, 4, 6, 5, 2), (1, 6, 5, 4, 3, 2), (1, 2, 3, 4, 5, 6), (1, 5, 2, 6, 3, 4).

$\operatorname{COXETER}$ sortable elements

Let c be a COXETER element. A permutation $\sigma \in \mathfrak{S}_n$ is c-sortable [Rea05] if its one line notation avoids the following patterns :

•
$$ki \dots j$$
 for $i < j < k$ and $j \in L_c$ • $j \dots ki$ for $i < j < k$ and $j \in R_c$.

Example : let n = 4 and c = (1, 2, 4, 3). We have $L_c = \{2\}$ and $R_c = \{3\}$.

1234	$1\ 2\ 4\ 3$	$1\ 3\ 2\ 4$	$1\ 3\ 4\ 2$	$1\ 4\ 2\ 3$	$1\ 4\ 3\ 2$
$2\ 1\ 3\ 4$	$2\ 1\ 4\ 3$	$2\ 3\ 1\ 4$	$2\ 3\ 4\ 1$	$2\ 4\ 1\ 3$	$2\ 4\ 3\ 1$
$3\ 2\ 1\ 4$	3241	3124	3142	$3\ 4\ 2\ 1$	3412
4231	4213	4321	4312	4123	4132

We notice there are 14 c-sortable elements.

CATALAN

Let $n \in \mathbb{N}^*$. For any COXETER element c of \mathfrak{S}_n , there are $C_n = \frac{1}{n+1} \binom{2n}{n}$ c-sortable elements.

This means the c-sortable elements are in bijection with all the objects enumerated by the CATALAN numbers.

Examples :

 DYCK paths of length 2n

Triangulations of (n+2)-gons

Well parenthesized expressions of n+1 factors

```
((a(bc))d)(ef)
```

1. COXETER sortable elements of the symmetric group

2. Non crossing partitions

- Geometric non crossing partitions
- Bijection with the *c*-sortable elements

3. Binary trees

Labeling the circle

Let $n\in \mathbb{N}^*$ and place on a circle the numbers from 1 to n such that :

- 1 is at the highest point and n is at the lowest point,
- no two numbers are on the same height,
- reading from top to bottom the numbers are increasing.

A *c*-labeling is a labeling such that on the left are the elements of R_c and on the right the elements of L_c

Non crossing partitions $0 \bullet 0 \circ 0$

Labeling the circle

Let $n\in \mathbb{N}^*$ and place on a circle the numbers from 1 to n such that :

- 1 is at the highest point and n is at the lowest point,
- no two numbers are on the same height,
- reading from top to bottom the numbers are increasing.

A *c*-labeling is a labeling such that on the left are the elements of R_c and on the right the elements of L_c

Non crossing partitions

A *c*-non crossing partition is a set of non crossing polygons with vertices the marked points of a *c*-labeled circle. Single points and segments are considered as polygons.

Examples : n = 6 and c = (1, 2, 4, 6, 5, 3)

Non crossing partitions

Binary trees

Bijection with the *c*-sortable elements

Theorem ([Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .

Non crossing partitions

Binary trees

Bijection with the *c*-sortable elements

Theorem ([Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .

Non crossing partitions

Binary trees

Bijection with the *c*-sortable elements

Theorem ([Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .

Non crossing partitions

Binary trees

Bijection with the *c*-sortable elements

Theorem ([Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .

Non crossing partitions

Binary trees

Bijection with the *c*-sortable elements

Theorem ([Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .

The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].

The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].

The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].

The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].

The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].

The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].

Non crossing partitions 00000

 $1.\ \mathrm{COXETER}$ sortable elements of the symmetric group

2. Non crossing partitions

3. Binary trees

- Binary trees and SSA algorithm
- \blacksquare Link with c-sortable elements

Non crossing partitions

A binary tree is either an empty tree or a node with exactly one left child and one right child. The size of a binary tree is the number of nodes in the tree.

Examples :

Descending trees, binary search trees

A binary search tree is a labeled binary tree such that the label of each node is larger than the labels of its left child and smaller than the labels of its right child.

Examples :

Two descending trees of the same shape

Non crossing partitions

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$.

$$T(\sigma) = Q(\sigma) =$$

Non crossing partitions $_{\rm OOOOO}$

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$. (position = 7)

Non crossing partitions $_{\rm OOOOO}$

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$. (position = 6)

$$T(\sigma) = 3$$
 $Q(\sigma) = 7$

Non crossing partitions $_{\rm OOOOO}$

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$. (position = 5)

Non crossing partitions $_{\rm OOOOO}$

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$. (position = 4)

Non crossing partitions

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$. (position = 3)

Non crossing partitions $_{\rm OOOOO}$

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$. (position = 2)

Non crossing partitions $_{\rm OOOOO}$

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$. (position = 1)

Non crossing partitions

SSA algorithm

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \begin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n = 7 and $\sigma = 2154763$.

Sylvester congruence

SSA algorithm : $\sigma \in \mathfrak{S}_n$ is encoded by $(T(\sigma), Q(\sigma))$.

What happens if we forget $Q(\sigma)$? Can we describe all $\sigma' \in \mathfrak{S}_n$ s.t. $T(\sigma) = T(\sigma')$?

Sylvester congruence

SSA algorithm : $\sigma \in \mathfrak{S}_n$ is encoded by $(T(\sigma), Q(\sigma))$.

What happens if we forget $Q(\sigma)$? Can we describe all $\sigma' \in \mathfrak{S}_n$ s.t. $T(\sigma) = T(\sigma')$?

Yes! $T(\sigma) = T(\sigma')$ iff σ' can be obtained from σ by a series of transformations of the form $ki \dots j \leftrightarrow ik \dots j$ with $i < j < k \longrightarrow$ Sylvester congruence $\sigma \equiv \sigma'$.

Example, $\sigma' = 5421763$ has the same binary search tree than $\sigma = 2154763$

 $2154763 \rightarrow 2514763 \rightarrow 2541763 \rightarrow 5241763 \rightarrow 5421763$

Non crossing partitions

Link with *c*-sortable elements

If $c = (1, 2, 3, \dots, n-1, n)$, then we have the following one to one maps :

Non crossing partitions

Link with *c*-sortable elements

If $c = (1, 2, 3, \dots, n-1, n)$, then we have the following one to one maps :

The map from binary trees to *c*-sortable elements can be directly obtained with a postfix reading of the associated binary search tree.

Thank you for your attention!

• What about other COXETER elements? \longrightarrow another tree structure : Cambrian trees [CP17].

• What about other COXETER elements? \longrightarrow another tree structure : Cambrian trees [CP17].

• What about other finite COXETER groups? \longrightarrow *W*-CATALAN numbers [Rei97].

• What about other COXETER elements? \longrightarrow another tree structure : Cambrian trees [CP17].

• What about other finite COXETER groups? \longrightarrow W-CATALAN numbers [Rei97].

What about infinite COXETER groups? → It's complicated... Non crossing partitions are well defined (in a more algebraic way) as well as READING bijection, but it never is surjective. In the affine type, there's a hope to generalize the *c*-sortable elements to a larger family that becomes in bijection with the non-crossing partitions → my thesis.

Bibliography

Grégory Chatel and Vincent Pilaud.

Cambrian hopf algebras.

Advances in Mathematics, 311:598-633, April 2017.

Thomas Gobet.

Dual garside structures and coxeter sortable elements, 2018.

F. Hivert, J. C. Novelli, and J. Y. Thibon.

The algebra of binary search trees, 2004.

📔 Nathan Reading.

Clusters, coxeter-sortable elements and noncrossing partitions, 2005.

Victor Reiner.

Non-crossing partitions for classical reflection groups.

Discrete Mathematics, 177(1):195–222, 1997.