Noncrossing arc diagrams and permutations

Jad ABOU YASSIN

Institut Denis Poisson, University of Tours

Journée MIPTIS - Orléans - September 16, 2025

Summary

1. Noncrossing arc diagrams

- Definition
- \blacksquare Enumeration for small values of n

2. Permutations

- Definition
- A bijective map from permutations to noncrossing arc diagrams

3. Adding restrictions

- c-noncrossing arc diagrams
- Noncrossing partitions

- 1. Noncrossing arc diagrams
 - Definition
 - \blacksquare Enumeration for small values of n
- 2. Permutations
- 3. Adding restrictions

Let $n \in \mathbb{N}^*$ and vertically place n points labeled from 1 to n downwards.

Let $n \in \mathbb{N}^*$ and vertically place n points labeled from 1 to n downwards.

 \times 1

 \times 2

 \times 3

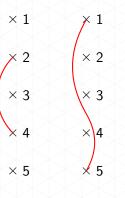
 \times 4

For example, with n=5:

 \times 5

Let $n\in\mathbb{N}^*$ and vertically place n points labeled from 1 to n downwards. An arc is a continuous curve joining two points p< q

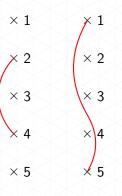
For example, with n=5:

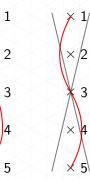


× 1
× 2
× 3
× 4

Let $n \in \mathbb{N}^*$ and vertically place n points labeled from 1 to n downwards. An arc is a continuous curve joining two points p < q, such that it doesn't cross any other point

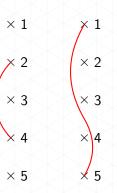
For example, with n=5:

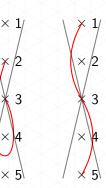




Let $n \in \mathbb{N}^*$ and vertically place n points labeled from 1 to n downwards. An arc is a continuous curve joining two points p < q, such that it doesn't cross any other point and is moving monotone vertically.

For example, with n = 5:



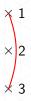


Two arcs are equal if one can be continuously transformed into the other without changing their endpoints and crossing any point.

Combinatorial description

Two arcs are equal if one can be continuously transformed into the other without changing their endpoints and crossing any point.

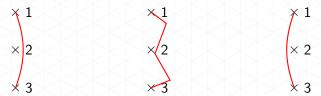
For example, with n=3, the two first arcs are equal, but they differ from the third.



Combinatorial description

Two arcs are equal if one can be continuously transformed into the other without changing their endpoints and crossing any point.

For example, with n=3, the two first arcs are equal, but they differ from the third.



A combinatorical definition of an arc: a tuple (p,q,L,R) where p is the initial point, q the final point, L the numbers on the left of the arc and R the ones on the right of the arc.

Combinatorial description

Noncrossing arc diagrams

Two arcs are equal if one can be continuously transformed into the other without changing their endpoints and crossing any point.

For example, with n=3, the two first arcs are equal, but they differ from the third.

$$(1,3,\{2\},\emptyset) = \times 2 \qquad = \qquad \times 2 \qquad \neq \qquad \times 2 \qquad \times 3 \qquad \times 3$$

A combinatorical definition of an arc: a tuple (p, q, L, R) where p is the initial point, q the final point, L the numbers on the left of the arc and R the ones on the right of the arc.

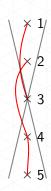
Let $n \in \mathbb{N}^*$. A noncrossing arc diagram on n points is a collection of arcs that do not cross, except possibly at their endpoints

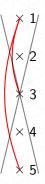
Let $n \in \mathbb{N}^*$. A noncrossing arc diagram on n points is a collection of arcs that do not cross, except possibly at their endpoints

For example, with n=5:

Let $n \in \mathbb{N}^*$. A noncrossing arc diagram on n points is a collection of arcs that do not cross, except possibly at their endpoints, and they can't share the same initial point or final point.

For example, with n=5:





Counting noncrossing arc diagrams

If $n \in \mathbb{N}^*$, how many noncrossing arc diagrams on n points are there?

Counting noncrossing arc diagrams

If $n \in \mathbb{N}^*$, how many noncrossing arc diagrams on n points are there?

For n=2, there are ${\color{red}2}$ noncrossing arc diagrams:

$$\times$$
 1 and \times 2

Counting noncrossing arc diagrams

If $n \in \mathbb{N}^*$, how many noncrossing arc diagrams on n points are there?

For
$$n=2$$
, there are ${\color{red}2}$ noncrossing arc diagrams:

$$\times$$
 1 and \times 1 \times 2

For n=3, there are 6 noncrossing arc diagrams:

2. Permutations

- Definition
- A bijective map from permutations to noncrossing arc diagrams

3. Adding restrictions

Permutations

Let $n \in \mathbb{N}^*$. A bijective map from the set [1, n] into itself is called a permutation. We note \mathfrak{S}_n the set of all permutations of [1, n].

Permutations

Let $n \in \mathbb{N}^*$. A bijective map from the set [1, n] into itself is called a permutation. We note \mathfrak{S}_n the set of all permutations of [1, n].

A permutation $\sigma \in \mathfrak{S}_n$ will be represented by its one line notation: it is the sequence of integers $\sigma(1)\sigma(2)\ldots\sigma(n)$.

Permutations

Let $n \in \mathbb{N}^*$. A bijective map from the set [1, n] into itself is called a permutation. We note \mathfrak{S}_n the set of all permutations of [1, n].

A permutation $\sigma \in \mathfrak{S}_n$ will be represented by its one line notation: it is the sequence of integers $\sigma(1)\sigma(2)\ldots\sigma(n)$.

Inversions and cover reflections

Let $\sigma \in \mathfrak{S}_n$ be a permutation. An inversion of σ is a pair of integers (i,j) such that i < j and j appears before i in the one line notation of σ .

Example : $\sigma=3142$. The inversions of σ are (1,3), (2,3) and (2,4).

Inversions and cover reflections

Let $\sigma \in \mathfrak{S}_n$ be a permutation. An inversion of σ is a pair of integers (i,j) such that i < j and j appears before i in the one line notation of σ . If i and j are consecutive in σ , we say that (i,j) is a cover reflection of σ .

Example : $\sigma=3142$. The inversions of σ are (1,3), (2,3) and (2,4). Among them, only (1,3) and (2,4) are cover reflections.

Arc associated to a cover reflection of a permutation

Let $\sigma \in \mathfrak{S}_n$. If (p,q) is a cover reflection of σ , we define an arc (p,q,L,R) where L (resp. R) is the set of all integers between p and q that appear on the left (resp. right) of p and q in the one line notation of σ .

Arc associated to a cover reflection of a permutation

Let $\sigma \in \mathfrak{S}_n$. If (p,q) is a cover reflection of σ , we define an arc (p,q,L,R) where L (resp. R) is the set of all integers between p and q that appear on the left (resp. right) of p and q in the one line notation of σ .

Example : $\sigma = 254163$ has (1,4) as a cover reflection. Since 2 is on the left and 3 is on the right, the arc associated to this cover reflection is $(1,4,\{2\},\{3\})$.

Arc associated to a cover reflection of a permutation

Let $\sigma \in \mathfrak{S}_n$. If (p,q) is a cover reflection of σ , we define an arc (p,q,L,R) where L (resp. R) is the set of all integers between p and q that appear on the left (resp. right) of p and q in the one line notation of σ .

Example : $\sigma = 254163$ has (1,4) as a cover reflection. Since 2 is on the left and 3 is on the right, the arc associated to this cover reflection is $(1,4,\{2\},\{3\})$.

 \times 5

 \times 6

Let $\sigma \in \mathfrak{S}_n$. We construct the noncrossing arc diagram corresponding to σ by considering all the arcs associated to each cover reflection of σ .

Let $\sigma \in \mathfrak{S}_n$. We construct the noncrossing arc diagram corresponding to σ by considering all the arcs associated to each cover reflection of σ .

$$\times$$
 1

$$\times 2$$

 \times 3

Example :
$$\sigma=254163$$
. The cover reflections of σ are $(1,4)$, $(4,5)$ and $(3,6)$. We obtain the following noncrossing arc diagram.

$$\times$$
 5

$$\times$$
 6

Let $\sigma \in \mathfrak{S}_n$. We construct the noncrossing arc diagram corresponding to σ by considering all the arcs associated to each cover reflection of σ .

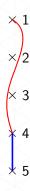
Example : $\sigma=254163$. The cover reflections of σ are (1,4), (4,5) and (3,6). We obtain the following noncrossing arc diagram.

$$\times$$
 5

$$\times$$
 6

Let $\sigma \in \mathfrak{S}_n$. We construct the noncrossing arc diagram corresponding to σ by considering all the arcs associated to each cover reflection of σ .

Example : $\sigma=254163$. The cover reflections of σ are (1,4), (4,5) and (3,6). We obtain the following noncrossing arc diagram.



 \times 6

Let $\sigma \in \mathfrak{S}_n$. We construct the noncrossing arc diagram corresponding to σ by considering all the arcs associated to each cover reflection of σ .

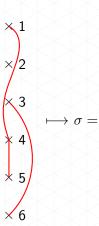
Example : $\sigma=254163$. The cover reflections of σ are (1,4), (4,5) and (3,6). We obtain the following noncrossing arc diagram.

Let $\sigma \in \mathfrak{S}_n$. We construct the noncrossing arc diagram corresponding to σ by considering all the arcs associated to each cover reflection of σ .

Example : $\sigma=254163$. The cover reflections of σ are (1,4), (4,5) and (3,6). We obtain the following noncrossing arc diagram.

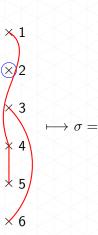
Inverse map

This construction is reversible:



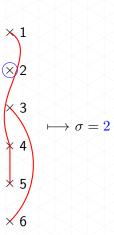
Inverse map

This construction is reversible: from a non-crossing arc diagram, we construct a permutation by selecting the first chain (can be a single point) of arcs that has nothing on its left.

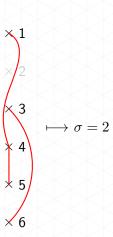


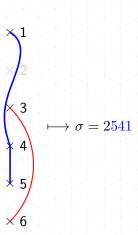
Inverse map

This construction is reversible: from a non-crossing arc diagram, we construct a permutation by selecting the first chain (can be a single point) of arcs that has nothing on its left. We write down the elements of this chain by decreasing order



This construction is reversible: from a non-crossing arc diagram, we construct a permutation by selecting the first chain (can be a single point) of arcs that has nothing on its left. We write down the elements of this chain by decreasing order, and we remove it from the noncrossing arc diagram.





$$\begin{array}{c} \times 1 \\ \times 2 \\ \times 3 \\ \times 4 \\ \times 5 \end{array}$$

$$\longrightarrow \sigma = 2541$$

$$\times 2$$

$$\mapsto \sigma = 254163$$

$$\times 4$$

Theorem

The previous constructions define a bijective map from the set of noncrossing arc diagrams on n points to the set of permutations on [1, n].

Theorem

The previous constructions define a bijective map from the set of noncrossing arc diagrams on n points to the set of permutations on [1, n].

We know that there are n! permutations on $[\![1,n]\!]$.

Theorem

The previous constructions define a bijective map from the set of noncrossing arc diagrams on n points to the set of permutations on [1, n].

We know that there are n! permutations on [1, n].

Corollary

There are n! noncrossing arc diagrams on n points.

- 1. Noncrossing arc diagrams
- 2. Permutations
- 3. Adding restrictions
 - c-noncrossing arc diagrams
 - Noncrossing partitions

c-noncrossing arc diagrams

Let $c = L_c \sqcup R_c$ be a partition of [2, n-1] in two parts. For example, with n=5, $c=\{3\} \sqcup \{2,4\}$.

c-noncrossing arc diagrams

Let $c = L_c \sqcup R_c$ be a partition of [2, n-1] in two parts. For example, with n=5, $c=\{3\} \sqcup \{2,4\}$.

We add horizontal half-lines starting at each point $i \in [\![2,n-1]\!]$ and going to the left (resp. right) if $i \in L_c$ (resp. $i \in R_c$).

 \times 1

←2

× 3

× 4

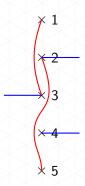
 \times 5

c-noncrossing arc diagrams

Let $c = L_c \sqcup R_c$ be a partition of [2, n-1] in two parts. For example, with n=5, $c=\{3\} \sqcup \{2,4\}$.

We add horizontal half-lines starting at each point $i \in [2, n-1]$ and going to the left (resp. right) if $i \in L_c$ (resp. $i \in R_c$).

A *c*-noncrossing arc diagram is a noncrossing arc diagram that do not cross the horizontal added lines.



How many?

Once again: how many c-noncrossing arc diagrams on n points are there? Does it depend on the choice of c?

How many?

Once again: how many c-noncrossing arc diagrams on n points are there? Does it depend on the choice of c?

For n=2, there are ${\color{red} 2}$ c-noncrossing arc diagrams:

$$\times$$
 1 and \times 1 \times 2

How many?

Once again: how many c-noncrossing arc diagrams on n points are there? Does it depend on the choice of c?

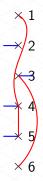
For n=2, there are ${\bf 2}\ c$ -noncrossing arc diagrams:

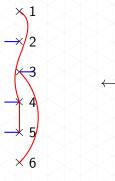
$$\times$$
 1 and \times 1 \times 2

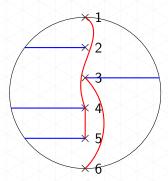
For n=3, and $c=\{2\}\sqcup\emptyset$, there are 5 c-noncrossing arc diagrams:

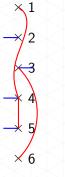
 $\times 1$

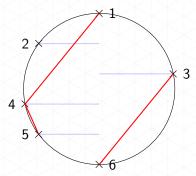
 $\begin{array}{c} \times 1 \\ \longrightarrow \\ 2 \\ \times 3 \end{array}$

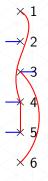




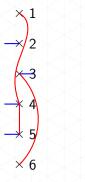


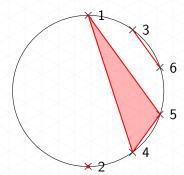


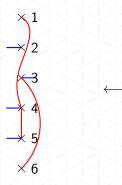


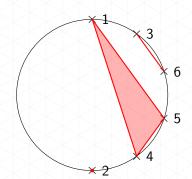












The noncrossing partition on n points are enumerated by the CATALAN numbers:

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

The noncrossing partition on n points are enumerated by the CATALAN numbers:

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Corollary

For any choice of c, there are C_n c-noncrossing arc diagrams.

The noncrossing partition on n points are enumerated by the CATALAN numbers:

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Corollary

For any choice of c, there are C_n c-noncrossing arc diagrams.

The permutations associated with c-noncrossing arc diagrams are called c-sortable elements (of \mathfrak{S}_n). We now know there also are enumerated by the CATALAN numbers.

The noncrossing partition on n points are enumerated by the CATALAN numbers:

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Corollary

For any choice of c, there are C_n c-noncrossing arc diagrams.

The permutations associated with c-noncrossing arc diagrams are called c-sortable elements (of \mathfrak{S}_n). We now know there also are enumerated by the CATALAN numbers.

My thesis' title : « Noncrossing partitions and generalization of \emph{c} -sortable elements in affine Coxeter groups ».

Thank you for your attention!