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Introduction

(a) Ising model : About 1 over 2
sites are occupied.

(b) Hard-core model : About 227
over 1000 sites are occupied.

Figure 1: Typical behaviour for similar parameters of the Ising model (on the left) and of the hard-core
model (on the right) on J1, 500K2 as a subgraph of Z2.

In statistical physics, the Ising-Lenz model (or Ising model, the reader can find a complete course on this
subject in [FV17]) is the most common toy model used in order to model the behaviour of physics systems.
For instance, we can define thanks to it the lattice gas model in which the particles of a gas can only place
themselves on the nodes of a lattice and the probability that a particle places itself on a node depends on
the fact that they are or not particles on the neighbouring nodes.
The fact that it is a Isinz-Lenz model gives us results on the behaviour of the gaz at high temperatures

or low temperatures and on when phase transition takes place. However even though this model is very
useful, we can ask ourselves what could possibly happens if the particles are hard and cannot allow having
a neighbour.
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To model this behaviour, we will define the hard-core lattice gas model (usually called the hard-core model)
and the goal of this paper is to prove the results of the paper of Van den Berg and Steif [BS94] that is the
existence of the model in an infinite graph and results on phase transition. We will often do comparison
between the Ising-Lenz model and the hard-core model in order to enlighten some results.
In section 1, we will define the model by giving in subsection 1.1 some preleminary but necessary notions

in order to define in subsection 1.2 the hard-core model in the finite graph case and in subsection 1.3 the
hard-core model in the infinite graph case. Moreover, in subsection 1.4 we will see how to simulate the
hard-core model on a computer thanks to a Markov Chain Monte Carlo method.
In section 2, we will prove necessary properties mostly given by percolation to prove the existence of the

hard-core model in the infinite graph case and to prove criteria for uniqueness of measure for the hard-core
model that will be proven in section 3.

Notations

In this whole paper, we will use the following notations :

• we denote N the set of non-negative integers, R∗
+ the set of positive real numbers ;

• for all set X, we denote by A ⋐ X the fact that A is a finite subset of X ;

• for all sets X and Y , for all u ∈ Y X , for all x ∈ X and A ⊂ X, we denote ux the element of u indexed
by x and uA := (ua)a∈A ∈ Y A ;

• for all sets X and Y , for all A ⊂ X, for all u ∈ Y A, for all v ∈ Y Ac

, we denote uv the element w ∈ Y X

such that for all x ∈ A, wa = ua and for all x ∈ Ac, wa = va.

• for (Ω,F ,P) a probability space, we denote the expectancy under P by ⟨·⟩P and the covariance under
P by CovP(·).

2



Contents

1 Mathematical formulation of the hard-core model 4
1.1 Some preliminary notions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The hard-core model on a finite graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The hard-core model on an infinite graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Simulation of the hard-core model on a finite graph . . . . . . . . . . . . . . . . . . . . . . . . 9

2 General results 13
2.1 Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Uniqueness of Gibbs measures sufficient condition . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Results in the bipartite case 18
3.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Existence of at least one Gibbs measure for the hard-core model and two criteria for uniqueness 23

Annexes 31

A Algorithm for the simulation of the hard-core model 31

3



1 Mathematical formulation of the hard-core model

The goal of this section is to define mathematically the hard-core model. In subsection 1.1, we will briefly
recall some notions and define some objects that will be useful in order to model correctly the behaviour
of such a hard-core lattice gas. In subsection 1.2 and subsection 1.3, we will define the hard-core model in
the finite graph case and the infinite graph case respectively and give some properties in both cases. An
important step in order to understand how the model works is to simulate it, we will explain in subsection
1.4 how to do so.

1.1 Some preliminary notions and notations

In this subsection, even though we suppose that the reader has basic notions of graph theory, we will fix
some notations and define some notions in definition 1.1. In the whole paper, when we say graph, we mean
undirected graph.

Definition 1.1 — Let G = (V,E) be a graph.

• For all v, w ∈ V , we say that v and w are adjacent or neighbours and we denote it v ∼ w if and only
if there is an edge between v and w, we call the set N(v) = {w ∈ V : v ∼ w} the neighbourhood of
v and the degree of v is d(v) = |N(v)|. We say that G is locally finite if and only if for all v ∈ V ,
d(v) is finite.

• For Λ ⊂ V , we denote N(Λ) =
⋃

v∈Λ N(v) the neighbourhood of Λ, Λ = Λ∪N(Λ), and ∂Λ = Λ \Λ
the boundary of Λ.

• We say that G is connected if and only if for all v, w ∈ V , there is a path between v and w. We
say that a path Π on G is infinite if and only if it goes through an infinite number of vertices.

Remark. For A ⊂ V , we will often mix up the subgraph of G induced by A and the set of vertices A.

The definition 1.2 is here to define essential notions for the hard-core model thanks to which we can do the
exact definition of the model.

Definition 1.2 — Let G = (V,E) be a finite or countably infinite, locally finite, connected graph.

• We call ΩG the set of configurations the set defined by ΩG = {0, 1}G.

• For all ω ∈ ΩG, we say that ω is feasible if and only if ω has no two adjacent 1s (which also means
that for all v ∈ V and for all w neighbour of v, ωvωw = 0).

• We call FG the set of feasible configurations the set defined by :

FG = {ω ∈ ΩG : ω is feasible} = {ω ∈ ΩG : ∀v ∈ V,∀w ∈ N(v), ωv = 1 ⇒ ωw = 0}

= {ω ∈ ΩG : ∀v, w ∈ V, v ∼ w ⇒ ωvωw = 0}.
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A non-feasible configuration A feasible configuration

Figure 2: On the left, the configuration is non-feasible because the red balls are close ; on the right, it
is a feasible configuration.

A configuration represents the placement of the particles on the graph : 1 if a particle is present on the
vertex and 0 otherwise. Then a configuration is feasible if no two particles are neighbours.
Now that we have defined all that was necessary we can define the hard-core model on finite graphs (see

subsection 1.2) or infinite graphs (see subsection 1.3).

1.2 The hard-core model on a finite graph

Let us firstly define the hard-core model on a finite graph in definition 1.3.

Definition 1.3 — Let G = (V,E) be a finite connected graph and let a = (av)v∈V be a sequence of
positive real numbers.
The hard-core measure for G with activity a is defined as the following probability measure µG,a on

ΩG equipped with the discrete σ-algebra P(ΩG) :

∀ω ∈ ΩG, µG,a({ω}) =

 1
ZG,a

exp(−HG,a(ω)) , if ω is feasible ;

0 , otherwise.

= 1
ZG,a

1F (ω) exp(−HG,a(ω)),

where HG,a(ω) = −
∑
v∈V

ln(av)ωv is the Hamilton function of the system, ZG,a =
∑
ω∈F

exp(−HG,a(ω)) is

the normalizing constant also called the partition function of the system and FG is the set of all feasible
configurations.

Proof. We need to show that µG,a is a probability measure which is really easy because ΩG is finite and

∑
ω∈ΩG

1

ZG,a
1F (ω) exp(−HG,a(ω)) = 1. □
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Remarks. For ω ∈ ΩG, we will write µG,a(ω) instead of µG,a({ω}) and we can observe that

µG,a(ω) =
1

ZG,a

∏
v∈V

aωv
v .

If a is equal to (a)v∈V for a > 0, we will write a instead of a in all the notations and, in that case, for all
ω ∈ ΩG, µG,a(ω) =

1
ZG,a

a
∑

v∈V ωv .

Remark. When we compare to the Ising-Lenz model, we can wonder where appear the influence of the
neighbours that is due to the product of the neighbouring values. However, the fact that only the feasible
configurations are taken into account is linked to the fact that the hamiltonian could be written

H(ω) = ∞
∑
v∼w

ωvωw −
∑
v∈V

ln(av)ωv,

where we have the convention ∞ · 0 = 0 and exp(−∞) = 0. In that case, the indicator function is not useful
anymore.

Let us see how this model behaves on a particular case given by the graph of the figure 3 with activity a,
we can wonder what the set of all non-feasible configurations FG is. What is its cardinality ? What are the
probabilities of the feasible configurations ? What happens if a = 1 ? if a is much smaller than 1 ? if a is
much larger than 1 ?

1

2

3

Figure 3: A finite connected graph of three nodes and two edges.

Let us answer these questions. The set of all feasible configurations is

FG = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)},

it has a cardinality of 5 while ΩG has a cardinality of 8. The probabilities of each configuration are put in
the tabular of the figure 4, for the general case, for a = 1, for a ≪ 1 and for a ≫ 1.

ω ∈ FG µG,a for a > 0 µG,a for a = 1 µG,a for a ≪ 1 µG,a for a ≫ 1
(0, 0, 0) 1

1+3a+a2
1
5 ≃ 1 ≃ 0

(1, 0, 0) a
1+3a+a2

1
5 ≃ 0 ≃ 0

(0, 1, 0) a
1+3a+a2

1
5 ≃ 0 ≃ 0

(0, 0, 1) a
1+3a+a2

1
5 ≃ 0 ≃ 0

(1, 0, 1) a2

1+3a+a2
1
5 ≃ 0 ≃ 1

Figure 4: The probabilities of the feasible configurations for the hard-core model on the graph of figure
3.
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We can easily observe here that if a = 1, µG,1 is the uniform distribution on FG (it is the case for any finite
connected graph), that if a ≫ 1 we will have a maximum number of particles on the graph and that if a ≪ 1

we will have a minimum number of particles on the graph. This behaviour is a general one as you can see on
the figure 5 on a subgraph of Z2.

(a) a = 0.001 : About 1 over 1000
sites are occupied.

(b) a = 1.0 : About 227 over 1000
sites are occupied.

(c) a = 1000.0 : About 365 over
1000 sites are occupied.

Figure 5: Three simulations of the behaviour of the hard-core model on J1, 500K2 as a subgraph of Z2

with different activities.

We will explain how to get the simulations of the figure 5 in the subsection 1.4. For now, let us prove some
properties of the probability measure following the hard-core model. Firstly, let us recall the definition of
Markov fields in definition 1.4 before proceeding with proposition 1.5.

Definition 1.4 — For all finite connected graph G = (V,E), for all probability measures µ on ΩG, we
say that µ is a Markov field if and only if for all v ∈ V , for all η ∈ ΩG such that
µ({ω ∈ ΩG : ω{v}c = η{v}c}) ̸= 0,

µ(·|{ω ∈ ΩG : ω{v}c = η{v}c}) = µ(·|{ω ∈ ΩG : ωN(v) = ηN(v)}).

The Markov field property is an extension of the Markov chain property ("The probability of moving to
the next state depends only on the present state and not on the previous states"). Indeed the probability
that a vertex takes a certain value only depends on the values of the adjacent vertices.

Proposition 1.5 — For all finite connected graph G = (V,E) and for all a = (av)v∈V ∈ (R∗
+)

V , µG,a

is a Markov field.

Proof. Let G = (V,E) be a finite connected graph and let a ∈ (R∗
+)

V .
Let v ∈ V and let η ∈ ΩG such that µ({ω ∈ ΩG : ω{v}c = η{v}c}) ̸= 0. Let ω′ ∈ ΩG,
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Figure 6: Illustration of the Markov field property : the value of the white vertex knowing the values of
the other vertices only depends on the values of the black vertices and not the grey vertices.

µ({ω′}|{ω ∈ ΩG : ω{v}c = η{v}c}) =
av1FG

(1{v}η{v}c)δ1{v}η{v}c ({ω′}) + 1FG
(0{v}η{v}c)δ0{v}η{v}c ({ω′})

av1FG
(1{v}η{v}c) + 1FG

(0{v}η{v}c)

= µ({ω′}|{ω ∈ ΩG : ωN(v) = ηN(v)}). □

This property allows us to extend in a natural way the measure in the infinite graph case.

1.3 The hard-core model on an infinite graph

We want to model the same behaviour as in the finite graph case on a countably infinite, locally finite,
connected graph G = (V,E) with activity a ∈ (R∗

+)
V . The problem is the following : we cannot do the exact

same model as previously because we would have to deal with infinite computation.
In order to model correctly this behaviour, we will need to use the notion of Gibbs measures (for more

information on this matter, see [Geo11]) which appears as a natural extension of the finite graph case thanks
to the fact that the previously defined probability measures are Markov fields. In our case, we will specifize a
class of conditional probabilities that will caracterize the hard-core model. To do so, we will use the subgraphs
of our graph and fix on the outside of the subgraphs exterior conditions as illustrated in figure 7.

B

Figure 7: Representation of a condition for the infinite graph : the nodes in the area within the blue
border are the vertices of B, the grey disks outside of B represent the exterior condition and the red
dots correspond to the sites which cannot have particles because of the exterior condition.
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Firstly, before defining the hard-core model on G, we need to make of ΩG a measurable set. In order to do
so, we will use the σ-algebra defined in definition 1.6.

Definition 1.6 — LetX and Y be two sets, we call the obvious σ-algebra of XY the σ-algebra generated
by the sets {u ∈ XY : uy = x} for all x ∈ X and y ∈ Y .

Now we can define the probability measure for the hard-core model in definition 1.7.

Definition 1.7 — Let G = (V,E) be a countably infinite, locally finite, connected graph and let a =

(av)v∈V be a sequence of real positive numbers.
We say that a probability measure µ on ΩG equipped with the obvious σ-algebra is a hard-core measure

for G with activity a if and only if for all B ⋐ V , η ∈ FG and α = {0, 1}B :

µ(ωB = αB |ωBc = ηBc) =


1

Zη
B,a

exp(−Hη
B,a(α)) , if αBηBc is feasible ;

0 , otherwise.

=
1

Zη
B,a

1FG
(αBηBc) exp(−Hη

B,a(α)),

where Hη
B,a(α) = −

∑
v∈B

ln(av)αv is the Hamilton function of the system, Zη
B,a =

∑
ω∈FG

ωBc=ηBc

exp(Hη
B,a(ω))

is the partition function of the system and FG is the set of all feasible configurations.

Remark. We can observe that the hard-core model in the finite graph case also respect the condition in
definition 1.7, that explains why it is a natural extension of the finite graph case.

The previous definition gives a specification of conditional probability measures and that is why a hard-core
measure for G with activity a is a Gibbs measure. In such a case, two questions arise : Does such a measure
exists ? On which condition(s) is there uniqueness ?
In the most general case, the first question is answered thanks to an argument of Georgii (see the chapter

IV of [Geo11] especially p.400-401 where Georgii explains how to use the tools developped in the book to
prove the existence of the hard-core model in the general case), however we cannot conclude for uniqueness.
In order to do so, we will study a special type of graph : the class of bipartite graphs. We will show in the

section 3 results on the existence of at least one Gibbs measure for the hard-core model in the bipartite case
and then show criteria for uniqueness.

1.4 Simulation of the hard-core model on a finite graph

In order to get a better understanding of how the hard-core model works on G = (V,E) with activity
a, it can be useful to know how to simulate it. At first, we can think of constructing the set of feasible
configurations FG and then picking a configuration in it with respect to the probability measure for the
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hard-core model. However, in most cases, the order of magnitude of |FG| is exponential in |V | : for large
|V |, the algorithm will have a too long time of execution. That is why we use a Markov Chain Monte Carlo
method to simulate our model.
Before proceeding with the explanation of the methods, we will need to get some definitions and results

around the Markov chains that we can find in the book of Häggström (see [Häg+02]) with their proofs which
will not be given here.
First we need to define a topology on the probability measures with the total variation distance in definition

1.8.

Definition 1.8 — If ν and ν′ are two probability distributions on S = {s1, . . . , sk}, then we define the
total variation distance between ν and ν′ as

dTV (ν, ν
′) =

1

2

k∑
i=1

|ν({si})− ν′({si})| .

If (νn)n∈N is a sequence of probability measures on S and ν is a probability measure on S, then we say
that (νn)n∈N converges to ν in total variation as n → ∞, writing νn

TV→ ν, if and only if

lim
n→∞

dTV (νn, ν) = 0.

We now recall the definition of a Markov chain and definitions useful for Markov chains in definition 1.9.

Definition 1.9 — Let (Ω,F ,P) be a probability space, let k ∈ N∗, let P = (Pi,j)i,j∈J1,kK be a matrix
of Mk(R) and let S = {s1, . . . , sk} be a finite set. Let π be a probability measure on S and π̃ =

(π({s1}), . . . , π({sk})).

• A random process (Xl)l∈N with finite state space S is said to be a Markov chain with transition
matrix P if and only if for all n ∈ N, for all i, j ∈ J1, kK, for all io, . . . , in−1 ∈ J1, kK, we have

P(Xn+1 = sj |X0 = si0 , . . . , Xn = sin) = P(Xn+1 = sj |Xn = sin) = Pi,j .

• A Markov chain (Xl)l∈N with state space S and transition matrix P is said to be irreducible if and
only if for all si, sj ∈ S, we have (Pn)i,j > 0. Otherwise, the chain is said to be reducible.

• A Markov chain (Xl)l∈N with state space S and transition matrix P is said to be aperiodic if and
only if for all si ∈ S, we have that d(si) := gcd{n ≥ 1 : (Pn)i,i > 0} is equal to 1. Otherwise, the
chain is said to be periodic.

• Let (Xl)l∈N be a Markov chain with state space S and transition matrix P . π is said to be a station-
ary distribution for the Markov chain if and only if π̃P = π̃ i.e. for j ∈ J1, kK,

∑k
i=1 π({si})Pi,j =

π({sj}).
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• Let (Xl)l∈N be a Markov chain with state space S and transition matrix P . π is said to be a
reversible for the chain (or for the transition matrix P ) if and only if for all i, j ∈ J1, kK, we have
π({si})Pi,j = π({sj})Pj,i. The Markov chain is said to be reversible if and only if ther exists a
reversible distribution for it.

The following results explain the need of the previous definitions in order to have a way to simulate the
hard-core model.

Theorem 1.10 (The Markov chain convergence theorem) — Let (Xl)l∈N be an irreducible ape-
riodic Markov chain with state space S = {s1, . . . , sk} and transition matrix P . Then for any distribution
π which is stationary for the transition matrix P , we have that the sequence (νl)l∈N of distributions of
the Markov chain converges to π in total variation as n → ∞.

With theorem 1.10, if we construct an irreducible aperiodic Markov chain with a stationary distribution,
we can have a simulation of the stationary distribution by simulating the Markov chain long enough.

Theorem 1.11 (Uniquenes of the stationary distribution) — Any irreducible and aperiodic
Markov chain has exactly one stationary distribution.

With theorem 1.11, we are sure to get only one distribution by simulating the Markov chain.

Theorem 1.12 — Let (Xl)l∈N be a Markov chain with state space S = {s1, . . . , sk} and transition
matrix P . If π is a reversible distribution for the chain, then it is also a stationary distribution for the
chain.

With theorem 1.12, we have another way to prove that a distribution is stationary.
Now that we have the needed tools in order to simulate the hard-core model, let us prove proposition 1.13.
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Proposition 1.13 — Let G = (V,E) be a finite connected graph and let a = (av)v∈V .
Let us define the random process (Xn)n∈N by :

• X0 = (0)v∈V ;

• For each n ≥ 0, Xn+1 is defined by :

1. Pick in V a vertex v at random with uniform distribution ;

2. Draw a coin with probability pv = av

1+av
to have heads :

– If the result is heads and all the neighbouring vertices of v are of value 0, Xn+1
v = 1 ;

– Else, Xn+1
v = 0 ;

3. For all vertices w ̸= v, Xn+1
w = Xn

w.

Then (Xn) is a Markov chain, it is irreducible and aperiodic, µG,a is reversible for the chain.
Hence, the distribution of the Markov chain converges to the hard-core measure for G with activity a.

Proof. It is clear that (Xn) is a Markov chain. It is irreducible because there is a positive probability to
go from one feasible configuration to another because for each feasible configuration ω with k 1s, there is
a positive probability that we go in k steps to (0v)v∈V and there is a positive probability that we go from
(0v)v∈V in k steps to ω. It is aperiodic because for all feasible configurations ω, there is a positive probability
that we stay at ω if we were at ω at the step n.
Let us prove that µG,a is reversible for the chain. Let us denote ω and ω′ two feasible configurations and

Pω,ω′ (resp. Pω′,ω) the transition probability from ω to ω′ (resp. from ω′ to ω).
Let us denote d = |{v ∈ V : ωv ̸= ω′

v}|. We want to prove that µG,a(ω)Pω,ω′ = µG,a(ω
′)Pω′,ω.

• If d = 0, the equality is trivial.

• If d ≥ 2, Pω,ω′ = Pω′,ω = 0 so the equality is trivial.

• If d = 1, there exists exactly on v ∈ V such that ωv ̸= ω′
v. In that case, for all w ∈ N(v), ωv = ω′

v = 0.
Let us suppose that ωv = 1, in that case

µG,a(ω)·Pω,ω′ =
1

ZG,a

∏
w ̸=v

aωv
w

a1v ·
1

|V |
1

1 + av
and µG,a(ω

′)·Pω′,ω =
1

ZG,a

∏
w ̸=v

a
ω′

v
w

a0v ·
1

|V |
av

1 + av
,

hence µG,a(ω)Pω,ω′ = µG,a(ω
′)Pω′,ω.

We proved that µG,a is reversible for the chain.
Thanks to the Markov chain convergence theorem, the uniqueness of the stationary distribution and theorem

1.12, we have the last conclusion. □

The consequence of proposition 1.13 is the fact that in order to simulate the hard-core model, we only
need to simulate this Markov chain during a long enough time. The algorithm in appendix A automatically
generates a jpeg image of a simulation of the hard-core model thanks to that method and was used to make
the figure 5.
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2 General results

Before proceeding with the hard-core model, we will need some tools of the theory of percolation.
In subsection 2.1, we will define what is percolation is and give some properties useful for the rest of the

paper.
In subsection 2.2, we will prove some sufficient conditions for the uniqueness of Gibbs measures.

2.1 Percolation

The goal of this subsection is to define what percolation is and to give some results of percolation.

Definition 2.1 — Let G = (V,E) be a finite or countably infinite, locally finite, connected graph and
let p = (pv)v∈V be a sequence of real numbers in [0, 1]. Let PG,p be the probability measure such that
for a realisation ω under PG,p, the ωv are independant random variables and for all v ∈ V , ωv follows
the Bernouilli distribution with parameter pv.
We say that the vertex v is open (reps. closed) if and only if ωv = 1 (resp. ωv = 0). We say that a

path on the graph is open if and only if all its vertices are open.
We say that (independent site) percolation occurs for G and p if and only if

PG,p("There exists an infinite open path") > 0.

Remarks. In the case that all pv are equal to p ∈ [0, 1], we will write p instead of p in the previous notations.
For all G finite connected graph, percolation never occurs. For all G countably infinite, locally finite, con-
nected graph, if PG,p("There exists an infinite open path") > 0, then, as "There exists an infinite open path"
is a tail event, PG,p("There exists an infinite open path") = 1.

(a) p = 0.01 (b) p = 0.1 (c) p = 0.25 (d) p = 0.5 (e) p = 0.75 (f) p = 0.9 (g) p = 0.99

Figure 8: Simulations of the behaviour of the Pp for different values of p

In definition 1.3, we defined the hard-core model on all the elementary events. However, we can define it
in a different way thanks to percolation as we can see in 2.2.

Proposition 2.2 — Let G = (V,E) be a finite connected graph and let a = (av)v∈V be a sequence
of positive real numbers. Let p be defined as p = (pv)v∈V = ( av

1+av
)v∈V . Then µG,a(·) = PG,p(· |FG)

where FG is the set of feasible configurations.
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Proof. For all ω′ ∈ ΩG,

PG,p({ω′}|FG) = 1FG
(ω′)

PG,p({ω′})∑
ω∈FG

PG,p({ω})
= 1FG

(ω′)

∏
v∈V

a
ω′
v

v

1+av∑
ω∈FG

∏
v∈V

aωv
v

1+av

= 1FG
(ω′)

∏
v∈V a

ω′
v

v∑
ω∈FG

∏
v∈V aωv

v
= µG,a(ω

′). □

An important notion of percolation is the notion of critical probability defined in definition 2.3.

Definition 2.3 — Let G = (V,E) be a countably infinite, locally finite, connected graph. Let us define
the critical probability for the graph G pcG by :

pcG = inf
p∈[0,1]

{Percolation occurs for G and p}.

Remark. One the main first goals of the theory of percolation was to prove that for a large class of graphs
pcG < 1.

Similarly, we can define a critical activity for the hard-core model.

Definition 2.4 — Let G = (V,E) be a countably infinite, locally finite, connected graph. Let us define
the critical activity for the graph G acG by :

acG = inf
a>0

{The hard-core model for G with activity a has more than one Gibbs measure}.

If we define this notion, it’s because we would like for G = Zd (d ≥ 1) to separate the case of phase
transition and ergodicity (the fact that there is no phase transition) by a simple criterion such as : if a < acZd ,
there is ergodicity. The problem is that, unless I am mistaken, that this is still an open question in Zd to the
contrary of the Ising model.

2.2 Uniqueness of Gibbs measures sufficient condition

We will present in this subsection some criteria on uniqueness of Gibbs measures. First we need definitions
2.5 and 2.6.

Definition 2.5 — Let G = (V,E) be a graph, let S be a set, let ω, ω′ ∈ SV let Π be a path on G,
we say that Π is a path of disagreement for (ω, ω′) if and only that for each vertices v in the path Π,
ωv ̸= ω′

v.

14



Figure 9: The green path is a path of disagreement for both configurations while the red one is not.

Definition 2.6 — Let (X1,B1, µ1) and (X2,B2, µ2) be two mesurable spaces and let T : X1 → X2 be
a measurable function. We say that T is a measure preserving transformation if and only if

∀A ∈ B2, µ1

(
−1

T (A)

)
= µ2(A).

Now we can prove theorem 2.7.

Theorem 2.7 ([Ber93]) — Let G = (V,E) be a countably infinite graph, locally finite, connected
graph, let S be a finite or countably infinite set and let Ω = SV . Let the probability measures µ and
µ′ on Ω equipped with the obvious σ-algebra be Markov fields with the same specification i.e. the
same conditionnal probabilities. Consider two independent realisations ω under µ and ω′ under µ′. If
(µ⊗ µ′)("(ω, ω′) has an infinite path of disagreement") = 0, then µ = µ′.

Proof. Let us suppose that (µ⊗ µ′)("(ω, ω′) has an infinite path of disagreement") = 0. Let A ⋐ V and for
all a ∈ A, sa ∈ S. Let E be the event {ω ∈ SV : ∀a ∈ A,ωa = sa}. We want to prove that µ(E) = µ′(E).
For each pair (ω, ω′) ∈ Ω× Ω, we denote CA the cluster of disagreement containing A i.e.

CA = A ∪ {i ∈ V : There is path of disagreement between i and a vertex of ∂A}.

Because of the assumption, CA is finite with probability 1.
Let T : Ω×Ω → Ω×Ω such that for each pair (ω, ω′) ∈ Ω×Ω, if we denote (σ, σ′) = T (ω, ω′), σCA

= ω′
CA

,
σCc

A
= ωCc

A
, σ′

CA
= ωCA

and σ′
Cc

A
= ω′

Cc
A
. T is bijective and because µ and µ′ are Markov fields with the

same specification, T is measure preserving.
Hence, since E involves only vertices in A ⊂ CA, we have

µ(E) = (µ⊗ µ′)(E × Ω) = (µ⊗ µ′)(T (E × Ω)) = (µ⊗ µ′)(Ω× E) = µ′(E). □

15



One of the consequences of theorem 2.7 is corollary 2.8.

Corollary 2.8 ([BS94]) — Let G = (V,E) be a countably infinite graph, locally finite, connected
graph, let S be a finite or countably infinite set and let Ω = SV . Let the probability measures µ and µ′

on Ω equipped with the obvious σ-algebra be Markov fields with the same specification. Consider two
independent realisations ω under µ and ω′ under µ′. Let us define for each v ∈ V

pv = sup
α,α′∈SN(v)

α ̸=α′

(µ⊗ µ′)(ωv ̸= ω′
v|ωN(v) = αN(v), ω

′
N(v) = α′

N(v)).

If Pp("There exists an infinite open path") = 0, then µ = µ′.

Proof. Let for all v ∈ V , Jv be the σ-algebra generated by the random variables ωw and ω′
w for all w ∈ V \{v}

and let O ∈ V . Since µ and µ′ are Markov fields, for v ̸= O, we easily have

(µ⊗ µ′)("There is a path of disagreement from O to v|Jv) ≤ pv.

We have the following :

(µ⊗ µ′)("(ω, ω′) has an infinite path of disagreement containing O")

= (µ⊗ µ′)("(ω, ω′) has an infinite path Π, not containing O, such that for each v on Π,

there exists a path of disagreement from O to v")

≤ Pp("(ω, ω′) has an infinite path Π, not containing O, such that each v on Π is open)

≤ Pp("There is an infinite open path’) = 0.

The first equality is due to the fact that the two events are the same. The second equality is due to the
same reason. The inequality is true thanks to what we developed before.
Since the above holds for any O ∈ V and V is countable, we have

(µ⊗ µ′)("(ω, ω′) has an infinite path of disagreement) = 0

and with theorem 2.7, we have the conclusion. □

Using corollary 2.8, we can find a link between the critical probability and the critical activity thanks to
theorem 2.9.
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Theorem 2.9 ([BS94]) — Let G = (V,E) be a countably infinite, locally finite, connected graph. Let
a ∈ (R∗

+)
V and p = ( av

1+av
)v∈V .

1. If PG,p("There exists an infinite open path") = 0, then the hard-core model on G with activity a

has a unique Gibbs measure.

2. The critical activity of G satisifies acG ≥ pc
G

1−pc
G
.

Proof. Let v ∈ V , we will calculate pv. Let us define f : {0, 1}N(v) × {0, 1}N(v) by

∀α, α′ ∈ {0, 1}N(v), f(α, α′) = (µ⊗ µ′)(ωv ̸= ω′
v|ωN(v) = αN(v), ω

′
N(v) = α′

N(v)).

In case there are k, l ∈ N(v), αk = α′
l = 1, then f(α, α′) = 0. Hence, since by the definition we may assume

that α ̸= α′, there is two cases : either α = 0 ̸= α′ or α′ ̸= 0 = α. By symmetry it suffices to take the first,
in which case it is easily seen that

f(α, α′) = µ(ωi = 1|ωN(v) = 0) =
av

1 + av
.

Hence, by Theorem 2.8, we have the first result.
The second part is a consequence of the first part and of the definition of the critical activity. □

Theorem 2.9 allows to extend the results about percolation’s critical probability in order to obtain results
about hard-core model’s critical activity.
Moreover, we can prove the following.

Theorem 2.10 — Let G = (V,E) be a finite connected graph and let a ∈ (R∗
+)

V . For ω and ω two
independent realisations under µG,a. Then for all v and w vertices we have :

2CovµG,a(ωv, ωw) = (µG,a ⊗ µG,a)("(ω, ω′) has a path of disagreement with even length from i to j")

= (µG,a ⊗ µG,a)("(ω, ω′) has a path of disagreement with odd length from i to j").

In particular, if G is bipartite, then

2CovµG,a(ωv, ωw) = 1
2 (µG,a ⊗ µG,a)("(ω, ω′) has a path of disagreement from i to j") , if {v, w} ⊂ O or {v, w} ⊂ E

− 1
2 (µG,a ⊗ µG,a)("(ω, ω′) has a path of disagreement from i to j") , otherwise.

Proof. We have easily

CovµG,a(ωv, ωw) =
1

2
⟨(ωv − ω′

v)(ωw − ω′
w)⟩µG,a⊗µG,a .
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For v ∈ V , let us define C(v) = {l ∈ V : (ω, ω′) has a path of disagreement from v to l} and let us define the
transformation T : ΩG×ΩG → ΩG×ΩG. For v, w ∈ V , define the transformation Tv,w : ΩG×ΩG → ΩG×ΩG

by :

• if w ∈ C(v), then Tv,w = idΩG×ΩG
,

• if w ̸∈ C(v), then for all (ω, ω′) ∈ ΩG × ΩG, Tv,w(ω, ω
′) = (ω′

C(v)ωC(v)c , ωC(v)ω
′
C(v)c).

Tv,w is bijective and since µG,a is a Markov field, Tv,w is measure preserving. Let us define fi,j : ΩG×ΩG → R

by f(ω, ω′) = (ωv − ω′
v)(ωw − ω′

w), we then have

CovµG,a(ωv, ωw) =
1

2
⟨f(ω, ω′)⟩µG,a⊗µG,a =

1

4
⟨f(ω, ω′) + f(T (ω, ω′))⟩µG,a⊗µG,a .

By definition, we have

• if w ∈ C(v), f(ω, ω′) = f(T (ω, ω′)),

• if w ̸∈ C(v), f(ω, ω′) + f(T (ω, ω′)) = 0.

Hence
CovµG,a(ωv, ωw) =

1

2
⟨f(ω, ω′)Iv,w(ω, ω

′)⟩µG,a⊗µG,a ,

where Iv,w(ω, ω
′) is equal to 1 if there is a path of disagreement from v to w for (ω, ω′) and 0 otherwise. If

there is a path of disagreement Π for (ω, ω′) from v to w, Since they have no two adjacent 1s, the values of
ω and ω′ altern between 0 and 1 on Π. That is why,

• if Π is of even length, ωv = ωv = 1− ω′
v = 1− ω′

w, then f(ω, ω′) = 1,

• if Π is of odd length, ωv = ω′
w = 1− ω′

v = 1− ωw, then f(ω, ω′) = −1.

That gives the first result.
The second part is a direct consequence of the first one. □

Remark. We only used in this proof the fact that µG,a is a Markov field. Hence, this result is also true for
any finite graph equipped with a Markov field measure.

3 Results in the bipartite case

We previously defined the hard-core model in the most general case, we will now restrict it to the case of
finite or countably finite, locally finite, connected, bipartite graphs.
In subsection 3.1, we prove results useful to conclude for us to get the existence of the hard-core model in

the infinite bipartite graph case.
In subsection 3.2, we prove the existence of the hard-core model in the infinite bipartite graph case and

two criteria for uniqueness.
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3.1 Preliminary results

We recall the definition of a bipartite graph in definition 3.1.

Definition 3.1 — We say that a graph G = (V,E) is bipartite if and only if there exists E ⊂ V and
O = V \ E such that : {

∀e, e′ ∈ E , e ̸∼ e′;

∀o, o′ ∈ O, o ̸∼ o′.

The vertices of E (resp. O) are called the even (resp. odd) vertices.

EE OO

(a) A finite bipartite graph.

-3

-3

-2

-2

-1

-1

0

0

1

1

2

2

3

3

(b) Z2 is a bipartite graph.

Figure 10: Examples of bipartite graphs.

For instance, for all d ≥ 1, Zd is a bipartite graph where we say that a vertex v is even (resp. odd) if and

only if
d∑

k=1

vk is even (resp. odd).

With this special property and because {0, 1} has a total order, we can define in the following proposition-
definition 3.2 a partial order on ΩG.

Proposition-Definition 3.2 — Let G = (V,E) be a countably infinite or finite, locally finite, con-
nected, bipartite graph. We define the binary relation ≤ on the elements of ΩG by :

∀ω, ω′ ∈ ΩG, ω ≤ ω′ ⇐⇒

∀e ∈ E , ωe ≤ ω′
e

∀o ∈ O, ωo ≥ ω′
o

.

≤ is a partial order on the elements of ΩG and for all A ⊂ ΩG, we say that A is increasing if and only
if

∀ω ∈ A,ω′ ∈ Ω, ω ≤ ω′ ⇒ ω′ ∈ A.
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Proof. In order to prove that ≤ is a partial order on ΩG, we need to prove that ≤ is reflexive, anti-symmetric
and transitive.
For all ω, ω′, ω′′ ∈ ΩG,

• We easily have ω ≤ ω because for all v ∈ V , ωv ≤ ωv and ωv ≥ ωv.

• We easily have that if ω ≤ ω′ and ω′ ≤ ω then ω = ω′ because the first condition gives that for all
v ∈ V , ωv ≤ ω′

v and ω′
v ≤ ωv.

• If ω ≤ ω′ and ω′ ≤ ω′′, then for all e ∈ E and all o ∈ O, ωe ≤ ω′
e ≤ ω′′

e and ωo ≥ ω′
o ≥ ω′′

o , then ω ≤ ω′′.
□

Let us recall the definition of distributive lattice in definition 3.3, before giving one more property of the
partial order in proposition 3.4.

Definition 3.3 — A partially ordered set (L,≤) is called a lattice if and only if each two-element subset
{a, b} ⊂ L has a join (i.e. least upper bound, denoted by a ∧ b) and dually a meet (i.e. greatest lower
bound, denoted by a ∨ b).
A lattice (L,≤) is called a distributive lattice if and only if the following additional identity holds for

all x, y and z in L,
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

(or equivalently x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)). The previous equalities are called the FKG condition.

We can now prove that (ΩG,≤) is a distributive lattice.

Proposition 3.4 ([BS94]) — With the previous notations, (ΩG,≤) is a lattice and for all ω, ω′ ∈ ΩG,

(ω ∧ ω′) = (min(ωv, ω
′
v))v∈E(max(ωv, ω

′
v))v∈O

(ω ∨ ω′) = (max(ωv, ω
′
v))v∈E(min(ωv, ω

′
v))v∈O

.

Moreover, (ΩG,≤) is a distributive lattice.

Proof. For ω, ω′ ∈ ΩG, let η be (min(ωv, ω
′
v))v∈E(max(ωv, ω

′
v))v∈O and let α ∈ ΩG verify α ≤ ω and α ≤ ω′.

Because of its definition, we easily have that η ≤ ω and η ≤ ω′. Moreover, for e ∈ E and for o ∈ O, αe ≤ ωe

and αe ≤ ω′
e, hence αe ≤ ηe and, for the same reason, αo ≥ ηo. That’s why, α ≤ η.

To sum up, we have for α ∈ ΩG verifying α ≤ ω and α ≤ ω′,

α ≤ η ≤ ω and α ≤ η ≤ ω′,

that’s why there is a join for {ω, ω′} which is (min(ωv, ω
′
v))v∈E(max(ωv, ω

′
v))v∈O.

Similarly, we can prove that there is a meet for {ω, ω′} which is (max(ωv, ω
′
v))v∈E(min(ωv, ω

′
v))v∈O.
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The fact that (ΩG,≤) is a distributive is a consequence of the fact that for all x, y, z ∈ R,

min(x,max(y, z)) = max(min(x, y),min(x, z)) and max(x,min(y, z)) = min(max(x, y),max(x, z)). □

The reason why we defined this partial order on the configurations is given in the proposition 3.5.

Proposition 3.5 — For all G = (V,E) finite, locally finite, connected, bipartite graph equipped with
the partial order ≤ defined in the proposition-proposition 3.2, for all a = (av)v∈V , µG,a satisfies the FKG
condition with respect to ≤ i.e.

∀ω, ω′ ∈ ΩG, µG,a(ω ∧ ω′)µG,a(ω ∨ ω′) ≥ µG,a(ω)µG,a(ω
′).

Proof. The result is easy to prove because for all ω, ω′ ∈ ΩG,
∏

v∈V a
(ω∧ω′)v+(ω∨ω′)v
v =

∏
v∈V a

ωv+ω′
v

v which
gives

µG,a(ω ∧ ω′)µG,a(ω ∨ ω′) = µG,a(ω)µG,a(ω
′). □

The FKG condition gives us the FKG inequality which is really useful when it comes to statistical physics.

Theorem 3.6 (FKG inequality [FKG71]) — Let (X,≤) be a finite distributive lattice and µ a non-
negative function on it verifying the FKG condition.
Then for all f and g two non-decreasing functions on X, we have(∑

x∈X

f(x)g(x)µ(x)

)(∑
x∈X

µ(x)

)
≥

(∑
x∈X

f(x)µ(x)

)(∑
x∈X

g(x)µ(x)

)
.

We will not prove theorem 3.6 here but the reader can find its original proof in [FKG71]. Moreover, they
can find its proof in the chapter 3 of the book of Friedli and Velenik [FV17] based on the following theorem
3.7 whose proof is in the pages 129 and 130.

Theorem 3.7 ([FV17]) — Let µ =
⊗

v∈V µv be a product measure on ΩG. Let f1, f2, f3, f4 : ΩG → R

be non-negative functions on ΩG such that

∀ω, ω′ ∈ ΩG, f1(ω)f2(ω
′) ≤ f3(ω ∧ ω′)f4(ω ∨ ω′).

Then
⟨f1⟩µ⟨f2⟩µ ≤ ⟨f3⟩µ⟨f4⟩µ.

One of the interesting consequences of theorem 3.7 is the lemma 3.10 based on proposition-definition 3.8.
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Proposition-Definition 3.8 — For all G = (V,E) finite, connected, bipartite graph, we define the
partial order ⪯ on the probability measures on ΩG by for all ν and ν′ two probability measures on ΩG,
ν ⪯ ν′ if and only if for all increasing subset A of ΩG, ν(A) ≤ ν′(A).

Proof. In order to prove that ⪯ is a partial order on the probability measures on ΩG, we need to prove that
⪯ is reflexive, anti-symmetric and transitive.
For all ν, ν′, ν′′ three probability measures on ΩG,

• We easily have ν ≤ ν because for all A ⊂ ΩG, ν(A) ≤ ν(A).

• We easily have that if ν ≤ ν′ and ν′ ≤ ν, then for all A increasing subset of ΩG, ν(A) = ν′(A). Moreover
for all ω ∈ ΩG, if we denote Aω = {ω′ ∈ ΩG : ω ≤ ω′}, it is an increasing set and

ν({ω}) = ν(Aω)− ν(Aω \ {ω}) = ν′(Aω)− ν′(Aω \ {ω}) = ν′({ω}).

• If ν ≤ ν′ and ν′ ≤ ν′′, we easily have ν ≤ ν′′. □

In the same way, we can define the following partial order.

Proposition-Definition 3.9 — For all G = (V,E) countably infinite, locally finite, connected, bipar-
tite graph, we define the partial order ⪯ on the probability measures on ΩG by for all ν and ν′ two
probability measures on ΩG, ν ⪯ ν′ if and only if for all f non-decreasing continuous functions of ΩG,
⟨f⟩ν ≤ ⟨f⟩ν′ .

Remark. This definition gives in the case of a finite graph the same of the previous one that is why we can
use the same notation.

An interesting consequence of the partial order is the useful lemma 3.10.

Lemma 3.10 ([BS94]) — Let G = (V,E) be a finite connected bipartite graph, let a = (av)v∈V , let
W ⊂ V , let α, α′ ∈ FG such that α ≤ α′. Then

µG,a(· |{ω ∈ ΩG : ωW = αW }) ⪯ µG,a(· |{ω ∈ ΩG : ωW = α′
W }).

Proof. Thanks to the proposition 2.2, we know that µG,a(·) = PG,p(· |FG) with p defined as p = (pv)v∈V =

( av

1+av
)v∈V , the probability measure on ΩG PG,p =

⊗
v∈V µv with for all v ∈ V , µv following the Bernoulli

distribution with parameter pv.
Let A be an increasing subset of ΩG, let Aα

W = {ω ∈ A : ωW = αW }, Aα′

W = {ω ∈ A : ωW = α′
W },

Ωα
W = {ω ∈ ΩG : ωW = αW } and Ωα′

W = {ω ∈ ΩG : ωW = α′
W }.
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Let f1, f2, f3 and f4 be respectively 1Aα
W
1FG

, 1Ωα′
W
1FG

, 1Ωα
W
1FG

and 1Aα′
W
1FG

four non-negative functions.

For all ω, ω′ ∈ ΩG, on the one hand, if ω ̸∈ Aα
W ∩ FG or ω ̸∈ Ωα′

W ∩ FG, we have easily

f1(ω)f2(ω
′) ≤ f3(ω ∧ ω′)f4(ω ∨ ω′).

On the other hand, if ω ∈ Aα
W ∩ FG and ω ∈ Ωα′

W ∩ FG,

• We have (ω ∧ ω′)W = αW and for all v ∈ V such that (ω ∧ ω′)v = 1 :

– If v ∈ E , then ωv = ω′
v = 1 and then for all w adjacent to v, ωw = ω′

w = 0 then for all w adjacent
to v, (ω∧ω

′)w = 0.

– If v ∈ O, then either ωv = 1 or ω′
v = 1 and then either for all w adjacent to v, ωw = 0 or for all w

adjacent to v, ω′
w = 0 then for all w adjacent to v, (ω∧ω

′)w = 0.

Hence, ω ∧ ω′ ∈ Ωα
W ∩ FG.

• We have (ω ∨ ω′)W = α′
W , (ω ∨ ω′) ≥ ω and for all v ∈ V such that (ω ∧ ω′)v = 1 :

– If v ∈ E , then either ωv = 1 or ω′
v = 1 and then either for all w adjacent to v, ωw = 0 or for all w

adjacent to v, ω′
w = 0 then for all w adjacent to v, (ω∧ω

′)w = 0.

– If v ∈ O, then ωv = ω′
v = 1 and then for all w adjacent to v, ωw = ω′

w = 0 then for all w adjacent
to v, (ω∧ω

′)w = 0.

Hence, ω ∧ ω′ ∈ Aα′

W ∩ FG.

Hence, we always have f1(ω)f2(ω
′) ≤ f3(ω ∧ ω′)f4(ω ∨ ω′). Thanks to theorem 3.7, we can deduce that

⟨1Aα
W
⟩µG,a⟨1Ωα′

W
⟩µG,a = ⟨1Aα

W
1F ⟩PG,p⟨1Ωα′

W
1F ⟩PG,p ≤ ⟨1Ωα

W
1F ⟩PG,p⟨1Aα′

W
1F ⟩PG,p = ⟨1Ωα

W
⟩µG,a⟨1Aα′

W
⟩µG,a ,

that is why

µG,a(A|Ωα
W ) =

µG,a(A
α
W )

µG,a(Ωα
W )

≤ µG,a(A
α′

W )

µG,a(Ωα′
W )

= µG,a(A|Ωα′

W ). □

With the tools we developed in the finite case, we can now resume the proofs in the infinite case. We will
firstly show the existence of at least one Gibbs measure for the hard-core model in the bipartite case and
then give criteria for uniqueness in this case.

3.2 Existence of at least one Gibbs measure for the hard-core model and two
criteria for uniqueness

The goal of this subsection is to prove the existence of at least one Gibbs measure in the bipartite case
and to have a first criterion for the uniqueness of the Gibbs measure, thanks to a similar proof for the Ising
model that can be found in [Lig85].
In order to prove the existence of at least one Gibbs measure, we will define two sequences of measures

whose limit is a Gibbs measure.
In order not to have to repeat the exact same things several times, we will fix in the rest of the section

G = (V,E) a countably infinite, locally finite, connected, bipartite graph whose set of even (resp. odd)
vertices is E (resp. O) and a = (av)v∈V a sequence of positive real numbers.
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Before proceeding with proof, we need the following measures.

Definition 3.11 — Let α ∈ FG and Λ ⋐ V .

• We denote µα
Λ,a(·) = µΛ,a(· |{ω ∈ FΛ : ω∂Λ = α∂Λ}).

• We denote ναΛ,a the probability measure associated with the random variable XΛαΛ
c where X ∼

µα
Λ,a.

In both of the case, we say that α is the boundary condition.

Figure 11: Illustration of how we construct the sequences of measures: the sites in the blue border
correspond to the subgraph Λ and the grey balls are the boundary conditions, the darkest ones having
a direct influence on how the n-th probability measures are defined.

With definition 3.11, we can prove the following proposition 3.12.

Proposition 3.12 — Let Λ ⋐ V and take v ∈ V be an even vertex. Let ω and ω′ be two independent
realisations respectively under µe

Λ,a and under µo
Λ,a. We then have

µe
Λ,a(ωv = 1)− µo

Λ,a(ω
′
v = 1) = (µe

Λ,a ⊗ µo
Λ,a)((ω, ω

′) has a path of disagreement from v to ∂Λ).

Proof. Let Ω be {0, 1}Λ and let C(v) = {w ∈ V : there is path of disagreement for (ω, ω′) from v to w}. Let
Tv : Ω× Ω → Ω× Ω be the transformation such that

• if C(v) ∩ ∂Λ ̸= ∅ i.e. there is a path of disagreement from v to ∂Λ, Tv = idΩ×Ω,

• otherwise, for (α, α′) ∈ Ω× Ω, T (α, α′) = (α′
C(i)αC(i)c , αC(i)α

′
C(i)c).

Then T is bijective and preserves µe
Λ,a ⊗ µo

Λ,a. Hence

µe
Λ,a(ωv = 1) = (µe

Λ,a ⊗ µo
Λ,a)(ωv = 1)

= (µe
Λ,a ⊗ µo

Λ,a)(C(i) ∩ ∂Λ = ∅, ωv = 1) + (µe
Λ,a ⊗ µo

Λ,a)(C(i) ∩ ∂Λ ̸= ∅, ωv = 1)
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Similarly

µo
Λ,a(ω

′
v = 1) = (µe

Λ,a ⊗ µo
Λ,a)(C(i) ∩ ∂Λ = ∅, ω′

v = 1) + (µe
Λ,a ⊗ µo

Λ,a)(C(i) ∩ ∂Λ ̸= ∅, ω′
v = 1)

It is easy to see that T transform the first event of the first term of the first sum into the event of the first
term of the second sum. That is why the two terms are equal. Because of the boundary conditions, because
ω and ω′ are feasible, because there is a path of disagreement for (ω, ω′) from v to ∂Λ, ω′

v = 1 − ωv = 0.
Hence we have µo

Λ,a(ω
′
v = 1) = (µe

Λ,a ⊗ µo
Λ,a)(C(i) ∩ ∂Λ = ∅, ω′

v = 1). Then we have the result □

Thanks to the definition 3.11, we will be able to construct sequences of measures whose exterior condition
is the same and such that the subgraph of definition is growing andmore and more covering the whole graph.
Meanwhile, we can prove the following.

Proposition 3.13 — For all Λ1 ⊂ Λ2 ⋐ V , for all α ∈ FG,

• ναΛ2,a
(· |{ω ∈ FG : ωΛ2\Λ1

= αΛ2\Λ1
}) = ναΛ1,a

(·).

• ναΛ2,a
=

∑
γ∈FG

γV \Λ2
=αV \Λ2

ναΛ2,a({ω ∈ FG : ωΛ2\Λ1
= γΛ2\Λ1

})νγΛ1,a
.

Proof. The first result is easy to obtain thanks to the definition of ναΛ2,a
. The second result is a consequence

of the first one and of the following equality

ναΛ2,a(·) =
∑
γ∈FG

γV \Λ2
=αV \Λ2

νγΛ2,a
({ω ∈ FG : ωΛ2\Λ1

= γΛ2\Λ1
})νγΛ2,a

(· |{ω ∈ FG : ωΛ2\Λ1
= γΛ2\Λ1

}). □

We can also prove the following.

Proposition 3.14 — For all α, α′ ∈ FG such that α ≤ α′, ναΛ,a ⪯ να
′

Λ,a.

Proof. It is a direct consequence of lemma 3.10. □

We will now need two particular boundary conditions in order to prove the existence of at least one Gibbs
measure. They are both illustrated in the Figure 12.
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e : even boundary condition o : odd boundary condition

Figure 12: Illustration of the two boundary conditions.

Proposition-Definition 3.15 — We denote by e = (1E(v))v∈V (resp. o = (1O(v))v∈V ) the even
boundary condition (resp. the odd boundary condition).
In particular, for all ω ∈ ΩG,

o ≤ ω ≤ e.

Moreover, we have for all Λ ⋐ V , for all α ∈ F ,

νoΛ,a ⪯ ναΛ,a ⪯ νeΛ,a.

Proof. The order between the configurations is a consequence of

∀ω ∈ ΩG,

∀e ∈ E , 0 ≤ ωe ≤ 1

∀o ∈ O, 1 ≥ ωo ≥ 0
.

The order between the measures is a consequence of the previous point and proposition 3.14. □

Remark. We can see that o and e play in the hard-core model the same role as + and − in the Ising model.
What explains that we took those two paticular boundary conditions is that when the activity is big enough,
the hard-core mesure concentrates itself only on the two configurations e and o.

In order to have a limit measure, we can prove the monotonicity of the sequences of measures in proposition
3.16.

Proposition 3.16 — For all Λ1 ⊂ Λ2 ⋐ V , νoΛ1,a
⪯ νoΛ2,a

and νeΛ2,a
⪯ νeΛ1,a

i.e. (νoΛ,a)Λ is increasing
and (νeΛ,a)Λ is decreasing.
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Proof. The two statements have the same proof, let us prove the first inequality. We already know, by
proposition 3.14, for α ∈ F , ναΛ1,a

⪯ νeΛ1,a
. That’s why,

νeΛ2,a =
∑
γ∈FG

γV \Λ2
=eV \Λ2

νeΛ2,a({ω ∈ FG : ωΛ2\Λ1
= γΛ2\Λ1

})νγΛ1,a
⪯ νeΛ1,a,

we can now conclude. □

Remark. We find here once again a similar behaviour in the hard-core model as in the Ising-Lenz model.

Thanks to the fact that there is a monotonicity for the measures, we can define a weak limit for the
measures. We want them to be a hard-core measures for G with activity a.

Theorem 3.17 — Let us denote µe
G,a = limΛ↑G νeΛ,a and µo

G,a = limΛ↑G νoΛ,a. Then µe
G,a and µo

G,a are
hard-core measures for G with activity a.

Proof. For all B ⋐ V , η ∈ FG, α = {0, 1}Λ, for all Λ be a set verifying B ⊂ Λ ⋐ V , we easily see that νeΛ,a

and νoΛ,a verify that for all ω ∈ ΩG, for i ∈ {e, o},

µi
Λ,a({ω}) =

1

Zη
B,a

1FG
(αBηBc) exp(−Hη

B,a(α)).

Because it is true for all Λ verifying B ⊂ Λ ⋐ V , because µe
G,a and µo

G,a are weak limits for the νeΛ,a and νoΛ,a

when Λ ↑ V , the two weak limits verify definition 1.7, that is why they are hard-core measures for G with
activity a. □

Now we prove the existence of at least one Gibbs measure thanks to two different methods.
Before proceeding with a proof of a uniqueness criterion for the hard-core model, we need the following

lemma.

Lemma 3.18 — Let us denote GG,a the class of all hard-core measure for G with activity a and for
all Λ ⋐ V , let us denote GG,a(Λ) the closed (for the topology of weak convergence) convex hull of
{ναΛ,a, α ∈ FG}.

1. Λ1 ⊂ Λ2 ⋐ V implies GG,a(Λ1) ⊃ GG,a(Λ2).

2. If ν ∈ G, then for finite Λ ⊂ V and ζ ∈ FG, ν(· |{ω ∈ ΩG : ωT c = ζT c}) = νζT,a(·).

3. GG,a =
⋂

Λ⋐V GG,a(T ).

4. GG,a is nonempty, convex and compact.

Proof. 1. Let Λ1 ⊂ Λ2 ⋐ V , let ζ ∈ FG. thanks to proposition 3.13 we can write νζΛ2,a
as a convex

combinaison of elements of GG,a(Λ1), that is why GG,a(Λ1) ⊃ GG,a(Λ2).
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2. By definition 1.7, it is really clear.

3. By the second point, we easily have GG,a ⊂
⋂

Λ⋐V GG,a(T ) because it is true for all Λ ⋐ V and the
converse is true by definition 1.7.

4. Because ΩG is compact (as a product of compact spaces), because the net (GG,a(Λ))Λ⋐V verify the
first point, because GG,a =

⋂
Λ⋐V GG,a(T ), all the GG,a(Λ) are compact, convex, nonempty and then

we have the conclusion.
This concludes the proof. □

Thanks to this lemma, we can prove the following theorem.

Theorem 3.19 — With the notations of theorem 3.17, for all ν hard-core measure for G with activity
a, we then have νoΛ,a ⪯ ν ⪯ νeΛ,a.
In particular, there is a unique hard-core measure for G with activity a if and only if νeΛ,a = νoΛ,a.

Proof. We keep the notations of lemma 3.18, for all Λ ⋐ V , for all ν ∈ GG,a(T ), by definition of Ga(T ) and
by proposition-definition 3.15, we have νoΛ,a ⪯ ν ⪯ νeΛ,a, then for all ν ∈ GG,a, νoΛ,a ⪯ ν ⪯ νeΛ,a by lemma
3.18, that is why

∀ν ∈ GG,a, µ
o
G,a ⪯ ν ⪯ µe

G,a. □

It is already knew that the set of hard-core measures was convex, we now know that it behaves like a
segment and we know the two measures on its border.
Even though this result is really powerful to prove uniqueness, the fact that we need to compare two

measures is not ideal. However we can translate the problem in the domain of percolation in order to get an
other way to prove uniqueness.

Theorem 3.20 ([BS94]) — The hard-core model on G with activity a has a unique Gibbs measure if
and only if

(µe
G,a ⊗ µo

G,a)(”There is an infinite path of disagreement for (ω, ω′)”) = 0.

Proof. Thanks to theorem 2.7, if (µe
G,a ⊗ µo

G,a)(”There is an infinite path of disagreement for (ω, ω′)”) = 0,
µe
G,a = µo

G,a, hence there is a unique hard-core measure.
Conversely, let us suppose the hard-core model has a unique Gibbs measure i.e. µe

G,a = µo
G,a. We say that

a path Π is perfect for (ω, ω′) if and only if every even vertex v on Π verify ωv = 1− ω′
v = 1 and every odd

vertex v on Π verify ωv = 1− ω′
v = 0. Then a path Π of disagreement for (ω, ω′) is either a perfect path for

(ω, ω′) or for (ω′, ω). That is why Λ ⋐ V , let v ∈ E . Since µe
G,a = µo

G,a and by symmetry, we have for (ω, ω′)

a realisation under µe
G,a ⊗ µo

G,a.

(µe
G,a ⊗ µo

G,a)("There is an infinite path of disagreement for (ω, ω′) containing v")

= 2(µe
G,a ⊗ µo

G,a)("There is an infinite perfect path for (ω, ω′) containing v").
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Moreover, for v ∈ Λ′ ⊂ Λ,

(µe
G,a ⊗ µo

G,a)("There is a perfect path from v to ∂Λ")

≤ (µe
Λ,a ⊗ µo

Λ,a)("There is a perfect path from v to ∂Λ")

≤ (µe
Λ,a ⊗ µo

Λ,a)("There is a perfect path from v to ∂Λ′").

The first inequality is the consequence of proposition 3.13 and proposition 3.14. The second is trivial. Now
we first let Λ grow to V and then we let Λ′ grow to V . We now have

(µe
G,a ⊗ µo

G,a)("There is an infinite perfect path containing v")

= lim
Λ↑G

(µe
Λ,a ⊗ µo

Λ,a)("There is a perfect path from v to ∂Λ").

Moreover as with (ω, ω′) a realisation under (µe
Λ,a ⊗ µo

Λ,a), (ω∂Λ, ω
′
∂Λ) = (e∂Λ, o∂Λ), then a path is perfect

if and only if it is a path of disagreement.
Hence, with lemma 3.12,

(µe
G,a ⊗ µo

G,a)("There is an infinite path of disagreement for (ω, ω′) containing v")

= 2(µe
Λ,a(ωv = 1)− µo

Λ,a(ω
′
v = 1)) = 0,

by assumption.
Since an infinite path must contain an even vertex, the proof is complete. □

Thanks to the previous theorem, we can easily understand why there is no phase transition in Z even
though the proof of Dobrushin in [Dob68] does not require such a theorem.
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Conclusion

The hard-core model gives the behaviour of a more realistic gas than the lattice gas model derived of the
Ising-Lenz model what explains the necessity to analyse it rigorously.
However the question of knowing if the critical activity separates the case of phase transition and ergodicity

is still open. Moreover this model is an easiest version of reality, the following step is to translate it in a
continuous graph (for instance R) and see how to translate the properties of the first model.
In any case as the Ising model is a very stimulating model in the domain of statistical physics, the hard-core

model which seems near from the Ising model needs new objects to be studied correctly as we can see for the
analysis of [GK04].
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Annexes

A Algorithm for the simulation of the hard-core model

HCM.py

""" Simulate the hard−core model on a subgraph o f Z^2"""

__author__ = "Jean␣Vereecke "
__contact__ = " jean . vereecke@ens−rennes . f r "
__date__ = "2023−07−23"

#IMPORTS

import matp lo t l i b . pyplot as p l t
import matp lo t l i b . image as mpimg

import numpy as np

#FUNCTIONS

def i s_ f r e e (G, i , j ) :
""" Says i f the ver tex ( i , j ) i s surrounded by no p a r t i c l e s in G
Input : G : boolean l i s t l i s t

a square matrix o f boo leans
i : i n t

the row index
j : i n t

the column index
Output : boolean """
l = len (G) − 1
i f i == 0 :

i f j == 0 :
re turn not (G[ 0 ] [ 1 ] or G[ 1 ] [ 0 ] )

i f j == l :
r e turn not (G[ 0 ] [ l − 1 ] or G[ 1 ] [ l ] )

r e turn not (G[ 0 ] [ j − 1 ] or G[ 0 ] [ j + 1 ] or G[ 1 ] [ j ] )
i f i == l :

i f j == 0 :
re turn not (G[ l ] [ 1 ] or G[ l − 1 ] [ 0 ] )

i f j == l :
r e turn not (G[ l ] [ l − 1 ] or G[ l − 1 ] [ l ] )

r e turn not (G[ l ] [ j − 1 ] or G[ l ] [ j + 1 ] or G[ l − 1 ] [ j ] )
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i f j == 0 :
re turn not (G[ i ] [ 1 ] or G[ i − 1 ] [ 0 ] or G[ i + 1 ] [ 0 ] )

i f j == l :
r e turn not (G[ i ] [ l − 1 ] or G[ i − 1 ] [ l ] or G[ i + 1 ] [ l ] )

r e turn not (G[ i − 1 ] [ j ] or G[ i + 1 ] [ j ] or G[ i ] [ j − 1 ] or G[ i ] [ j + 1 ] )

i f __name__ == "__main__" :

# Model ’ s in fo rmat ion
L = 500 # S i z e o f the square
V = L ∗∗ 2 # Set o f v e r t i c e s
a = 1 . # Act iv i ty
p = a / ( a + 1) # Probab i l i t y o f drawing heads

# Number o f l oops done , must be g r e a t e r than the number o f v e r t i c e s
n = 10 ∗ V

# Conf igurat ion o f the beg inning
G = [ [ Fa l se f o r j in range (L ) ] f o r i in range (L ) ]

# Evolut ion o f the c on f i gu r a t i on
f o r k in range (n ) :

v = np . random . randint (0 , V) # Takes a random vertex
v1 , v2 = v // L , v % L # Gets i t s coo rd ina t e s
b = np . random . binomial (1 , p ) # Draw a co in
i f b and i s_ f r e e (G, v1 , v2 ) : # I f heads and po s s i b l e ,

G[ v1 ] [ v2 ] = True # Puts a p a r t i c l e
e l s e : # Else

G[ v1 ] [ v2 ] = Fal se # Puts no p a r t i c l e s

## Disp lays the s imulated con f i gu ra t ed i f uncommented
#p l t . imshow (G, cmap="binary ")
#p l t . show ( )

# Sets the f i l e ’ s name
fi le_name = "HCM_a=" + s t r ( a ) + " . png"

# Saves the image
mpimg . imsave ( file_name ,G, cmap="binary " )
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