CONSTRUCTION DE L'ALGÈBRE DE LIE D'UN GROUPE DE LIE

Antoine Médoc

Résumé. — Troisième exposé d'un groupe de travail sur la théorie de Lie.

1. Algèbre de Lie d'un groupe de Lie

1.1. Champs de vecteurs. —

Définition 1.1. — Dérivée directionnelle : $X(f): x \mapsto df_x(X(x))$.

Proposition 1.2. — Isomorphisme entre les champs de vecteurs et les dérivations de \mathcal{C}^{∞} .

Définition 1.3. — [X,Y](f) = X(Y(f)) - Y(X(f))

Proposition 1.4. — L'ensemble des champs de vecteurs est une algèbre de Lie isomorphe à l'algèbre de Lie des dérivations sur C^{∞} (donc une sous-algèbre de Lie de $\mathfrak{gl}(C^{\infty})$).

Définition 1.5. — Un champ de vecteurs est invariant à gauche (resp. à droite) si $(dL_q)_h(X(h)) = X(gh)$ (resp. $(dR_q)_h(X(h)) = X(hg)$).

Proposition 1.6. — L'ensemble des champs de vecteurs invariants à gauche g est une sous-algèbre de Lie.

Proposition 1.7 (Définition équivalente). — On note $(\lambda_g f)(h) = f(g^{-1}h)$ l'action à gauche de G sur C^{∞} : $\mathfrak{g} = \{D$ dérivation $|D\lambda_x = \lambda_x D\}$

1.2. Espace tangent. —

Remarque 1.8. — $dm_{(e,e)}(x,y) = x + y, di_e x = -x$

Proposition 1.9. — L'évaluation en le neutre est un isomorphisme (d'espaces vectoriels) $\mathfrak{g} \simeq T_e G$.

Proposition 1.10. — La dimension d'un groupe de Lie et de son algèbre de Lie sont égales.

Proposition 1.11. — Sur \mathfrak{gl}_n , le crochet de Lie est le commutateur.

Proposition 1.12 (Définition équivalente). — Avec f une carte d'un voisinage du neutre, $f(f^{-1}(x)f^{-1}(y)) = x + y + [x, y] + o(||x^2|| + ||y||^2)$. **Définition 1.13.** —

$$c_g: \left| \begin{array}{ccc} G & \longrightarrow & G \\ h & \longmapsto & ghg^{-1} \end{array} \right|$$

$$Ad: \left| \begin{array}{ccc} G & \longrightarrow & GL(\mathfrak{g}) \\ g & \longmapsto & T_e c_g \end{array} \right|$$

$$ad = d_e Ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$$

Proposition 1.14 (Définition équivalente). — $[x,y] = ad_x y$

1.3. Morphismes. —

Proposition 1.15. — L'algèbre de Lie d'un sous-groupe de Lie est une sousalgèbre de Lie, l'algèbre de Lie du groupe produit est l'algèbre de Lie produit. **Proposition 1.16.** — Soit Φ un morphisme de groupes de Lie $G \to H$ et ϕ sa différentielle en e. C'est un morphisme d'algèbre de Lie Φ -équivariant : $\phi \circ \operatorname{ad}(x) = \operatorname{ad}(\phi(x)) \circ \phi \ \varphi \circ \operatorname{Ad}(g) = \operatorname{Ad}(\Phi(g)) \circ \phi$.

2. Application exponentielle

2.0.1. *Définition.* —

Définition 2.1. — Une courbe intégrale de X à travers g est une fonction γ d'un voisinage de $0 \in \mathbb{R}$ dans M telle que $\gamma' = X \circ \gamma$ et $\gamma(0) = g$.

Remarque 2.2. — L'ensemble des groupes à un paramètre de G est en bijection avec \mathfrak{g} par la dérivation en 0.

Définition 2.3. — L'exponentielle de $x \in \mathfrak{g}$ est la valeur en 1 du groupe à un paramètre dont x est la dérivée en 0.

Proposition 2.4. — Sur $\mathfrak{gl}(V)$, $\exp(A) = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$.

2.0.2. Formules, liens avec le crochet de Lie. —

Proposition 2.5. — Si γ est un groupe à un paramètre de dérivée x en 0, $\gamma(t) = \exp(tx)$. En particulier,

$$\exp(0) = e$$

$$\exp((s+t)x) = \exp(tx) \exp(sx)$$

$$\exp(x)^{-1} = \exp(-x)$$

$$\frac{d}{dt}(\exp(tx))|_{0} = x.$$

Proposition 2.6. — L'exponentielle est régulière et sa différentielle en e est l'identité.

Proposition 2.7. —

$$\Phi \circ \exp = \exp \circ d\Phi$$
$$Ad(e^x) = e^{ad(x)}$$
$$c_q(e^x) = e^{Ad(g)(x)}$$

Proposition 2.8 (Formules de passage à la limite)

$$\exp(x) \exp(y) = \exp(x + y + \frac{1}{2}[x, y] + o(||x||^2 + ||y||^2))$$

$$\left(\exp(\frac{1}{n}x) \exp(\frac{1}{n}y)\right)^n \to \exp(x + y)$$

$$\left(\exp(\frac{1}{n}x) \exp(\frac{1}{n}y) \exp(-\frac{1}{n}x) \exp(-\frac{1}{n}y)\right)^{n^2} \to \exp([x, y])$$

Proposition 2.9 (Définition équivalente). —

$$[x,y] = \frac{d}{dt} \left(\frac{d}{ds} (e^{tx} e^{sy} e^{-tx})|_{s=0} \right)|_{t=0}$$

3. Étude des groupes de Lie

3.1. Composante connexe du neutre. —

Remarque 3.1. — L'algèbre de Lie de G et de G^0 sont les mêmes.

Proposition 3.2. — L'ensemble $U := \exp(\mathfrak{g})$ est un voisinage de l'identité vérifiant $U = U^{-1}$ et $\langle U \rangle = G^0$. L'exponentielle est un difféomorphisme d'un voisinage de 0 sur un voisinage de e.

3.2. Sous-groupes et sous-algèbres. —

Proposition 3.3. — Si H < G est fermé,

$$\mathfrak{h} = \left\{ x \in \mathfrak{g} | \forall t \in \mathbb{R}, e^{tx} \in H \right\}.$$

Proposition 3.4. — Soit $\mathfrak{h} \subset \mathfrak{g}$ une sous-algèbre. Il existe un unique H < G sous-groupe de Lie connexe d'algèbre de Lie \mathfrak{h} . On a $H = \langle \exp(\mathfrak{h}) \rangle$.

Proposition 3.5. — On a l'application

$$\begin{array}{c|ccc} d: & \operatorname{Hom}(G,H) & \longrightarrow & \operatorname{Hom}(\mathfrak{g},\mathfrak{h}) \\ \Phi & \longmapsto & d\Phi \end{array}.$$

Si~G~est~connexe,~elle~est~injective.~Si~G~est~simplement~connexe,~elle~est~bijective.

Proposition 3.6. — L'algèbre de Lie de Ker Φ est Ker $d\Phi$.

3.3. Idéaux. —

Proposition 3.7. — Soient $\mathfrak{h} \subset \mathfrak{g}$ et H < G le sous-groupe connexe correspondant : H est normal dans G^0 si et seulement si \mathfrak{h} est un idéal.

Exemple 3.8. — Si G est connexe, G' est le sous-groupe connexe associé à $[\mathfrak{g},\mathfrak{g}]$.

Exemple 3.9. — L'algèbre de Lie de Z_G est $\{x|\forall y, [x,y]=0\}$.

3.4. Groupe adjoint. —

Proposition 3.10. — L'algèbre de Lie de Aut(G) est l'ensemble des dérivations de \mathfrak{g} , $Ad(\mathfrak{g})$ est le sous-groupe connexe associé à $ad(\mathfrak{g})$, généré par $exp(ad\mathfrak{g})$.

Proposition 3.11. — Si G est connexe, $0 \to Z_G \to G \to \mathrm{Ad}(G) \to 0$ est exacte.

3.5. Groupes de Lie semi-simples. —

Proposition 3.12. — Un groupe de Lie connexe est semi-simple si et seulement s'il n'admet pas de sous-groupe normal connexe abélien non trivial. **Théorème 3.13 (Weyl).** — Un groupe de Lie connexe tel que $B_{\mathfrak{g}}$ est définie négative est compact semi-simple.

 $14 \ octobre \ 2024$

Antoine Médoc, IMAG, Université de Montpellier E-mail: antoine.medoc@umontpellier.fr