# Homotopy 

Lecture of Christian Ausoni Notes from Jules Besson

November and december 2022

## Contents

1 Homotopy groups 1
I Homotopies .
II The fundamental groupoïd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
III Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IV Mapping spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

## Chapter 1

## Homotopy groups

We will denote by Top the categroy of topological spaces. The set of continuous maps between two topologicals psaces $X$ and $Y$ will be denoted $\operatorname{Top}(X, Y)$. We also set $I:=[0,1]$.

## I Homotopies

## Definition (Homotopy):

For $f, g \in \operatorname{Top}(X, Y)$, a homotopy from $f$ to $g$ is a map $H: X \times I \longrightarrow Y$ such that the following diagram commutes.


We denote this by $f \stackrel{H}{\sim} g$. We say that $f$ and $g$ are homotopic if ther exists a homotopy, then we denote this by $f \simeq g$.

## Lemma:

the homotopy relation, $\simeq$, is an equivalence relation on $\operatorname{Top}(X, Y)$, compatible with composition; i.e. for $f \simeq f^{\prime}$ and $g \simeq g^{\prime}$ such that

$$
X \underset{f^{\prime}}{\stackrel{f}{\longrightarrow}} Y \underset{g^{\prime}}{\stackrel{g}{\Longrightarrow}} Z
$$

we have $g \circ f \simeq g^{\prime} \circ f^{\prime}$.
proof: Let us proove alle the axioms of an equivalence relation.

- $f \simeq f$ with the constant homotopy defined by $H=f \times \mathrm{id}_{I}$.
- If $f \stackrel{H}{\sim} g$, we denote $\bar{H}$ by $\bar{H}(\bullet, t)=H(\bullet, 1-t)$, then $g \stackrel{\bar{H}}{\sim} f$.
- If $f \stackrel{H}{\sim} h \stackrel{H^{\prime}}{\sim} h$, we have $f \stackrel{H * H^{\prime}}{\sim} h$ where $*$ denotes the concatenation of two paths induced to homotopies.

Let us now focus on the compatibility with composition.
If $f \underset{\sim}{\sim} f$ and $g \stackrel{G}{\sim} g^{\prime}$, then $g \circ f \stackrel{H}{\sim} g^{\prime} \circ f \stackrel{K}{\sim} g^{\prime} \circ f^{\prime}$ with

- $H=G \circ\left(f \times \operatorname{id}_{I}\right)$.
- $K=\left(g \times \mathrm{id}_{I}\right) \circ F$.


## Definition (Homotopy category):

We define hoTop to be the homotopy category of spaces which objects are Top's objects and maps, continuous maps quotiented by the equivalence relation $\simeq$.

- Ob hoTop = Ob Top.
- $\operatorname{hoTop}(X, Y)=\operatorname{Top}(X, Y) / \simeq=:[X, Y]$

We denote by $[f]$ the quivalence class of a continuous map in hoTop.
remark: We have an obvious functor $H:$ Top $\longrightarrow$ hoTop .
Definition (Homotopy equivalence):
A map $f \in \boldsymbol{\operatorname { T o p }}(X, Y)$ is called an homotopy equivalence if $[f] \in[X, Y]$ is an isomorphism, i.e. $\exists g \in \operatorname{Top}(Y, X)$ such that

- $f g \circ \mathrm{id}_{Y}$.
- $g f \circ \mathrm{id}_{X}$.
$X, Y \in$ Top are said to be homotopically equivalent if there exists an homotopy equivalence between both. It is also said that $X$ and $Y$ have the same homotopy type. We note $X \simeq Y$
$X \in$ Top is contractible if $X \simeq\{*\}$.
example: $\left[X, \mathbb{R}^{n}\right]$ has a single element since $\mathbb{R}^{n}$ using the convex homoptopy, hence $\mathbb{R}^{n}$ is contractible.
Definition (Variants):
(1) $\mathbf{T o p}^{2}$ is the category of topological pairs.
- Ob: $(X, A), \quad X \in \operatorname{Top}, A \subset X$.
- Hom: $f \in \boldsymbol{\operatorname { T o p }}(X, Y), \quad f(A) \subset B$.
- Homotopies: $\boldsymbol{T o p}^{2}((X, A) \times I, Y)=\boldsymbol{T o p}^{2}((X \times I, A \times I), Y)$.
hoTop ${ }^{2}$ is defined in the same way.
(2) The pointed spaces category, $\mathbf{T o p}_{*}$, is the full subcategory of $\mathbf{T o p}^{2}$ where objects are pairs $(X, x)$ with $x \in X$. Homotopies and hoTop $_{*}$ are automatically induced by this definition.
(3) $\mathbf{T o p}_{*}^{2}$ is the category of pointed pairs.
- $\mathrm{Ob}:(X, A, a), \quad X \in \operatorname{Top}, A \subset X, a \in A$.
- Hom: $f \in \operatorname{Top}(X, Y), \quad f(A) \subset B, \quad f(a)=b$.
- Homotopies: $\mathbf{T o p}_{*}^{2}((X, A, a) \times I, Y)$.
hoTop ${ }_{*}^{2}$ is defined in the same way.
remark: These theories are limited, we shall give a small list of their downsides.
(1) Homotopy theorists do not work with hoTop in general; it is far too complicated:
- Hard to check if $f: X \longrightarrow Y$ is a homoptopy equivalence.
- Hard to produce maps.

Indeed, $f$ is a homotopy equivalence $i f f[f]$ is an isomorphism, which means we have to find a "homotopic inverse" $g$ and show two homotopies to identities.
Solution: localise Top $\rightsquigarrow \operatorname{Top}\left[w^{-1}\right]$ by inverting a class of morphisms.
(2) Neither hoTop nor Top $\left[w^{-1}\right]$ are (co-)complete. The construction of objects in hoTop is very complicated. We could work in Top, but how would we ensure that the construction is meaningfull in hoTop? Solution: Work with models for hoTop and $\operatorname{Top}\left[w^{-1}\right]$ :

- Model categories (Quillem).
- $(\infty, 1)$-categories (Joyal-LuRIE).
(3) We want sequence in an optimal setting: triangulated categories. hoTop or $\boldsymbol{T o p}\left[w^{-1}\right]$ are not (in general) triangulated, only "pretriangulated".
Solution: work with spectra.


## Definition:

For $(X, x) \in \mathbf{T o p}_{*}$, we set for $n \in \mathbb{N}$

$$
\pi_{n}(X, x):=\left[\left(I^{n}, \partial I^{n}\right),(X, x)\right]
$$

For $n>0$, we consider the binary operation $+_{i}$ on $\pi_{n}(X, x)$, defined in $\operatorname{Top}^{2}\left(\left(I^{n}, \partial I^{n}\right),(X, x)\right)$ by

$$
\left(f+_{i} g\right)\left(t_{1}, \ldots, t_{n}\right):= \begin{cases}f\left(t_{1}, \ldots, t_{i-1}, 2 t_{i}, t_{i+1}, \ldots, t_{n}\right) & \text { if } t_{i} \leqslant \frac{1}{2} \\ g\left(t_{1}, \ldots, t_{i-1}, 2 t_{i}-1, t_{i+1}, \ldots, t_{n}\right) & \text { if } t_{i}>\frac{1}{2}\end{cases}
$$

inducing the operation in $\pi_{n}(X, x)$.

## Lemma:

For $n>0$ and $i \in \llbracket 1, n \rrbracket,{ }_{i}$ endows $\pi_{n}(X, x)$ with a natural group structure. Moreover, if $n>1$, and $i, j \in \llbracket 1, n \rrbracket,+_{i}$ and $+_{j}$ coincide and are commutative.
proof: To show the group structure, it suffices to do it for $n=1$, it is clear that it induces the result for any $n>0$.

- The associativity is given by the following convex homotopy in $(I, \partial I) \times I$ :

- The inverse is given by $f \mapsto \bar{f}$ where $\bar{f}(t)=f(1-t)$. The homotopies of both concatenations are the following.

- For the neutral, we shall take the constant path $c_{x}$.

Let us now proove that $+_{i}$ and $+_{j}$ coincide.
For $n>1$, consider that $I^{n} / \partial I^{n} \cong \mathbb{S}^{n}$. We now have:


We could obtain the result easily from this drawing by considering a good rotation, but we prefer to show another property:

$$
f+_{i} g \simeq\left(f+_{j} c_{x}\right)+_{i}\left(c_{x}+_{j} g\right) \stackrel{?}{=}\left(f+_{i} c_{x}\right)+_{j}\left(c_{x}+_{i} g\right) \simeq f+_{i} g
$$

We just have to show the egality in $\operatorname{Vect}\left(e_{i}, e_{j}\right) \cap I^{n} \cong I^{2}$. It is given by this drawing.

| $c_{x}$ | $g$ |
| :---: | :---: |
| $f$ | $c_{x}$ |

For the commutativity, we have

$$
f+_{1} g \simeq f+{ }_{2} g \simeq\left(c_{x}+_{1} f\right)+_{2}\left(g+_{1} c_{x}\right) \stackrel{?}{=}\left(c_{x}+_{2} g\right)+_{1}\left(f+{ }_{2} c_{x}\right) \simeq g+_{1} f
$$

given by the following drawing.

| $g$ | $c_{x}$ |
| :---: | :---: |
| $c_{x}$ | $f$ |

notation: For $n=1$, we shall denote $*$ the operation $+_{1}$, and for $n>1$ we shall use + .

## Definition (Homotopy groups):

Th previous lemma ensures the following definitions; for $(X, x) \in \mathbf{T o p}_{*}$,

- $\pi_{0}(X, x)$ is a pointed set.
- $\left(\pi_{1}(X, x), *\right)$ is a group called the fundamental group.
- $\left(\pi_{n}(X, x),+\right)$ for $n>1$ is an abelian group.

We call $\pi_{n}(X, x)$ the $n$-th homotopy group of $(X, x)$.
remark: The terminology can be misleading for $n \leqslant 1$.
By definition, we have the functors

$$
\Pi_{n}: \mathbf{T o p}_{*} \longrightarrow \mathbf{h o T o p}_{*} \xrightarrow{\pi_{n}} \begin{cases}\mathbf{S e t}_{*} & \text { if } n=0 \\ \mathbf{G r p} & \text { if } n=1 \\ \mathbf{A b} & \text { if } n>1\end{cases}
$$

On question can emerge: do these form a "homology theory"? The answer is no, the excision axiom is not satisfied, but every other axiom is. Let us introduce a complementary notion.

## Definition:

For $n>0$, let $J^{n-1} \subset \partial I^{n}$ be defined as

$$
J^{n-1}=\left\{\begin{array}{llll}
\{1\} & \text { for } n=1 \\
\partial I^{n-1} \times I \cup I^{n-1} \times\{1\} & \text { for } n>1
\end{array} \quad \text { e.g. } \quad J^{1}=\right\rceil
$$

For $(X, A, a) \in \mathbf{T o p}_{*}^{2}$ and $n>0$, we set

$$
\pi_{n}(X, A, x):=\left[\left(I^{n}, \partial I^{n}, J^{n-1}\right),(X, A, a)\right]
$$

For $n>1$ and $i<n$, we can define $+_{i}$ the same way as before. They are still commutative and coinciding. The only drawback is for $i=n$, the concatenation does not work since $J^{n-1}$ is missing a bottom, e.g.


## DEFINITION (Relative homotopy groups):

Th previous lemma ensures the following definitions; for $(X, x) \in \mathbf{T o p}_{*}$,

- $\pi_{1}(X, A, a)$ is a pointed set.
- $\left(\pi_{2}(X, A, a), *\right)$ is a group.
- $\left(\pi_{n}(X, A, a),+\right)$ for $n>2$ is an abelian group.

These objects are called the relative homotopy groups of $(X, A, a)$.
We then have the functors

$$
\Pi_{n}: \mathbf{T o p}_{*}^{2} \longrightarrow \mathbf{h o T o p}_{*}^{2} \xrightarrow{\pi_{n}} \begin{cases}\mathbf{S e t}_{*} & \text { if } n=1 \\ \mathbf{G r p} & \text { if } n=2 \\ \mathbf{A b} & \text { if } n>2\end{cases}
$$

remark: For $n>0$, we have $\pi_{n}(X,\{x\}, x)=\pi_{n}(X, x)$.
Definition-Proposition (Connecting homomorphism):
Let $(X, A, a) \in \mathbf{T o p}_{*}^{2}$, we set $s: I^{n-1} \longrightarrow I^{n} \quad$, the section to the fibre over 0 of the projection on the $t \longmapsto(t, 0)$
$n$-th variable.

For $n>0$, we set $\delta_{n}: \pi_{n}(X, A, a) \longrightarrow \pi_{n-1}(A, a)$. It is a well defined group homomorphism for $n>1$ $[f] \longmapsto \quad[f \circ s]$
and defines a natural transformation of functors $\Pi_{n} \xlongequal{\delta_{n}} \Pi_{n} \circ U \quad$ where $U$ is the forgetfull functor.


We call $\delta_{n}$ the connecting homomorphism.
proof: It all lies in the fact that $\delta_{n}=s^{*}$, and that $s$ links $I^{n-1}$ to $I^{n}$ in a very pleasant way.

## Theorem:

For $(X, A, a) \in \operatorname{Top}_{*}^{2}$, we have a long exact sequence, natural in $(X, A, a)$ :

remark: We mean for a pointed set sequence to be exact if $\alpha(S)=\beta^{-1}(\{u\})$, where

$$
(S, s) \xrightarrow{\alpha}(T, t) \xrightarrow{\beta}(U, U)
$$

proof: The exactness in $\pi_{n}(X, a)$ is obvious for all $n>0$, let us show the exactness on both sides of the long exact sequence.
To Fill!
On question arises, how does $\pi_{n}(X, x)$ depends on $x$ ? We need to introduce the fundamental groupoïd.

## II The fundamental groupoïd

## Definition (Groupoïd):

A groupoïd is a small category where alla morphisms are isomorphisms.

## DEFINITION (Fundamental groupoïd):

Let $X \in$ Top, the fundamental groupoïd of $X, \Pi_{X}$ is a small category with:

- Ob: the underlying set of $X$.
- Hom: for $a, b \in X, \quad \Pi_{X}(a, b):=\Omega(X, a, b) / \simeq_{3}$.

Where $\Omega(X, a, b)=\boldsymbol{\operatorname { T o p }}^{3}((I,\{0\},\{1\}),(X,\{a\},\{b\}))$ with composition given by

$$
\begin{aligned}
\Pi_{X}(b, c) \times \Pi_{X}(a, b) & \longrightarrow \Pi_{X}(a, c) \\
([\beta],[\alpha]) & \longmapsto[\alpha * \beta]
\end{aligned}
$$

remark: Checking the axioms of a category for $\Pi_{X}$ is the same as showing that $\pi_{1}(X, x)$ is a group since it is a groupoïd. It is obvious since $[\alpha]^{-1}=[\bar{\alpha}]$.

## Definition:

If $G$ is a groupoïd, let us define $\Pi_{0}(G):=\operatorname{Ob} G / \sim$, where $a \sim b \Leftrightarrow G(a, b) \neq \varnothing$ (connexion).
We then set $\Pi_{1}(G, a):=\operatorname{Aut}_{G}(a)$.
Of course, we have $\begin{cases}\Pi_{0}\left(\Pi_{X}\right)=\pi_{0}(X, a) & \text { as sets. } \\ \Pi_{A}\left(\Pi_{X}, a\right)=\pi_{1}(X, a) & \text { as groups. }\end{cases}$
Proposition (Functoriality of the fundamental groupoïd):
(1) A continuous map $f: X \longrightarrow Y$ gives a functor $f_{*}: \Pi_{X} \longrightarrow \Pi_{Y}$.
(2) A homotopy $f \stackrel{H}{\sim} g$ gives a natural transformation

proof: The result is obvious, we just need to define for $\alpha \in \Pi_{X}(a, b), H_{* a}:=[H(a, \bullet)]$. We then have the following commutative diagram:


Definition (Local system of objects):
Let $X \in \mathbf{T o p}$, a local system if objects in a category $\mathscr{C}$ is a functor:

$$
\Pi_{X} \longrightarrow \mathscr{C}
$$

## Lemma:

Let $n \geqslant 0$ and $K^{n-1}:=\partial I^{n-1} \times I \cup I^{n-1} \times\{0\} \subset I^{n}$, then $K^{n-1}$ is a retract of $I^{n}$.
The set $K^{n-1}$ is the boundary of $I^{n}$ with the top face removed, e.g.

proof: A retraction of $X$ onto a subste $A \subset X$ is a homotopy $H$ such that $\forall a \in A, H(a, \bullet)=a$ and $H(X, 1) \subset A$. The retraction we want here is the cubic equivalent of the radial projection for a cylinder.

We set $e:=(1 / 2, \ldots, 1 / 2,2) \in \mathbb{R}^{n}$, and for $x \in I^{n}$, we define $p(x)$ to be the unique point of the intersection $(e, x) \cap K^{n-1}$. Here is a drawing for $n=3$ :


We then just have to set $H(x, \bullet)=[x, p(x)]$, it is a well defined retraction.

## Proposition:

For $X \in \mathbf{T o p}, n \in \mathbb{N}$, we have a local system:

where $\mathscr{C}=\left\{\begin{array}{l}\text { Set } \\ \mathbf{G r p} \\ \mathbf{A b}\end{array}\right.$ depending on $n$.
proof: We have to show it is well defined, let us use the previous lemma.
We denote $f_{\alpha}=\alpha * f * \bar{\alpha}$. If $f \stackrel{H}{\simeq} g$ and $\alpha \stackrel{G}{\simeq} \beta$ (relative to endpoints) we have to ensure that $f_{\alpha} \simeq g_{\beta}$.
For that, we will extend a "usefull" map defined on $K^{n+1}$ to $I^{n+2}$ via the retraction. Let us set $\phi: K^{n+1} \longrightarrow X$ defined by:

- $\phi(x, t, 0)=H(x, t)$.
- $\phi(x, 0, t)=G(x, t)=\phi(x, 1, t)$.
- $\phi(0, x, t)=f_{\alpha_{t}}(x), \phi(1, x, t)=f_{\beta_{t}}(x)$; where $\alpha_{t}=a \circ[0, t]$.
$\phi$ is continuous, here is a "drawing" of it for $n=1$ :


Thus, we just have to set $\Phi=\phi \circ r(\bullet, 1)$, which extends $\Phi$ to $I^{n+2}$, and take $F(x, t)=\Phi(x, t, 1)$ and $f_{\alpha} \stackrel{F}{\sim} g_{\beta}$. Here is another "drawing" of $F$ for $n=1$.


## Corollary:

From the previous proposition, we can deduce:
(i) Any path $\alpha: a \longrightarrow b$ induces an isomorphism:

$$
\pi_{n}(X, a) \xrightarrow{\tau_{\alpha}} \pi_{n}(X, b)
$$

(ii) $\pi_{1}(X, a)$ acts on $\pi_{n}(X, a)$.
(iii) If $A \subset X, \pi_{1}(A, a)$ acts on $\pi_{n}(X, A, a)$, and on the whole long exact sequence induced by the pointed pair $(X, A, a)$.
example: $\pi_{1}(X, a)$ acts on itself by conjugation.
remark: We often use homotopies to lift maps on bigger source sets, but if some sets verify some lifting properties, is it the same for their homotopies?

## III Fibrations

## Definition ( $H L P$ ):

A map $p: E \longrightarrow B$ has the homotopy lifing property (HLP) with respect to $X \in \mathbf{T o p}$, if, given a commutative square


We now define two types of fibrations:

- We call $p$ a Hurewicz-fibration if it has the HLP with respect to all $X \in$ Top.
- We call $p$ a Serre-fibration if it has the HLP with respect to $I^{n}$ for all $n \in \mathbb{N}$.
example: If $E=B \times F \xrightarrow{p} B$ is a projection, then $p$ is a Hurewicz-fibration.
With $H: X \times I \longrightarrow B \times F \quad$, we have: $X \xrightarrow{H_{0}} B \times F$
we would prefer to have the same property for non-trivial fibre bundles.

Definition (Fibre and section):
Given $p:(E, e) \longrightarrow(B, b) \in \mathbf{T o p}_{*}$, we call $F=F_{b}:=p^{-1}(\{b\})$ the fibre of $p$ (over $b$ ). A section (towards $e)$ is a continuous map $s=s_{e}:(B, b) \longrightarrow(E, e)$ such that $p \circ s=\operatorname{id}_{(B, b)}$.

For a fibre bundle, it gives:


## Proposition:

Let $p:(E, e) \longrightarrow(B, b)$ be a Serre-fibration and $F$ the fibre, then

$$
p_{*}: \pi_{n}(E, F, e) \longrightarrow \pi_{n}(B,\{b\}, b) \simeq \pi_{n}(B, b)
$$

is surjective for all $n \in \mathbb{N}$ and an isomorphism for all $n>0$.
proof: For the surjectivity, let us first "show" that the pair $\left(I^{n-1} \times\{0\}, I^{n}\right)$ is homeomorphic to the pair $\left(J^{n-1}, I^{n}\right)$


Let us now proove the surjectivity. Let $[f]_{B} \in \pi_{n}(B, b)$, we have:

due to the Serre-fibration property transposed to $\left(J^{n-1}, I^{n}\right)$ through the homeomorphism. Of course we have $p_{*}\left([\tilde{f}]_{E}\right)=[p \circ \tilde{f}]_{B}=[f]_{B}$.

For the injectivity, we define $L^{n}=I^{n} \times\{0\} \cup I^{n} \times\{1\} \cup J^{n-1} \times I$ (just $K^{n}$ rotated). The pair $\left(I^{n+1}, L^{n}\right)$ is homeomorphic to the pair $\left(I^{n+1}, I^{n} \times\{0\}\right)$ :


Thus we can use the HLP for the inclusion $\left(I^{n+1}, L^{n}\right)$.
Let us then show the injectivity. Suppose $p_{*}\left([f]_{E}\right)=p_{*}\left([g]_{E}\right)$, it means that $[p \circ f]_{B}=[p \circ g]_{B}$, soit $p \circ f \stackrel{h}{\sim} p \circ g$. We now define $H_{0}: L^{n} \longrightarrow E$ by:

- $H_{0}(\bullet, 0)=f$.
- $H_{0}(\bullet, 1)=g$.
- $H_{0 \mid J^{n-1} \times I}=e$

Of course, we have $h \circ \imath=p \circ H_{0}$ which follows frome the good definition of $H_{0}$, and the fact that $p(F)=\{b\}$. Here is a drawing of $H_{0}$ where the grey equals to $e$ and the blue is in $F$ :


We can now properly lift $h$ :

and we have $p(H(x, 0, \bullet))=h(x, 0, \bullet)=b$, so $p(H(x, 0, \bullet)) \in F$, thus $H$ is a relative homotopy and $f \stackrel{H}{\sim} g$, so $[f]_{E}=[g]_{E}$.

## Corollary:

Let $p:(E, e) \longrightarrow(B, b)$ be a Serre-fibration, $F$ the fibre of $p$ and $\quad \imath:(F, e) \longrightarrow(E, e)$ the inclusion, then the fibration sequence; $0 \longrightarrow(F, e) \longrightarrow(E, e) \longrightarrow(B, b) \longrightarrow 0 \quad$ induces a long exact sequence:

proof: We just need to replace $(E, F, e)$ by $(B, b)$ thanks to the previous proposition in the long exact sequence associated to the pointed pair $(E, F, e)$. We must still be carefull at the exactness in $\pi_{0}(E, e)$. Let us suppose that $\left[e^{\prime}\right]_{E} \in \pi_{0}(E, e)$ verifies $p_{*}\left(\left[e^{\prime}\right]_{E}\right)=[b]_{B}$. We have an arc $\gamma: p\left(e^{\prime}\right) \longrightarrow b$, which we can lift in the following diagramm:


But $p \circ \tilde{\gamma}(1)=\gamma(1)=b$ so $f:=\tilde{\gamma}(1) \in F$, hence $[f]_{E}=\left[e^{\prime}\right]_{E}$, thus $\tau_{*}\left([f]_{F}\right)=\left[e^{\prime}\right]_{E}$.
The reciprocity of the inclusion is trivial.
The fibration property uses the same terminology as the fibre products, which are locally defined. The following proposition shall give us a very useful caracterisation of Serre-fibrations.

## Proposition:

To be a Serre-fibration is a local property, i.e. if $p: E \longrightarrow B$ is given and $B=\bigcup_{\lambda \in \Lambda} U_{\lambda}$ has a covering of open sets such that for each $\lambda \in \Lambda, p^{-1}\left(U_{\lambda}\right) \xrightarrow{p} U_{\lambda}$ is a Serre-fibration, then $p$ is a Serre-fibration.

Before attempting the proof, we shall demonstrate a very useful lemma.
Lemma (Lebesgue number):
For $X$ a compact metric space and $\left(U_{\lambda}\right)_{\lambda \in \Lambda}$ an open covering of $X$, there exists $\delta>0$ such that:

$$
\forall x \in X, \exists \lambda \in \Lambda, \quad \mathbb{D}(x, \delta) \subset U_{\lambda}
$$

proof: Since $X$ is compact, we cans extract a finite cover of $X$ given by $\left(U_{1}, \ldots, U_{n}\right)$. If there exists $i$ such that $U_{i}=X$, the proof is obviously over, so we suppose that $\forall i \leqslant n, U_{i} \subsetneq X$.

We set $F_{i}=U_{i}^{c} \neq \varnothing$ and $f(x):=\frac{1}{n} \sum_{i=1}^{n} d\left(x, F_{i}\right)$ which is well defined and continuous since $F_{i} \neq \varnothing$. For it is continuous on a compact, it attains its minimum $\delta$ in $x_{0}$ and since $\left(U_{i}\right)$ covers $X$, there exists $i_{0}$ such that $x_{0} \notin F_{i_{0}}$, hence $\delta>0$.

Now if there exists $x \in X$ such that $\forall i, \mathbb{D}(x, \delta) \nsubseteq U_{i}$, then $\forall i, d\left(x, F_{i}\right)<\delta$, hence $f(x)<\delta$ which is absurd, thus $\forall x \in X, \exists i \leqslant n, \mathbb{D}(x, \delta) \subset U_{i}$.

Let us now proove the previous proposition
proof: Let $n \in \mathbb{N}$, we consider the lifting problem of the following commutative square:


We have an open covering of $I^{n+1}$ given by the $h^{-1}\left(U_{i}\right)$. By Lebesgue lemma, with $d=\|\bullet\|_{1}$, there exists $N \in \mathbb{N}$ such that we can cover $I^{n+1}$ with small cubes defined as $W_{\alpha}=\left[\frac{\alpha_{0}-1}{N}, \frac{\alpha_{0}-1}{N}\right] \times \cdots \times\left[\frac{\alpha_{n}-1}{N}, \frac{\alpha_{n}-1}{N}\right]$ with $\alpha \in \llbracket 1, N \rrbracket^{n+1}$. And $h\left(W_{\alpha}\right) \subset U_{i}$ for some $i$.
Of course if we have $W_{\alpha}^{\prime}=W_{\operatorname{pr}_{<n}(\alpha)}=\imath_{0}^{-1}\left(W_{\alpha}\right) \subset H_{0}^{-1}\left(p^{-1}\left(U_{i}\right)\right)$.
The Serre-fibration property on every $U_{i}$ induces a lifing for every $\alpha$ (since $\left.\left(W_{\alpha}, W_{\alpha}^{\prime}\right) \cong\left(I^{n+1}, I^{n} \times\{0\}\right)\right)$ :

Now we just need to glue the results one by one with the lexicographic order on $\llbracket 1, N \rrbracket^{n+1}$ to obtain $H$.
example: Fibre bundles are Serre-fibrations, since they are locally trivial, hence locally homoemorphic to a projection. Homogeneous spaces give good examples of fibre bundles, hence Serre-fibrations.

## Proposition:

Let $G$ be a Hausdorff topological group and $H$ a closed subgroup of $G$. Let $G / H$ be the space of orbits for the right action of $H$ on $G$.

Suppose the quotient map $G \xrightarrow{p} G / H$ has a local section at $[e]_{H}$, then if $K \leqslant H$ is closed, the quotient map $G / K \xrightarrow{q} G / H \quad$ is a fibre bundle with fibre $H / K$.
example: The most common example is the fibration $\mathbb{R} \longrightarrow \mathbb{R} / \mathbb{Z}$ which gives us for every $k \in \mathbb{N}^{*}$, a fibration

$$
0 \longrightarrow \mathbb{Z} / k \mathbb{Z} \longrightarrow \mathbb{R} / k \mathbb{Z} \longrightarrow \mathbb{R} / \mathbb{Z} \longrightarrow 0
$$

It is the embedding of $\mathbb{S}^{1}$ by itself of degree $k$ :

$$
\mathbb{S}^{1} \xrightarrow{k \cdot} \mathbb{S}^{1}
$$

Here is a drawing for $k=3$.

proof: We recall that with Hausdorff topological groups, a description of the neighbourhood of any point (in particular the neutral) gives us a description of the whole group. By hypothesis, we have a local section $s: U \longrightarrow G$ with $[e]_{H} \in U \subset G / H$.

We set $\phi: U \times H / K \longrightarrow G / K \quad$, it is oviously continuous well defined since we multiply on

$$
\left([g]_{H},[h]_{K}\right) \quad \longmapsto \quad\left[s\left([g]_{H}\right) \cdot h\right]_{K}
$$

the left.
We have a commutative triangle:


Indeed, $q \circ \phi\left([g]_{H},[h]_{K}\right)=q\left(\left[s\left([g]_{h}\right) \cdot h\right]_{K}\right)=p\left(s\left([g]_{h}\right) \cdot h\right)=p \circ s\left([g]_{H}\right)=[g]_{H}$.
On top of that, $\phi$ is a homeomorphism with inverse given by $\psi\left([g]_{K}\right)=\left([g]_{H},\left[s\left([g]_{H}\right)^{-1} \cdot g\right]_{K}\right)$.
Now that we have a local trivialisation of the bundle at $[e]_{H}$, we deduce a local trivialisation at $[x]_{H}$ through the left translation by $x: p^{-1} U \mapsto x p^{-1}(U)$.
example: For $n \in \mathbb{N}, \mathbb{F}=\mathbb{R}$ or $\mathbb{C}$, we set $G(n):= \begin{cases}O_{n}(\mathbb{R}) & \text { if } \mathbb{F}=\mathbb{R} . \\ U_{n}(\mathbb{C}) & \text { if } \mathbb{F}=\mathbb{C} .\end{cases}$
If $k \leqslant n, G(k)$ can be seen as a closed subgroup of $G(n)$ through the inclusion $G(k) \longrightarrow G(n)$

$$
A \longmapsto\left(\begin{array}{cc}
A & 0 \\
0 & I_{n-k}
\end{array}\right)
$$

We then have $p: G(n) \longrightarrow G(n) / G(k)$ admitting a local section at $\left[I_{n}\right]_{k}$.
To proove this, we will use the action of $G_{n}$ on the following example.
example (Stiefel manifold): Let $1 \leqslant l \leqslant n$, we set $V_{k, l}=\left\{\left(v_{1}, \ldots, v_{l}\right) \in\left(\mathbb{F}^{n}\right)^{l} \mid\left\langle v_{i}, v_{j}\right\rangle=\delta_{i}^{j}\right\}$.
Let $\left(e_{1}, \ldots, e_{n}\right)$ be the canonical basis of $\mathbb{F}^{n}$ and $x_{0}:=\left(e_{n-l+1}, \ldots, e_{n}\right) \in V_{n, l}, G(n) \curvearrowright V_{n, l}$ transitively and $G(n)_{x_{0}}=G(n-l)$, it gives us a continuous bijection $G(n) / G(n-l) \longrightarrow V_{n, l}$.

$$
[A]_{n-l} \quad \longmapsto A \cdot x_{0}
$$

Since $G(n) / G(k)$ is compact and $V_{n-l}$ Hausdorff, it is a homeomorphism, thuand we have the following commutative square:


Therefore, finding a local section of $p$ at $\left[I_{n}\right]_{n-l}$ is the same as fining a local section of $\mathrm{pr}_{>n-l}$ at $x_{0}$.
To do so, we take $U:=\left\{\left(v_{1}, \ldots, v_{l}\right) \in V_{n, l} \mid\left(e_{1}, \ldots e_{n-l}, v_{1}, \ldots, v_{n-l}\right)\right.$ is a basis $\}$ which is obviously an open set (through det) and contains $x_{0}$. We then define

$$
\begin{aligned}
& s: U \\
& \longrightarrow V_{n, n} \\
&\left(v_{1}, \ldots, v_{l}\right) \longmapsto \\
& \text { G-S }\left(e_{1}, \ldots, e_{n}, v_{1}, \ldots, v_{l}\right)
\end{aligned}
$$

it is continuous, since Gram-Schmidt can be obtained from a Gram-matrix, and we have $\mathrm{pr}_{>n-l} \circ s=\mathrm{id}_{U}$.
We now have a fibre bundle:


The previous proposition gives many variations, e.g. for $1 \leqslant k \leqslant l \leqslant n$, we have:

example (Grassman manifold): Let $1 \leqslant l \leqslant n$, we set $G_{n, l}$ to be the set of subspaces of $\mathbb{F}^{n}$ of dimension $l$. We have an obvious surjection:

$$
\begin{aligned}
V_{n, l} & \longrightarrow G_{n, l} \\
\left(v_{1}, \ldots, v_{l}\right) & \longmapsto \operatorname{Vect}\left(v_{1}, \ldots, v_{l}\right)
\end{aligned}
$$

It gives $G_{n, l}$ the projection topology. If $X_{0}=\operatorname{Vect}\left(x_{0}\right)$, we have $G(n)_{X_{0}}=G(n-l) \times G(l)$. It induces a homeomorphism

$$
G(n) / G(n-l) \times G(l) \longrightarrow G_{n, l}
$$

With the previous proposition, we get more variations from the inclusions:

$$
G(n-l) \longleftrightarrow G(n-l) \times G(l) \longleftrightarrow G(n)
$$

Which give:

remark: The same works for $\mathbb{H}$ the unitary division ring of the quaternions, and we obtain fibre bundles:

$$
V_{n-l, l-k}^{\mathbb{H}} \longrightarrow V_{n, l}^{\mathbb{H}} \longrightarrow V_{n, k}^{\mathbb{H}} \quad \text { and } \quad V_{l, l}^{\mathbb{H}} \longrightarrow V_{n, l}^{\mathbb{H}} \longrightarrow G_{n, l}^{\mathbb{H}}
$$

This is used to solve the problem: can $\mathbb{R}^{2^{n}}$ be endowed with a unitary division ring structure?

Definition (Hopf fibre bundle):
We define the Hopf fibre bundle as:
$\left\{\begin{array}{llcl}\mathbb{S}^{0} & \longrightarrow & \mathbb{S}^{n} & \longrightarrow \\ \mathbb{R} & P^{n} \\ \mathbb{S}^{1} & \longrightarrow & \mathbb{S}^{2 n+1} & \longrightarrow \\ \mathbb{C} & P^{n} \\ \mathbb{S}^{3} & \longrightarrow & \mathbb{S}^{4 n+3} & \longrightarrow \\ \mathbb{H} P^{n}\end{array} \quad\right.$ using $\quad V_{1,1}^{\mathbb{F}} \longrightarrow V_{n+1,1}^{\mathbb{F}} \longrightarrow G_{n+1,1}^{\mathbb{P}} \quad$ for $\quad \mathbb{F}=\left\{\begin{array}{l}\mathbb{R} \\ \mathbb{C} \\ \mathbb{H}\end{array}\right.$
For $n=1$, using $\left\{\begin{array}{l}\mathbb{R} P^{1} \cong S^{1} \\ \mathbb{C} P^{1} \cong S^{2} \\ \mathbb{H} P^{1} \cong S^{4}\end{array}\right.$, we have $\begin{array}{l}\mathbb{S}^{0} \longrightarrow \mathbb{S}^{1} \xrightarrow{2} \mathbb{S}^{1} \longrightarrow \mathbb{S}^{3} \longrightarrow \eta \mathbb{S}^{2}, \quad \text { ckeck on YouTube } . \\ \\ \mathbb{S}^{3} \longrightarrow \mathbb{S}^{7} \longrightarrow \mathbb{S}^{4}\end{array}$
remark: The octonions are not associative (nor commutative) so $\mathbb{O} P^{n}$ cannot be defined for $n \geqslant 3$, but it exists for $n=1,2$. We get one more example of fibre bundle:

$$
\mathbb{S}^{7} \longrightarrow \mathbb{S}^{15} \xrightarrow{\sigma} \mathbb{S}^{8}
$$

We would like to replace maps by fibration, there is a problem: Top is not cartesian-closed. We must use a category with a more fitting structure for this.

## IV Mapping spaces

Definition (Cartesian-closed):
We say that a category $\mathscr{C}$ is cartesian-closed if it is locally-small and follows the axioms:
(i) There exists * a terminal object.
(ii) It admits finite cartesian product.
(iii) For each $X, Y \in \mathrm{Ob}_{\mathscr{C}}, \operatorname{hom}_{\mathscr{C}}(X, Y) \in \mathrm{Ob} \mathbb{C}$.
(iv) There is an isomorphism, natural in the 3 variables:

$$
\star: \operatorname{hom}_{\mathscr{C}}(X \times Y, Z) \longrightarrow \operatorname{hom}_{\mathscr{C}}\left(X, \operatorname{hom}_{\mathscr{C}}(Y, Z)\right)
$$

i.e. $(\bullet \times \bullet) \vdash \operatorname{hom}_{\mathscr{C}}(\bullet, \bullet)$.
(v) Some other axioms that will not be stated here.
notation: If $\mathscr{C}$ is cartesian-closed, $\operatorname{hom}_{\mathscr{C}}(X, Y)$ is denoted $Y^{X}$, and the adjunction gives us $Z^{X \times Y} \simeq\left(Z^{Y}\right)^{X}$.

## Definition:

For $X, Y \in \operatorname{Top}$, we can endow $\operatorname{Top}(X, Y)$ with the compact-open topology, given by the following open-basis:

$$
\mathcal{O}(K, U)=\boldsymbol{\operatorname { T o p }}^{2}((X, K),(Y, U)) \quad \text { for } \quad \begin{cases}K & \text { compact set of } X . \\ U & \text { open set of } Y .\end{cases}
$$

We denote by $\operatorname{map}(X, Y)$ the set $\operatorname{Top}(X, Y)$ with this topology.

## Lemma:

The mapping spaces have the following properties:
(i) If $Y$ is Hausdorff, $\operatorname{map}(X, Y)$ is too.
(ii) $\psi: \operatorname{map}(X, Y \times Z) \longrightarrow \operatorname{map}(X, Y) \times \operatorname{map}(X, Z) \quad$ is a homeomorphism.

$$
f \longmapsto\left(\operatorname{pr}_{1} \circ f, \operatorname{pr}_{2} \circ f\right)
$$

(iii) We have a continuous map $\phi: \operatorname{map}(X \times Y, Z) \longrightarrow \operatorname{map}(X, \operatorname{map}(Y, Z))$

$$
\begin{aligned}
f & \longmapsto \quad \hat{f}: X
\end{aligned} \begin{aligned}
X & \longrightarrow \operatorname{map}(X, Y) \\
x & \longmapsto f(x, \bullet)
\end{aligned}
$$

(iv) If $Y$ is Hausdorff and locally-compact and $g \in \operatorname{map}(X, \operatorname{map}(Y, Z)), \quad \check{g}: \quad X \times Y \quad \longrightarrow \quad Z \quad$ is

$$
(x, y) \longmapsto g(x)(y)
$$ continuous.

$(v)$ If $X$ is Hausdorff and $Y$ Hausdorff and locally-compact, $\phi$ is an homeomorphism of inverse $g \mapsto \check{g}$.
proof: Let us proove all the assertions point by point.
(i) If $Y$ is Hausdorff, for $f \neq g \in \boldsymbol{\operatorname { T o p }}(X, Y), \exists x \in X$ such that $f(x) \neq g(x)$.

Since $Y$ is Hausdorff, we have separating open sets of $Y, U_{f}$ and $U_{g}$ such that $U_{f} \cap U_{g}=\varnothing$ and $f(x) \in$ $U_{f}, g(x) \in U_{g}$.
$\{x\}$ is compact since it is finite, thus $f \in \mathcal{O}\left(\{x\}, U_{f}\right)$ and $g \in \mathcal{O}\left(\{x\}, U_{g}\right)$ which are of empty intersection, hence $\operatorname{map}(X, Y)$ is Hausdorff.
(ii) Let $\mathcal{O}\left(K_{X}, U_{Y}\right)$ be a standard open set of $\operatorname{map}(X, Y)$, we set $V:=\mathcal{O}\left(K_{X}, U_{Y}\right) \times \operatorname{map}(X, Z)$.

$$
\begin{aligned}
\psi^{-1}(V) & =\left\{f: X \longrightarrow Y \times Z \mid \operatorname{pr}_{1}\left(f\left(K_{X}\right)\right) \subset U_{Y}\right\} \\
& =\mathcal{O}\left(K_{X}, \operatorname{pr}_{1}^{-1}\left(U_{Y}\right)\right)
\end{aligned}
$$

which is open.
Symetrically, $\psi^{-1}\left(\operatorname{map}(X, Y) \times \mathcal{O}\left(K_{X}, U_{Z}\right)\right)=\mathcal{O}\left(K_{X}, \operatorname{pr}_{2}^{-1}\left(U_{Z}\right)\right)$, hence, $\psi$ is continuous.
(iii) It is obvious that the $\mathcal{O}\left(K_{X}, \mathcal{O}\left(K_{Y}, U_{Z}\right)\right)$ form a basis of $\operatorname{map}(X, \operatorname{map}(Y, Z))$, thus we compute:

$$
\begin{aligned}
\phi^{-1}\left(\mathcal{O}\left(K_{X}, \mathcal{O}\left(K_{Y}, U_{Z}\right)\right)\right) & =\left\{f: X \times Y \longrightarrow Z \mid \hat{f}\left(K_{X}\right) \subset \mathcal{O}\left(K_{Y}, U_{Z}\right)\right\} \\
& =\left\{f: X \times Y \longrightarrow Z \mid \hat{f}\left(K_{X}\right)\left(K_{Y}\right) \subset U_{Z}\right\} \\
& =\left\{f: X \times Y \longrightarrow Z \mid f\left(K_{X}, K_{Y}\right) \subset U_{Z}\right\} \\
& =\mathcal{O}\left(K_{X} \times K_{Y}, U_{Z}\right)
\end{aligned}
$$

A product of compact is compact for the product topology (TYCHONOFF's theorem) hence, $\phi$ is continuous.
(iv) If $Y$ is Hausdorff and locally-compact, every point has a local base of relatively compact neighbourhoods. Let $U_{Z}$ be an open set of $Z$, for $x \in X$, since $g(x)$ is continuous, if $g(x)(y) \in U_{Z}$, we have $U_{y}$ relatively compact such that $g(x)\left(\bar{U}_{y}\right) \subset U_{Z}$. We have then $g(x) \in \mathcal{O}\left(\bar{U}_{Y}, U_{Z}\right)$, thus:

$$
\check{g}^{-1}\left(U_{Z}\right)=\bigcup_{y \in Y} g^{-1} \mathcal{O}\left(\bar{U}_{y}, U_{Z}\right) \times U_{y}
$$

which is open since $g$ is continuous, hence $\check{g}$ is continuous.
$(v)$ If $X$ is Hausdorff and $Y$ Hausdorff and locally-compact, we can obviously define $\phi^{-1}$ as stated, but we have to ensure that it is continuous. To fill!
remark: Top with internal homomorphisms $\operatorname{map}(X, Y)$ is not cartesian-closed. It works with compactlygenerated weak-Hausdorff spaces (CGWH). This category is cartesian-closed and mapping spaces are denoted $Y^{X}$.

We have a functor $k:$ Top $\longrightarrow \mathbf{C G W H}$ and a natural transformation $k \Longrightarrow \mathrm{id}$.
If $X$ is Hausdorff and locally-compact, the morphism $k(X) \longrightarrow X$ induced by the natural transformation is an homeomorphism, but limits and colimits do not agree in general.

## Definition:

Let $f \in \operatorname{Top}(X, Y)$, we define $F(f):=\left\{(x, \omega) \in X \times Y^{I} \mid \omega(0)=f(x)\right\}$. It is the pullback:


We set $i: X \longrightarrow F(f) \quad$ and $\quad \epsilon_{1}: \quad F(f) \longrightarrow Y \quad$. We have $\epsilon_{1} \circ i=f$.

## Lemma:

$i$ is a homotopy equivalence and $\epsilon_{1}$ is a Serre-fibration (Hurewicz for CGWH).

## Bibliography

[1] Peter May. A concise course in algebraic topology. PDF, 1999.
[2] Edward B. Curtis. Simplicial homotopy theory. Advances in mathematics 6, 1993.
[3] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

