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Introduction
Machines all over the world use protocols to communicate information, for example for messag-
ing or bank payments. This omnipresence intensifies the need for secure communication, thus
requiring proof of security and of other properties like privacy. Cryptographers usually prove
protocols secure using games and indistinguishability. They show that a protocol is indistin-
guishable from a version where security is obvious. This type of proofs uses the computational
model, where the attacker is a Polynomial Probabilistic Turing Machine (PPTM). This model
is close to what happens in reality, and reasoning often relies on probabilities: two randomly
sampled keys may be equal, but the probability is really low. While manual proofs are possible,
automated proofs scale better for bigger protocols and are less error-prone. Many tools can be
used for mechanically proving protocols. Some are highly automated, like CryptoVerif, others
require more user input, like Squirrel [3] or EasyCrypt [5].

When proving the security of a protocol, we often want to split the protocol in smaller parts.
This allows us to reuse proofs, as well as dealing with simpler subproofs. For example, we
want to easily prove security properties on various versions of SSH with different cipher suites
running in parallel on the same machine. However, the notion of indistinguishability is hard to
use as it is not composable most of the time. Indeed, shared secrets can be partially leaked by
other protocols running in parallel, ruining the security. A few composition results have been
established in the past. Here, we mostly focus on the results from [8]. The idea is the following:
we first encapsulate the shared secrets’ usage inside an oracle. We then prove security of other
parts of the protocol in presence of said oracle – this is called O-indistinguishability. If the oracle
is powerful enough so that substituting the shared secret for the oracle in the protocol does not
change the output, then you can deduce the security of the original protocol. This process of
replacing part of a protocol by an oracle O strong enough is called O-simulatability. Given the
many advantages of composition, we would like to implement this result in Squirrel.

Squirrel uses bi-deduction to define cryptographic games and oracles [2]. In its simplest form,
bi-deduction captures the idea that two indistinguishable terms stay indistinguishable when used
inside an adversarially computable function. There are some similarities betweenO-simulatability
and bi-deduction, both stating the existence of some function computing terms using an oracle.
This is what motivates us to use bi-deduction as a way to encode the composition result in
Squirrel.

With the many advantages of composition, we wish to integrate the results from [8] inside
Squirrel leveraging techniques from [2].

Contribution In this paper, we propose an extension of the current proof system of Squirrel to
enable composition. With our additional rule, we are able to split protocols in multiple pieces.
We can then prove security using the existing bi-deduction framework introduced in [8]. We
provide a concrete example of how it could be used in practice.

Outline First we introduce the basics of the Squirrel logic in Section 1. Then, in Section 2, we
detail the bi-deduction framework used in Squirrel as well as its ties to the composition result
we will use. Lastly in Section 3, we motivate, state and prove a new inference rule for Squirrel
and give an example on how it can be used.

Related Works Composition results have already been used in conjunction with automated
tools. CryptoVerif used such composition result but it was limited to key exchange protocols [6].
You would prove the sub-proofs automatically with the tool but the composition theorem would
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be used outside. EasyCrypt implemented proof mechanization using the UC framework [7]. This
approach has the same caveats as UC: proving UC properties is sometimes too demanding as it
requires the property to hold for any context. This bottom-up approach, that is starting from
the primitives and going “up” to the general protocol is the opposite of what we do in this work.

Lastly, EasyCrypt also put an emphasis on a technique called State-Separating Proof [9].
This technique suggests a different way of writing games: instead of using an imperative style,
you express games as a functional style. This allows doing proofs in a more modular way. This
is not, however, a “real” composition result but more of a suggestion to ease proofs.

1 Squirrel

1.1 Computational indistinguishability in cryptography
In cryptography, computational indistinguishability expresses the idea that an attacker cannot
differentiate two objects. Cryptographers show that a protocol is secure by proving that it is
indistinguishable from an ideal, obviously secure version of it.

Games are a central notion in cryptography to formalize protocols. Consider two games GI
and GR . Given an attacker A ∈ PPTM and a game G, we write AG the attacker interacting with
the game. We say that two games are indistinguishable when:

∀A ∈ PPTM, η 7→ |P(AGI = 1)− P(AGR = 1)| is negligible

where being negligible means that the function is asymptotically smaller than the inverse of any
polynomial, that is ∀k ∈ N,∃n0,∀n ≥ n0, f(n) ≤ 1

nk

1.2 Higher-order CCSA logic
Squirrel uses a higher-order variant of the CCSA logic. We give a high-level overview of what
the CCSA logic is and then give a formal definition of the variant.

CCSA The CCSA logic, first introduced in [4], is a first-order logic used to reason about
protocols. The protocols are terms interpreted as PPTMs and the ∼ predicate represents com-
putational indistinguishability. The main idea of the CCSA logic is to represent secrets, also
called names, as terms in the logic. They are thus interpreted as a PPTM that will randomly
sample the value. Attackers are considered as PPTMs as well and they can control the inter-
leaving of operations.

To interpret the logic, we need a few variables:

• The random tapes ρ: every function will sample its randomness from a random tape
explictly given. We usually have multiple tapes, one “honest” tape ρh for the secrets, and
one “attacker” tape ρa.

• The security parameter η ∈ N: this is used to express that probabilities are negligible for
indistinguishability for example.

Note that these parameters are not included inside a model of the logic and are inputs of the
semantic. For the rest of the paper, we consider η and ρ already declared.
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Higher-order variant overview For greater flexibility, Squirrel relies on a higher-order vari-
ant of the CCSA logic introduced in [1]. This grants a few advantages:

• Proofs are now more reusable as they can be done in a modular way.

• Some security properties were hard to express in CCSA. For example, you can now quantify
over attackers. You can now write ∀att : message→ message.

Here are the key differences:

• Terms are built with a simply-typed λ-calculus. We write X the set of variables.

• Terms are now interpreted as random variables over tapes.

• A local formula is a term of type bool.

• A global formula is a term built with a predicate, usually the ∼ predicate.

To differentiate between global and local logical operators, we usually use tildes for global oper-
ators. For example, the following formula is a global formula: ∀̃(x, y). x =̃⇒ y.

Environments and Models Let us now formally define the semantics.
A type model is a structure that provides the interpretation of the types as a set containing

all possible values of the type. We write JτKηM the interpretation of a type. Models extend type
models and add interpretation of symbols. An environment E contains declarations of variables
with their type, and definitions of variables with their type and value. We write M : E to say
that the model M is for the environment E when M provides an interpretation of all the variables
of E .

A model is composed of the following:

• Interpretation of symbols: they represent protocols. They are split into three parts:

– Honest function symbols: these represent cryptographic primitives like encryption or
decryption. They are deterministic.

– Attacker function symbols: these represent attacker computations Thein interpreta-
tion use the honest tape ρh.

– Name symbols: these are used to represent secrets, as they represent randomness.
Their interpretation use the attacker tape ρa. By definition, all names are indistinguishable.
Two names of the same type have the same distribution and are independent. We
write N ⊆ X the set of all names.

• An execution trace: this defines the order in which the different actors of the protocol
interacted with each other. The formalism used for traces can be found in [1].

Regarding types, we might sometimes tag them to express some properties:

• finite(τ) means that JτKηM is finite for all η.

• enum(τ) means that JτKηM can be enumerated by a Turing machine in polynomial time with
regard to η.
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JxKη,ρM:E := Xη(ρ) where M(x) = (Xη)η∈N (if x ∈ E)
Jt t′Kη,ρM:E := JtKη,ρM:E(Jt

′Kη,ρM:E)

Jλ(x : τ0). tK
η,ρ
M:E :=

{
Jτ0K

η
M → JτKηM

a 7→ JtKη,ρM[x7→1
η
a]:(E,x:τ0)

Figure 1: Semantics of terms

Semantics A term is interpreted as a sequence of η-indexed random variables from the set of
tape to the domain of the type. We write JtKη,ρM:E the interpretation of t with regard to η, ρ and
M : E . The semantics is given in Figure 1. Note that in the definition of the semantics of the
lambda term, 1η

a is the random variable on τ0 such that 1η
a(η)(ρ) = a for all ρ and 1η

a(η
′)(ρ) is

some irrelevant value when η 6= η′.

1.3 Computational indistinguishability in Squirrel
We can formally express the notion of indistinguishability in CCSA (and by extension the Squirrel
logic) with a predicate written ∼. Consider two terms u and v, we say that u ∼ v when:

∀A ∈ PPTM, η 7→ |Pρ(A(JuKη,ρM , ρa) = 1)− Pρ(A(JvKη,ρM , ρa) = 1)| is negligible in η

1.4 Sequents
The proof system used in Squirrel is based on natural deduction. Global sequent, written E ; Θ `
F , represent the global formula ∀̃E .(∧̃Θ =̃⇒ F ) where:

• E is a set of typed variables representing an environment

• Θ is a set of global formulas used as hypothesis

2 Advanced bi-deduction
To express the composition results from [8], we leverage a technique called bi-deduction. This
technique was introduced in Squirrel in [2] and is used to express cryptographic assumptions in
the form of games. Intuitively, given two terms u0 ∼ u1 and two cryptographic games (G0,G1)
that are indistinguishable, a bi-deduction expresses how there exists a simulator S that given ui
and Gi computes a term vi. In that case, we say that (u0, u1) bi-deduces (v0, v1). Note that the
simulator does not know which side (that is, which i) it is given so the same computations are
used. We first start by introducing the formalism used.

2.1 Cryptographic games and oracles
Expressions To express cryptographic games, we first define a simple expression type that will
interact with the game variables. We use the same formalism as in [2] that we summarize here.
We consider a set of typed program variables Xp and a subset of the function symbols Lp ⊆ E .
The expression also use a special constant b to express the side of a cryptographic game. The
syntax of the expressions is described in Figure 2.
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e ::= e1 e2 | v ∈ Xp | g ∈ Lp | b

Figure 2: Syntax of expressions

p ::= v ← e | skip

| v $←− T [e] | p1; p2
| v ← O(~e)[~el ; ~el] | if e then p1 else p2

| abort | while e do p

Figure 3: Syntax of programs

Programs Interactions with a game are made using programs. They use a simple syntax
described in Figure 3. The syntax and the semantic will be explained in greater details in
Section 2.2.

Games and oracles A game is a finite set of oracles with a sequence of declarations. The
declarations contain initialization of global variables, either through a random sampling or a par-
ticular expression. These variables are known as game variables and are different from variables
in the CCSA logic. An oracle runs a simple program (a program without samplings of oracle
calls) to compute an expression, after possibly sampling local variables. We assume that an
oracle doesn’t change any global variables or local variables from another oracle.

We might often talk in the rest of this paper about pairs of game that are indistinguishable.
In that case, we write G the pair and refer to each individual game as Gi. Similarly, we call
bi-terms a pair of term (u0, u1), which we write u]. We access the element of side i with ui. We
also use bi-formulas and more generally, bi-objects.

Example 2.1 (PRF). The PRF cryptographic assumption is related to keyed hash functions. It
states that the output of a keyed hash is indistinguishable with a fresh name. We use the same
formalism as the one used in [2]. We express PRF as two indistinguishable games G0,G1 that
are composed of two oracles:

• Ohash: this oracle hashes its input with a key that was sampled at the beginning of the
game.

• Ochallenge: this oracle behaves differently depending on the game:

– In G0, it returns the hash of its input.
– In G1, it returns a fresh sampling.

To ensure there are no trivial attacks, the oracles keep track of the input that were already used
and reject them if used again. A more formal definition of the oracles may be found in [2].

6



[b]η,pM,i,µ = i

[v]η,pM,i,µ = µ(v) when v ∈ Xp

[g]η,pM,i,µ = JgKη,(p[TA,bool],ρ0)
M:E when g ∈ Xp

[e1 e2]
η,p
M,i,µ = [e1]

η,p
M,i,µ([e2]

η,p
M,i,µ)

Figure 4: Semantics of the expressions

2.2 Programs and adversaries
Tag and sampling Now, to define adversaries, we need a clear notion of randomness’ origin.
Indeed, we need a way to express how an attacker can sample its own key and use it to compute
a secret value. To that end, we introduce the following tags:

• TA: represents randomness generated by the simulator S (i.e. the attacker) that corre-
sponds to secrets of ρa.

• TS : represents randomness of S that corresponds to ρh.

• TG: represents randomness used by the oracles on ρh. The simulator cannot access these
secrets.

We can tag all the randomness used by our programs (the precise syntax is given in [2]).

Oracle call When using an oracle, a program specifies the offsets on the tape where the
memory is read. This allows the program to choose which term should be used. For example,
the expression v ← O(x)[offsetk(i); offsetr(i)] represents the call to oracle O. The randomness
is specified in the square brackets via the offset() function. It takes as input a name n ∈ N
of type τ0 → τ and a value a ∈ Jτ0K

η
M and outputs an offset offsetn(a) ∈ N which maps to the

program random tape. However, the semantics of the programs have to address two issues: first,
the local randomness used needs to be fresh during each call; second, the global randomness
needs to be consistent across calls.

Program semantic For the semantics of these programs, memory is encoded via a memory
map µ ∈ MemM,η from the variables of a program to type interpretation. Values are sampled
on an infinite bitstring represented by the program random tape p. Note that there is a different
bitstring for each tags and each types. The semantics of a program LpMη,pG,M,i,µ is the memory
following the program execution against Gi. We write LpMη,pµ when this is clear in the context. A
variable called res stores the output value of a program.

Expression semantic The semantics of the expressions is given in Figure 4. Note how the
semantics only use the attacker part of p.

Valid adversaries and secure games A program is a “valid” adversary when it respects the
tagging and has a “correct” usage of randomness, that is fresh local randomness and consistent
global randomness. An adversary also cannot access the game variables.
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We define the security of a game using the classic advantage notion and quantifying over all
PTIME adversaries. The interpretation of the adversaries use µi

init
η,p

M , the initial memory of the
game Gi. Informally, this is defined as the memory map where all the global variable assignments
are evaluated. Note that global variable samplings are evaluated during oracle calls and thus
are not in the initial memory. The memory also contains the security parameter. The formal
definition is given in the Appendix of [2].

2.3 Name constraints
While a program can explain where the randomness comes from using tags, we want to abstract
the simulator when we are dealing with bi-deduction. However, we still need to keep in mind how
to handle randomness. To that end, we introduce the notion of name constraints. Intuitively,
each name is tagged with the following (similarly to what we have done for programs):

• TS : indicates a name sampled by the simulator.

• T loc
G : indicates a name locally sampled by an oracle.

• T glob
G,v : indicates the global sampling of the game variable v.

Note that these tags slightly differ from the ones used in programs. However, there is a clear
link between both TS , hence why we use the same symbol. In addition, T loc

G and T glob
G,v can be

seen as a more precise version of TG.
A bit more formally, a name constraint is a tuple c = (~α, n, u, T, f) where ~α is a list of

variables tagged finite, n is a name, u is a term, T is a tag and f is a local formula. Intuitively,
a name constraint c is valid when for all instantiations of the variables in ~α where f holds, the
term (n u) is used with tag T . We then say that a constraint system C is a list of constraints.
We write C] a bi-constraint system.

As mentioned previously, we require the local randomness to be fresh for each call and the
global randomness to be consistent. In addition to that, a name cannot be associated with two
different tags. We say that a constraint system C is valid, written using the predicate V alid(C),
when it respects these three restrictions.

We also define the following shortcuts:

• N η,ρ
c=(~α,n,u,T,f),M = {〈n, JuKη,ρMσ, T 〉 | dom(σ) = ~α, JfKη,ρMσ = true}

• N η,ρ
C,M =

⋃
c∈C N

η,ρ
c,M

These notations allow us to talk about constraints inclusion in a “correct” way.

2.4 Relation between tapes and probability coupling
So far, we have defined two types of source of randomness: program tapes p for programs and
random tapes ρ for terms. We need to make sure these tapes coincides on names to later mix
these notions together. Thus, given a constraint system C and a model M, we define Rη

C,M as
a relation between the different tapes. We say that ρ Rη

C,M p when ρa is a prefix of p[TA, bool]
and for all (n, t, T ) ∈ N η,ρ

c,M, JnKη,ρM:E(t) = p|ηT [offsetn(t)]
Note that some definitions measure probability while quantifying over ρ, while other quantify

over p. We would like to be able to go back and forth between these probabilities. We use
a probability coupling that we write C. This allows us to easily switch between the marginal
probabilities and the joint probabilities. Note that we want our probability coupling to respect
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the relation Rη
C,M for a given C. We can build one by introducing the concept of well-formed

constraint systems. This notion is necessary as we cannot build a coupling out of some constraint
system but those are pathological cases in which we are not interested. The intuitive idea is that
some names might depend on other names through the condition on the index of the constraint.
As such, it is necessary to sample them in order. Well-formedness expresses that there is such
an order. More details are given in [2].

2.5 Bi-deduction judgment
Memory assertions We are almost ready to define bi-deduction. The last thing we need
to address is how we can keep track of the game’s memory. We use pre-conditions and post-
conditions to keep track of the memory evolution. We reason about memory conditions with an
assertion logic. The formulas of that logic can make use of the state of the memory µ or the
logical values like names using ρ. We write M, η, ρ, µ |=A ϕ the satisfaction relation.

Bi-deduction judgement Consider a program p with distinguished variables X. We say
that p computes u] BG v] w.r.t. M, η, ρ, p, µ, i ∈ {0, 1} when µ′[res] = JviK

η,ρ
M:E where µ′ =

LpMη,p
µ[X 7→JuiK

η,ρ
M:E ]

.
A bi-deduction judgement is as follows:

E ,Θ, C], (ϕ], ψ]) ` u] BG v]

where E is an environment, Θ is a set of global formulas, C] is a bi-constraint system, (ϕ], ψ])
are two assertion bi-formulas.

A bi-deduction judgement is valid when for any type structures M0, there exists a PTIME
program p such that for all models M : E that extends M0 such that M |= Θ ∧̃ V alid(C]) holds,
p is an adversary and for all security parameters η ∈ N and side i ∈ {0, 1}, Ci is well-formed and
for any tapes ρ Rη

C,M p and for any memory µ such that M, η, ρ, µ |=A ϕi, p computes u] BG v]
w.r.t to M, η, ρ, p, µ, i and the corresponding final memory µ′ is such that M, η, ρ, µ′ |=A ψi.
Lastly, we require that the computation of p relies on global sampling G$ and L$ such that:

G$ ⊆ {offsetn(t) | 〈n, t, T glob
G,v 〉 ∈ N

η,ρ
c,M, c ∈ C}

L$ ⊆ {offsetn(t) | 〈n, t, T loc
G 〉 ∈ N

η,ρ
c,M, c ∈ C}

Finally, we show how bi-deduction is related to computational indistinguishability.

Theorem 2.1 (Bi-Deduce). Let E be an environment, Θ be a set of global formulas, and
(ϕ], ψ]) be bi-assertions. The following rule is sound w.r.t. models where G is secure and that
respect the precondition:

E ,Θ ` V alid(C]) E ,Θ, C], (ϕ], ψ]) ` ∅BG u]

E ,Θ ` u0 ∼ u1

Thanks to that rule, we can create a proof system to reason about bi-deduction judgements
to abstract the simulator.

2.6 Example proof system
All rules for the proof system are explained in [2]. Two rules are explained here as a example.
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Example 2.2 (Transitivity). The following rule expresses how we can compose simulators se-
quentially. Note that C1 · C2 denotes the concatenation of constraints.

E ,Θ, C1
] , (ϕ], ϕ

′
]) ` u] BG v] E ,Θ, C2

] , (ϕ
′
], ψ]) ` u], v] BG w]

E ,Θ, C1
] · C2

] , (ϕ], ψ]) ` u] BG v], w]

Example 2.3 (Name). This rule here expresses how the simulator may sample its own secrets
and use them. Here, (u]|f]) represents the term (f], if f] then u]). We sometimes simply write
u] when the condition does not matter.

E ,Θ, C], (ϕ], ψ]) ` u] BG (v]|f])
E ,Θ, C] · {(∅, n, v], TS , f])}, (ϕ], ψ]) ` u] BG (n v]|f])

3 Shared Secrets
In this Section, we introduce the problem with shared secrets more in-depth and give a theorem to
use in Squirrel. Note that the first subsections try to show the similarities between our approach
and O-indistinguishability and O-simulatability. These notions haven’t been explained in details
before as they are not necessary to understand our final result. We kept these comparisons as
it might ease the comprehension in some cases and helps in adapting other results from [8] in
Squirrel.

3.1 Introducing the problem with shared secrets
Deterministic encryption example To illustrate the problem with shared secrets, consider
the following example where u = h(0, sk), v = h(1, sk) and w = sk′, that is, u and v are
hashes of different message but with the same key and w is a key. We examine the formula
F := u ∼ v =⇒ u,w ∼ v, w and whether it holds or not.

With shared secrets If sk = sk′, then we can use the w (that leaks the key) to compute the
hash and distinguish u and v. Thus, F does not hold when u and w share secrets.

Without shared secrets Suppose that N (u) ∩ N (w) = N (v) ∩ N (w) = ∅, that is sk 6= sk′.
Note how we are not stating any restrictions regarding shared secrets of u and v. To prove that
F holds, let us build a distinguisher D ′ for u and v using a distinguisher D for (u,w) and (v, w).

To use D, we need to feed it w as input. While we do not have access to sk′ as it is a secret, we
can resample it. We write S the simulator that resamples w. Its output has the same distribution
as w. Additionally, w is independent from u and v as they do not share any secrets. Thus, we
get that (u,S) has the same distribution as (u,w). We can use the same arguments for v.

We then define D′(x) := D(x,S()). D runs on an input with the same distribution as (u,w)
(or (v, w)) that it can distinguish. In the end, D′ has a non-negligible advantage in distinguishing
u and v.

Takeaway The point with this example is that we are simulating w with the simulator S.
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3.2 Encapsulating shared secrets in oracles
The example Now we want to deal with shared secrets. Let us consider the PRF example
introduced in Example 2.1. Let us introduce a few terms that we will use throughout this
example:

• Let u0 := h(〈1, t〉, sk)

• Let u1 := nPRF be a fresh name.

• Let s := seqi[h(〈0, ti〉, sk)] be a sequence of terms.

Our goal in this example is to show that: u0, s ∼ u1, s. Notice how the same secret key sk is
used in u0 and s. Intuitively, in this example we show the security of the protocol u0 even in the
presence of s. The messages are tuples here: this usage is similar to session numbers or protocol
versions. Note that this example does not use any local randomness i.e. salt in the hash, making
it a “simple” example.

Proof sketch Consider the following function: g : x 7→ h(〈0, x〉, sk). We can see g as an oracle
that we write Og. We want to replace any use of h(〈0, ·〉, sk) by a call to g. It masks any use of
the shared secret sk by g.

We can see how this example is related to composition as expressed in the composition results
from [8]. We use a similar proof as what we would do to apply this theorem. This is not a formal
proof per se as the formalism used is widely different. We revisit that proof later in Section 3.5
to apply new results and get a formal proof.

The oracle Og computes any terms of the sequence s. This intuitively means that s is
Og − simulatable, i.e. can be simulated by an attacker with access to Og.

We then prove that u0 ∼Og u1. Thanks to the PRF assumption, we already know that
u0 ∼ u1 as both those terms are the output of Ochallenge in G0 and G1. However, g is not capable
of computing u0 or u1 or any term related. As such, we can conclude that u0 ∼Og

u1.
We thus conclude intuitively using composition results from [8] that u0, s ∼ u1, s.

Takeaway The key takeaway from this example is that to handle shared secrets, we try
to encapsulate how they are used inside an oracle. We then check O-simulatability and O-
indistinguishability with regard to that oracle.

3.3 Intuition: O-simulatability and bi-deduction
We want to compare the following notions : E ,Θ, C], (ϕ], ψ]) ` ∅ BO P and O-simulatability.
Note how the game in the bi-deduction judgement is the oracle O. While our definition of a
game does not match a single oracle, we implicitely use a trivial transformation. In this example,
we use mono-deduction, that is, bi-deduction where both sides are the same. While these two
statements use different formalism, we give an intuition on how the statements are related.

Intuitive meaning First, we can examine from a high-level perspective what these two state-
ments entails:

• Bi-deduction means that given ∅, that is nothing, there is an adversary p that computes P
while having access to the game, here O.

• O-simulatability means that any computation using P can use another programAO instead.
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We can see that both statements suggests the existence of some “program” (either p or AO) that
relies on O and that computes P .

While it is tempting to say that both statements are equivalent, this is not easy to prove.
Indeed, when looking at the definitions of each statement, we face a few obstacles.

Quantifiers The most important problem is the order of quantifiers:

• The bi-deduction judgement states that “there exists a program such that for all models
of our logic…”

• O-simulatability first specify a model and then states the existence of machine AO.

This seems to be the biggest limiting factor when trying to prove an equivalence.

Formalism This difference is due to the formalism used:

• Bi-deduction uses programs whose semantics is given through a model later thanks to the
symbols.

• O-simulatability uses Turing Machines, meaning you have to give a semantic to a machine
when declaring it.

While this quantifier order seems to make it impossible to prove the equivalence, we still have
one “trivial” implication. We do not make a formal proof due to the different formalism used
but it seems correct to say that bi-deduction implies O-simulatability. This is why we chose this
composition result to implement and bi-deduction.

3.4 Using O-simulatability in the proof system
We want to use the composition results from [8] in Squirrel. There are some similarities between
O-simulatability and bi-deduction, as both express the existence of a simulator, as explained in
Section 3.3. This is why we decided to integrate O-simulatability to bi-deduction and its proof
system.

We base our approach on the following idea. The composition results rely on two concepts:
O-simulatability and O-indistinguishability. While O-simulatability can be expressed using bi-
deduction and a specific game, we still need to express O-indistinguishability. To that end,
we will use an astutely chosen lambda term in the Squirrel logic to represent that oracle O.
We then have an analogous concept where two terms are O-indistinguishable when they are
indistinguishable in presence of said lambda term.

Note however that we want to work with shared secrets. This means that we need to be extra
careful on which secrets are used where and how. The goal of that oracle is to “hide” the shared
secrets inside the lambda term. Thankfully, by adding restrictions on how to use the shared
variables in the bi-deduction, we are able to ensure a correct usage of said variables.

Note that we restrict ourselves to stateless oracles. One of the reason is that we are not able
to translate a stateful oracle to a lambda term. This is the same requirements as O-simulatability
does not work with stateless oracles.

Before formally stating the rule, we introduce a relation so the “astutely chosen lambda term”
is, indeed, astutely chosen. The relation is simple: because we want the lambda to simulate the
oracle, we want the lambda to output the same terms.

12



Definition 3.1. Consider a game G with a single oracle O whose support is {v}, a name sk ∈ N
and an index for that name t. We define its one-shot program evaluator:

p
(sk t)
G := (res← O(X)[offsetsk(), Y ])

Definition 3.2. Consider a game G with a single oracle O whose support is {v} of type τsk, an
order 1 term λG of type τ1 → τ2 “compatible with O”, a name sk ∈ N of type τ0 → τsk, with
Jτ0K

η
M finite for all η, and an index t of type τ0. We will say that λG ≡sk t G if and only if:
For all η,M, E , µ, i with M : E, for all probability coupling C, for all (x : τ1) ∈ E, for all

(~y : int) ∈ E and s ∈ JτskK
η
M:

∀(dcρ,p)(ρ,p)∈C ∈ Distρ,p(Jτ2KηM),

P(ρ,p)∈C(Lp
(sk t)
G Mη,pG,M,i,µ[X 7→JxKη,ρ

M:E ,Y 7→J~yKη,ρ
M:E ]

[res] = dcρ,p | p|ηTG
[offsetsk(JtK

η,ρ
M:E)] = s) =

P(ρ,p)∈C(JλG(x, ~y)K
η,ρ
M:E = dcρ,p | Jsk tKη,ρM:E = s)

Note that O may locally sample values, for example for non-deterministic encryption. This
is why we allow λG to have other names inside. We can only require the distribution equality, as
it would be infeasible otherwise.

Based on this generic definition, we show that using a coupling contained in some Rη
C,M

allows us to rewrite this definition in a slightly nicer style. This let us to work with the same
coupling that the bi-deduction gives us.

Lemma 3.1. Consider a game G with a single oracle O whose support is {v} of type τsk, an
order 1 term λG of type τ1 → τ2 “compatible with O”, a name sk ∈ N of type τ0 → τsk and an
index t of type τ0.

If λG ≡sk t G, then for all η,M : E , C, µ, i and any C such that given C ′ := C·{(∅, sk, t, T glob
G,v ,>)},

C ′ is well-formed and valid, for all probability coupling C contained in Rη
C′,M , for any variable

(x : τ1) ∈ E that is computable in polynomial time, for all (~y : int) ∈ E and for any s ∈ JτskK
η
M:

∀(dcρ,p)(ρ,p)∈C ∈ Dist(Jτ2KηM),

P(ρ,p)∈C(Lp
(sk t)
G Mη,pG,M,i,µ[X 7→JxKη,ρ

M:E ,Y 7→J~yKη,ρ
M:E ]

[res] = dcρ,p | Jsk tKη,ρM:E = s) =

P(ρ,p)∈C(JλG(x, ~y)K
η,ρ
M:E = dcρ,p | Jsk tKη,ρM:E = s)

Proof. The proof here is straight-forward. Because λG ≡sk t G, we only need to show that
p|ηTG

[offsetsk(JtK
η,ρ
M:E)] = Jsk tKη,ρM:E . This is the case because the coupling we use is contained in

Rη
C′,M .

Note how we set the global variables of the game implicitly in the relation: this will be used to
represent shared secrets. Additionally, the values on both sides of the game have the same value.
However, because λG is not able to infer which side it is on, there shouldn’t be any conversion
possible when an oracle uses sides. This should not be an issue given that our goal is to model
oracles that are doing cryptographic operations and not games per se.

The rule we introduce is based on the Bi-Deduce rule:

Theorem 3.1 (Composition Bi-Deduce). Let G be a game with only one (stateless) oracle O
and v be its support of type τsk. Let E be an environment, Θ be a set of global formulas,
C] be a well-formed constraint system and (ϕ], ψ]) be assertion bi-formulas such that for all
i ∈ {0, 1}, η, ρ Rη

C,M p, M, η, ρ, µi
init

η,p

M |=A ϕi. Let u, v be terms. Let w be an order one term of

13



type τ1 → τ2. Let sk be a name of type τ0 → τsk and an index t of type τ0. The following rule is
sound:

CBD
E,Θ ` V alid(C′

]) E,Θ, C′
], (ϕ], ψ]) ` ∅ BG w E,Θ ` u, λG ∼ v, λG N (w) ∩ N (u, v) = {sk t}

E,Θ ` u,w(u) ∼ v, w(v)

where:

• C ′
] = C] · {(∅, sk, t, T glob

G,v ,>)}

• λG ≡sk t G

• Due to the current restrictions on first-order bi-deduction, we can only bi-deduction judge-
ments when enum(τ1) holds. This may be lifted in the future.

Here are a few things to note regarding this rule. First, we are only dealing with a single
oracle and a single shared secret. This rule can be expanded to support multiple shared secrets
and oracles, for example by iterating or adapting the proof. Second, the game has a single global
variable. This makes the proof slightly easier, while not being too restrictive. This helps keeping
the oracle used “minimal”.

Proof. The idea of the proof is straight-forward: we consider a simulator for w given by the
bi-deduction judgement. We transform it so it uses λG instead of O. We then use it in a
distinguisher of u,w(u) and v, w(v) to create a distinguisher of u, λG and v, λG .

Now formally. Let p be a program used to bi-deduce w. Let D be a distinguisher of u,w(u)
and v, w(v). We now want to build a distinguisher D ′ of u, λG and v, λG .

Program Transformation First, we need to transform p to a PPTM, so it can be used inside
a distinguisher. There are a few points here that we need to be careful about. We create a
PPTM P̃λG that takes an oracle λG as input. Additionally, P̃λG is also given access to η (as
unary) and ρa, similarly to what distinguishers are supplied with. This PPTM will do the same
computations as p. P̃λG returns res from the memory.

When evaluating a program, we use a semantic that depends on a starting memory µ. P̃λG

implicitely use the initial memory of the game G, µi
init

η,p

M . Given how simple the game is, this
initial memory only has η inside. In particular, it is independent of p, i and M. We thus refer
to that memory as µinit. Note that we will later need to use a different starting memory for the
correction proof. Thus, we write P̃µ

λG
to specify the starting memory. We also write µ−tape(P̃λG )

the memory after the execution P̃λG .
There are two operations a program can do that cannot be simulated on a valid adversary

PPTM:

• Oracle Calls. This is where λG will be used. The idea is to replace every oracle call by a
call to λG . We do have to handle global and local variable offsets that are supplied during
a program oracle call. For global offsets, thanks to our restrictions regarding the support
of the oracle, we know that it has to be sk t: we can ignore this as a valid λG should handle
it. For local offsets, we expect λG to take these offsets as input and correctly relay the
arguments.
To sum it up, we have the following transformation:

v ← O(~e)[offsetsk(JtKη,ρM:E); ~el]

↓
v ← JλGKη,ρM:E([~e]

η,p
µ , [~el]

η,p
µ )
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• Random Samplings. While a PPTM can do random sampling, it can only do so on the tape
ρa. A program, on the other hand, can sample on ρh using the tag TS . We resample all
TS randomness on ρa, using a disjoint part of it, so we make sure there is no overlap with
other uses. Randomness tagged with TA is kept the same as it uses ρa already. Randomness
tagged with TG cannot happen as p is a valid adversary.

• Expressions. Remember how expressions rely only on the attacking part of p. Due to the
relation Rη

C,M between tapes, that means that expressions depend on ρa. They are thus
computable by the PPTM P̃λG . As such, we might write [e]η,ρa

µ to express that we compute
them.

Finally, we consider PλG that instead computes (x, p(x)), that is PλG (x, λG) := (x, P̃λG (λG)(x))
returning its argument, so it can be composed with D later. Importantly, the construction of
PλG and P̃λG does not depend on the security parameter η.

Correction proof Let η be the security parameter that will be used throughout the rest of
the proof. Before we begin our probability computations, note that because C is well-formed, C ′

is well-formed as well. To justify that, remember how well-formedness intuitively expresses the
need of an ordering when sampling variables. The condition is > so it doesn’t add any complexity
and t might appear in C but because it is already well-formed, it doesn’t create a problem. Thus,
thanks to a lemma from [8], we know that we have a probability coupling contained in Rη

C′,M .
We use that coupling implicitly for the rest of the proof. That is, all probabilities are measured
over ρ and / or p and the coupling allows us to switch at will.

Now that we have built PλG , we want to use it inside the distinguisher D. More precisely, we
need to show that PλG has the same distribution as (x,w(x)) for each values of sk t. Formally,
we want to prove the following:

∀(x : τ1) ∈ E , c ∈ Jτ1 × τ2KηM, s ∈ JτskK
η
M,

N (w) ∩ N (x) = {sk t} =⇒
P(Jx,w(x)Kη,ρM:E = c | Jsk tKη,ρM:E = s) = P(PλG (JλGKη,ρM:E)(JxK

η,ρ
M:E) = c | Jsk tKη,ρM:E = s) (1)

Note that we are not simply requiring the same distributions: we need the same distribution for
all values of the secret key. This ensures that both the PPTM and the terms use the same value
for sk t and are not simply resampling it. Furthermore, we require that the argument x shares
sk t (and only sk t) with w.

Transformation correction Let us first prove that the transformation of p is correct. To
that end, we prove:

∀a ∈ Jτ1K
η
M, c ∈ Jτ2K

η
M, s ∈ JτskK

η
M,

P(LpMη,pµinit
[res](a) = c | Jsk tKη,ρM:E = s) = P(P̃λG (JλGKη,ρM:E)(a) = c | Jsk tKη,ρM:E = s) (2)

We prove by induction on programs that the memory after the execution of a program has
the same distribution whether we use the program or its translation to a PPTM. We use the
following induction hypothesis on p:

∀dµi
ρ,p ∈ Dist(MemM,η), Dµ

f
ρ,p ⊆ Dist(MemM,η), s ∈ JτskK

η
M,

P(LpMη,pdµi
ρ,p
∈ Dµf

ρ,p | Jsk tKη,ρM:E = s) = P(µ−tape(
˜
Pdµi

ρ,p

λG
(JλGKη,ρM:E)) ∈ Dµ

f
ρ,p | Jsk tKη,ρM:E = s)

(H(p))
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Note that this induction property does imply (2).
Now for the proof. Here are the key points:

• Oracle calls: consider the following program p := (v ← O(e)[offsetsk(JtKη,ρM:E); ~el]). Its
transformation is P̃µ

λG
(JλGKη,ρM:E) := (v ← (JλGKη,ρM:E([e]

η,ρa
µ , [~el]

η,ρa
µ ))). To show the induction

property, we only have to show that v is the same as there are no side effects due to the
oracle being stateless. Formally, we have to show the following:

∀dµi
ρ,p ∈ Dist(MemM,η), s ∈ JτskK

η
M, dcρ,p ∈ Dist(Jτ2K

η
M),

P(LpMη,pdµi
ρ,p

[v] = dcρ,p | Jsk tKη,ρM:E = s) =

P(µ−tape(
˜
Pdµi

ρ,p

λG
(JλGKη,ρM:E))[v] = dcρ,p | Jsk tKη,ρM:E = s) (3)

First, given the definition of p(sk t)
G , the following holds:

∀µ ∈MemM,η, ∀p, LpMη,pµ [v] = Lp(sk t)
G Mη,p

µ[X 7→[e]η,ρa
µ ,Y 7→[~el]

η,ρa
µ ]

[res] (4)

We can now prove (3):

∀dµi
ρ,p ∈ Dist(MemM,η), s ∈ JτskK

η
M, dcρ,p ∈ Dist(Jτ2K

η
M),

P(LpMη,pµ [v] = dcρ,p | Jsk tKη,ρM:E = s)

= P(Lp(sk t)
G Mη,p

µ[X 7→[e]η,ρa
µ ,Y 7→[~el]

η,ρa
µ ]

[res] = dcρ,p | Jsk tKη,ρM:E = s) (4)

= P(JλGKη,ρM:E([e]
η,ρa
µ , [~el]

η,ρa
µ ) = dcρ,p | Jsk tKη,ρM:E = s) (Lemma 3.1)

= P(µ−tape(P̃µ
λG

(JλGKη,ρM:E))[v] = dcρ,p | Jsk tKη,ρM:E = s) (P̃λG definition)

Note that while Lemma 3.1 uses variables in the environment and not expressions, we
can still use it here as quantifying over variables is the same as quantifying over random
variables.

• Samplings: A sampling on the tape is kept the same in the transformation. As explained
in the transformation, we are not able to sample when the value is tagged TS . When
resampling on ρa, we use a different part of the tape ρa. This means that the new samplings
are still independent of each others. Thus, we keep the same distribution.

• For the rest of the cases, we only focus on (p1; p2) as an example. This case justifies why
we deal with memory in the induction property. We write P̃λG ,i the transformation of pi
and P̃λG the transformation of (p1; p2).
We have the following equations:
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∀dµi
ρ,p ∈ Dist(MemM,η), Dµ

f
ρ,p ⊆ Dist(MemM,η), s ∈ JτskK

η
M,

P(Lp1; p2Mη,pdµi
ρ,p
∈ Dµf

ρ,p | Jsk tKη,ρM:E = s)

= P(Lp2Mη,pLp1Mη,p

dµi
ρ,p

∈ Dµf
ρ,p | Jsk tKη,ρM:E = s) (Definition of ;)

= P(
˜
P

Lp1Mη,p

dµi
ρ,p

λG ,2 ∈ Dµf
ρ,p | Jsk tKη,ρM:E = s) (cf 1.)

= P(Lp1Mη,pdµi
ρ,p
∈ (P̃ ·

λG ,2(JλGKη,ρM:E))
−1(Dµf

ρ,p) | Jsk tKη,ρM:E = s) (cf 2.)

= P(
˜
Pdµi

ρ,p

λG ,1 (JλGKη,ρM:E) ∈ (P̃ ·
λG ,2(JλGKη,ρM:E))

−1(Dµf
ρ,p) | Jsk tKη,ρM:E = s) (cf 3.)

= P(

˜

P
˜
P

dµi
ρ,p

λG ,1 (JλGKη,ρ
M:E)

λG ,2 (JλGKη,ρM:E) ∈ Dµ
f
ρ,p | Jsk tKη,ρM:E = s) (cf 4.)

= P(
˜
Pdµi

ρ,p

λG
(JλGKη,ρM:E) ∈ Dµ

f
ρ,p | Jsk tKη,ρM:E = s) (Definition of P̃λG )

where:

1. We use H(p) on p2 with the memory distributions Lp1M
η,p
dµi

ρ,p
and Dµf

ρ,p.

2. We use the inverse image of the function (µ 7→ P̃µ
λG ,2(JλGKη,ρM:E))

3. We useH(p) on p1 with the memory distributions dµi
ρ,p and (P̃ ·

λG ,2(JλGKη,ρM:E))
−1(Dµf

ρ,p)

4. We reverse step 2 using the inverse image again.

This concludes this case.

Lifting to (x,w(x)) Note that p computes w with the bi-deduction judgement, thus we have
that:

∀ρ Rη
C,M p, LpMη,pµinit

[res] = JwKη,ρM:E (5)

Replacing inside Equation 2, we get:

∀a ∈ Jτ1K
η
M, c ∈ Jτ2K

η
M, s ∈ JτskK

η
M,

P(JwKη,ρM:E(a) = c | Jsk tKη,ρM:E = s) = P(P̃λG (JλGKη,ρM:E)(a) = c | Jsk tKη,ρM:E = s) (6)

However, we want to “lift” that result to (x,w(x)) so we that we can use it with the distin-
guisher D. To do that, we will need to use the hypothesis regarding shared names. Let us show
that the following equation holds:

∀(x : τ1) ∈ E , s ∈ JτskK
η
M, c ∈ Jτ1 × τ2KηM,

N (w) ∩ N (x) = {sk t} =⇒
P(JxKη,ρM:E , JwKη,ρM:E(JxK

η,ρ
M:E) = c | Jsk tKη,ρM:E = s) =

P(JxKη,ρM:E , P̃λG (JλGKη,ρM:E)(JxK
η,ρ
M:E) = c | Jsk tKη,ρM:E = s) (7)

We are trying to add JxKη,ρM:E on both sides. The justification is as follows. We know that
x and w only share sk t. However, we are working with conditional probabilities where sk t is
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fixed. Thus, x and w (when seen as random variables over tapes) are conditionally independent.
For similar reasons, x and P̃λG (·, λG) are also conditionally independent. Note that the two
independence we just mentioned concern w and not w(x). However, the following equivalence is
true by definition of the semantic:

∀ρ, (x : τ1) ∈ E , (c1, c2) ∈ Jτ1×τ2KηM, Jx,w(x)Kη,ρM:E = (c1, c2) ⇐⇒ JxKη,ρM:E = c1∧JwKη,ρM:E(c1) = c2

Then, using probabilities on both sides, we get the following:

∀s ∈ JτskK
η
M, (x : τ1) ∈ E , (c1, c2) ∈ Jτ1 × τ2KηM,

P(Jx,w(x)Kη,ρM:E = (c1, c2) | Jsk tKη,ρM:E = s) =

P(JxKη,ρM:E = c1 ∧ JwKη,ρM:E(c1) = c2 | Jsk tKη,ρM:E = s)

Notice how the right probability now deals with w(c1) instead of w(x). This means we can use
the independence between x and w. Thus, the following equation holds:

∀s ∈ JτskK
η
M, (x : τ1) ∈ E , (c1, c2) ∈ Jτ1 × τ2KηM,

N (w) ∩ N (x) = {sk t} =⇒
P(Jx,w(x)Kη,ρM:E = (c1, c2) | Jsk tKη,ρM:E = s) =

P(JxKη,ρM:E = c1 | Jsk tKη,ρM:E = s) · P(JwKη,ρM:E(c1) = c2 | Jsk tKη,ρM:E = s) (8)

Using a similar trick with P̃λG , we get:

∀s ∈ JτskK
η
M, (x : τ1) ∈ E , (c1, c2) ∈ Jτ1 × τ2KηM,

N (w) ∩ N (x) = {sk t} =⇒

P((JxKη,ρM:E , P̃λG (JxK
η,ρ
M:E , JλGKη,ρM:E)) = (c1, c2) | Jsk tKη,ρM:E = s) =

P(JxKη,ρM:E = c1 | Jsk tKη,ρM:E = s) · P(P̃λG (JλGKη,ρM:E)(c1) = c2 | Jsk tKη,ρM:E = s) (9)

Finally, we can show (7). Consider (x : τ1) ∈ E such that N (w) ∩ N (x) = {sk t}, s ∈ JτskK
η
M

and (c1, c2) ∈ Jτ1 × τ2KηM:

P(JxKη,ρM:E , JwKη,ρM:E(JxK
η,ρ
M:E) = (c1, c2) | Jsk tKη,ρM:E = s)

= P(JxKη,ρM:E = c1 | Jsk tKη,ρM:E = s) · P(JwKη,ρM:E(c1) = c2 | Jsk tKη,ρM:E = s) (8)

= P(JxKη,ρM:E = c1 | Jsk tKη,ρM:E = s) · P(P̃λG (JλGKη,ρM:E)(c1) = c2 | Jsk tKη,ρM:E = s) (6)

= P((JxKη,ρM:E , P̃λG (JλGKη,ρM:E)(JxK
η,ρ
M:E)) = (c1, c2) | Jsk tKη,ρM:E = s) (9)

Finishing the proof Now, to sum it up, we can prove (1). Let (x : τ1) ∈ E such that
N (w) ∩ N (x) = {sk t}, let c ∈ Jτ1 × τ2KηM and let s ∈ JτskK

η
M

P(PλG (JλGKη,ρM:E)(JxK
η,ρ
M:E) = c | Jsk tKη,ρM:E = s)

= P((JxKη,ρM:E , P̃λG (JxK
η,ρ
M:E , JλGKη,ρM:E)) = c | Jsk tKη,ρM:E = s) (by definition of PλG )

= P(JxKη,ρM:E , JwKη,ρM:E(JxK
η,ρ
M:E) = c | Jsk tKη,ρM:E = s) (7)

= P(Jx,w(x)Kη,ρM:E = c | Jsk tKη,ρM:E = s) (by definition of J·Kη,ρM:E)

We can now create the distinguisher D′ := D◦PλG . Thanks to (1), PλG and (x,w(x)) have the
same distribution and D has a non-negligible advantage against it. Thus, D′ has a non-negligible
advantage as well. Using x = u or x = v, we created a distinguisher of (u, λG) and (v, λG), which
concludes the proof.
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CBD
E,Θ ` V alid(C1)

. . . τ1 . . .

E,Θ, C1, (>,>) ` ∅ BG s
BD

E,Θ ` V alid(C′
1)

. . . τ2 . . .

E,Θ, C′
1, (ϕ0, ϕ2) ` ∅ BPRF (u], λG)

E,Θ ` (u0, λG) ∼ (u1, λG)
u0, s ∼ u1, s

ϕ0 = {lhash 7→ []; lchallenge 7→ []} C1 = {(∅, sk, (), T glob
G,v ,>)}

ϕ2 = {lhash 7→ [x]; lchallenge 7→ [〈1, t〉]} C ′
1 = {(∅, sk, (), T glob

PRF,v,>)}

Figure 5: Beginning of the derivation using the augmented proof system.

3.5 Example: PRF and the proof system
We now give an example of the application of Composition Bi-Deduce. We reuse the example
from Section 3.2 and make a formal proof using the proof system. The start of this proof is
summarized in Figure 5.

We start by applying Composition Bi-Deduce with the oracle g. More formally, we define
the oracle as follows: O(x) := return h(〈0, x〉, v) where v is a global variable of the game G
that we use in the rule. First, the support of O is v. Next, we use the following lambda:
λG := λx.h(〈0, x〉, sk). We now have to verify that λG ≡sk G. This is immediate with our current
definitions.

We can now apply the Composition Bi-Deduce rule. We prove the other indistinguisha-
bility using the classic Bi-Deduce rule.

Note that we have already instantiated constraints and memory conditions. When writing the
proof by hand, you usually find the correct instantiations at the end. Note that the constraints
are indeed valid.

We separate the rest of the proof in two subtrees, namely τ1 and τ2. We only give the idea
here. The full proofs can be found in Appendix A.

• Consider the goal that τ1 has to prove. This is done by chaining calls to the new oracle
in the game to compute all terms in s. We use the Transitivity rule to chain the calls.
Note that this technique creates a derivation tree roughly the same size as the sequence.

• Now for τ2. Using Transitivity, we can first simulate u] and then the oracle term itself.
Simulating u] is done using the challenge oracle from the PRF game. Note that this oracle
creates pre-conditions and post-conditions, as it is stateful. To simulate the oracle term,
we use the Lambda rule first to discharge the parameter. The proof is finished using the
hashing oracle from PRF.

3.6 Implementation in Squirrel
We unfortunately did not have time to implement this result inside Squirrel. However, in this
Section, we give a few pointers on how it could possibly be integrated in the tool.

There are two already existing tactics of interest:

• crypto G (key:sk): this tactic closes the goal u] if ∅BG u] and key is tagged T glob
G,v .

• deduce w: this tactic allows one to transform a goal u,w ∼ v, w into u ∼ v when w can
be computed from the rest of the terms using only function applications (i.e. no names !).
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If we consider a simpler case where w is an order 0 term, that is when the rule is:
E,Θ ` V alid(C′

]) E,Θ, C′
], (ϕ], ψ]) ` ∅ BG w E,Θ ` u, λG ∼ v, λG N (w) ∩ N (u, v) = {sk t}

E,Θ ` u,w ∼ v, w

Our tactic could work as follow:

1. The user supplies w, sk t and λG .

2. The tactic checks the condition regarding shared names.

3. It generates the game G from λG .

4. Use the tactic crypto on the game G with sk t to close the bi-deduction judgement.

5. Change the goal to u, λG ∼ v, λG .

The generation of the game could use a simple transformation from lambda term to program.
We only need to prove that the transformation yields games such that λG ≡sk t G.

Conclusion and Future Works
In this paper, we proposed an extension of the current bi-deduction proof system of Squirrel.
This extension allows us to leverage the power of composition even in presence of shared secrets.
We gave an example on how it could be used in Section 3.5.

While we did not have time to implement it in the tool, it should not represent a huge hurdle
as it should fit nicely with the rest of the proof system.

This result is based only on the first result from [8]. A lot of corollaries and other results are
established in that paper. In the future, we want to have those other results available in Squirrel
without further expanding the theory. Instead, we would be relying on this result and expressing
the rest as corollaries.
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