

# Composition in the Squirrel Prover

 $\label{eq:supervised} \begin{array}{l} \mbox{Jules Timmerman}\\ \mbox{Supervised by Charlie Jacomme} \end{array}$ 

2024

## Table of Contents



#### Protocols and security

Protocols Indistinguishability Mechanized Provers

#### Composition

What is composition ? Shared secrets

#### Using the result in Squirrel Bi-Deduction Final result

Protocols

Indistinguishability Mechanized Provers



### What is a protocol



Protocols

Indistinguishability Mechanized Provers



### Example protocol: Basic Hash



Protocols Indistinguishability Mechanized Provers



## What is a "safe" protocol ?





Eve

Protocols Indistinguishability Mechanized Provers



# Indistinguishability



Protocols Indistinguishability Mechanized Provers



# Indistinguishability



Protocols Indistinguishability Mechanized Provers



## Example Cryptographic Reduction (PRF)



Protocols Indistinguishability Mechanized Provers





ProVerif

Some Tools

- Cryptoverif
- Tamarin
- EasyCrypt
- Squirrel

Protocols Indistinguishability Mechanized Provers



## Squirrel

- Explicit randomness with tapes  $\rho = (\rho_h, \rho_a)$
- Symbols: enc, dec, h...
- Terms: λ-calculus
- Semantic: Random Variables  $\llbracket t \rrbracket_{\mathbb{M}:\mathcal{E}}^{\eta,\rho}$
- Indistinguishability Predicate  $\sim$

What is composition Shared secrets



#### Protocols and security

Protocols Indistinguishability Mechanized Provers

#### Composition

What is composition ? Shared secrets

#### Using the result in Squirrel Bi-Deduction Final result

What is composition ? Shared secrets



# Composing protocols

Protocol

What is composition ? Shared secrets



## Composing protocols



What is composition ? Shared secrets



# Example: Multiple SSH



What is composition Shared secrets



# Easy right ?



What is composition Shared secrets



# Easy right ?



What is composition Shared secrets



## Easy right ?



What is composition Shared secrets



# Solution: encapsulation [CCS20]



What is composition Shared secrets



# Solution: encapsulation [CCS20]







What is composition/ Shared secrets



## Example usage: prefixing messages



What is composition Shared secrets



# Example usage: using a "good" oracle



What is composition Shared secrets



# Example usage: using a "good" oracle



 $\mathcal{O}$ -indistinguishability



What is composition Shared secrets



# Example usage: using a "good" oracle



Bi-Deductio Final result



#### Protocols and security

Protocols Indistinguishability Mechanized Provers

#### Composition

What is composition ? Shared secrets

#### Using the result in Squirrel Bi-Deduction Final result

Bi-Deduction Final result



### Intuition

## Bi-Deduction: $\#(u_0, u_1) \triangleright_{\mathcal{G}} \#(v_0, v_1)$

Bi-Deduction Final result



### Intuition

### Bi-Deduction: $\#(u_0, u_1) \triangleright_{\mathcal{G}} \#(v_0, v_1)$



Bi-Deduction Final result



## Is it useful ?

| Theorem (Overly Simplified BI-DEDUCE)                          |
|----------------------------------------------------------------|
| $\frac{\emptyset \rhd_{\mathcal{G}} u_{\sharp}}{u_0 \sim u_1}$ |

Bi-Deduction Final result



## Is it useful ?

| Theorem (Overly Simplified BI-DEDUCE)     |  |  |  |  |
|-------------------------------------------|--|--|--|--|
| $\emptyset \rhd_{\mathcal{G}} u_{\sharp}$ |  |  |  |  |
| $u_0 \sim u_1$                            |  |  |  |  |

| Example (Transitivit | zy)                                        |                                                        |  |
|----------------------|--------------------------------------------|--------------------------------------------------------|--|
|                      | $u_{\sharp} \rhd_{\mathcal{G}} v_{\sharp}$ | $u_{\sharp}, v_{\sharp} \rhd_{\mathcal{G}} w_{\sharp}$ |  |
|                      | $u_{\sharp}  hindow$                       |                                                        |  |

Bi-Deduction Final result



Same vibe as  $\mathcal{O}$  -simulatability



#### Bi-deduction $\emptyset \triangleright_{\mathcal{O}} u_{\sharp}$



Bi-Deduction Final result



## Creating a rule

#### Theorem (Simplified COMPOSITIONAL BI-DEDUCE)

$$\textit{CBD} \frac{\emptyset \rhd_{\mathcal{O}} w \quad u, \lambda_{\mathcal{O}} \sim v, \lambda_{\mathcal{O}}}{u, w(u) \sim v, w(v)}$$



Conclusion and Future Works

- New way of doing proofs!
- Not implemented yet...
- Lots of corrolaries possible



# Not simplified

### Theorem (BI-DEDUCE)

$$\frac{\mathcal{E}, \Theta \vdash \mathsf{Valid}(\mathsf{C}_{\sharp}) \quad \mathcal{E}, \Theta, \mathsf{C}_{\sharp}, (\varphi_{\sharp}, \psi_{\sharp}) \vdash \emptyset \rhd_{\mathcal{G}} u_{\sharp}}{\mathcal{E}, \Theta \vdash u_{0} \sim u_{1}}$$

#### Theorem (COMPOSITIONAL BI-DEDUCE)

$$\begin{array}{c} \mathcal{E}, \Theta \vdash \textit{Valid}(\textit{C}'_{\sharp}) & \mathcal{N}(w) \ \cap \ \mathcal{N}(u, v) = \{\mathsf{sk} \ \mathsf{t}\} \\ \mathcal{E}, \Theta, \textit{C}'_{\sharp}, (\varphi_{\sharp}, \psi_{\sharp}) \vdash \emptyset \rhd_{\mathcal{G}} w & \mathcal{E}, \Theta \vdash u, \lambda_{\mathcal{G}} \sim v, \lambda_{\mathcal{G}} \\ \hline \mathcal{E}, \Theta \vdash u, w(u) \sim v, w(v) \end{array}$$