Decidability of Value Problem for 1-clock Weighted Timed Games

Julie Parreaux
Benjamin Monmege Pierre-Alain Reynier

Aix-Marseille Université
CONCUR 2022

Motivation : game theory for synthesis

Classical approach
Check the correctness of a system

Game theory
Interaction between two antagonistic agents : environment and controller

Code synthesis Correct by construction: synthesis of controller

Different classes of games

Qualitative games

Different classes of games

Qualitative games

Quantitative games

Different classes of games

Qualitative games

Quantitative games

Different classes of games

Qualitative games

Quantitative games

1-clock Weighted Timed Games

1-clock Weighted Timed Games

Play ρ

$$
\left(\ell_{1}, 0\right) \xrightarrow{0.5, a}\left(\ell_{0}, 0.5\right) \xrightarrow{0.5, a}\left(\ell_{1}, 0\right) \xrightarrow{1 / 3, b}(\odot, 1 / 3)
$$

1-clock Weighted Timed Games

Play ρ

$$
\begin{array}{rl}
\left(\ell_{1}, 0\right) & \xrightarrow{0.5, a}\left(\ell_{0}, 0.5\right) \xrightarrow{0.5, a}\left(\ell_{1}, 0\right) \xrightarrow{1 / 3, b}(\Theta, 1 / 3) \rightsquigarrow-0.5 \\
0 \times 0.5+0 \quad-1 \times 0.5+0 & 0 \times \frac{1}{3}+1
\end{array}
$$

1-clock Weighted Timed Games

Play ρ

$$
\left(\ell_{1}, 0\right) \xrightarrow{0.5, a}\left(\ell_{0}, 0.5\right) \xrightarrow{0.5, a}\left(\ell_{1}, 0\right) \xrightarrow{1 / 3, b}(\odot, 1 / 3)
$$

Strategy
Choose an edge and a delay

1-clock Weighted Timed Games

Play ρ

$$
\left(\ell_{1}, 0\right) \xrightarrow{0.5, a}\left(\ell_{0}, 0.5\right) \xrightarrow{0.5, a}\left(\ell_{1}, 0\right) \xrightarrow{1 / 3, b}(\odot, 1 / 3)
$$

Strategy
Choose an edge and a delay

In $\left(\ell_{0}, 0\right)$
Choose a with $t=\frac{1}{3}$

Value problem

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

Value problem

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

Value $\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

Value problem

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

Value
$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value problem

Value
$\operatorname{Val}(c)=\inf _{\sigma} \sup _{\tau} \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

Value problem

```
Value
Val(c)= inf sup Payoff(Play(c,\sigma,\tau))
```


State of the art

() Decidable for finite game

Value Iteration

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Value problem

Value
$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Value problem

Value
$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

$\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\mathrm{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min }\end{cases}$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Value problem

Value
$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

$\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\mathrm{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min }\end{cases}$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Value problem

Value

$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

$$
\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min } \\ \max _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Max }\end{cases}
$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Value problem

Value
$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

$$
\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min } \\ \max _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Max }\end{cases}
$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Value problem

Value

$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

$$
\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min } \\ \max _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Max }\end{cases}
$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Value problem

Value

$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

$$
\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min } \\ \max _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Max }\end{cases}
$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Value problem

Value

$\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

() Decidable for finite game

Value Iteration

$$
\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min } \\ \max _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Max }\end{cases}
$$

Value problem

Value
 $\operatorname{Val}(c)=\inf _{\sigma} \sup \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

(). Decidable for finite game
; Undecidable for at least 2 clocks

Value Iteration

$\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min } \\ \max _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Max }\end{cases}$

Value problem

Value
$\operatorname{Val}(c)=\inf _{\sigma} \sup _{\tau} \operatorname{Payoff}(\operatorname{Play}(c, \sigma, \tau))$

State of the art

(:) Decidable for finite game
() Undecidable for at least 2 clocks

Value Iteration
$\operatorname{Val}(c)= \begin{cases}\min _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Min } \\ \max _{c^{\prime}}\left(\operatorname{wt}\left(c, c^{\prime}\right)+\operatorname{Val}\left(c^{\prime}\right)\right) & \text { for Max }\end{cases}$

Open problem
And for 1 clock ?

Value Iteration for 1-clock WTG

Max

Value Iteration for 1-clock WTG

Value Iteration

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\tau\left(\ell_{2}, x\right)=(a, 1-x)
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\tau\left(\ell_{2}, x\right)=(a, 1-x)
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\tau\left(\ell_{2}, x\right)=(a, 1-x)
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\tau\left(\ell_{2}, x\right)=(a, 1-x)
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
& \tau\left(\ell_{2}, x\right)=(a, 1-x) \\
& \tau\left(\ell_{1}, x\right)=
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
& \tau\left(\ell_{2}, x\right)=(a, 1-x) \\
& \tau\left(\ell_{1}, x\right)= \begin{cases}(a, 1-x) & \text { if } x>1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions
- May not converge in finite time

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1 / 2 \\
(b, 0) & \text { if } x \leqslant 1 / 2\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions
- May not converge in finite time

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}^{2}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>3 / 4 \\
(b, 0) & \text { if } x \leqslant 3 / 4\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions
- May not converge in finite time

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}^{i}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1-\frac{1}{2^{i}} \\
(b, 0) & \text { if } x \leqslant 1-\frac{1}{2^{i}}\end{cases}
\end{aligned}
$$

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions
- May not converge in finite time

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}{ }^{i}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1-\frac{1}{2^{i}} \\
(b, 0) & \text { if } x \leqslant 1-\frac{1}{2^{i}}\end{cases}
\end{aligned}
$$

Max may need memory to play ε-optimally

Value Iteration for 1-clock WTG

Value Iteration

- On piecewise affine functions
- May not converge in finite time
- Converges to Val

Strategies for Max

$$
\begin{aligned}
\tau\left(\ell_{2}, x\right) & =(a, 1-x) \\
\tau\left(\ell_{1}{ }^{i}, x\right) & = \begin{cases}(a, 1-x) & \text { if } x>1-\frac{1}{2^{i}} \\
(b, 0) & \text { if } x \leqslant 1-\frac{1}{2^{i}}\end{cases}
\end{aligned}
$$

Max may need memory to play ε-optimally

Value problem for 1-clock WTG

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

Value problem for 1-clock WTG

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?
State of the art: 1-clock WTG

Value problem for 1-clock WTG

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

State of the art: 1-clock WTG

© Undecidable for 2 clocks

Value problem for 1-clock WTG

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

State of the art: 1-clock WTG

$$
\begin{gathered}
a \\
x=1, x:=0 \\
0
\end{gathered}
$$

(
() Undecidable for 2 clocks
($)$ Value Iteration

Value problem for 1-clock WTG

\square
Deciding if $\operatorname{Val}(c) \leqslant \lambda$?
State of the art: 1-clock WTG

© Undecidable for 2 clocks
() Value Iteration: not in finite time

Value problem for 1-clock WTG

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

State of the art: 1-clock WTG

© Undecidable for 2 clocks
() Value Iteration: not in finite time
() Decidable with non-negative weights

Value problem for 1-clock WTG

\square
Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

State of the art: 1-clock WTG

© Undecidable for 2 clocks
() Value Iteration: not in finite time
() Decidable with non-negative weights
() Decidable without cycle with reset

Value problem for 1-clock WTG

\square
Deciding if $\operatorname{Val}(c) \leqslant \lambda$?
State of the art: 1-clock WTG
© Undecidable for 2 clocks
() Value Iteration: not in finite time
() Decidable with non-negative weights
() Decidable without cycle with reset

Back-time algorithm

Value problem for 1-clock WTG

\square

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

State of the art: 1-clock WTG
() Undecidable for 2 clocks
;) Value Iteration: not in finite time
() Decidable with non-negative weights
() Decidable without cycle with reset

Back-time algorithm
Compute $c \mapsto \operatorname{Val}(c)$ from $x=1$ to 0

Value problem for 1-clock WTG

\square

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?
State of the art: 1-clock WTG
() Undecidable for 2 clocks
(:) Value Iteration: not in finite time
() Decidable with non-negative weights
() Decidable without cycle with reset

Back-time algorithm
Compute $c \mapsto \operatorname{Val}(c)$ from $x=1$ to 0

Min needs an
unbounded number of resets

Value problem for 1-clock WTG

\square

Deciding if $\operatorname{Val}(c) \leqslant \lambda$?
State of the art: 1-clock WTG
() Undecidable for 2 clocks
(:) Value Iteration: not in finite time
(;) Decidable with non-negative weights
() Decidable without cycle with reset

Back-time algorithm
Compute $c \mapsto \operatorname{Val}(c)$ from $x=1$ to 0

Min needs an
unbounded number of resets

Value problem for 1-clock WTG

\square
Deciding if $\operatorname{Val}(c) \leqslant \lambda$?

Back-time algorithm

Compute $c \mapsto \operatorname{Val}(c)$ from $x=1$ to 0

Min needs an
unbounded number of resets

State of the art: 1-clock WTG
;) Undecidable for 2 clocks
;) Value Iteration: not in finite time
() Decidable with non-negative weights
() Decidable without cycle with reset

Decidable for 1-clock WTG
$c \mapsto \operatorname{Val}(c)$ is computable in exponential time

Contribution

$$
\begin{aligned}
& c \mapsto \mathrm{Val}(c) \text { is } \\
& \text { computable }
\end{aligned}
$$

Contribution

$$
\begin{aligned}
& c \mapsto \operatorname{Val}(c) \text { is } \\
& \text { computable }
\end{aligned}
$$

Contribution

$c \mapsto \operatorname{Val}(c)$ is computable

Contribution

Ideas of the proof

Ideas of the proof

Ideas of the proof

Encoding regions

Simple Priced Timed Games Are Not That Simple, T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege, 2015, FSTTCS

Ideas of the proof

$$
\left(\ell_{0}, 0\right) \xrightarrow{1-\varepsilon}\left(\ell_{1}, 1-\varepsilon\right)
$$

Encoding regions

Simple Priced Timed Games Are Not That Simple, T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege, 2015, FSTTCS

Ideas of the proof

$$
\left(\ell_{0}, 0\right) \xrightarrow{1-\varepsilon}\left(\ell_{1}, 1-\varepsilon\right)
$$

Encoding regions

Simple Priced Timed Games Are Not That Simple, T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege, 2015, FSTTCS

Ideas of the proof

Ideas of the proof

Encoding regions
Main argument
Max has a memoryless optimal strategy in the region game

Ideas of the proof

Encoding regions
Main argument
Max has a memoryless optimal strategy in the region game

Ideas of the proof

Main argument
Max has a memoryless optimal strategy in the region game

Ideas of the proof

Main argument
Max has a memoryless optimal

- Bounds the number of reset strategy in the region game

Ideas of the proof

Main argument
Max has a memoryless optimal strategy in the region game

- Bounds the number of reset
- Acyclic WTG

Ideas of the proof

Main argument
Max has a memoryless optimal strategy in the region game

- Bounds the number of reset
- Acyclic WTG

About complexity

Encoding
Regions

About complexity

Encoding
Regions
polynomial

$$
\begin{gathered}
c \mapsto \operatorname{Val}(c) \text { is } \\
\text { computable in } \\
\text { exponential time }
\end{gathered}
$$

About complexity

Encoding
Regions
polynomial

$$
\begin{aligned}
& c \mapsto \operatorname{Val}(c) \text { is } \\
& \text { computable in } \\
& \text { exponential time }
\end{aligned}
$$

Finite

About complexity

Encoding

Regions
polynomial

$$
\begin{aligned}
& c \mapsto \operatorname{Val}(c) \text { is } \\
& \text { computable in } \\
& \text { exponential time }
\end{aligned}
$$

One-Clock Priced Timed Games with Negative Weights, T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, B. Monmege, Log. Methods Comput. Sci., 2022

To conclude: Value problem in WTG

	Negative weights	Non-negative weights
1 clock		
2 clocks		
$\geqslant 3$ clocks		

To conclude: Value problem in WTG

	Negative weights	Non-negative weights
1 clock		
2 2 clocks	Undecidable	
$\geqslant 3$ clocks		Undecidable

[^0]
To conclude: Value problem in WTG

	Negative weights	Non-negative weights
1 clock		Exponential
2 clocks	Undecidable	
$\geqslant 3$ clocks		Undecidable

To conclude: Value problem in WTG

	Negative weights	Non-negative weights
1 clock	Exponential	Exponential
2 clocks	Undecidable	
$\geqslant 3$ clocks		Undecidable

To conclude: Value problem in WTG

	Negative weights	Non-negative weights
1 clock	Exponential	Exponential
2 clocks	Undecidable	Open
$\geqslant 3$ clocks		Undecidable

To conclude: Value problem in WTG

	Negative weights	Non-negative weights
1 clock	Exponential	Exponential
	PSPACE-hard	
2 2 clocks	Undecidable	Open
$\geqslant 3$ clocks		Undecidable

To conclude: Value problem in WTG

	Negative weights	Non-negative weights
2 clock	Exponential	Exponential
	PSPACE-hard	
2 clocks	Undecidable	Open
$\geqslant 3$ clocks		Undecidable

Thank you! Questions ?

[^0]: On Optimal Timed Strategies, T. Brihaye, V. Bruyère and J.-F. Raskin, 2005, FORMATS
 Adding Negative Prices to Priced Timed Games, T. Brihaye, G. Geeraerts, S. Krishna, L. Manasa, B. Monmege, A. Trivedi, 2014, CONCUR 2014

