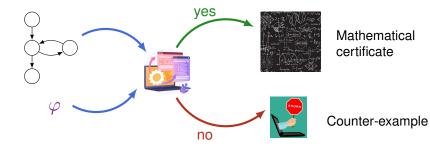
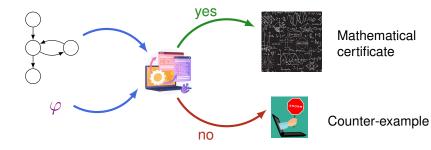
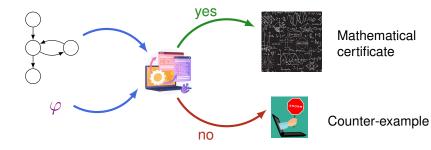

Counterfactual Causality for Reachability and Safety based on Distance Functions


Julie Parreaux¹ Jakob Piribauer^{2,3} Christel Baier²

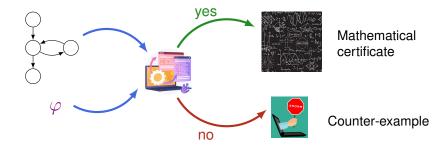
¹Aix–Marseille Université, France ²Technische Universität Dresden, Germany ³Technische Universität München, Germany


GandALF 2023

2/9



Causality: explain why the property holds or not


Causality: explain why the property holds or not

what causes the specification to hold for the full model?

Causality: explain why the property holds or not

- what causes the specification to hold for the full model?
- who is responsible for a requirement violation? and to which degree?

Causality: explain why the property holds or not

- what causes the specification to hold for the full model?
- who is responsible for a requirement violation? and to which degree?
- if a bad behavior occurs, what has caused the violation of the specification?

Why?

Why?

Forward causality

Describes causes before the execution:

Why?

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Backward causality

Describes causes after the execution:

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Backward causality

Describes causes after the execution:

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Backward causality

Describes causes after the execution: what has caused an observed effect in a given execution?

Forward causality

Describes causes before the execution: what can cause an event in a given model?

Backward causality

Describes causes after the execution: what has caused an observed effect in a given execution?

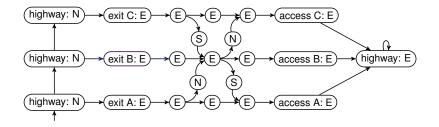
Necessary causes Cause implies Effect

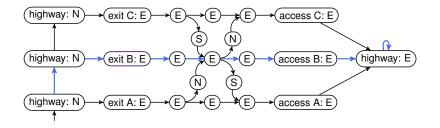
Counterfactual causes Fixed an execution: ¬Cause implies ¬Effect

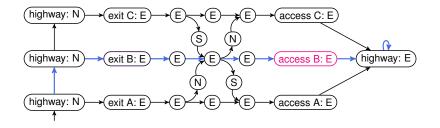
Forward causality

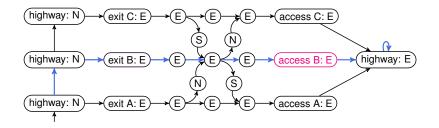
Describes causes before the execution: what can cause an event in a given model?

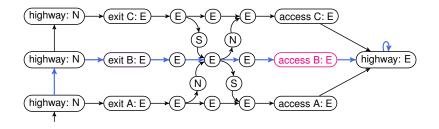
Backward causality

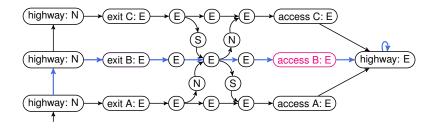

Describes causes after the execution: what has caused an observed effect in a given execution?


Necessary causes Cause implies Effect



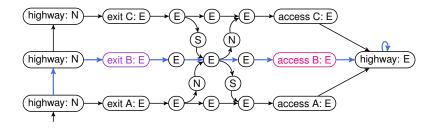

Counterfactual causes Fixed an execution: ¬Cause implies ¬Effect





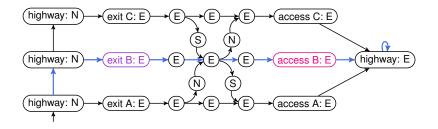
Counterfactual cause $\pi = NNE^{\omega}$ Effect = {access B}

Stalnaker-Lewis-semantics

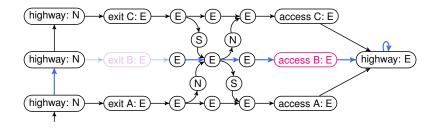

Counterfactual cause $\pi = NNE^{\omega}$ Effect = {access B}

Stalnaker-Lewis-semantics

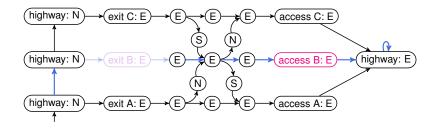
executions according a similarity metric


Counterfactual cause $\pi = NNE^{\omega}$ Effect = {access B}

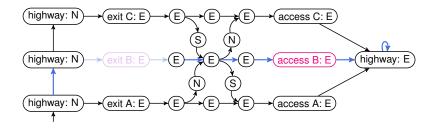
Stalnaker-Lewis-semantics


Counterfactual cause for the closest set of executions according a similarity metric

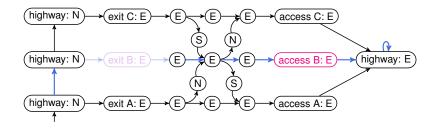
Counterfactual cause $\pi = NNE^{\omega}$ Effect = {access B}Cause $\stackrel{?}{=}$ {exit B}


Stalnaker-Lewis-semantics Counterfactual cause for the closest set of executions according a similarity metric Counterfactual cause $\pi = NNE^{\omega}$ Effect = {access B}Cause $\stackrel{?}{=}$ {exit B}

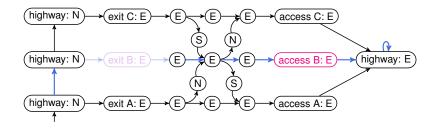
$$\zeta \in \{\zeta' \mid d(\pi, \zeta') = d_{\min} \text{ and } \zeta' \vDash \Box \neg Cause\}$$


Stalnaker-Lewis-semantics Counterfactual cause for the closest set of executions according a similarity metric Counterfactual cause $\pi = NNE^{\omega}$ Effect = {access B}Cause $\stackrel{?}{=}$ {exit B}

$$\zeta \in \{\zeta' \mid d(\pi, \zeta') = d_{\min} \text{ and } \zeta' \vDash \Box \neg Cause\}$$


Stalnaker-Lewis-semantics Counterfactual cause for the closest set of executions according a similarity metric $\begin{array}{ll} \textbf{Counterfactual cause} \\ \pi = \textit{NNE}^{\omega} & \textit{Effect} = \{\texttt{access B}\} \\ \textit{Cause} \stackrel{?}{=} \{\texttt{exit B}\} \\ \zeta \in \{\textit{NE}^{\omega} & \} \end{array}$

 $\zeta \in \{\zeta' \mid \boldsymbol{d}(\pi, \zeta') = \boldsymbol{d}_{\min} \text{ and } \zeta' \vDash \Box \neg \boldsymbol{Cause}\}$


Stalnaker-Lewis-semantics Counterfactual cause for the closest set of executions according a similarity metric Counterfactual cause $\pi = NNE^{\omega}$ Effect = {access B}Cause $\stackrel{?}{=}$ {exit B} $\zeta \in \{NE^{\omega}, NNNE^{\omega}\}$

$$\zeta \in \{\zeta' \mid d(\pi, \zeta') = d_{\min} \text{ and } \zeta' \vDash \Box \neg Cause\}$$

Stalnaker-Lewis-semantics Counterfactual cause for the closest set of executions according a similarity metric Counterfactual cause $\pi = NNE^{\omega}$ Effect = {access B}Cause $\stackrel{?}{=}$ {exit B} $\zeta \in \{NE^{\omega}, NNNE^{\omega}\}$

Do all $\zeta \in \{\zeta' \mid d(\pi, \zeta') = d_{\min} \text{ and } \zeta' \models \Box \neg Cause\}$ satisfy $\Box \neg Effect$?

Stalnaker-Lewis-semantics Counterfactual cause for the closest set of executions according a similarity metric $\begin{array}{ll} \textbf{Counterfactual cause} \\ \pi = \textit{NNE}^{\omega} & \textit{Effect} = \{\texttt{access B}\} \\ \textit{Cause} = \{\texttt{exit B}\} \\ \zeta \in \{\textit{NE}^{\omega},\textit{NNNE}^{\omega}\} \end{array}$

Do all $\zeta \in \{\zeta' \mid d(\pi, \zeta') = d_{\min} \text{ and } \zeta' \vDash \Box \neg Cause\}$ satisfy $\Box \neg Effect$?

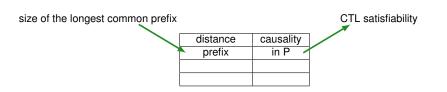
Contributions on transition systems

Checking counterfactual cause problem in transition systems

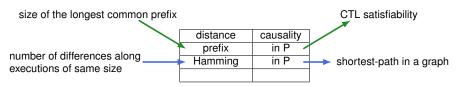
Contributions on transition systems

Checking counterfactual cause problem in transition systems Given a distance over executions, check if Cause is a cause for Effect

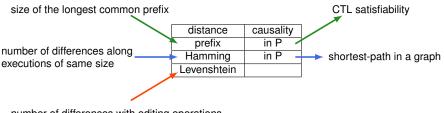
Contributions on transition systems

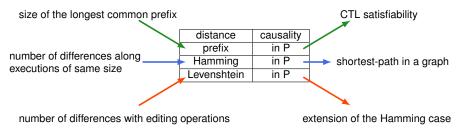

Checking counterfactual cause problem in transition systems Given a distance over executions, check if Cause is a cause for Effect

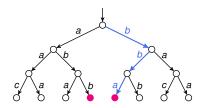
distance	causality

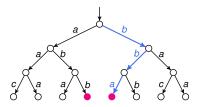

Checking counterfactual cause problem in transition systems Given a distance over executions, check if Cause is a cause for Effect

size of the longest common prefix

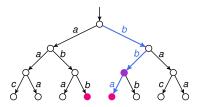

	distance	causality
7	prefix	




Checking counterfactual cause problem in transition systems Given a distance over executions, check if Cause is a cause for Effect

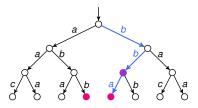

number of differences with editing operations

Reduction to a shortest-path problem


Reduction to a shortest-path problem

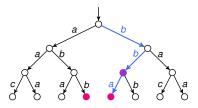
Hypothesis

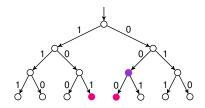
Transition system where all executions have the same size.


Reduction to a shortest-path problem

Hypothesis

Transition system where all executions have the same size.

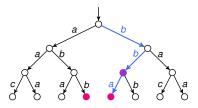

Reduction to a shortest-path problem

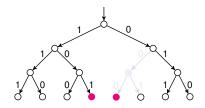


Hypothesis

Transition system where all executions have the same size.

Reduction to a shortest-path problem

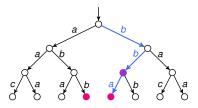

Hypothesis

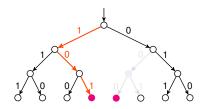

Transition system where all executions have the same size.

Algorithm to check a potential cause

Defining the weighted graph such that w(u, v) = 0 iff label of (u, v) is the same than in the execution

Reduction to a shortest-path problem

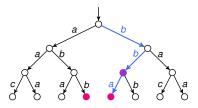


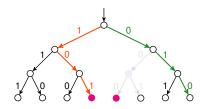

Hypothesis

Transition system where all executions have the same size.

- Defining the weighted graph such that w(u, v) = 0 iff label of (u, v) is the same than in the execution
- Removing the potential cause Cause

Reduction to a shortest-path problem

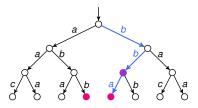


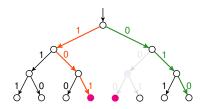

Hypothesis

Transition system where all executions have the same size.

- Defining the weighted graph such that w(u, v) = 0 iff label of (u, v) is the same than in the execution
- Removing the potential cause Cause
- Computing the shortest path to reach Effect: ζ

Reduction to a shortest-path problem

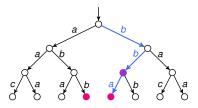


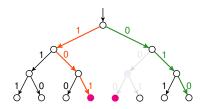

Hypothesis

Transition system where all executions have the same size.

- Defining the weighted graph such that w(u, v) = 0 iff label of (u, v) is the same than in the execution
- Removing the potential cause Cause
- Computing the shortest path to reach Effect: ζ
- Computing the shortest path to reach ¬Effect: ζ'

Reduction to a shortest-path problem



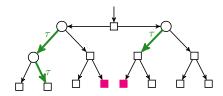

Hypothesis

Transition system where all executions have the same size.

- Defining the weighted graph such that w(u, v) = 0 iff label of (u, v) is the same than in the execution
- Removing the potential cause Cause
- Computing the shortest path to reach Effect: ζ
- Computing the shortest path to reach ¬Effect: ζ'
- Test weight(ζ') < weight(ζ)</p>

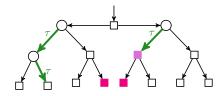
Reduction to a shortest-path problem

Hypothesis

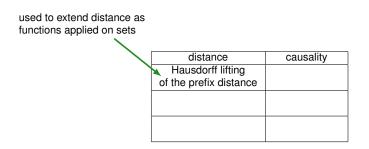

Transition system where all executions have the same size.

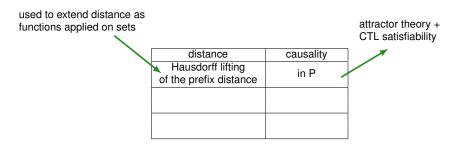
Extension

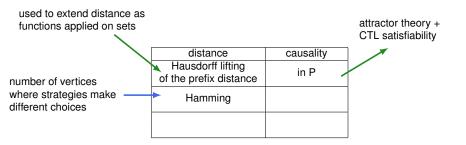
Same algorithm with a generalisation of Hamming distance

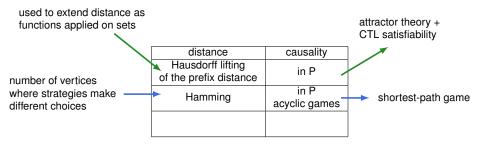

- Defining the weighted graph such that w(u, v) = 0 iff label of (u, v) is the same than in the execution
- Removing the potential cause Cause
- Computing the shortest path to reach Effect: ζ
- Computing the shortest path to reach ¬Effect: ζ'
- ► Test weight(ζ') < weight(ζ)</p>

Counterfactual causality in games Winning player follows a non-winning strategy τ

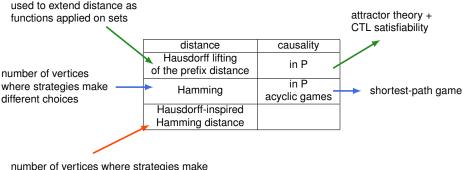


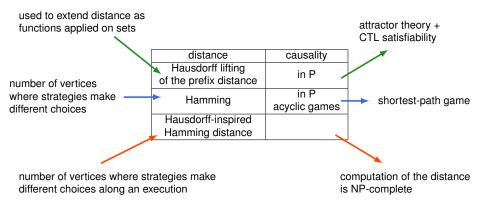

Counterfactual causality in games

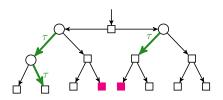

Winning player follows a non-winning strategy τ Cause= set of vertices that a winning strategy needs to avoid



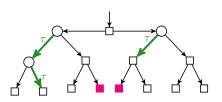
distance	causality

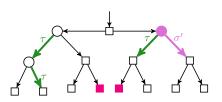




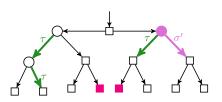


Checking counterfactual cause problem in games Given a distance over strategies, check if Cause is a cause for Effect


number of vertices where strategies make different choices along an execution

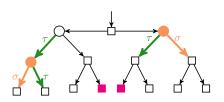

Explanation *E*

Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(\mathbf{v}) \neq \sigma(\mathbf{v})$ iff $\mathbf{v} \in \mathbf{E}$


Explanation *E*

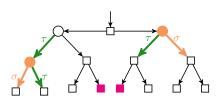
Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(\mathbf{v}) \neq \sigma(\mathbf{v})$ iff $\mathbf{v} \in \mathbf{E}$

Explanation E


Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(\mathbf{v}) \neq \sigma(\mathbf{v})$ iff $\mathbf{v} \in \mathbf{E}$

Contribution

Explanation E


Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(\mathbf{v}) \neq \sigma(\mathbf{v})$ iff $\mathbf{v} \in \mathbf{E}$

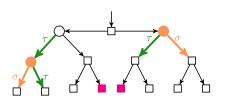
Contribution

Explanation E

Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(\mathbf{v}) \neq \sigma(\mathbf{v})$ iff $\mathbf{v} \in \mathbf{E}$

Minimal explanation E

E is an explanation such that $d(\sigma, \tau) = d_{\min}^{\text{winning}}$


Contribution

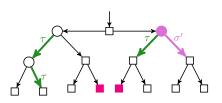
Explanation E

Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(v) \neq \sigma(v)$ iff $v \in E$

Minimal explanation E

E is an explanation such that $d(\sigma, \tau) = d_{\min}^{\text{winning}}$

Hamming distance $d(\sigma, \tau) = 2$

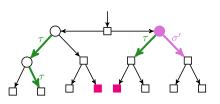

Contribution

Explanation E

Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(v) \neq \sigma(v)$ iff $v \in E$

Minimal explanation E

E is an explanation such that $d(\sigma, \tau) = d_{\min}^{\text{winning}}$


Hamming distance

$$d(\sigma, \tau) = 2 > 1 = d(\sigma', \tau)$$

Contribution

Explanation E

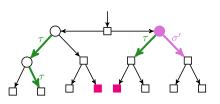
Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(\mathbf{v}) \neq \sigma(\mathbf{v})$ iff $\mathbf{v} \in \mathbf{E}$

Minimal explanation E

E is an explanation such that $d(\sigma, \tau) = d_{\min}^{\text{winning}}$

Hamming distance

 $d(\sigma, \tau) = 2 > 1 = d(\sigma', \tau)$


Minimal explanation problem

Check if *E* is a minimal explanation

Contribution

Explanation E

Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(\mathbf{v}) \neq \sigma(\mathbf{v})$ iff $\mathbf{v} \in \mathbf{E}$

Minimal explanation E

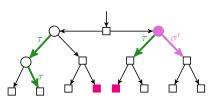
E is an explanation such that $d(\sigma, \tau) = d_{\min}^{\text{winning}}$

Hamming distance

 $d(\sigma, \tau) = 2 > 1 = d(\sigma', \tau)$

Minimal explanation problem

Check if *E* is a minimal explanation


Contribution

- finding an explanation from a cause is in P
- coNP-complete problem for Hamming

Counterfactual explanation

Explanation E

Given a non-winning strategy τ , check if there exists a winning strategy σ such that $\tau(\mathbf{v}) \neq \sigma(\mathbf{v})$ iff $\mathbf{v} \in \mathbf{E}$

Minimal explanation E

E is an explanation such that $d(\sigma, \tau) = d_{\min}^{\text{winning}}$

Hamming distance

 $d(\sigma, \tau) = 2 > 1 = d(\sigma', \tau)$

Minimal explanation problem

Check if *E* is a minimal explanation

Contribution

- finding an explanation from a cause is in P
- coNP-complete problem for Hamming
- NP-hardness Hausdorff-inspired Hamming distances

In transition systems

In transition systems

Check the counterfactual causality

distance	causality
prefix	in P
Hamming	in P
Levenshtein	in P

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

distance	causality
prefix	in P
Hamming	in P
Levenshtein	in P

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

distance	causality
prefix	in P
Hamming	in P
Levenshtein	in P

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

In reachability/safety games

Generalisation of counterfactual causality with distances over strategies

distance	causality
prefix	in P
Hamming	in P
Levenshtein	in P

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

- Generalisation of counterfactual causality with distances over strategies
- Check the counterfactual causality

distance	causality
prefix	in P
Hamming	in P
Levenshtein	in P

distance	causality	
Hausdorff lifting	in P	
of the prefix distance		
Hamming strategy	in P	
distance	acyclic games	
Hausdorff-inspired		
distance		

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

- Generalisation of counterfactual causality with distances over strategies
- Check the counterfactual causality
- Introduction of the notion of counterfactual explanation

distance	causality	
Hausdorff lifting	in P	
of the prefix distance		
Hamming strategy	in P	
distance	acyclic games	
Hausdorff-inspired		
distance		

distance	causality
prefix	in P
Hamming	in P
Levenshtein	in P

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

- Generalisation of counterfactual causality with distances over strategies
- Check the counterfactual causality
- Introduction of the notion of counterfactual explanation
- Check the minimal counterfactual explanation

distance	causality	explanations
Hausdorff lifting	in P	
of the prefix distance		
Hamming strategy	in P	coNP-complete
distance	acyclic games	conr-complete
Hausdorff-inspired		NP-hardness
distance		INF-Haruness

distance	causality
prefix	in P
Hamming	in P
Levenshtein	in P

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

In reachability/safety games

- Generalisation of counterfactual causality with distances over strategies
- Check the counterfactual causality
- Introduction of the notion of counterfactual explanation
- Check the minimal counterfactual explanation

Perspectives

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

In reachability/safety games

- Generalisation of counterfactual causality with distances over strategies
- Check the counterfactual causality
- Introduction of the notion of counterfactual explanation
- Check the minimal counterfactual explanation

Perspectives

Check counterfactual causes in all reachability/safety games

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

In reachability/safety games

- Generalisation of counterfactual causality with distances over strategies
- Check the counterfactual causality
- Introduction of the notion of counterfactual explanation
- Check the minimal counterfactual explanation

Perspectives

- Check counterfactual causes in all reachability/safety games
- Finding a (good) counterfactual cause

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

In reachability/safety games

- Generalisation of counterfactual causality with distances over strategies
- Check the counterfactual causality
- Introduction of the notion of counterfactual explanation
- Check the minimal counterfactual explanation

Perspectives

- Check counterfactual causes in all reachability/safety games
- Finding a (good) counterfactual cause
- Study the impact of the distance over causes

In transition systems

- Check the counterfactual causality
- Counterfactual causality for the Hamming distance is consistent with Halpern and Pearl's but-for causes

In reachability/safety games

- Generalisation of counterfactual causality with distances over strategies
- Check the counterfactual causality
- Introduction of the notion of counterfactual explanation
- Check the minimal counterfactual explanation

Perspectives

- Check counterfactual causes in all reachability/safety games
- Finding a (good) counterfactual cause
- Study the impact of the distance over causes

Thank you! Questions?