Weighted Timed Games: Decidability, Randomisation and Robustness

Julie Parreaux

University of Warsaw

Séminaire M2F

Joint work with Benjamin Monmege and Pierre-Alain Reynier

Correctness and performance of real-time systems

Correctness and performance of real-time systems

Correctness and performance of real-time systems

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} x \mapsto 0 \\ y \mapsto 0 \end{bmatrix})$

⊙ target (T)

Play ρ $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix})$

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a}$

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix})$

⊙ target (T)

 $\mathsf{Play}\ \rho \qquad (\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, \ a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, \ a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, \ b} (\textcircled{\odot}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{O}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$
+ +

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{O}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$
 $0 + +$

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{O}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$
 $1 \times 0.5 + 0 + +$

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\bigcirc, \begin{bmatrix} 1/3\\19/12 \end{bmatrix}) \rightsquigarrow -\frac{8}{3}$
 $1 \times 0.5 + 0 + -2 \times 1.25 - 1 + 1 \times \frac{1}{3} + 0$

⊙ target (T)

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$

Deterministic strategy

Choose an edge and a delay

⊙ target (T)

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$

Deterministic strategy Choose an edge and a delay

From $\begin{pmatrix} \ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Choose *a* with $t = \frac{1}{3}$

⊙ target (T)

Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\bigcirc, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$

Deterministic strategy

Choose an edge and a delay

From
$$(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix})$$

Choose *a* with $t = \frac{1}{3}$

What features on strategies are needed for Min?

Deterministic value

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

Switching strategy:

• σ_1 : reach cycle with a weight ≤ -1

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value $dVal(c) = \inf_{\sigma} \sup_{\tau} cost(Play(c, \sigma, \tau))$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $\ell_1 \quad -2$ $b, 1 \le x < 3, 3$ c $a, 2 \le x \le 3, 1$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value $dVal(c) = \inf_{\sigma} \sup_{\tau} cost(Play(c, \sigma, \tau))$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $\ell_1 = 2$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $dval^{\sigma}(c)$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Deterministic value $dVal(c) = \inf_{\sigma} \sup_{\tau} cost(Play(c, \sigma, \tau))$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $\ell_1 = 2$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Finite memory

Switching strategy:

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Finite memory

Switching strategy:

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

Finite memory

Switching strategy:

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

• if $x \leq 2/3$: Min plays 2/3-x

Deterministic value $dVal(c) = \inf_{\sigma} \sup_{\tau} cost(Play(c, \sigma, \tau))$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ ℓ_1 $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ ℓ_2 $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$

Finite memory

Switching strategy:

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

- if $x \leq 2/3$: Min plays 2/3-x
- otherwise, Min plays 0

Deterministic value problem

Deterministic value problem

Trading memory with probabilities

Deterministic value problem

Trading memory with probabilities

Deterministic value problem

rading memory with probabilities

Deciding if $dVal(c) \leq \lambda$?

Deciding if $dVal(c) \leq \lambda$?

	WTG		
\mathbb{N}	undecidable		
\mathbb{Z}	undecidable		

On Optimal Timed Strategies, T. Brihaye, V. Bruyère and J.-F. Raskin, 2005, FORMATS

Adding Negative Prices to Priced Timed Games, T. Brihaye, G. Geeraerts, S. Krishna, L. Manasa, B. Monmege, and A. Trivedi, 2014, CONCUR

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	
\mathbb{N}	undecidable		
\mathbb{Z}	undecidable		

Deciding if $dVal(c) \leq \lambda$?

		WTG	0-clock	
	\mathbb{N}	undecidable	PTIME	
ſ	\mathbb{Z}	undecidable	pseudo-polynomial	

On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction, L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao, 2008, Theory of Computing Systems

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	
\mathbb{N}	undecidable	PTIME		
\mathbb{Z}	undecidable	pseudo-polynomial		

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	
\mathbb{N}	undecidable	PTIME		
\mathbb{Z}	undecidable	pseudo-polynomial		

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier, 2017. FOSSACS

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.I Fleury, and K. Larsen, 2004, FSTTCS

Deciding if $dVal(c) \leq \lambda$?

		WTG	0-clock	divergent	
	\mathbb{N}	undecidable	PTIME	EXPTIME	
ſ	\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

6/17

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.I Fleury, and K. Larsen, 2004, FSTTCS Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier, 2017. FOSSACS

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Almost optimal strategies in one clock priced timed games, P. Bouyer, K. Larsen, N. Markey, and J. Rasmussen, 2006, FSTTCS

Two-Player Reachability-Price Games on Single Clock Timed Automata., M. Rutkowski, 2011, QAPL

A Faster Algorithm for Solving One-Clock Priced Timed Games, T. Dueholm Hansen, R. Ibsen-Jensen, and P. Bro Miltersen, 2013, CONCUR

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	3

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

One-Clock Priced Timed Games are PSPACE-hard., J. Fearnley, R. Ibsen-Jensen, and R. Savani, 2020, LICS

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	3

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG $c \mapsto Val(c)$ is computable in exponential time

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	3

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG

 $c\mapsto Val(c)$ is computable in exponential time

▶ Back-time algorithm: compute $c \mapsto Val(c)$ from x = 1 to 0

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG

 $c \mapsto Val(c)$ is computable in exponential time

- ▶ Back-time algorithm: compute $c \mapsto Val(c)$ from x = 1 to 0
- Value iteration algorithm: deterministic value is a fixed point of a given operator

Deterministic value problem

Frading memory with probabilities

Decidability for 1-clock WTG

Frading memory with probabilities

Trading memory with probabilities

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Stochastic strategy

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Stochastic strategy

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Stochastic strategy

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Min Max

Stochastic strategy

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Min Max

b: choose t with δ_{1.5}

Stochastic strategy

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

(η) Min (θ) Max

Stochastic strategy

Distribution over possible choices

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

When we fix two strategies

(η) Min (θ) Max

b: choose t with δ_{1.5}

Stochastic strategy

Distribution over possible choices

- 1. Edge a: finite distribution
- 2. Delay for *a*: infinite distribution

When we fix two strategies

Infinite Markov Chain

 (η) Min θ Max

b: choose t with δ_{1.5}

Stochastic strategy

Distribution over possible choices

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

When we fix two strategies

- Infinite Markov Chain
- Replace $cost(Play(c, \eta, \theta))$ by $\mathbb{E}_{c}^{\eta, \theta}(cost)$

 (η) Min θ Max

b: choose t with δ_{1.5}

Stochastic strategy

Distribution over possible choices

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

When we fix two strategies

- Infinite Markov Chain
- Replace $cost(Play(c, \eta, \theta))$ by $\mathbb{E}_{c}^{\eta, \theta}(cost)$

Measurability conditions on η and θ

 (η) Min θ Max

From $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix})$ Choose between *a* or *b* with $\mathcal{B}(\frac{1}{2})$ \blacktriangleright *a*: choose *t* with $\mathcal{U}([0, 1))$

b: choose t with δ_{1.5}

Stochastic strategy

Distribution over possible choices

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

When we fix two strategies

- Infinite Markov Chain
- Replace $cost(Play(c, \eta, \theta))$ by $\mathbb{E}_{c}^{\eta, \theta}(cost)$

Measurability conditions on η and θ

Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

dVal = Val = mVal

Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

dVal = Val = mVal

O-clock weighted timed games

Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

dVal = Val = mVal

0-clock weighted timed games

divergent weighted timed games

Trading memory with probabilities

Max has a best response deterministic memoryless strategy: τ

Max has a best response deterministic memoryless strategy: τ

Max has a best response deterministic memoryless strategy: τ

Trading memory with probabilities

Robust optimal strategies

Robust optimal strategies

Robust optimal strategies

Give to Max the power to perturb the delay chosen by Min

$$\nu \longrightarrow \nu + t$$

Give to Max the power to perturb the delay chosen by Min

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation:

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

 $\blacktriangleright \delta$ is fixed and known

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

 $\blacktriangleright \delta$ is fixed and known

 $\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust} \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

 $\blacktriangleright \delta$ is fixed and known

 $\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta\text{-robust}}} \sup_{\substack{\zeta \\ \delta\text{-robust}}} \mathbf{cost}(\mathsf{Play}(c,\chi,\zeta))$

Encoding fixed- δ semantics into exact one

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

 $\blacktriangleright \delta$ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Encoding fixed- δ semantics into exact one

Need a new clock

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

• δ is fixed and known

δ tends to 0

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Encoding fixed- δ semantics into exact one

Need a new clock

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

 $\blacktriangleright \delta$ is fixed and known

• δ tends to 0

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust} \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

$$\operatorname{Val}(c) = \lim_{\substack{\delta o 0 \ \delta > 0}} \operatorname{rVal}^{\delta}(c)$$

r

Encoding fixed- δ semantics into exact one

Need a new clock

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics

Check the guard after the perturbation: $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

 $\blacktriangleright \delta$ is fixed and known

$$\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$$

Encoding fixed- δ semantics into exact one

Need a new clock

 $\blacktriangleright \delta$ tends to 0

$$\operatorname{rVal}(c) = \lim_{\substack{\delta \to 0 \\ \delta > 0}} \operatorname{rVal}^{\delta}(c)$$

rVal^{\delta} is monotonic in δ

	WTG		
$rVal^\delta$	undecidable		
rVal	undecidable		

Robust Weighted Timed Automata and Games, P. Bouyer, N. Markey, and O. Sankur, 2013, FORMATS

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable			
rVal	undecidable			

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable			decidable (in \mathbb{N})
rVal	undecidable	1		1

Revisiting Robustness in Priced Timed Game, S. Guha, S. Krishna, L. Manasa, and A. Trivedi, 2015, FSTTCS

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	1	1	1

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		1

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	1	1

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		.

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Shrinking timed automata, O. Sankur, P. Bouyer, and N. Markey, 2011, FSTTCS

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		.

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

A combination of two existing methods

Shrunk cells

Shrunk DBM

Deciding if rVal^{δ}(*c*) (resp. rVal(*c*)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		.

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		.

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	decidable	

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Robust optimal strategies

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Why?

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Why the specification does not hold in the counterexample?

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Counterfactual causality

¬Cause (in the system) implies ¬Effect (in *closed* execution)

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Counterfactual causality

¬Cause (in the system) implies ¬Effect (in *closed* execution)

Definition (GandALF'23): Definition of counterfactual causes in transitions systems and games

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Counterfactual causality

¬Cause (in the system) implies ¬Effect (in *closed* execution)

Definition (GandALF'23): Definition of counterfactual causes in transitions systems and games

Using distance over executions (strategies) to define *close*

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Joint work with Sławomir Lasota at Warsaw (Poland)

Joint work with Sławomir Lasota at Warsaw (Poland)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Б

Joint work with Sławomir Lasota at Warsaw (Poland)

Existence winning strategy	

Joint work with Sławomir Lasota at Warsaw (Poland)

Existence winning	Å wins ⇔	
strategy	$w \in \mathcal{L}(\mathcal{A})$	

Joint work with Sławomir Lasota at Warsaw (Poland)

$$(a_1, t_1) \quad (a_2, t_2) \quad \cdots$$

$$A \times \mathbb{Q}_{\geq 0} \quad b_1 \quad b_2 \quad \cdots$$

Existence	🗳 wins	😪 wins
winning strategy	$\stackrel{\Leftrightarrow}{\Leftrightarrow} w \in \mathcal{L}(\mathcal{A})$	$\stackrel{\Leftrightarrow}{\Leftrightarrow} w \in \mathcal{L}(\mathcal{A})$

Joint work with Sławomir Lasota at Warsaw (Poland)

Existence	🗳 wins	🐕 wins
winning strategy	$\stackrel{\Leftrightarrow}{\Leftrightarrow} w \in \mathcal{L}(\mathcal{A})$	$\stackrel{\Leftrightarrow}{\Leftrightarrow} w \in \mathcal{L}(\mathcal{A})$
Å		
V		

Joint work with Sławomir Lasota at Warsaw (Poland)

Existence	🗳 wins	🖞 wins
winning strategy	$\stackrel{\Leftrightarrow}{\Leftrightarrow} w \in \mathcal{L}(\mathcal{A})$	$\overset{\Leftrightarrow}{w\in\mathcal{L}(\mathcal{A})}$
Å	3	3
N	Undecidable	1

Timed Games and Deterministic Separability, L. Clemente, S. Lasota, and R. Piórkowski, 2020, ICALP

Joint work with Sławomir Lasota at Warsaw (Poland)

Existence	🗳 wins	🖞 wins
winning strategy	$\stackrel{\Leftrightarrow}{\Leftrightarrow} w \in \mathcal{L}(\mathcal{A})$	$\stackrel{\Leftrightarrow}{\Leftrightarrow} w \in \mathcal{L}(\mathcal{A})$
Å	Undecidable	Undecidable
V	Undecidable	Undecidable

Memory from the specification

Memory from the specification

Decidable classes for timed Church synthesis

Memory from the specification

Decidable classes for timed Church synthesis

Reduce expressiveness of winning condition

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Emulate the memory

Determinacy

Deterministic separability for timed automata

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Emulate the memory

Memory versus probabilities

Determinacy

Deterministic separability for timed automata

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

 Characterisation of winning strategy without memory

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

 Characterisation of winning strategy without memory

New algorithms to solve games

Memory versus clocks

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

 Characterisation of winning strategy without memory

New algorithms to solve games

Memory versus clocks

Memory versus control

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

 Characterisation of winning strategy without memory

New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

Synthesis of robust systems

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

Synthesis of robust systems

Parametric timed automata

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy

Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

Synthesis of robust systems

- Parametric timed automata
- Stochastic robustness

Memory from the specification

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Determinacy

for timed automata

Memory versus control

Robustness

Synthesis of robust systems

- Parametric timed automata
- Stochastic robustness

Quantify the robustness of a system

Memory from the specification

Synthesis of robust systems

Parametric timed automata

Stochastic robustness

Quantify the robustness of a system

Thank you. Questions?