Weighted Timed Games:
 Decidability, Randomisation and Robustness

Julie Parreaux
University of Warsaw

Séminaire M2F

Joint work with Benjamin Monmege and Pierre-Alain Reynier

Correctness and performance of real-time systems

Correctness and performance of real-time systems

Synthesis

Correctness and performance of real-time systems

Synthesis

Weighted Timed Games

Min $\quad \square$ Max
© $\operatorname{target}(\mathrm{T})$

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho\left(\ell_{1},\left[\begin{array}{l}x \mapsto \\ y \mapsto\end{array}\right]\right)$

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}$

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}0.5 \\ 0\end{array}\right]\right)$

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}0.5 \\ 0\end{array}\right]\right) \xrightarrow{1.25, a}\left(\ell_{1},\left[\begin{array}{c}0 \\ 1.25\end{array}\right]\right) \xrightarrow{1 / 3, b}\left(\odot,\left[\begin{array}{c}1 / 3 \\ 19 / 12\end{array}\right]\right)$

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}0.5 \\ 0\end{array}\right]\right) \xrightarrow{1.25, a}\left(\ell_{1},\left[\begin{array}{c}0 \\ 1.25\end{array}\right]\right) \xrightarrow{1 / 3, b}\left(\because,\left[\begin{array}{c}1 / 3 \\ 19 / 12\end{array}\right]\right)$
+

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}0.5 \\ 0\end{array}\right]\right) \xrightarrow{1.25, a}\left(\ell_{1},\left[\begin{array}{c}0 \\ 1.25\end{array}\right]\right) \xrightarrow{1 / 3, b}\left(\odot,\left[\begin{array}{c}1 / 3 \\ 19 / 12\end{array}\right]\right)$
0

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

$$
\begin{gathered}
\text { Play } \rho \quad\left(\ell_{1},\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}
0.5 \\
0
\end{array}\right]\right) \xrightarrow{\text { 1.25,a}}\left(\ell_{1},\left[\begin{array}{c}
0 \\
1.25
\end{array}\right]\right) \xrightarrow{1 / 3, b}\left(\odot,\left[\begin{array}{c}
1 / 3 \\
19 / 12
\end{array}\right]\right) \\
1 \times 0.5+0+
\end{gathered}
$$

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}0.5 \\ 0\end{array}\right]\right) \xrightarrow{1.25, a}\left(\ell_{1},\left[\begin{array}{c}0 \\ 1.25\end{array}\right]\right) \xrightarrow{1 / 3, b}\left(-,\left[\begin{array}{c}1 / 3 \\ 19 / 12\end{array}\right]\right) \rightsquigarrow-\frac{8}{3}$

$$
1 \times 0.5+0+-2 \times 1.25-1+1 \times \frac{1}{3}+0
$$

Weighted Timed Games

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}0.5 \\ 0\end{array}\right]\right) \xrightarrow{1.25, a}\left(\ell_{1},\left[\begin{array}{c}0 \\ 1.25\end{array}\right]\right) \xrightarrow{1 / 3, b}\left(\odot,\left[\begin{array}{c}1 / 3 \\ 19 / 12\end{array}\right]\right)$

Deterministic strategy
Choose an edge and a delay

Weighted Timed Games

© $\operatorname{target}(\mathrm{T})$

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}0.5 \\ 0\end{array}\right]\right) \xrightarrow{1.25, a}\left(\ell_{1},\left[\begin{array}{c}0 \\ 1.25\end{array}\right]\right) \xrightarrow{1 / 3, b}\left(\odot,\left[\begin{array}{c}1 / 3 \\ 19 / 12\end{array}\right]\right)$

Deterministic strategy
Choose an edge and a delay
$\operatorname{From}\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose a with $t=\frac{1}{3}$

Weighted Timed Games

Play $\rho \quad\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right) \xrightarrow{0.5, a}\left(\ell_{0},\left[\begin{array}{c}0.5 \\ 0\end{array}\right]\right) \xrightarrow{1.25, a}\left(\ell_{1},\left[\begin{array}{c}0 \\ 1.25\end{array}\right]\right) \xrightarrow{1 / 3, b}\left(\odot,\left[\begin{array}{c}1 / 3 \\ 19 / 12\end{array}\right]\right)$

Deterministic strategy
Choose an edge and a delay

> From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
> Choose a with $t=\frac{1}{3}$

What features on strategies are needed for Min?

Features on strategies needed for Min

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau} \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau} \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau} \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Optimal strategy for Min

Finite memory

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Optimal strategy for Min

$$
\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)
$$

Finite memory

Switching strategy:

Features on strategies needed for Min

Optimal strategy for Min

$$
\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)
$$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Optimal strategy for Min

$$
\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)
$$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ${ }^{\text {© }}$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Optimal strategy for Min

$$
\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)
$$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ©
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
 $\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau}^{\operatorname{cost}}(\operatorname{Play}(c, \sigma, \tau))$

Optimal strategy for Min

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ©
- K: number of turns before switch

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau}^{\operatorname{cost}}(\operatorname{Play}(c, \sigma, \tau))$

> Optimal strategy for Min
> $\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ©
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau}^{\operatorname{cost}}(\operatorname{Play}(c, \sigma, \tau))$

> Optimal strategy for Min
> $\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ${ }^{-}$
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma}^{\sup \operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))} \underbrace{\operatorname{dV}^{2}}_{\mathrm{dVal} \sigma(c)}$

Optimal strategy for Min $\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ${ }^{-}$
- K: number of turns before switch

Features on strategies needed for Min

Deterministic value
$\mathrm{dVal}(c)=\inf _{\sigma} \underbrace{\sup _{\tau}^{\operatorname{cost}(\operatorname{Play}(c, \sigma, \tau))}}_{\mathrm{dVal} \sigma(c)}$

Optimal strategy for Min $\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ${ }^{-}$
- K: number of turns before switch

Features on strategies needed for Min

Deterministic value
 $\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau}^{\operatorname{cost}}(\operatorname{Play}(c, \sigma, \tau))$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ©
- K: number of turns before switch

Optimal strategy for Min

$\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)$

Infinite precision

From ℓ_{0}, Min wants to reach the valuation $2 / 3$

Features on strategies needed for Min

Deterministic value
 $\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau}^{\operatorname{cost}}(\operatorname{Play}(c, \sigma, \tau))$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ©
- K: number of turns before switch

Optimal strategy for Min

$\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)$

Infinite precision

From ℓ_{0}, Min wants to reach the valuation $2 / 3$

- if $x \leqslant 2 / 3$: Min plays $2 / 3-x$

Features on strategies needed for Min

Deterministic value
 $\mathrm{dVal}(c)=\inf _{\sigma} \sup _{\tau}^{\operatorname{cost}}(\operatorname{Play}(c, \sigma, \tau))$

Finite memory

Switching strategy:

- σ_{1} : reach cycle with a weight $\leqslant-1$
- σ_{2} : reach ©
- K: number of turns before switch

Optimal strategy for Min

$\mathrm{dVal}^{\sigma}(c) \leqslant \mathrm{dVal}(c)$

Infinite precision

From ℓ_{0}, Min wants to reach the valuation $2 / 3$

- if $x \leqslant 2 / 3$: Min plays $2 / 3-x$
- otherwise, Min plays 0

Problems on weighted timed games

Deterministic value problem

Problems on weighted timed games

Deterministic value problem

Trading memory with probabilities

Problems on weighted timed games

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

Problems on weighted timed games

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG			
\mathbb{N}	undecidable			
\mathbb{Z}	undecidable			

On Optimal Timed Strategies, T. Brihaye, V. Bruyère and J.-F. Raskin, 2005, FORMATS
Adding Negative Prices to Priced Timed Games, T. Brihaye, G. Geeraerts, S. Krishna, L. Manasa, B. Monmege, and A. Trivedi, 2014, CONCUR

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock		
\mathbb{N}	undecidable			
\mathbb{Z}	undecidable			

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock		
\mathbb{N}	undecidable	PTIME		
\mathbb{Z}	undecidable	pseudo-polynomial		

[^0]
Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	
\mathbb{N}	undecidable	PTIME		
\mathbb{Z}	undecidable	pseudo-polynomial		

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	
\mathbb{N}	undecidable	PTIME		
\mathbb{Z}	undecidable	pseudo-polynomial		

Property of divergence

All SCCs of the WTG contain only
cycles with a weight $\leqslant-1$ or $\geqslant 1$

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.I Fleury, and K. Larsen, 2004, FSTTCS Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier, 2017, FOSSACS

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	
\mathbb{N}	undecidable	PTIME	EXPTIME	
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence

All SCCs of the WTG contain only
cycles with a weight $\leqslant-1$ or $\geqslant 1$

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.I Fleury, and K. Larsen, 2004, FSTTCS Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier, 2017, FOSSACS

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence
All SCCs of the WTG contain only
cycles with a weight $\leqslant-1$ or $\geqslant 1$

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	

Property of divergence

All SCCs of the WTG contain only
cycles with a weight $\leqslant-1$ or $\geqslant 1$

[^1]
Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	?

Property of divergence
All SCCs of the WTG contain only
cycles with a weight $\leqslant-1$ or $\geqslant 1$

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	?

Property of divergence

 All SCCs of the WTG contain only cycles with a weight $\leqslant-1$ or $\geqslant 1$PSPACE lower bound
The deterministic value problem is PSPACE-hard for 1-clock WTG

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	?

Property of divergence All SCCs of the WTG contain only cycles with a weight $\leqslant-1$ or $\geqslant 1$

PSPACE lower bound
The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	?

Property of divergence All SCCs of the WTG contain only cycles with a weight $\leqslant-1$ or $\geqslant 1$

PSPACE lower bound
The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG $c \mapsto \operatorname{Val}(c)$ is computable in exponential time

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	?

Property of divergence All SCCs of the WTG contain only cycles with a weight $\leqslant-1$ or $\geqslant 1$

PSPACE lower bound
The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG $c \mapsto \operatorname{Val}(c)$ is computable in exponential time

- Back-time algorithm: compute $c \mapsto \operatorname{Val}(c)$ from $x=1$ to 0

Deterministic value problem

Deciding if $\mathrm{dVal}(c) \leqslant \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	3-EXPTIME	?

Property of divergence All SCCs of the WTG contain only cycles with a weight $\leqslant-1$ or $\geqslant 1$

PSPACE lower bound
The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG $c \mapsto \operatorname{Val}(c)$ is computable in exponential time

- Back-time algorithm: compute $c \mapsto \operatorname{Val}(c)$ from $x=1$ to 0
- Value iteration algorithm: deterministic value is a fixed point of a given operator

Problems on weighted timed games

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

Problems on weighted timed games

> Decidability for
> 1-clock WTG

Trading memory with probabilities

Robust optimal strategies

Problems on weighted timed games

Decidability for
1-clock WTG

Software prototype for 1-clock WTG

Trading memory with probabilities

Robust optimal strategies

Problems on weighted timed games

Software prototype for 1-clock WTG

Trading memory with probabilities

Robust optimal strategies

Problems on weighted timed games

Trading memory with probabilities

Robust optimal strategies

Problems on weighted timed games

Trading memory with probabilities

Robust optimal strategies

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Stochastic strategies

Stochastic strategy

Distribution over possible choices

Stochastic strategies

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution

Stochastic strategies

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a: infinite distribution
[^2]
Stochastic strategies

From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a: infinite distribution
[^3]
Stochastic strategies

From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

- a: choose t with $\mathcal{U}([0,1))$

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a: infinite distribution
[^4]
Stochastic strategies

From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

- a: choose t with $\mathcal{U}([0,1))$
- b: choose t with $\delta_{1.5}$

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a: infinite distribution
[^5]
Stochastic strategies

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a : infinite distribution

From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

- a: choose t with $\mathcal{U}([0,1))$
- b: choose t with $\delta_{1.5}$

Stochastic strategies

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a : infinite distribution

From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

- a: choose t with $\mathcal{U}([0,1))$
- b: choose t with $\delta_{1.5}$

When we fix two strategies

- Infinite Markov Chain

Stochastic strategies

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a: infinite distribution

From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

- a: choose t with $\mathcal{U}([0,1))$
- b: choose t with $\delta_{1.5}$

When we fix two strategies

- Infinite Markov Chain
- Replace $\boldsymbol{\operatorname { c o s t }}(\operatorname{Play}(c, \eta, \theta))$ by $\mathbb{E}_{c}^{\eta, \theta}$ (cost)

Stochastic strategies

From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

- a: choose t with $\mathcal{U}([0,1))$
- b: choose t with $\delta_{1.5}$

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a: infinite distribution

Stochastic strategies

From $\left(\ell_{1},\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
Choose between a or b with $\mathcal{B}\left(\frac{1}{2}\right)$

- a: choose t with $\mathcal{U}([0,1))$
- b: choose t with $\delta_{1.5}$

Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution
2. Delay for a: infinite distribution

Stochastic values

Stochastic values

Stochastic values

$$
\mathrm{Val}=\inf _{\eta} \sup _{\theta} \mathbb{E}_{c}^{\eta, \theta}(\text { cost })
$$

Stochastic values

Stochastic values

Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

Stochastic values

Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

$$
\mathrm{dVal}=\mathrm{Val}=\mathrm{mVal}
$$

Stochastic values

Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

$$
\mathrm{dVal}=\mathrm{Val}=\mathrm{mVal}
$$

- 0-clock weighted timed games

Stochastic values

Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

$$
\mathrm{dVal}=\mathrm{Val}=\mathrm{mVal}
$$

- 0-clock weighted timed games
- divergent weighted timed games

Trading memory with probabilities

dVal

mVal

Trading memory with probabilities
\square Max

dVal

mVal

Trading memory with probabilities

\square Max

Trading memory with probabilities

\square Max

Trading memory with probabilities

\square Max

- Max has a best response deterministic memoryless strategy: τ

Trading memory with probabilities

\square Max

- Max has a best response deterministic memoryless strategy: τ

Trading memory with probabilities

\square Max

- Max has a best response deterministic memoryless strategy: τ

Problems on weighted timed games

Trading memory with probabilities

Robust optimal strategies

Problems on weighted timed games

Definition of
stochastic values
Trading memory with probabilities

Robust optimal strategies

Problems on weighted timed games


```
Definition of
stochastic values
```

> Memory is useless in divergent WTG and 0-clock WTG

Trading memory with probabilities

Robust optimal strategies

\(\left.\begin{array}{l}Definition of

stochastic values\end{array}\right]\)| Memory is useless in |
| :--- |
| divergent WTG and |
| 0-clock WTG |

Problems on weighted timed games

Decidability for 1-clock WTG

Software prototype for 1-clock WTG

Probabilities are useless in 1-clock WTG, divergent WTG, and 0-clock WTG

Robust optimal strategies

Problems on weighted timed games

Fixpoint characterisation	Deterministic value problem
Switching strategies in divergent WTG	

Decidability for 1-clock WTG

Software prototype for 1-clock WTG

Probabilities are useless in 1-clock WTG, divergent WTG, and 0-clock WTG

Robust optimal strategies

Robustness in weighted timed games

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation:

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

- δ is fixed and known

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

- δ is fixed and known

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

- δ is fixed and known

$$
\mathrm{rVal}^{\delta}(c)=\inf _{\delta-\text {-robust }}^{\chi} \sup _{\delta}^{\delta \text {-robust }} \boldsymbol{\operatorname { c o s t }}(\operatorname{Play}(c, \chi, \zeta))
$$

0
Encoding fixed- δ semantics into exact one

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

- δ is fixed and known

$$
\mathrm{rVal}^{\delta}(c)=\inf _{\delta-\text {-robust }}^{\chi} \sup _{\delta}^{\delta \text {-robust }} \boldsymbol{\operatorname { c o s t }}(\operatorname{Play}(c, \chi, \zeta))
$$

(Encoding fixed- δ semantics into exact one
Need a new clock

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

- δ is fixed and known
$-\delta$ tends to 0
$\mathrm{rVal}^{\delta}(c)=\inf _{\substack{\chi \\ \delta \text {-robust }}}^{\sup _{\delta}^{\zeta} \text {-robust }} \boldsymbol{\operatorname { c o s t } (\operatorname { P l a y } (c , \chi , \zeta))}$
(Encoding fixed- δ semantics into exact one
Need a new clock

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

- δ is fixed and known

- δ tends to 0
$\operatorname{rVal}(c)=\lim _{\substack{\delta \rightarrow 0 \\ \delta>0}} \operatorname{rVal}^{\delta}(c)$

Encoding fixed- δ semantics into exact one
Need a new clock

Robustness in weighted timed games

Give to Max the power to perturb the delay chosen by Min

Robust semantics
Check the guard after the perturbation: $\forall \varepsilon \in[0, \delta], \nu+t+\varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

- δ is fixed and known

Encoding fixed- δ semantics into exact one

- δ tends to 0

$$
\operatorname{rVal}(c)=\lim _{\substack{\delta \rightarrow 0 \\ \delta>0}} \operatorname{rVal}^{\delta}(c)
$$

(rVal^{δ} is monotonic in δ

Need a new clock

Robust value problems

Deciding if $\mathrm{rVal}{ }^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

Robust value problems

Deciding if $\mathrm{rVal}^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG			
rVal^{δ}	undecidable			
rVal	undecidable			

Robust value problems

Deciding if $\mathrm{Val}^{\delta}(c)$ (resp. $\left.\mathrm{rVal}(c)\right)$ is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable			
rVal	undecidable			

Robust value problems

Deciding if $\mathrm{rVal}^{\delta}(c)(r e s p . \operatorname{rVal}(c))$ is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable	in	decidable (in \mathbb{N})	
rVal	undecidable	in		

Robust value problems

Deciding if $\mathrm{rVal}^{\delta}(c)(r e s p . \operatorname{rVal}(c))$ is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$\mathrm{rVal}{ }^{\delta}$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	15	15	1 ?

Robust value problems

Deciding if $\mathrm{Val}^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal $^{\delta}$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Robust value problems

Deciding if $\mathrm{Val}^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal $^{\delta}$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG A combination of two existing methods

Robust value problems

Deciding if $\mathrm{Val}^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	$\mathbf{N}^{\boldsymbol{\delta}}$	

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Robust value problems

Deciding if $\mathrm{Val}^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	$\mathbf{N}^{\boldsymbol{\delta}}$	

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
 A combination of two existing methods

Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

Robust value problems

Deciding if $\mathrm{rVal}{ }^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	$\mathbf{N}^{\boldsymbol{\delta}}$	

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Shrinking timed automata, O. Sankur, P. Bouyer, and N. Markey, 2011, FSTTCS

Robust value problems

Deciding if $\mathrm{Val}^{\delta}(c)$ (resp. $\left.\mathrm{rVal}(c)\right)$ is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	il	

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Cells

$$
\begin{aligned}
& y=\sum_{i} a_{i} x_{i}+b
\end{aligned}
$$

Shrunk cells
Shrunk DBM

Robust value problems

Deciding if $\mathrm{rVal}^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	$\mathbf{N}^{\boldsymbol{\delta}}$	

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Shrunk DBM

Robust value problems

Deciding if $\mathrm{rVal}^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	il	

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Cells

$$
y=\sum_{i} a_{i} x_{i}+b
$$

Shrunk cells
$y=\sum_{i} a_{i} x_{i}+b+c \delta$

Shrunk DBM

Robust value problems

Deciding if $\mathrm{rVal}^{\delta}(c)$ (resp. $\mathrm{rVal}(c)$) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
rVal^{δ}	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	decidable	$\mathbb{N}^{\boldsymbol{\delta}}$

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Cells

$$
y=\sum_{i} a_{i} x_{i}+b
$$

Shrunk cells
$y=\sum_{i} a_{i} x_{i}+b+c \delta$

Shrunk DBM

Problems on weighted timed games

Decidability for
1-clock WTG

Software prototype for 1-clock WTG

Definition of
stochastic values
Memory is useless in divergent WTG and 0-clock WTG

Trading memory with probabilities

Probabilities are useless in 1-clock WTG, divergent WTG, and 0-clock WTG

Robust optimal strategies

Problems on weighted timed games

Decidability for
1-clock WTG

Software prototype for 1-clock WTG

Definition of
stochastic values
Memory is useless in divergent WTG and 0-clock WTG

Probabilities are useless in 1-clock WTG, divergent WTG, and 0-clock WTG

Robust optimal strategies

Problems on weighted timed games

Decidability for 1-clock WTG

Software prototype for 1-clock WTG

Definition of
stochastic values
Memory is useless in divergent WTG and 0-clock WTG

Probabilities are useless in 1-clock WTG, divergent WTG, and 0-clock WTG

Robust optimal strategies

$$
\begin{aligned}
& \text { Decidability of } \\
& \mathrm{rVal}(c)<+\infty \text { in } \\
& \text { all WTGs }
\end{aligned}
$$

Problems on weighted timed games

Decidability for 1-clock WTG

Software prototype for 1-clock WTG

Definition of
stochastic values
Memory is useless in divergent WTG and 0-clock WTG

Definition of robust values

Computing robust values in divergent (and acyclic) WTG

Probabilities are useless in 1-clock WTG, divergent WTG, and 0-clock WTG

Robust optimal strategies

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Why?

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)
1 Why the specification does not hold in the counterexample?

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)
1 Why the specification does not hold in the counterexample?

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)
Why the specification does not hold in the counterexample?

Counterfactual causality
\neg Cause (in the system) implies \neg Effect (in closed execution)

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Why the specification does not hold in the counterexample?

Counterfactual causality
\neg Cause (in the system) implies \neg Effect (in closed execution)

Definition (GandALF'23): Definition of counterfactual causes in transitions systems and games

Counterfactual causality

Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

Why the specification does not hold in the counterexample?

Counterfactual causality
\neg Cause (in the system) implies \neg Effect (in closed execution)

Definition (GandALF'23): Definition of counterfactual causes in transitions systems and games

Using distance over executions (strategies) to define close

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis
Produce $w \in(A \times B \times \mathbb{Q} \geqslant 0)^{\omega}$

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis
Produce $w \in(A \times B \times \mathbb{Q} \geqslant 0)^{\omega}$

Existence winning strategy		

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis
Produce $w \in(A \times B \times \mathbb{Q} \geqslant 0)^{\omega}$

Existence winning strategy	wins \Leftrightarrow	

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis
Produce $w \in(A \times B \times \mathbb{Q} \geqslant 0)^{\omega}$

Existence	wins	wins winning strategy
		$w \in \mathcal{L}(\mathcal{A})$

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis
Produce $w \in(A \times B \times \mathbb{Q} \geqslant 0)^{\omega}$

Existence	\Leftrightarrow wins	wins
winning		
strategy	$w \in \mathcal{L}(\mathcal{A})$	$w \in \mathcal{L}(\mathcal{A})$
\mathcal{L}		

Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis
Produce $w \in(A \times B \times \mathbb{Q} \geqslant 0)^{\omega}$

Existence winning strategy	$\begin{aligned} & \text { wins } \\ & \Leftrightarrow \\ & w \in \mathcal{L}(\mathcal{A}) \end{aligned}$	$\begin{gathered} \text { wins } \\ \Leftrightarrow \\ w \in \mathcal{L}(\mathcal{A}) \end{gathered}$
0	$\sqrt{18}$	11
耑	Undecidable	15

[^6]
Timed Church synthesis (work on progress)

Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Church synthesis
Produce $w \in(A \times B \times \mathbb{Q} \geqslant 0)^{\omega}$

Existence winning strategy	$\begin{aligned} & \mathcal{W} \text { wins } \\ & \Leftrightarrow \\ & w \in \mathcal{L}(\mathcal{A}) \end{aligned}$	wins $\begin{aligned} & \quad \Leftrightarrow \\ & w \in \stackrel{\mathcal{L}}{ }(\mathcal{A}) \end{aligned}$
0	Undecidable	Undecidable
昆	Undecidable	Undecidable

How to synthesis a real-time system usable in the real word?

How to synthesis a real-time system usable in the real word?
Memory from the specification

How to synthesis a real-time system usable in the real word?

Memory from the specification
Decidable classes for timed Church synthesis

How to synthesis a real-time system usable in the real word?

Memory from the specification
Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis
Determinacy

- Reduce expressiveness of winning condition
- Reduce power of one player

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy

Memory versus clocks without memory

- New algorithms to solve games

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy

Memory versus clocks without memory

- New algorithms to solve games

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Robustness

Synthesis of robust systems
\qquad

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

Synthesis of robust systems

- Parametric timed automata

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

Synthesis of robust systems

- Parametric timed automata
- Stochastic robustness

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

Synthesis of robust systems

- Parametric timed automata
- Stochastic robustness

How to synthesis a real-time system usable in the real word?

Memory from the specification

Decidable classes for timed Church synthesis

- Reduce expressiveness of winning condition
- Reduce power of one player

Determinacy
Deterministic separability for timed automata

Emulate the memory

Memory versus probabilities

- Characterisation of winning strategy without memory
- New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

Synthesis of robust systems

- Parametric timed automata
- Stochastic robustness

Thank you. Questions?

[^0]: On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction, L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao, 2008, Theory of Computing Systems
 Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

[^1]: Almost optimal strategies in one clock priced timed games, P. Bouyer, K. Larsen, N. Markey, and J. Rasmussen, 2006, FSTTCS
 Two-Player Reachability-Price Games on Single Clock Timed Automata., M. Rutkowski, 2011, QAPL
 A Faster Algorithm for Solving One-Clock Priced Timed Games, T. Dueholm Hansen, R. Ibsen-Jensen, and P. Bro Miltersen, 2013, CONCUR

[^2]: Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

[^3]: Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

[^4]: Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

[^5]: Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

[^6]: Timed Games and Deterministic Separability, L. Clemente, S. Lasota, and R. Piórkowski, 2020, ICALP

