
Weighted Timed Games:
Decidability, Randomisation and Robustness

Julie Parreaux

University of Warsaw

Séminaire M2F

Joint work with Benjamin Monmege and Pierre–Alain Reynier

Correctness and performance of real-time systems

2/17

Verification

φ

yes

no

Correctness and performance of real-time systems

2/17

Verification

φ

yes

no

Synthesis

φ

Correctness and performance of real-time systems

2/17

Verification

φ

yes

no

Synthesis

φ

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
x 7→ 0
y 7→ 0

]
)

0.5, a−−−−→

(ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→

(ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→

(ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

+ +

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

1 × 0.5 +

0 + +

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

1 × 0.5 + 0 + +

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)⇝ −

8
3

1 × 0.5 + 0 −2 × 1.25−1 1 × 1
3 + 0+ +

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Deterministic strategy
Choose an edge and a delay

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Deterministic strategy
Choose an edge and a delay

From (ℓ1,

[
0
0

]
)

Choose a with t = 1
3

Weighted Timed Games

3/17

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Deterministic strategy
Choose an edge and a delay

From (ℓ1,

[
0
0

]
)

Choose a with t = 1
3

What features on strategies are needed for Min?

Features on strategies needed for Min

4/17

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

,

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

0

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

−1

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

−2

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:

▶ σ1: reach cycle with a weight ⩽ −1

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Features on strategies needed for Min

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Features on strategies needed for Min

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Features on strategies needed for Min

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Infinite precision
From ℓ0, Min wants to reach the valuation 2/3

▶ if x ⩽ 2/3: Min plays 2/3−x

Features on strategies needed for Min

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Infinite precision
From ℓ0, Min wants to reach the valuation 2/3
▶ if x ⩽ 2/3: Min plays 2/3−x

Features on strategies needed for Min

4/17

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Infinite precision
From ℓ0, Min wants to reach the valuation 2/3
▶ if x ⩽ 2/3: Min plays 2/3−x
▶ otherwise, Min plays 0

Problems on weighted timed games

5/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Problems on weighted timed games

5/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Problems on weighted timed games

5/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Problems on weighted timed games

5/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

On Optimal Timed Strategies, T. Brihaye, V. Bruyère and J.-F. Raskin, 2005, FORMATS

Adding Negative Prices to Priced Timed Games, T. Brihaye, G. Geeraerts, S. Krishna, L. Manasa, B. Monmege, and
A. Trivedi, 2014, CONCUR

6/17

WTG

0-clock divergent 1-clock

N undecidable

PTIME EXPTIME EXPTIME

Z undecidable

pseudo-polynomial 3-EXPTIME

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

WTG 0-clock

divergent 1-clock

N undecidable

PTIME EXPTIME EXPTIME

Z undecidable

pseudo-polynomial 3-EXPTIME

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction, L. Khachiyan, E. Boros, K. Borys, K.
Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao, 2008, Theory of Computing Systems

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G.
Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

6/17

WTG 0-clock

divergent 1-clock

N undecidable PTIME

EXPTIME EXPTIME

Z undecidable pseudo-polynomial

3-EXPTIME

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

WTG 0-clock divergent

1-clock

N undecidable PTIME

EXPTIME EXPTIME

Z undecidable pseudo-polynomial

3-EXPTIME

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP

Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.l Fleury, and K. Larsen, 2004, FSTTCS

Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier,
2017, FOSSACS

6/17

WTG 0-clock divergent

1-clock

N undecidable PTIME

EXPTIME EXPTIME

Z undecidable pseudo-polynomial

3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP

Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.l Fleury, and K. Larsen, 2004, FSTTCS

Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier,
2017, FOSSACS

6/17

WTG 0-clock divergent

1-clock

N undecidable PTIME EXPTIME

EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME

EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

Almost optimal strategies in one clock priced timed games, P. Bouyer, K. Larsen, N. Markey, and J. Rasmussen,
2006, FSTTCS

Two-Player Reachability-Price Games on Single Clock Timed Automata., M. Rutkowski, 2011, QAPL

A Faster Algorithm for Solving One-Clock Priced Timed Games, T. Dueholm Hansen, R. Ibsen-Jensen, and P. Bro
Miltersen, 2013, CONCUR

6/17

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

One-Clock Priced Timed Games are PSPACE-hard., J. Fearnley, R. Ibsen-Jensen, and R. Savani, 2020, LICS

6/17

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG
c 7→ Val(c) is computable in exponential time

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG
c 7→ Val(c) is computable in exponential time

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

6/17

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial 3-EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG
c 7→ Val(c) is computable in exponential time

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0
▶ Value iteration algorithm: deterministic value is a fixed point of a given operator

Problems on weighted timed games

7/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

7/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

7/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

7/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

7/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

7/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

Stochastic strategies

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies

Stochastic strategies

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies
▶ Infinite Markov Chain

Stochastic strategies

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies
▶ Infinite Markov Chain
▶ Replace cost(Play(c, η, θ)) by Eη,θ

c (cost)

Stochastic strategies

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies
▶ Infinite Markov Chain
▶ Replace cost(Play(c, η, θ)) by Eη,θ

c (cost)

Measurability conditions on η and θ

Stochastic strategies

8/17

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies
▶ Infinite Markov Chain
▶ Replace cost(Play(c, η, θ)) by Eη,θ

c (cost)

Measurability conditions on η and θ

Stochastic values

9/17

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Stochastic values

9/17

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Stochastic values

9/17

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Stochastic values

9/17

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Stochastic values

9/17

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Theorem (CONCUR’20, ICALP’21): Trading memory with probabilities

▶ 0-clock weighted timed games

Stochastic values

9/17

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Theorem (CONCUR’20, ICALP’21): Trading memory with probabilities
dVal = Val = mVal

▶ 0-clock weighted timed games

Stochastic values

9/17

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Theorem (CONCUR’20, ICALP’21): Trading memory with probabilities
dVal = Val = mVal

▶ 0-clock weighted timed games

Stochastic values

9/17

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Theorem (CONCUR’20, ICALP’21): Trading memory with probabilities
dVal = Val = mVal

▶ 0-clock weighted timed games ▶ divergent weighted timed games

Trading memory with probabilities

10/17

dVal mVal
⩾

⟨σ1, σ2,K ⟩ ηp
Switching

strategy

Randomisation emulates memory

Trading memory with probabilities

10/17

dVal mVal
⩾

⟨σ1, σ2,K ⟩ ηp
Switching

strategy

Randomisation emulates memory

c0 c1

,

−1

−10

0

0

p,0

1−p,0

Min Max

Trading memory with probabilities

10/17

dVal mVal
⩾

⟨σ1, σ2,K ⟩ ηp
Switching

strategy

Randomisation emulates memory

c0 c1

,

−1

−10

0

0

p,0

1−p,0

Min Max

Trading memory with probabilities

10/17

dVal mVal
⩾

⟨σ1, σ2,K ⟩ p × σ1 + (1−p)× σ2
Switching

strategy

Randomisation emulates memory

c0 c1

,

−1

−10

0

0

p,0

1−p,0

Min Max

Trading memory with probabilities

10/17

dVal mVal
⩾

⟨σ1, σ2,K ⟩ p × σ1 + (1−p)× σ2
Switching

strategy

Randomisation emulates memory

c0 c1

,

−1

−10

0

0

p,0

1−p,0

▶ Max has a best response deterministic
memoryless strategy: τ

Min Max

Trading memory with probabilities

10/17

dVal mVal
⩾

⟨σ1, σ2,K ⟩ p × σ1 + (1−p)× σ2
Switching

strategy

Randomisation emulates memory

c0

−10

c1

−10

,
0

−1

−10

0

0

p,0

1−p,0

▶ Max has a best response deterministic
memoryless strategy: τ

9
10 1 p

mValηp (c1)

0

−9

−10

+∞

Min Max

Trading memory with probabilities

10/17

dVal mVal
⩾

⟨σ1, σ2,K ⟩ p × σ1 + (1−p)× σ2
Switching

strategy

Randomisation emulates memory

c0

−10

c1

−10

,
0

−1

−10

0

0

p,0

1−p,0

▶ Max has a best response deterministic
memoryless strategy: τ

9
10 1 p

mValηp (c1)

0

−9

−10

+∞

Min Max

Problems on weighted timed games

11/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Problems on weighted timed games

11/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Problems on weighted timed games

11/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Problems on weighted timed games

11/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Problems on weighted timed games

11/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Robustness in weighted timed games

12/17

ν

ν + t + ε

ν + t
t

δ > 0

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation:

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known ▶ δ tends to 0

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known

▶ δ tends to 0

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known

▶ δ tends to 0

rValδ(c) = inf
χ

δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known

▶ δ tends to 0

rValδ(c) = inf
χ

δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Encoding fixed-δ semantics into exact one

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known

▶ δ tends to 0

rValδ(c) = inf
χ

δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Encoding fixed-δ semantics into exact one

Need a new clock

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known ▶ δ tends to 0

rValδ(c) = inf
χ

δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Encoding fixed-δ semantics into exact one

Need a new clock

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known ▶ δ tends to 0

rValδ(c) = inf
χ

δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

rVal(c) = lim
δ→0
δ>0

rValδ(c)

Encoding fixed-δ semantics into exact one

Need a new clock

Robustness in weighted timed games

12/17

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robust semantics
Check the guard after the perturbation: ∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known ▶ δ tends to 0

rValδ(c) = inf
χ

δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

rVal(c) = lim
δ→0
δ>0

rValδ(c)

rValδ is monotonic in δEncoding fixed-δ semantics into exact one

Need a new clock

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Robust Weighted Timed Automata and Games, P. Bouyer, N. Markey, and O. Sankur, 2013, FORMATS

13/17

WTG

acyclic divergent 1-clock

rValδ undecidable

decidable decidable decidable (in N)

rVal undecidable

decidable decidable

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

WTG acyclic divergent 1-clock

rValδ undecidable

decidable decidable decidable (in N)

rVal undecidable

decidable decidable

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Revisiting Robustness in Priced Timed Game, S. Guha, S. Krishna, L. Manasa, and A. Trivedi, 2015, FSTTCS

13/17

WTG acyclic divergent 1-clock

rValδ undecidable

decidable decidable

decidable (in N)

rVal undecidable

decidable decidable

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable

decidable decidable

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Shrinking timed automata, O. Sankur, P. Bouyer, and N. Markey, 2011, FSTTCS

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Shrunk cells

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Shrunk cells
y =

∑
i ai xi + b

+ c δ

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Shrunk cells
y =

∑
i ai xi + b + c δ

x1

x2

0 2
0

1

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

13/17

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Shrunk cells
y =

∑
i ai xi + b + c δ

x1

x2

0 2
0

1

Problems on weighted timed games

14/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Definition of

robust values Decidability of

rVal(c) < +∞ in

all WTGs
Computing robust

values in divergent

(and acyclic) WTG

Problems on weighted timed games

14/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Definition of

robust values Decidability of

rVal(c) < +∞ in

all WTGs
Computing robust

values in divergent

(and acyclic) WTG

Problems on weighted timed games

14/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Definition of

robust values Decidability of

rVal(c) < +∞ in

all WTGs
Computing robust

values in divergent

(and acyclic) WTG

Problems on weighted timed games

14/17

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Definition of

robust values Decidability of

rVal(c) < +∞ in

all WTGs
Computing robust

values in divergent

(and acyclic) WTG

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Why?

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Why?

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Why the specification does not hold in the counterexample?

Why?

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Why the specification does not hold in the counterexample?

Why?

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Why the specification does not hold in the counterexample?

Why?

Counterfactual causality
¬Cause (in the system) implies ¬Effect (in closed execution)

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Why the specification does not hold in the counterexample?

Why?

Counterfactual causality
¬Cause (in the system) implies ¬Effect (in closed execution)

Definition (GandALF’23): Definition of counterfactual causes in transitions
systems and games

Counterfactual causality
Joint work with Christel Baier and Jakob Piribauer at Dresden (Germany)

15/17

Why the specification does not hold in the counterexample?

Why?

Counterfactual causality
¬Cause (in the system) implies ¬Effect (in closed execution)

Definition (GandALF’23): Definition of counterfactual causes in transitions
systems and games

Using distance over executions (strategies) to define close

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis
Produce w ∈ (A × B × Q⩾0)

ω

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis
Produce w ∈ (A × B × Q⩾0)

ω

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Existence

wins wins

winning

⇔

strategy

w ∈ L(A) w ∈ L(A)

Undecidable Undecidable

Undecidable Undecidable

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis
Produce w ∈ (A × B × Q⩾0)

ω

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Existence wins

wins

winning ⇔

⇔

strategy w ∈ L(A)

w ∈ L(A)

Undecidable Undecidable

Undecidable Undecidable

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis
Produce w ∈ (A × B × Q⩾0)

ω

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Existence wins wins

winning ⇔ ⇔
strategy w ∈ L(A) w ∈ L(A)

Undecidable Undecidable

Undecidable Undecidable

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis
Produce w ∈ (A × B × Q⩾0)

ω

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Existence wins wins

winning ⇔ ⇔
strategy w ∈ L(A) w ∈ L(A)

Undecidable Undecidable

Undecidable Undecidable

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

Timed Games and Deterministic Separability, L. Clemente, S. Lasota, and R. Piórkowski, 2020, ICALP

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis
Produce w ∈ (A × B × Q⩾0)

ω

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Existence wins wins

winning ⇔ ⇔
strategy w ∈ L(A) w ∈ L(A)

Undecidable Undecidable

Undecidable

Undecidable

Timed Church synthesis (work on progress)
Joint work with Sławomir Lasota at Warsaw (Poland)

16/17

φ

A

a

a
x := 0

a

a
x = 1

Timed Church synthesis
Produce w ∈ (A × B × Q⩾0)

ω

A ×Q⩾0

B

(a1, t1)

b1

(a2, t2)

b2

· · ·

· · ·

Existence wins wins

winning ⇔ ⇔
strategy w ∈ L(A) w ∈ L(A)

Undecidable Undecidable

Undecidable Undecidable

How to synthesis a real-time system usable in the real word?

17/17

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis

▶ Reduce expressiveness of winning condition

▶ Reduce power of one player

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition

▶ Reduce power of one player

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities

▶ Characterisation of winning strategy
without memory

▶ New algorithms to solve games

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory

▶ New algorithms to solve games

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

Memory versus clocks

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

Memory versus clocks

Memory versus control

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness
Synthesis of robust systems

▶ Parametric timed automata

▶ Stochastic robustness

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness
Synthesis of robust systems
▶ Parametric timed automata

▶ Stochastic robustness

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness
Synthesis of robust systems
▶ Parametric timed automata
▶ Stochastic robustness

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness
Synthesis of robust systems
▶ Parametric timed automata
▶ Stochastic robustness

Quantify the robustness of a system

How to synthesis a real-time system usable in the real word?

17/17

Memory from the specification

Decidable classes for timed Church synthesis
▶ Reduce expressiveness of winning condition
▶ Reduce power of one player

Determinacy

Deterministic separability
for timed automata

Emulate the memory

Memory versus probabilities
▶ Characterisation of winning strategy

without memory
▶ New algorithms to solve games

Memory versus clocks

Memory versus control

Robustness
Synthesis of robust systems
▶ Parametric timed automata
▶ Stochastic robustness

Quantify the robustness of a system

Thank you. Questions?

