Model checking for trains

Benjamin Bordais, Thomas Mari, Julie Parreaux supervised by Nathalie Bertrand, Loïc Hélouët, Ocan Sankur

ENS Rennes

28 janvier 2018

Every day, millions of people take the train !

- Unpredictable events may cause some delays, we need to catch them up.
- This is done by adapting the speed profile of each train.
- Regulation policy : automatic tool that gives instructions in real time when changes occur in the traffic.

- Need to check effectiveness of regulation policies
- Model checkers : help in the evaluation of regulation policies
- They need a formal model

We need a formal model to represent rail networks.

Need for randomness

Delays are unpredictable and conveniently represented through probabilities.

Need for nondeterminism

Trains can accelerate or slow down. These changes of speed need to be depicted by our model.

Model : Markov Decision Process (MDP)

Regulation policy

Regulation policy : choose the speed of train according to the state of the system.

- A regulation policy resolves the nondeterminism of an MDP
- The model induced by an MDP and a policy is a Discrete Time Markov Chain (DMTC)

Discrete Time Markov Chain (DTMC)

Benjamin Bordais, Thomas Mari, Julie Parreaux Model checking for trains

Topology

- Real system are often too complex for formalization
- The simpler the system, the simpler the model !
- First, we study a ring system

Space and Time Discretization

Real system = continuous \neq discrete = model. Time, space are discretized.

- Step by step evolution : at each time step a transition is taken
- States = stations.
 Distance between two stations = number of intermediate points

A toy example

PCTL logic

The PCTL¹² logic uses sevral connectors :

- The usual connectors of propositional logic
- Temporal connectors :
 - Next : X φ
 - Eventually : $F \phi$
 - Bounded eventually : $F^{\leq n} \phi$
- A probabilistic connector : P_{α p} with α ∈ {≤, <, ≥, >} and p ∈ [0, 1]

^{1.} A logic for reasoning about time and reliability, Hanson et al., 1994

^{2.} Automatic Verification of Finite-state Concurrent Systems Using Temporal Logic Specifications, Clarke et al., 1986

• Two trains never collide :

$$\phi = P_{\leq 0}(F \ \phi_{\textit{collision}})$$

 If a train has some delays it will catch it up within 10 steps with a high probability :

$$\phi = \phi_{delay} \Rightarrow P_{\geq 0.9}(F^{\leq 10} \neg \phi_{delay})$$

Model checking

Automatic tools : prove that a model with its regulation policy satisfies requirements. Model-checkers PRISM³ and Storm⁴ :

- Check that a model verifies some properties
- Synthesize a regulation policy that meets some properties

^{3.} PRISM 4.0 : Verification of Probabilistic Real-time Systems, Kwiatkowska et al. 2011

^{4.} A storm is Coming : A Modern Probabilistic Model Checker, Dehnert et al., 2017

Abstraction

Model-checkers can only work on model of reasonable size. Principle : reduce the size of models, possibly with a loss of precision

We need to use an abstraction technique such as :

- Three-valued abstraction⁵
- Game-based abstraction ⁶

^{5.} On Abstraction of Probabilistic Systems, Dehnert et al., 2012

^{6.} Game-based Abstraction for Markov Decision Processes, Kwiatkowska et al., 2006

The three-valued abstraction

Does the formula $P_{\leq 0.6}(X \text{ goal})$ hold in this MDP?

- Adapt probabilities for a more accurate modeling of the real system
- Trade off discretization // accuracy
- Use an existing abstraction or design a new one
- Synthesize a policy with a model checker
- Consider a more complex topology