
1

Model checking rail networks
Benjamin Bordais, Thomas Mari, Julie Parreaux

Abstract

Rail systems are particularly sensitive to unexpected delays
or random events. They are often equipped with timetables that
describe the expected behavior of the system. To stick to this
timetable, rail systems are equipped with regulation policies
that give instructions in real time when changes occur in the
traffic. In this report, we consider how tools such as model
checkers can help in the design and evaluation of regulation
policies. Usually, these tools work with formal models of rail
system. Therefore, our purpose is to properly model a rail
system and to analyze and generate regulation policies on this
model.

Keywords : Rail system; Model checking; Abstract model.

I. INTRODUCTION

Rail systems are particularly sensitive to unexpected delays or
random events. They are often equipped with timetables that describe
the expected behavior of the system. To stick to this timetable, rail
systems are equipped with regulation policies that give instructions
in real time when changes occur in the traffic. For such a policy to
be efficient, it has to operate in real time. Therefore, the regulation
policy needs to precisely determine how each train has to react in
any possible situation. Once a policy is designed, it is important to
assess its performance, that is its efficiency at enforcing timetable
realization. Such a verification is too complex to be done by human.
One of the techniques that could be used is model checking. Basically,
given a mathematical model and a logical formula describing the re-
quirements, model checking checks if the model satisfies the formula.
In this work, we will consider verification of models describing rail
systems.

We want to model a real rail system. In this system, some
delays may occur at each movement of the trains. These events
are unpredictable, and conveniently represented through probabilities.
That is why, in our model, we need to have some probabilities.
Moreover, trains can accelerate or decelerate. These possibilities need
to be taken into account using nondeterminism. A popular model that
contains both probabilities and nondeterminism is Markov Decision
Process [1] (MDP for short). Rail systems will be modeled as MDPs.
It is also a discrete model, that means that, in our model, we will
need to discretize time and space.

A real rail system ensures safety measures independently of any
regulation policy. Hence, a model of a rail system needs to take this
aspect into account [2]. Typically, the fact that it is impossible for
two trains to collide is a necessary condition and that impossibility
needs to appear in the model. That is only when safety measures are
guaranteed, that we can study regulation policies.

A regulation policy consists in making trains accelerate or slow
down according to the current state and the events that already
occurred in the system. So, once we have a model of the system,
we may want to test the efficiency of a policy. Another possibility
to ensure the efficiency of the implemented regulation policy is to
generate it automatically from the system specification so that it meets
the desired guarantees.

Once a regulation policy is designed (whether it is automatically
generated or defined by ourselves), we need to ensure that this policy
respects some desired properties. For example, if a train is delayed,
with a high probability, at some point in the future it will be on
time. The most suitable logic to express this kind of properties is the
Probabilistic Computational Tree Logic [3] [4] (PCTL in short).

The automatic tools we use for verification are model checkers. The
most adequate model checkers to work on MDP and PCTL logic are
PRISM [5] and Storm [6]. However, as any model checker, PRISM
and Storm can only handle models of reasonable size. That is why
we often have to abstract our modelization [7] [8] of the rail system.
In counterpart, with an abstraction, we may lose in precision.

Our objective is to evaluate the performance of regulation policies
on a real rail system. First, we need to build a model of the rail
system. Then, once the correctness of the model is established (that
is, the safety measures are respected), we can study a regulation
policy, automatically generated or that we have defined ourselves. To
do that, we will need model checkers, PRISM and Storm, to prove
that the desired properties are enforced. For model checkers to scale
correctly, we may have to abstract our model to simplify it.

This report is organized as follows : Section 2 provides a review
of the notion of Markov Decision Process. Section 3 introduces
our approach of the problem and the abstraction we consider. We
conclude in Section 4.

II. STATE OF THE ART

A. MDPs : Markov Decision Process

We introduce the notion of Discrete-Time Markov Chain which
can be seen as a directed graph, in which vertices represent the state
of the system, and the transitions represent the probability to change
states.

Definition 1. A Discrete-Time Markov Chain (DTMC) is a Tuple
D = (S, s, P, AP, L) where

• S is a finite non-empty set of states,
• s is an initial state
• P : S× S → [0, 1] is a transition probability matrix such that
∀s ∈ S, ∑s′∈S P(s, s′) = 1

• AP is a set of atomic propositions
• L : S → 2AP is a labeling function such that ∀s ∈ S, L(s) is

the subset of AP assigned to s.

Figure 1 represents a DTMC, the probabilities are given by the
matrix P. P(i, j) is the probability to move to state sj when the
system is in state si. These probabilities can be read directly on the
vertices.

We introduce the notion of Markov Decision Process (MDP),
which allows to represent the nondeterministic evolution of a system.
In a given state, an agent can choose an action which yields a
distribution of probabilities for the next transition.



2

P =

 0 1 0
0.7 0 0.3
0.5 0 0.5



s0start

s2

s1
1

0.7
0.3

0.50.5

Figure 1. The DTMC ({s0, s1, s2}, s0, P, {a}, L) with L(s0) = {a} and
L(s1) = L(s2) = ∅

s0start

s2

s1
a : 1

a : 0.7

a : 0.3

a : 0.5

a : 0.5

b : 0.6

b : 0.4

Figure 2. The MDP ({s0, s1, s2}, s0, {a, b}, δ, {a}, L) with L(s0) = {a} and
L(s1) = L(s2) = ∅ avec δ(s, a, s′) = P(s, s′) (from the previous DTMC)
and δ(s1, b, s1) = 0.6, δ(s1, b, s2) = 0.4

Definition 2. A Markov Decision Process (MDP) is a tuple M =
(S, s, αM, δM, AP, L) where

• S, s, AP and L are as for DTMCs.
• αM a finite set of actions
• δM : S× αM × S → [0, 1] where δM(s, α, s′) represents the

probability of going into the state s′ from the state s when action
α is chosen. In addition, we have that for s ∈ S, and α ∈ αM,
∑s′∈S δM(s, α, s′) = 1.

The actions are chosen nondeterministically. A policy allows to
resolve the nondeterminism. At each state, a policy gives the action
to take according to states visited and the actions taken so far.

Definition 3. We define PathM as the set of all sequences s1α1s2α2...
such that ∀i ≥ 0 si ∈ S, αi ∈ αM and P(si, α, si+1) > 0. PathMf in
is the set of finite prefixes of PathM which terminate by a state. A
policy is a function in PathMf in → αM

From an MDP M and a policy σ we can generate a DTMC
Mσ. However, it is not straightforward and we only present here the
case where the policy is memoryless. That is, a policy σ such that
∀m, m′ ∈ PathMf in with last(m) = last(m′) we have σ(m) = σ(m′)
(the choice of the action to take only depends on the current state). We
denote by σ(s) the decision taken by σ when s = last(m). Formally,

with such a policy σ and an MDP M = (S, s, αM, δM, AP, L)
we obtain the DTMC Mσ = (S, s, Pσ, AP, L) with Pσ(s, s′) =
δ(s, σ(s), s′). For example, the DTMC in Figure 1 can be generated
from the MDP in Figure 2 and the (memoryless) policy σ such that
∀m ∈ PathMf in, σ(m) = a.

B. Properties

Once our model is designed, we want to check whether the
system satisfies some properties. One can distinguish situations that
should always occur, and conversely situations that shall be avoided.
Therefore properties are split into two categories. On the one hand,
there are properties that express that a good event will happen (they
are called liveness properties). For instance, the property "if a train
has some delay, it will catch up this delay eventually" is a liveness
property. On the other hand, there are properties that express that
a bad event will not happen (they are called safety properties). The
property "two trains will not collide" is a an example of a safety
property.

It has to be noted that, since our model is probabilistic, some prop-
erties we want to check on our model also need to be probabilistic.
So, it is interesting to have answers that are not Boolean. That is why
we want to be able to weigh our properties by probabilities.

Now, we need a logic to express these properties. In this logic, we
need to be able to express temporal properties (like the fact that an
event may or may not happen). Moreover, it has to allow probabilistic
properties. That is why we use the Probabilistic Computational Tree
Logic (PCTL in short) [3], a probabilistic variant of the branching-
time temporal logic CTL (Computational Tree-Logic) [4]. First, we
have temporal connectors. For example, F φ expresses that at some
point in the future φ is true. In the same way, F≤n φ means that
within n steps, φ will be true. We also have the formula X φ which
means that, at the next step, φ is true. On top of that, the PCTL logic
allows to express that the probability that a formula holds is lower
or higher than a given value. This is expressed by properties of the
form φ = Pα p[ψ] where α ∈ {<,≤,>,≥} and p ∈ [0; 1]. Pα p is
called the external probabilistic connector in the formula φ.

For example, the safety property "two trains will not collide" is
equivalent to "the probability of two trains colliding is equal to 0".
Let φ be a formula expressing that two trains are colliding then the
PCTL formula expressing the above property is P≤0[F φ]. Here is
another example. The property "a train makes up its delay within
10 steps with a high probability" could be described by the PCTL
formula P≥0.9[F≤10 φ] if φ expresses that a train has no delay.

Given a PCTL formula, we want to check whether it holds in our
model. Let us first consider a DTMC D and a PCTL formula without
external probabilistic connector, typically ψ = F φ. We define PD(ψ)
as the probability that ψ holds in the DMTC D. Let us now consider
a PCTL formula, for instance Φ′ = P≤p[F Φ]. The first step consists
in determining the set of states SΦ of the DMTC where Φ is true.
Once this is done, computing the probability that F Φ holds consists
in computing the probability of reaching the set of states SΦ from
an initial state. That computation can be automated. Then Φ′ is true
for the DTMC D if PD(F Φ) ≤ p. This method can be applied to
any PCTL formula. That is, determining if a PCTL formula holds
in a DTMC can be reduced to the computation of the probability of
reaching a set of states.

For example, we implemented the DTMC of Figure 1 in the model-
checker PRISM. This allowed us to compute the probability :

P(F≤10(state = s2)) ' 0.832



3

Hence, the PCTL formula P≥0.8(F≤10(state = s2)) holds in this
DTMC, however P≥0.9(F≤10(state = s2)) does not.

Let us now focus on MDPs. We cannot use the method described
earlier because the probability of reaching a set of states is not yet
defined due to nondeterminism. So, we first need to define a policy
and obtain a DTMC such that the probability of interest becomes
computable. However, according to the policy we choose, we may not
obtain the same result. That is why we need to define a minimum and
maximum probability on MDP satifying a PCTL formula φ without
external probability connector.

Definition 4. Let M be an MDP and φ a PCTL formula without
external probability connector. We define :

PMmin(ψ) = minσ∈PolicyPM
σ
(ψ)

PMmax(ψ) = maxσ∈PolicyPM
σ
(ψ)

where Policy is the set of all policies of the MDP M.

Hence, in a PCTL formula for an MDP, each connector Pα p has
to be changed into either Pmin α p or Pmax α p. Once this change is
done, the satisfiability of a PCTL formula for an MDP is analogous
to the satisfiability for a DTMC.

We implemented the MDP of the figure 2 in PRSIM [5] to compute
the minimum and maximum probability for the same property as
before :

Pmin(F≤10(state = s2)) ' 0.831

Pmax(F≤10(state = s2)) ' 0.989

From this result, we can deduce that, for example, the for-
mula Pmin≥0.8(F≤10(state = s2)) holds for the MDP whereas
Pmax≤0.9(F≤10(state = s2)) does not.

The model checkers we use are PRISM1 [5] and Storm2 [6].
PRISM is easy to use and quite efficient at proving probabilistic
properties on MDP and DTMC. However, it cannot deal with condi-
tional. That is, we cannot express a property of the form P≤0.5(φ1) if
the system remains in path satisfying φ2. For instance, if we want to
know the average number of steps necessary to reach a given set of
states, we do not want to take into account the executions where this
set of states is never reached. PRISM cannot be used in that case.
That is why we also use Storm which is able to compute conditional
probabilities.

Once a policy is designed, model checkers are able to check that
some properties hold with that policy. However, designing a policy
that fulfills our expectations may be tricky. Hopefully, we can also
use model checkers to automatically generate a policy that ensures
some properties. However, we do not know yet how to generate a
policy with both of these tools.

C. Abstraction

When the size of the model is too big, model checkers are not
powerful enough to verify properties. To reduce the size of the model,
we use an abstraction of MDP [7] [8]. An abstraction of an MDP
merges some states of the MDP to reduce their number. We present
two methods of abstraction:

• three-valued abstraction;
• game-based abstraction.

s0start

goal

s10.5

0.5

0.3
0.7

1

Figure 3. A very simple MDP with only one action available at each state

s01start goal

[0.5, 0.7]

[0.3, 0.5]

1

Figure 4. The abstraction of the MDP from figure 3

Three-valued abstraction: The three-valued abstraction parti-
tions the states of an MDP into several classes S1...Sn and gathers
some transitions whose origin or destination states are in the same
set Si. Gathered transitions are abstract transitions. Different prob-
abilities may occur on transitions that were gathered. That is why
an abstract transition cannot be annotated by a probability but by an
interval between a minimum and a maximum probability. We obtain
an abstract MDP whose states are S1...Sn. For instance, the MDP
from Figure 3 can be abstracted into the MDP from Figure 4.

Then, the truth value of properties is not true or false. For instance,
we know that formula P≤0.6(X goal) holds in the MDP of Figure 3,
however, we do not know if it holds in its abstraction in Figure 4.
That is why the truth value can be true, false or unknown (hence the
three-valued abstraction). When the truth value of a property is true
or false, we can conclude on the original model. That is, the property
holds (resp. does not hold on the original model). However, when the
truth value is unknown we cannot conclude.

Game-based abstraction: Let us consider the previous abstrac-
tion and the resulting abstract MDP. If we consider a state of the
abstract MDP, we do not know exactly to which state of the original
MDP it corresponds. Thus, our abstraction introduced another non-
determinism to the already existing nondeterminism of the original
MDP. So, the nondeterminism of the abstract MDP is due to both
the nondeterminism of the original model and the nondeterminism of
the abstraction. The game-based abstraction consists in resolving the
two kind of abstractions by two different players. Player one resolves
the nondeterminism of the abstraction and player two resolves the
nondeterminism of the original model.

Depending on the role of each player, we may have a lower or a
upper bound on the maximal or minimal reachability property. For
instance, if both players try to minimize the reachability probability,
we will have a lower bound on the minimal reachability probability.
On the other hand, if one player tries to maximize the reachability
probability and the other tries to minimize it, we might have a

1http://www.prismmodelchecker.org/
2http://www.stormchecker.org/

http://www.prismmodelchecker.org/
http://www.stormchecker.org/


4

Figure 5. A schema of the CEGAR loop (figure taken from [8])

different, tighter approximation.

The lower and upper bounds obtained on the minimal and maximal
reachability probability can be used to prove that a PCTL formula
holds on the original model if the approximation is not too coarse.

Counter-example guided abstraction refinement : If an abstract
model violates a property, it is possible for model checkers to produce
a counterexample that witnesses that violation. If the counterexample
is realizable in the original model, then it violates the property.
However, if not, this counterexamples is spurious. That means that
the abstraction is too coarse and that we have to refine it in a way
that avoids this spurious counterexample. Then, we need to restart the
verification process with the refined abstract model. This approach
is called Counterexample-guided abstraction refinement (CEGAR).
A diagram of this operation can be found at Figure 5. This method
can be used with any abstraction technique to properly refine our
abstraction.

III. PROPOSITION OF SOLUTION

On a real rail system, a train faces random events and may be
delayed. These delays are not predictable, hence we need to use
probabilities to correctly model the system. Moreover, trains can
change their speed. That phenomenon is modeled by nondeterminism.
For these reasons, we use MDP to model rail system.

MDP is a discrete model. Therefore we need to discretize time and
space. In the real system, train moves are continuous. In the MDP,
trains moves forward step by step, with every step corresponding to a
fixed amount of time. We discretize the distance between two stations
by adding intermediate points between these stations. The distance
between two points is also fixed. In this model, the speed is inversely
proportional to the time needed to travel between two stations.

To be realistic, this system must respect physical and security
constraints. Thereby, the following constraints must be ensured by
our model:

• Two trains must not collide.
• One train must not overtake another train.

These properties are independent of regulation policies and must
always be verified by the model. For instance, in terms of PCTL
formula, an MDP M that models a real system needs to ensure that
the formula Pmax≤0(F collision) holds.

We begin by modeling a single rail line. We assume that this line is
a ring without intersection to simplify the model. Indeed, intersections
are more difficult to handle because we have to determine priorities on

Figure 6. A schema of the subway line of Glasgow

s0

s1

s2

s3

Figure 7. The simplified model we first want to study

trains that need to enter the intersection. On this ring, trains always
move in the same direction. This topology is simpler and remains
reasonable for a rail line. In fact, this model is quite accurate for the
subway line of Glasgow, that can be seen at figure 6.

As mentioned earlier, we introduce intermediate points between
stations to take the discretization of space into account. We call
location either a point or a station. In this way, the distance between
two stations is depicted by the number of intermediate points between
two consecutive stations, given that the distance d between two
locations is constant. At each step, trains may move forward from a
location to another. The duration t of the steps fixes our discretization
of time. The smaller the distance the more accurate the discretization.

In our model, trains can only stay at their current location or go
to the next one at each step. That means that the maximum speed
for train is vmax = d

t . To illustrate this model, let us consider the
MDP of Figure 7 that is an abstraction of the real system of Figure 6
where we have only four stations.

The section between stations is depicted by the figure 8. It is
obvious that a train cannot go from s0 to s1 in less than 3 time
steps. That is another way of seeing the maximum speed. It is the
ratio between the distance s0− s1 (which is 3× d) and the minimum
time possible to cross that distance (which is 3× t). Then, we have
that vmax = 3×d

3×t = d
t .

At each location, there are three possible actions. Action a yields
the green transitions, whereas action b yields the blue transitions and
action c the red ones. Note that all three actions are not necessarily
always allowed. Indeed, this model needs to ensure safety measures.
For examples, actions a and b are forbidden at each location where
there is a train in the next location. Clearly enough this restriction
ensures that trains do not collide as well as they do not overtake each
other.



5

s0 s1c : 1

0.9 0.9 0.9

0.5 0.5 0.5

b : 0.1 0.1 0.1

a : 0.5 0.5 0.5

1 1

Figure 8. The modelization between two stations with two intermediate points

In this model it is easy to associate a speed to each action. By
looking at the probability to go forward at each step, we note that
action a corresponds to a medium speed, action b to a higher speed
and action c to a stop.

To be more precise, we can compute the speed induced by choosing
each action. For example, let us consider action b. The probability
of going to the next location in one step is equal to pb = 0.9. It is
straightforward that the probability of going to the next location at
step k ≥ 1 is equal to 0.1k−1× 0.9. Hence, that probability follows a
geometric law. Therefore, the expected value of such a law is equal

to Eb =
1
pb

=
1

0.9
=

10
9

. That means that, on average, it will take

Eb steps to go from a location to the next one. So, the average speed
is equal to :

vb =
distance between two succesives locations

average time needed to go from a location to the next one

=
d

Eb × t
=

d
1/pb × t

= pb ×
d
t
=

9× d
10× t

In the same way, we can compute the average speed obtained by
choosing action a. That is:

va = pa ×
d
t
=

d
2× t

Finally, we have that the speed for action c is vc = 0. These
results confirm the intuition we had by looking at probability of going
forward.

In this model, we can design a very simple regulation policy. The
idea is that action b stands for a higher speed than action a, thus
action b has to be taken whenever a train is delayed. So, the policy
is that whenever a train has some delays, it carries out action b, in
other case it takes action a (assuming these actions are available, that
is there is no train in the next location).

Now that we have a (quite simple) regulation policy, we would like
to check its effectiveness. We need to define the formula φ stating
that a train has some delay. Once it is done, we will be able to
define the PCTL formulas of interest. For instance, we would like
that the formula φ ⇒ P≥0.9[F≤10 ¬φ] holds in our model with this
very simple regulation policy. That is, we would like that delays are
recovered in less than ten steps with a high probability. If it does not,
we may have to refine this regulation policy so that nicer properties
hold.

IV. CONCLUSION

We study models of rail systems for regulation purposes. An
appropriate model could allow us to design an effective regulation
policy. That is, a policy that makes trains catch up their delays.

A suitable model is Markov Decisions Process, which take into
account potential delays of trains while allowing to design a regula-
tion policy. To assess the effectiveness of a regulation policy we can
use model checkers.

The solution presented here is quite simple. It consists in discretiz-
ing time and space by adding intermediate points between stations.
At each step, the action chosen determines the speed of the train.
The regulation policy we first consider is to accelerate whenever a
train has some delay.

We are going to see to what extent the policy considered here is
efficient in terms of catching up delays by implementing the model
in a model checker. We will likely need to study the accuracy of our
discretization. Likewise, the probabilities on the transitions have to
be adjusted to better picture the real system. The size of our model
may constrain us to design an abstraction. We might have to design
an abstraction specific to our case. Then, we will try to generate
with model checkers some regulation policies. Finally, we will study
a more complex topology of the system.

ACKNOWLEDGMENT

We want to thanks our supervisors Nathalie Bertrand, Loïc Hélouët
and Ocan Sankur for their time and their help all along this semester.

REFERENCES

[1] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Automated
verification techniques for probabilistic systems,” in Formal Methods for
Eternal Networked Software Systems (SFM’11), ser. LNCS, M. Bernardo
and V. Issarny, Eds., vol. 6659. Springer, 2011, pp. 53–113.

[2] A. D’Ariano, M. Pranzo, and I. Hansen, “Conflict resolution and train
speed coordination for solving real-time timetable perturbations,” vol. 8,
pp. 208 – 222, 07 2007.

[3] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
Sep 1994. [Online]. Available: https://doi.org/10.1007/BF01211866

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Program. Lang. Syst., vol. 8, no. 2, pp. 244–263, Apr. 1986.
[Online]. Available: http://doi.acm.org/10.1145/5397.5399

[5] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of
probabilistic real-time systems,” in Proc. 23rd International Conference
on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakrishnan
and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[6] C. Dehnert, S. Junges, J. Katoen, and M. Volk, “A storm is coming: A
modern probabilistic model checker,” CoRR, vol. abs/1702.04311, 2017.
[Online]. Available: http://arxiv.org/abs/1702.04311

[7] M. Kwiatkowska, G. Norman, and D. Parker, “Game-based abstraction
for Markov decision processes,” in Proc. 3rd International Conference on
Quantitative Evaluation of Systems (QEST’06). IEEE CS Press, 2006,
pp. 157–166.

[8] C. Dehnert, D. Gebler, M. Volpato, and D. N. Jansen, “On abstraction of
probabilistic systems,” in ROCKS, 2012.

https://doi.org/10.1007/BF01211866
http://doi.acm.org/10.1145/5397.5399
http://arxiv.org/abs/1702.04311

	Introduction
	State of the art
	MDPs : Markov Decision Process
	Properties
	Abstraction

	Proposition of solution
	Conclusion
	References

