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Abstract

Subway rail systems are particularly sensitive to unexpected
delays or random events. To any subway rail system, one
can associate a regularity (for instance, a train arrives at a
station every four minutes) that the system needs to ensure.
To stick to this expectation, rail systems are equipped with
regulation policies that give instructions in real time when
changes occur in the traffic. In this report, we consider how
tools such as model checkers can help in the design and
evaluation of regulation policies. Usually, these tools work with
formal models. Therefore, our purpose is to properly design a
model of a rail system and to analyze regulation policies on
this model.

Keywords : Subway rail system; Model checking; Abstract
model.

I. INTRODUCTION

Subway rail systems are expected to meet some requirements like
safety or regularity of service. Ideally, trains arrive and leave stations
exactly when they are supposed to so that the system ensures a regular
service (e.g., a train arrives at a station every four minutes). However,
it usually is not the case since random disturbances occur frequently
(for example, delays due to passengers misconducting). To stick to the
expected service, rail systems are equipped with regulation policies
that give instructions when changes occur in the traffic. Instructions
can be, for instance, to increase or decrease the dwell time in station.

The study of rail systems can be divided into two orthogonal
concerns. The first one consists in the study of rail systems to prove
that they ensure some safety measures. Safety of trains is usually
ensured by critical sections (track portions that can be entered by
at most one train), that are physically implemented by signals[1]
and interlocking systems[2]. In both cases, automated verification
is used since formal guarantees are needed for safety measures.
More specifically, the second paper uses bounded model checking
to achieve the verification objectives. It has to be noted that these
verifications are done independently of any regulation policy.

Once it is proven that the rail system ensures the safety measures,
one can study the performance of regulation policies regarding delays
in that system. This can be done by using automatic tools, which
can be divided into the microscopic and macroscopic ones (as
suggested in[3]). Basically, macroscopic tools use abstract models
without taking into account details like the adherence to tracks or
the passenger flow. NEMO[4] is an example of such a tool. On
the other hand, the microscopic approach takes into account every
detail of the rail system including, for instance, weather conditions.
Then, they simulate the evolution of a network during a time period,
considering the evolution of trains between time steps of fixed
length (typically, one second). OpenTrack is a tool implementing
this approach[3]. However, simulating by micro-steps is very time
and space consuming. Moreover, such an approach does not allow to
use model checking since the model of the system that is considered
is too complex.

The microscopic and macroscopic approaches can also be used
more specifically for subway rail systems. For instance, the
SimMETRO[5] tool uses the microscopic approach for subway sys-
tem. The macroscopic approach is used in the paper [6] in which Petri
Nets are used to model rail system. However, since only simulation
is used in these methods, the formal guarantee about the accuracy of
the results obtained are statistical.

Our goal is to evaluate the performance of regulation policies in
subway rail systems and we also want formal guarantees on our
results. That is why we will use model checking to evaluate our
regulation policies. Basically, given a mathematical model and a
logical formula describing the requirements, model checking checks
if the model satisfies the formula. Since subway systems are complex,
model checking capabilities may be overwhelmed quickly. That is
why we will use a macroscopic approach, to work on a model as
small as possible.

First, we need a model that depicts rail systems on which a model
checker can work. We need to have in our model both probabilities (to
depict the randomness of delays) and nondeterminism (to depict the
choice drivers or regulation policy can make to increase or decrease
their dwell time in station). A popular model that contains both
probabilities and nondeterminism is Markov Decision Process [7]
(MDP for short). So, rail systems will be modeled as MDPs. MDP
is a discrete model, which means that, we will need to discretize
time and space. We assume that safety properties are ensured by the
system. That is why we will make the hypothesis that no train can
collide in the system we model. That means that the MDP we will
design to depict the real rail system needs to forbid trains to collide.
To our knowledge, this approach has not been studied before.

Once our model is designed, we will be able to design a regulation
policy. Then, we will need a logic to express the formulas of interest
for us. Such formulas would express, for example, that if a train is
delayed, with a high probability, at some point in the future it will be
on time. The most suitable logic to express this kind of properties is
the Probabilistic Computational Tree Logic [8] [9] (PCTL in short).

The automatic tools we use for verification are model checkers.
The model checker we will use is PRISM [10], since it can work
on MDPs and the PCTL logic. Moreover, PRISM can be used for
exact model checking which yields an exact result provided that it
can effectively build the model (that is, enumerate every state and
transitions) but also for statistical model checking. Statistical model
checking can be used even when the model is too big to be built in
PRISM, but it yields a result with (a formally quantified) uncertainty.

Finally, once we have designed a model, if it is too big for PRISM
to handle and if we want an exact result on this model (for instance,
to prove that this model respects our hypothesis which states that the
system is safe), then we will need to reduce its size. That is why we
often have to abstract our model [11] [12] of the rail system.

Our objective is to evaluate the performance of regulation policies
on a real rail system. First, we need to build a model of the rail
system. Then, once the soundness of the model is established (that
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Figure 1. The DTMC ({s0, s1, s2}, s0, P, {a}, L) with L(s0) = {a} and
L(s1) = L(s2) = ∅

is, it respects our hypothesis), we can study regulation policies with
PRISM.

This report is organized as follows: Section 2 provides the technical
background necessary for the understanding of this article. Section
3 introduces our first approach of the problem and the initial MDP
we considered, with a regulation policy. Then, Section 4 explains our
second approach and the results we obtained. Section 5 concludes.

II. TECHNICAL BACKGROUND

A. MDPs : Markov Decision Process

We introduce the notion of Discrete-Time Markov Chain which
can be seen as a directed graph, in which vertices represent the state
of the system, and the transitions represent the probability to change
states.

Definition 1. A Discrete-Time Markov Chain (DTMC) is a Tuple
D = (S, s, P, AP, L) where

• S is a finite non-empty set of states,
• s is an initial state
• P : S× S → [0, 1] is a transition probability matrix such that
∀s ∈ S, ∑s′∈S P(s, s′) = 1

• AP is a set of atomic propositions
• L : S → 2AP is a labeling function such that ∀s ∈ S, L(s) is

the subset of AP assigned to s.

Figure 1 represents a DTMC, the probabilities are given by the
matrix P. P(i, j) is the probability to move to state sj when the
system is in state si. These probabilities can be read directly on the
vertices.

We introduce the notion of Markov Decision Process (MDP),
which allows to represent the nondeterministic evolution of a system.
In a given state, an agent can choose an action which yields a
distribution of probabilities for the next transition.

Definition 2. A Markov Decision Process (MDP) is a tuple M =
(S, s, αM, δM, AP, L) where

• S, s, AP and L are as for DTMCs.
• αM a finite set of actions
• δM : S× αM × S → [0, 1] where δM(s, α, s′) represents the

probability of going into the state s′ from the state s when action
α is chosen. In addition, we have that for s ∈ S, and α ∈ αM,
∑s′∈S δM(s, α, s′) = 1.
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Figure 2. The MDP ({s0, s1, s2, goal}, s0, {a, b}, δ, {a, goal}, L) with
L(s0) = {a}, L(s1) = L(s2) = ∅ and L(goal) = {goal} with
δ(s, a, s′) = P(s, s′) (from the previous DTMC) and δ(s1, b, s1) = 0.5,
δ(s1, b, s2) = 0.1, δ(s1, b, goal) = 0.4, δ(s2, b, s0) = 0.9, δ(s2, b, goal) = 0.1

The actions are chosen nondeterministically. A policy allows to
resolve the nondeterminism. At each state, a policy gives the action
to take according to the states visited and the actions taken so far.

Definition 3. We define PathM as the set of all (infinite) sequences
s1α1s2α2... such that ∀i ≥ 0 si ∈ S, αi ∈ αM and P(si, α, si+1) > 0.
PathMf in is the set of finite prefixes of PathM which terminate on a

state. A policy is a function in PathMf in → αM

From an MDP M and a policy σ we can generate a DTMC
Mσ. However, it is not straightforward and we only present here the
case where the policy is memoryless. That is, a policy σ such that
∀m, m′ ∈ PathMf in with last(m) = last(m′) we have σ(m) = σ(m′)
(the choice of the action to take only depends on the current state). We
denote by σ(s) the decision taken by σ when s = last(m). Formally,
with such a policy σ and an MDP M = (S, s, αM, δM, AP, L)
we obtain the DTMC Mσ = (S, s, Pσ, AP, L) with Pσ(s, s′) =
δ(s, σ(s), s′). For example, the DTMC in Figure 1 can be generated
from the MDP in Figure 2 and the (memoryless) policy σ such that
∀m ∈ PathMf in, σ(m) = a.

B. Properties

Once our model is designed, we want to check whether the
system satisfies some properties. One can distinguish situations that
should always occur, and conversely situations that shall be avoided.
Therefore properties are split into two categories. On the one hand,
there are properties that express that a good event will happen. For
instance, "if a train has some delay, it will recover from this delay
eventually". On the other hand, there are properties that express that a
bad event will not happen. The property "two trains will not collide"
is a an example of such a property.

It has to be noted that, since our model is probabilistic, some prop-
erties we want to check on our model also need to be probabilistic.
So, it is interesting to have answers that are not Boolean. That is why
we want to be able to weigh our properties by probabilities.

Now, we need a logic to express these properties. In this logic, we
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Φ ::= true | c | Φ ∧Φ | ¬Φ|P./p[Ψ] (1)

Ψ ::= XΦ | Φ U≤k Φ | Φ U Φ (2)

where :
• c is an atomic proposition ;
• k ∈N, p ∈ [0, 1], ./∈ {≤,≤,≥,≥,=}.

Figure 3. The syntax of the logic PCTL

s
s
s
s
s

|=Pol
|=Pol
|=Pol
|=Pol
|=Pol

true
c

Φ1 ∧Φ2
¬φ

P./p[Ψ]

⇔
⇔
⇔
⇔

always
c ∈ L(s)

s |=Pol Φ1 ∧ s |=Pol Φ2
6|=Adv Φ

Pσ
M,s({π ∈ PathM, π |=Pol

Ψ}) ./ p, ∀σ ∈ Pol

where, for any π ∈ PathM :

π
π

π

|=Pol
|=Pol

|=Pol

Xφ
Φ1 U≤k Φ2

Φ1 U Φ2

⇔
⇔

⇔

π(1) |=Pol Φ
∃i ≤ n, π(i) |=Pol Φ2

and ∀j < i, π(j) |=Pol Φ1
∃k > 0, π |=Pol Φ1 U≤k Φ2.

with :
• Pσ

M,s A is the probabilistic measure of the set A on the MDP M
from the state s with policy σ ;

• π(k) is the kth state of the path π (if π starts from s, then
π(0) = s) ;

• Pol is the set of policies we consider.

Figure 4. The semantics of the PCTL logic

need to be able to express temporal properties (like the fact that an
event may or may not happen). Moreover, it has to allow probabilistic
properties. That is why we use the Probabilistic Computational Tree
Logic (PCTL in short) [8], a probabilistic variant of the branching-
time temporal logic CTL (Computational Tree-Logic) [9].

The syntax of the PCTL logic is given in figure 3. We distinguish
the state formulas Φ (line (1)) and the path formulas Ψ (line (2)).
The PCTL formulas we will consider will be state formulas.

PCTL formulas do not express nondeterminism. That is why, when
they are evaluated on an MDP, we use a quantification over all
policies (that is, over all DTMC that can obtained from that MDP),
that erases nondeterminism.

Intuitively, a state s satisfies the probabilistic path operator P./p[Ψ]
(./∈ {<,>,≤,≥}) if, under all policies, the probability x of taking
a path from s that satisfies Ψ is such that x ./ p. The temporal
operators are expressed in path formulas. Intuitively, XΦ will be true
if Φ is true in the next state. Φ1 U Φ2 is true if eventually Φ2 will
be true and until then Φ1 is true. In the same way, Φ1 U≤k Φ2 is
true if Φ2 is true within k time-steps and until then Φ1 is true. The
formal semantics is given at figure 4.

A usual shortcut is the operator F Φ witch stands for true U Φ.
Intuitively, this operator states that eventually Φ will be true. F≤k Φ
can be defined in the same way.

Let us look at some example of PCTL formulas. The safety
property "two trains will not collide" is equivalent to "the probability
of two trains colliding is equal to 0". Let Φ be the (state) formula

expressing that two trains are colliding, then the PCTL formula
expressing the above property is P≤0[F Φ]. Here is another example.
The property "a train recovers from its delay within 10 steps
with a high probability" could be described by the PCTL formula
P≥0.9[F≤10 Φ] if Φ expresses that a train has no delay.

There is an other way to express PCTL formulas in MDPs. We
can define a minimum and maximum probability on MDP satisfying
a path formula Ψ.

Definition 4. Let M be an MDP and Ψ a path formula. We define:

PMmin(Ψ) = minσ∈PolicyPM
σ
(Ψ)

PMmax(Ψ) = maxσ∈PolicyPM
σ
(Ψ)

where Policy is the set of all policies of the MDP M.

We implemented the MDP of the figure 2 in PRISM [10] to
compute the minimum and maximum probability to reach state S2
in less that 10 steps starting from state s0:

Pmin(F≤10(state = s2)) = 0

Pmax(F≤10(state = s2)) ' 0.989

We can then express PCTL formulas (that is, state formulas) by
replacing the operator P./p[Ψ] by Pmin ./p[Ψ] or Pmax ./p[Ψ]. The
semantics is analogous except that we do not evaluate P but Pmin
or Pmax. There is no need for quantification over policies anymore
since this quantification already occurs in the definition of Pmin and
Pmax.

From the above results, we can deduce that, for example, the
formula Pmin≥0.8(F≤10(state = s2)) holds for the MDP whereas
Pmax≤0.9(F≤10(state = s2)) does not.

C. PRISM: a probabilistic model checker

To verify PCTL properties on MDP or DTMC models, one can
use probabilistic model checkers. The one we use is PRISM1 [10]
which is a state-of-the-art tool in this field, and is also quite efficient
at verifying probabilistic properties on MDP and DTMC models.
PRISM is easy to use with its graphical user interface which offers
multiple functionalities, like verifying that a PCTL formula holds on
an MDP, debug a model or export the model behavior in different
formats. It takes two inputs: the model and the properties (expressed
as PCTL formulas) we want to verify on it. Then PRISM returns the
result of the evaluation of these properties on this model.

PRISM has its own language to describe a model. It is a symbolic
language: it describes a model without giving every states and
transitions (as an explicit language would do it). The model is
separated into different processes. In our case, processes can be the
different trains in the network. These processes can be synchronized
and run in parallel: at each time step, every trains can move.

The PRISM language uses modules to describe processes. A
module contains two parts: the definition of state variables (with its
definition’s domain), and several actions. A state variable represents
a characteristic of a process (which can be boolean or integer for
example). For instance, we define a variable stationi to define the
position (as an integer) of the train i. An action has a guard (that
is a boolean expression) which specifies if the action can be taken.
In our case, a guard can state if a train has waited long enough

1http://www.prismmodelchecker.org/

http://www.prismmodelchecker.org/
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at a station. If an action is taken, the evolution of the variables is
probabilistic (the sum of all probabilities occurring on a given action
must be equal to one). Actions can also be named. In that case, every
action with the same name in different modules are synchronized (if
one is taken, every possible one in the other modules is taken). The
action step, in the Figure 5, describes the movement of train 1. If
the action is allowed, (that is, if station2 ≥ station1 + 1), then the
number of stations between train 1 and train 2 is greater than one. In
that case, train 1 will move forward with a probability equal to 0.8
and will stay at the same station with a probability equal to 0.2 (we
have 0.8+ 0.2 = 1). The action change, in the Figure 5 changes the
value of the boolean variable switch. It can be taken at every step
(since the guard is true). In each module, if there is more than one
actions available, a nondeterministic choice is made to decide which
one to take.

The logic to express properties in PRISM is PCTL. These proper-
ties are defined for a model while using the variables used to define
that model. However, to make easier the writing of properties, PRISM
uses labels. A label is a boolean expression that acts as a sub-formula.
If a label is defined, it can be used directly to write properties, but it
can not be used to describe the model. Moreover, the evaluation of
a property in a given model can yield either a Boolean response or
a probability. The Figure 6 illustrates theses possibilities. The label
isDelays01 stands for: "train 1 has some delay". The first property
requests PRISM to compute the maximum probability that if train 1
is late, it will eventually recover from this delay. The second property
requests from PRISM a Boolean response that answers the question:
is the previous probability above 0.9 ?.

PRISM can verify that properties hold in a model. With the
model description, PRISM computes the reachable states and every
transitions available is these states. A state is described by the value
that every variables are affected to in every module. The transitions
available in a state are given by all the actions whose guard is allowed
with the values of the variables in that state. Once the model is
built, properties can be evaluated on it. However, finding a deadlock
or, more generally, writing properties to verify the soundness of the
model is not easy. Therefore, a way to check the soundness of the
model without writing PCTL formulas is to use the PRISM simulator.
It allows us to see the evolution of the system along some specific
paths. We can then see the value of every variable in the states we
pass by with this path. It can be an effective way to find a bug in
the model, for instance a deadlock. However, the simulator can not
give any proof that a property does or does not hold in a model.

Moreover, when the model is too big, PRISM can not build the
model, and the properties can not be evaluated on the model. In that
case, we can use the statistical model checking that PRISM offers.
This method consists in building a lot of possible paths (as much as
requested to ensure a given confidence interval) and computing the
ratio of paths satisfying a desired property (which will be a PCTL
path formula) among all explored paths. This yields an approximation
of the probability that this property holds in the model. The main
advantage of this method is that PRISM does not need to effectively
build the model to compute these paths. PRISM can use several
methods to compute these paths. In each method, we can control
different parameters like the length of the paths (the number of steps)
or the accuracy of the approximation.

D. Abstraction

PRISM can not work on a very large model. So, should the size
of the model (number of states and transitions) be overwhelming

for PRISM and we want to prove a property (not approximate a
probability), we shall need to reduce its size. A well-known method
to achieve this is to design an abstraction of our model. Intuitively,
abstracting an MDP is building a new MDP based on the previous
MDP deprived of some irrelevant informations (regarding some
specific property of interest). Abstracting an MDP consists in building
a new MDP in which some states are merged in order to reduce their
number. The transitions in the new MDP are then derived from the
initial ones.

There are several ways to abstract an MDP. We are only going to
talk about the quotient of an MDP [12] since it is the method we
will use. Given an MDPM = (S, Act, P, sinit, AP, L) and a partition
Q = q1, ..., qn of the state space S that respects the labeling, that is:
for all qi and s, s′ ∈ qi, L(s) = L(s′), an abstract MDP consists
in aggregating every states in the same set qi into one state. The
difficulty lies in the definition of the behavior of the abstract MDP
(in terms of transition). An abstract state qi must have the behavior
of the states that it has merged. In other words, if we have s ∈ qi,
s′ ∈ qj and an action α ∈ Act such that P(s, α, s′) > 0, then there
must be an action α′ that ’links’ abstract states qi and qj. Formally
we have the following definition [12]:

Definition 5 (Abstract MDP). Let an MDP M =
(S, Act, P, sinit, AP, L) and a partition Q of the state space S
that respects the labeling. The quotient of M by Q is given by the
abstract MDP M/Q = (Q, Act′, P/Q, qinit, AP, L/Q) where

• Act′ is the set of action to use in the abstract MDP, after
renaming the actions in Act;

• P/Q is a transition probability matrix such that
(P/Q)(q, α′, q′) = ∑

s∈q′
P(s, α, s′) (where α′ is a renaming of

α);
• qinit is the set of initial state such that q ∈ qinit if there is s ∈ q

such that s ∈ sinit;
• L/Q is the labeling function such that (L/Q)(q) = L(s) for

all s ∈ q.

Note that the labeling is well-defined, since Q respects labeling.
Moreover, we need to rename the new action set since every name
of actions in the abstract model should be annotated with the an
indicator of the actual state its depicting.

The abstraction method is used to reduce the size of a model while
keeping its behavior. Therefore, the abstract model is less precise
in the description of that behavior. In fact, generally, in an abstract
MDP, the probability of going from one state to another is defined by
an abstract probability, that is a set of possible probabilities (since
an abstract state corresponds to several actual states). That is why
abstracting a model yields a new source of nondeterminism in the
model. Therefore there are two sources of nondeterminism in an
abstract MDP:

• nondeterminism due to choice of actions, as in the original MDP;
• non-determinism due to uncerttainty on the actual state inside

an abstract one.

It induces, in the abstract MDP, an over approximation of probabili-
ties. That can be seen in the following theorem [12].

Theorem 1. LetM be an MDP, Q be a partition of its states space
and Ψ a PCTL path formula, then

PM/Q
min (Ψ) ≤ PMmin(Ψ) ≤ PMmax(Ψ) ≤ PM/Q

max (Ψ)

This theorem states that the probability to satisfy a PCTL formula
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[step] station2 ≥ station1 + 1 -> 0.8 : (station1’ = station1 + 1) + 0.2 : (station1’ = station1);
[change] true -> 1: (switch’ = !switch);
Action Guard Modification of the variable station1

Figure 5. Commands expressed in the PRISM language

Pmax=? [("isDelay01" U !"isDelay01")]
Pmax>=0.9 [("isDelay01" U<=20 !"isDelay01")]�
Figure 6. PCTL formula described with PRISM language

s0start {s1, s2}

goal

a0 : 1

a12 : [0.5; 0.7]

a12 : [0.3; 0.5]

b1 : 0.6

b2 : 0.9

b1 : 0.4

b2 : 0.1

Figure 7. Abstraction of the MDP from figure figure 2 wuth the partition
Q = {{s0}; {s1, s2}; {goal}}

Ψ in an MDP lies between the probabilities to satisfy it in its
abstraction.

III. FIRST APPROACH

A. Our Model

On a subway rail system, a train faces random events and may
be delayed. These delays are not predictable, hence we need to use
probabilities to correctly model the system. Moreover, trains can
adjust their dwell time in station to recover from delays. This is
modeled by nondeterminism. That is why we use Markov Decision
Process to represent the rail system for it is both probabilistic and
nondeterministic.

MDP is a discrete model and a subway rail system is obviously
continuous. Therefore we need to discretize time and space. In the
real system, train moves are continuous. In the MDP, trains move
forward step by step, with every step corresponding to a fixed amount
of time. We discretize the distance between two stations by adding
intermediate points between these stations. The distance between two
points is also fixed. In this model, the speed is inversely proportional
to the time needed to travel between two stations.

As mentioned in the introduction, we want ot study the efficiency
of regulation policies. That is why we made the hypothesis that the
model we are depicting ensures the safety properties (that is, there
is no collision between trains). For our model to be correct, it has
to respect this hypothesis independently of any regulation policy. In
terms of PCTL formula, an MDP M that models a subway rail
system needs to ensure that the formula Pmax≤0(F collision) holds.

We begin by modeling a single rail line. More specifically we
are going to work on the subway line of Glasgow, that can be
seen in figure 8. This line is a ring without intersection. Larger
networks might contain intersections, which are more difficult to
handle because we have to determine priorities on trains that need to

Figure 8. A schema of the subway line of Glasgow

s0

s1

s2

s3

Figure 9. The simplified model we first want to study (with four stations)

enter the intersection. On this ring, trains always move in the same
direction.

As mentioned earlier, we introduce intermediate points between
stations to take the discretization of space into account. We call lo-
cation either a point or a station. In this way, the distance between two
stations is depicted by the number of intermediate points between two
consecutive stations, given that the distance ∆d between two locations
is constant. At each step, trains may move forward from a location
to another. The duration ∆t of the steps fixes our discretization of
time. The smaller the distance (and the duration) the more accurate
the discretization.

Let us consider the MDP of Figure 9 that is an abstraction of the
subway system of Figure 8 where we have only four stations. The
section between stations is depicted by the figure 10.

At each location, there are three possible actions. Action a yields
the green transitions, whereas action b yields the blue transitions and
action c the red ones. Note that all three actions are not necessarily
always allowed. Indeed, this model needs to ensure safety measures.
For example, actions a and b are forbidden at each location where
there is a train in the next location. This restriction should ensure
that trains do not collide.

In this model it is easy to associate a speed to each action. Trains
can only stay at their current locations or go to the next one at each
step. By looking at the probability to go forward at each step, we
note that action b corresponds to a lower speed than action a and
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s0 s1c : 1

0.6 0.6 0.6

0.8 0.8 0.8

b : 0.4
0.4 0.4

a : 0.2
0.2 0.2

1 1

Figure 10. The modelization between two stations with two intermediate
points

action c forces a train to stop at a location.

To be more precise, we can compute the speed induced by choosing
each action. For example, let us consider action a. The probability
of going to the next location in one step is equal to pa = 0.8. It
is straightforward that the probability of going to the next location
at step k ≥ 1 is equal to (1− pa)k−1 × pa. Hence, that probability
follows a geometric law. Therefore, the expected value of such a law

is equal to Ea =
1
pa

=
1

0.8
=

10
8

= 1.25. That means that, on

average, it will take Ea steps to go from a location to the next one.
So, the speed va corresponding to action a is equal to :

va =
distance between two succesives locations

average time needed to go from a location to the next one

=
∆d

Ea × ∆t
=

∆d
1/pa × ∆t

= pa ×
∆d
∆t

=
4× ∆d
5× ∆t

In the same way, we can compute the average speed obtained by
choosing action b. That is:

vb = pb ×
∆d
∆t

=
3× ∆d
5× ∆t

Finally, we have that the speed for action c is vc = 0. These
results show that we can model trains traveling at different speeds
with probabilities in our discrete MDP model.

B. Choosing parameters

The next step is to choose the parameters of the model to better
picture the real system, in our case, the Glasgow subway. We will
then consider a system with nbstation = 15 stations. To simplify
the model, we will assume that the stations are equally spaced. The
parameters we still have to determine are:

• the time discretization step: ∆t;
• the space discretization step: ∆d;
• the probabilities of going forward: pa, pb;
• the number of intermediate steps between two stations: k;
• the number of trains: nbtrain.

We collected information from existing Metro lines, and from
Glasgow in particular[13]. The speed of train in sybway systems lies
between 30 and 40 km.h−1. And the average time waited in a station
is around 30s. Specifically to the Glasgow subway, we know that a
complete circuits is 10.5 km long (it is actually 10.4 km, we will
assume it is 10.5 km since it is divisible by 15) and lasts 24 min.

With this data, we can infer that the effective time spent on the rail
to run through the circuits is equal to ttot = 24× 60− 15× 30 =
990s. That corresponds to an actual speed of vav = 10500/990 ≈
10.6 m.s−1 ≈ 38.2 km.h−1 which lies between 30 and 40 km.h−1.

Let us first focus on the probabilities pa and pb. In our model,
we want the speed induced by action a to be the usual speed of
trains, and the speed corresponding to action b to be a lower speed
occurring when trains slow down for safety reasons (if the next train
is too close).

The data we have from the actual system give us relations between
our parameters. The distance between two stations is equal to ds =
k× ∆d ( = dtot/nbstation = 10500/15 = 700 m), and the average
speed is equal to vav = pa × ∆d/∆t (as already seen before). We
can deduce the average time taken between two stations ts which
is ts = ds/vav = k/pa × ∆t. Therefore, we have the relation k ×
∆t = pa × ts while ts is fixed in the system: ts = ttot/nbstation =
990/15 = 66 s. That is, we have the relation:

k× ∆t = pa × 66 s

Once pa is fixed, k×∆t is a constant. To reduce the size of the model,
we want to minimize k since it defines the number of intermediate
steps between two stations. Moreover, the smaller ∆t, the higher the
accuracy of the discretization. In fact, we want to minimize both k
and ∆t. That is why, we want pa to be as small as possible.

We wanted to choose pa so that it fits some typical data from an
actual subway line. We did not have data from Glasgow, but we had
some from the subway of Santiago. A typical distribution is given
in figure 18 in appendix A. The blue histogram depicts the actual
distribution to go from one station to the next one in the Santiago
subway. We can see, as expected, that is more likely to take some
delay than to be in advance compared to the nominal time (the mean
of the distribution). On this histogram, four curves are drawn which
correspond to the probability distribution for the time needed to go
from one station to the next one in our model. These curves represent
the sum of k independent geometric law of the same parameter p,
with the same mean E as the blue distribution. The corresponding
probability law can be found in appendix. Dist corresponds to the
sum of the difference between the distribution and the curves squared.

Our goal is to determine which one fits the best the blue histogram.
However, it is not easy to choose which one is the more appropriate.
Indeed, the shape of a curve is better (i.e. is closer to the actual
distribution) when p is higher since it depicts well that it is very
difficult to take some advance but it is possible to have some delay.
However, a higher p also means a higher Dist, which is suppose
to represent how well a curve fits the distribution. Moreover, we
have to keep in mind that we want to minimize pa. We decided to
take pa = 0.8. That choice is quite arbitrary but no choice seems
obviously better than this one. Then, we choose pb = 0.6 so that, if
pa corresponds to a speed around 40 km.h−1 (the maximum usual
speed of trains), then the speed associated to pb is around 30 km.h−1

(the minimum usual speed of trains).

Then, once k is fixed, ∆t can immediately be deduced, as ∆d since
we have: k× ∆t = pa × 66 s = 52.8 s and k× ∆d = 700 m (see
above). Then, we consider two sets of parameters:

• k = 5
• ∆t ' 10 s
• ∆d = 140 m

• k = 10
• ∆t ' 5 s
• ∆d = 70 m

The first set favors the size of the model (k = 5), the second one,
on the other hand, corresponds to a larger model (k = 10) but with
a increased accuracy (∆t ' 5s). It has to be noted that it is not quite
possible to increase k above 10 since it would imply that the space
discretization step could be smaller than the size of a train (which
is not possible in the current model since a train can only be in one
location at a time).



7

0
1

2

3

4

5

6

78

9

10

11

12

13

14

Figure 11. A schema that illustrates our definition of α

Finally, we have to choose the number of trains of interest. From
the data extracted from the Glasgow subway website[13], at off-peak
time, there is a train every six minutes, with a complete circuit lasting
24 min, this corresponds to nbtrain = 24/6 = 4. And at peak-time,
there is a train every 4 minutes, which corresponds to nbtrain =
24/4 = 6. Therefore, 4 and 6 are the number of trains of interest for
us.

C. Our regulation policy

We have defined the MDP that will represent the Glasgow subway.
We can now design a regulation policy on that MDP. A regulation
policy will consist, in our MDP, in resolving the nondeterminism, that
is deciding which action to take when a choice can be made. The
only choice that is possible in our MDP is the dwell time in station.
The nominal time waited in station is 30 s. However, we allow a
train to stay from 20 s up to 40 s. It has to be noted that the more
accurate our discretization is, the more choices there are in station.
Indeed, with ∆t ' 10 s there are three possibilities: staying 2, 3 or
4× ∆t. However, with ∆t ' 5 s, we have five possibilities: staying
4, 5, 6, 7 or 8× ∆t.

A regulation policy aims at avoiding delays or recovering from
them. Thereby, we first need to formally define what we call a delay.
The definition we chose for a delay comes from the quality of service
that is expected from subway networks. Indeed, it is not required from
train to adhere to a specific timetable, but rather to provide service
with a given frequency. That is why we define a value α that measures
whether time intervals between trains are equilibrate or not. Let us
consider the schema 11. Every circle represents a station. The red
circle are empty stations. There is a train in each blue circle. And
the train of interest for us is in the green circle. We want to measure
how that train is located compared to the next and the previous ones.

We define: α =
d(current, next)

d(previous, current) + d(current, next)
with d(, )

measuring the number of points between two trains. The numerator
corresponds to the small arrow and the denominator to the long one,
in the schema. It has to be noted that α cannot be equal to 0 nor 1
since two different trains cannot be in the same location. Moreover,
α is defined for every train in the system.

We can now define what a delay is (a more suitable denomination
would an unbalance) for a train. Ideally, α is equal to 0.5 (it is the
case in the schema of figure 11) which means that the current train
of interest is perfectly in the middle of the space delimited by its
preceding train and its following one. However, this definition is
too restrictive in practice, since there would be at most one location

α = 0.5 0.375 0.25 0.125 0.01.0 0.875 0.75 0.625

Dwell time (s) = 30 35 4020 25

Figure 12. The dwell time in station in function of α

allowed from a balanced train (there could be none if the distance
between the previous and the next train is odd). Henceforth, a train
is unbalanced if α 6∈ [0.4, 0.6]. We say that the system is balanced if
every train is balanced.

We can now define our regulation policy. We decided to define
it as a function of α. The idea is very simple: the time waited will
linearly depend on α. If α is close to 1, the train leaves early, if it
is close to 0, it has to dwell in station for a longer duration than
the nominal dwell time. The schema 12 illustrates this idea. Due to
the discretization, the dwell time in station depends on the interval
to which α belongs and not the exact value of α. For instance, with
∆t ' 5 s, the dwell time was decided as follows:

Dwell time(α) =



4× ∆t if α ∈ [0.875, 1]
5× ∆t if α ∈ [0.625, 875]
6× ∆t if α ∈ [0.375, 0.625]
7× ∆t if α ∈ [0.125, 375]
8× ∆t if α ∈ [0, 0.125]

(3)

We use the same regulation policy when ∆t ' 10 s. That is the
regulation policy we implemented.

D. Desired properties

Now that our model is entirely defined, as well as our definition
of delay and our regulation policy we want to check some properties
on the model. First, we have to express in PCTL the property
that states that there cannot be any collision. We have already
mentioned that the PCTL formula that has to hold in our model is:
Pmax≤0(F ”collision”). We now have to define ”collision”. Since
the position of train i is described by the variable stationi, then

”collision” =
n
∧

i=1

n
∧

j=1,j 6=i

(
stationi 6= stationj

)
with n being the number of trains in the system.

We can now look at whether the system is balanced. First, for a
train i, let us define αi = stationi+1− stationi(mod l)/stationi+1−
stationi−1(mod l), l being the total number of locations in the model.
Then, it is straightforward to express the formula which states that
our system is balanced:

”balanced” =
n
∧

i=1
(0.4 <= αi <= 0.6)

Therefore, the formulas we want to evaluate on our model are:

recovering = Pmin=?(F<=q”balanced”)

taking = Pmax=?(F<=q¬”balanced”)
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Figure 13. A graphical sum up of what we did

with q being a given number of steps. recovering asks the minimum
probability that the system is, at some points, balanced within q steps.
It has to be evaluated from an unbalanced initial configuration. taking
asks the maximum probability that the system is, at some point,
unbalanced within q steps. It has to be evaluated from an balanced
initial configuration.

E. Implementation in PRISM

Now that everything is theoretically defined, we can effectively
implement our model in PRISM, with the properties we want to
evaluate on it. We implemented a script in Ocaml that takes as input
parameters (for instance pa, pb, nbtrain) and outputs the definition of
the model in the PRISM language and the properties of interests for
us in two different files. Then, PRISM takes as input these two files
and gives us the evaluation of the properties on the model. This is
summed up in figure 13.

However, with the smaller model that was of interest for us (with
k = 5 and nbtrain = 4), PRISM was not able to build the model.
Indeed, the number of configurations to consider for subway systems
reached the limits of model checking. In such situations, it is hence
necessary to use statistical model checking, or reduce the size of
the explored state space, either by simplifying the initial model, or
through abstraction techniques.

IV. SECOND APPROCH

A. Abstraction

We cannot work on this model since it is too big for PRISM to
build it. So, we need to reduce its size. As, we saw in the subsection
II-D, we may use an abstraction to effectively reduce the size of the
model.

Abstracting a model consists in building a quotient of a model. We
can notice that, our definition of α (on which entirely depends both
the definition of a balanced system and our regulation policy) only
relies on the distance between trains, not their exact location. In fact,
we do not need to define the position of trains exactly in the system
but only relatively to the other trains.

We can define an equivalence relation between different situations
of the system to characterize this abstraction. Two states of our
system are said equivalent if and only if for all pair of trains, the
distance (as a number of locations) between them is the same in
both situations (all other variables, in particular the time waited in
station, being unchanged). In fact, this is equivalent to requiring that
a configuration of trains can be obtained from the other by a rotation
(that is, every train is moved in the same direction, of the same
number of locations). That can be seen in appendix A. It has to be
noted that the number of locations of the rotation has to be a multiple
of the number of intermediate steps between two stations (since the
fact that a train is in station or not should be preserved).

point : 4 0 1 2 3 4 0 1 2 3 4 0 1

nb_station = 1

Figure 14. Definition of the new variables for our abstraction (with k = 5).

aaaaaaaaaa Model Before After
Number of trains abstraction abstraction

Three trains 2.1× 108 states 3.5× 105 states
3.4× 109 transitions 8.3× 105 transitions

Four trains Not built 2.0× 107 states
in PRISM 5.7× 107 transitions

Figure 15. Size of the model in terms of number of states and transitions (in
both cases, k = 5)

We can define formally an equivalence relation R. Let s, s′ be two
states with stationi and station′i representing the location of train i
respectively in s and s′. Then: sRs′ if and only if there exists a ∈N

such that ∀i ∈ J1, nbtrainK, stationi = station′i + a× k [q] with k
defined in section III-B, q being the total number of locations in the
system and every other variable is unchanged. With that relation, we
can define the partition Q as all the classes of equivalence of the
relation R. We can then obtain a new model by using the method
described in subsection II-D.

This abstraction gives us a new MDP. The position of trains are
now described relatively to the other trains. It is depicted by two
variables (that is shown in figure 14):

• point: distance between a train and its previous station;
• nb_station: number of stations between a train and its successor.

These variables are enough to compute the distance between two
consecutive trains and, consequently, between any two trains. Indeed,
given a train i, d(traini, traini+1) = k × nbstation i + pointi+1 −
pointi. It means that, these new variables are enough to define α for
every train, and therefore our regulation policy and the properties we
want to check.

We analyze the impact of our abstraction on the size of the model.
A quick comparison is shown in figure 15. First, with three trains,
PRISM can build both models, but the size of the model is much
smaller with our abstraction, since there are approximately 103 less
states and 104 less transitions. But, more importantly, PRISM is now
able to build the model with four trains, which was not possible
without our abstraction. It means that we can evaluate our regulation
policy for the off-peak hours in the Glasgow subway.

B. Soundness of the model

We now need to check that our model satisfies our initial hypothesis
assuming that the system is safe. This property cannot be proved with
statistical model checking (since it studies only a finite number of
paths), that is why we need PRISM to effectively build the complete
state space of the MDP representing the behavior of a subway system.
With our abstraction, PRISM can build the model with k = 5 and
nbtrain = 4. PRISM has been able to prove that our model ensures
the safety property.

However, the state space cannot be built as soon as nbtrain = 6 or
k = 10. Therefore, we need a new abstraction. We designed a new
abstraction specifically to prove the safety property. We designed a
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new MDP whose behavior encompasses the behavior of the previous
one. In the new MDP, every transition is nondeterministic such that,
if a transition is available (and weighted by probabilities) in the initial
MDP, then it is also available as a nondeterministic choice in our new
MDP. Moreover, there is no more a distinction between stations and
intermediate points since we do not consider dwell time anymore.
The only restriction on the transition existed in the previous MDP
and it is that a train cannot go forward if the next train is at the next
location.

By definition, any valuation of the variables that was reachable in
the previous MDP is also reachable in the new MDP. In particular,
that means that if the new MDP ensures the safety property, then so
does the previous MDP, which is our model of interest.

With that new abstraction, PRISM was able to build the model for
k = 5, 10 and nbstation = 4, 6, and prove that it ensures the safety
property. It shows that our model respects our initial hypothesis.

C. Statistical Model Checking

We finally can evaluate the efficiency of our regulation policy.
There are several ways to evaluate it. We first have to decide
which initial position we consider. Considering the computing time
necessary to correctly evaluate a property from an initial position, we
must make a choice of a small number of initial situation we will
consider. We defined around 15 initial position of interest that were
representative of different situations that could occur in the system.

We present here the result from a specific position. We can draw the
same conclusion from the other initial positions. The initial position
we consider is the position where every trains is in a single file. We
chose to show this one since it is a situation that can occur on a real
system and it is interesting to see how the system recovers from a
totally unbalanced situation.

We can see in appendix A the three graphics drawn presenting three
different situations. The first one is drawn with k = 5 and nbtrain =
4. In that situation, PRISM can build the model and it allows us to
use exact model checking. However, we only used it to draw the
green curve since the other two were far too long to draw (more than
4 hours to compute the first point of the first curve0). All curves are
drawn by evaluating the property recovering from section III-D. That
is, we see the evolution of Pmin=?(F<=q”balanced”) (the y-axis) as
q grows (the x-axis, converted in minutes). The green curve shows
the optimal solution, with a perfect regulation policy. However, such
a perfect regulation policy cannot be used in practice since PRISM
evaluates a response for every valuation of the variables. But, it gives
us optimal regulation that we can try to approach. We drew two line to
associate a time to two given probabilities (0.5 and 0.8) that seemed
of interest. We can see the optimal solution is far better than ours
(the red curve). The blue curve correspond to a situation without any
kind of regulation policy (trains always leave after the nominal dwell
time in station). In this situation, it seems very complicated to recover
from such a initial situation. On the other hand, our regulation policy
seems able to recover from such a unbalanced situation.

The second graphic shows the result obtained when k = 10. The
exact model checking could not be used in this case since the model
could not be built with PRISM. The other two curves seem to have the
same shape than previously. However, our regulation policy seems a
little more effective than previously since the time to reach p = 0.5
and p = 0.8 is smaller than previously (however these results are
undercut by the uncertainty on the curves, one can wonder about the
significance of such a little difference).

Finally, the third graphic shows the result obtained when k =
10, nbtrain = 6. We can compare this result with the previous one
(with k = 5). It seems that with 6 trains, recovering is faster (one
achieves a higher probability to recover for a given q) than with 4
trains, which seems normal.

These results shows that our regulation policy is far better than no
regulation at all (which is the least we can expect). However, we can
see how far we are from the optimal regulation.

V. CONCLUSION

Our goal was to evaluate the efficiency of regulation policies
in subway systems. We have designed a model of the Glasgow
subway and implemented it on PRISM. The model we used is
Markov Decision Process which allows to combine probabilities and
nondeterminism. Thanks to some abstraction, we were able to prove
the soundness of our model. Then, we have effectively evaluated our
regulation policy. With this regulation, trains seem able to recover
from delays in reasonable time.

We used both exact and statistical model checking throughout this
project. However, we did not use model checking at its full potential.
For instance, we could have designed an initial situation and specified
that in the first hour a train will take serious delay without having
to specify when, thanks to the nondeterminism, and observe how
the system would have evolved. This is a kind of study that is not
possible with simulation.

An interesting way to evaluate our regulation policy would have
been to design another regulation policy and compare the two (it has
not been done because of a lack of time), since the optimal regulation
policy we considered cannot be realized in practice.

A lot of choices have been made during this project and they
could be reconsidered. Our definition of delay could be strengthen
(for example, a train has some delay if α 6∈ [0.45, 0.55]) or soften
(α 6∈ [0.3, 0.7]). The impact it would have on the curves we have
drawn would be interesting to study. Moreover, the definition of α
could be changed. For example, it could evolve according to the
number of trains in the system.

The model itself could also be reconsidered. The choice of pa, pb
or our way of depicting the speed of trains could be different. Finally,
we could consider a more complex topology of subway system.
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APPENDIX

EQUIVALENCE BY ROTATION

The two figures 16 and 17 are equivalent in terms of balance of
the system.

JUSTIFYING PROBABILITIES

The repartition can be seen at figure 18. Each curve corresponds
to the sum of k independent geometric law of parameter p. The
probability law of these curves is:

P(Sk = n) =

{
0 if n < k
(n−1

k−1)× (1− p)n−k × pk otherwise
(4)
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Figure 16. A first configuration with k = 3 (subways are where the point is
blue)

Figure 17. A second configuration with k = 3 equivalent to the first one
(subways are where the point is blue)

EFFICIENCY OF THE REGULATION POLICY

The graphic that were drawn from the initial position where every
subway are single filed are in figure 19, 20 and 21.
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Figure 18. A distribution of the time needed to go from one station the next one. Dist measures the distance between the curves and the blue histogram:
Dist = ∑(curve(i)− blue_dist(i))2

Figure 19.
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Figure 20.

Figure 21.
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