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Motivation : game theory for synthesis

Game theory

Interaction between two antagonistic
agents : environment and controller Code synthesis

Correct by
Classic approach construction :
Check the correctness synthesis of

of a system controller
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Different sorts of games

Qualitative games
Reach or avoid some (sequences of) states

Quantitative games

» Consider quantitative parameters : energy consumption...
» Compare distinct strategies
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Different sorts of games

Qualitative games
Reach or avoid some (sequences of) states

Quantitative games

» Consider quantitative parameters : energy consumption...
» Compare distinct strategies

Shortest-Path games

» Combination of a qualitative with a quantitative objective
» Reach a target with a minimum cost
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Shortest Path Game

D Adam Q Eve

© target (T)
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T=(WV)ieVY 1=(v)®
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Shortest Path Game [ Jadam () Eve

Objectives

Eve maximise the payoff
Adam minimise the payoff

Shortest Path payoff of a play 7
S w((mi, mipq))  if 3n (the smallest) s.t. 7 = @
SP(r) =

+00 if = does not reach ©®
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Strategies for Adam
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Strategies for Adam

A strategy

Trading Memory for Randomness, K. Chatterjee, L. Alfaro and T. Henzinger, 2004, QEST
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Strategies for Adam
Infinite memory
o:V* VAdam — A(V)
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Deterministic Strategies @ Adam @ Eve

@ -10
-15
-1/ 10 C)

1
1 0

1

Value

dVal(v) = inf sup SP(Play(v, o, 7)) Deterministic strategy
i o V* % Vagam — V

dval® (v)

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Deterministic Strategies @ Adam @ Eve

Determinacy
dVal(v) = dVal(v) = dVal(v)
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Deterministic Strategies @ Adam @ Eve

Optimal strategy
dVal®” (v) < dVal(v)

Optimal strategy for Adam

An optimal strategy for Adam
may require finite memory.

Value
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Deterministic Strategies @ Adam @ Eve

Optimal strategy
dVal®” (v) < dVal(v)

Optimal strategy for Eve

Eve has a memoryless optimal
strategy.

Value
dVal(v) = inf sup SP(Play(v, o, 7)) Deterministic strategy
i o V* % Vagam — V

dval® (v)

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Memoryless strategies

@ Adam @ Eve

Memoryless strategy
g . VAdam — A(V)
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Memoryless strategies @ Adam @ Eve

10 1~G, —10

q27_ *
(-717 1_q1’

—-15

1 p17

Memoryless strategy
o : Vagam — A(V)

Value

mVal(v) = inf supE>"(SP)

—
mVal? (v)

Al



Memoryless strategies (o] adam (7)Eve

—10 1*('72,*10

m
gz, —1 F
: ﬁ
o1 1-ai,

—-15

1—py,1

Memoryless strategy

Value “ o
mVal(v) = inf supE”" (SP) o : Vagam — A(V)
mvale (v) e-optimal strategy

mVal”*(v) < mVal(v) + ¢
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Contributions

Main theorem
For all shortest-path games and vertices v, dVal(v) = mVal(v).
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Contributions

Main theorem
For all shortest-path games and vertices v, dVal(v) = mVal(v).

Optimality proposition
1. We can characterize and test in polynomial time the
existence of an optimal memoryless strategy.

2. Adam has an optimal (randomised) memoryless strategy if
and only if Adam has an optimal deterministic memoryless
strategy.
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Memoryless simulate deterministic

Claim
For all v, there exists p such that
mVal’?(v) < dVal(v).
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Memoryless simulate deterministic @ Adam @ Eve

—-10 .

Claim
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Memoryless simulate deterministic @ Adam @ Eve

Claim
For all v, there exists p such that
mVal’?(v) < dVal(v).

Properties of o,

» Forall 7, P77 (6®) = 1

» Eve has an optimal
memoryless deterministic
strategy.

Strategy o,
Let (o1, 02) be an optimal switching strategy, for all p € (0, 1),

op=pxoi+(1-p) x o2

An analysis of stochastic shortest path problems, D. Bertsekas and J. Tsitsiklis, 1991, Mathematics of
Operations Research.
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Memoryless simulate deterministic
Adam Eve
o] gam (@
Claim

For all v, there exists p such that
mVal’?(v) < dVal(v).

Problem
Presence of non-negative cycles
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Memoryless simulate deterministic @ Adam @ Eve

Claim
For all v, there exists p such that
mVal’?(v) < dVal(v).

Problem
Presence of non-negative cycles

i Tool for the proof

Control the non-negative cycles
with a partition of plays

Strategy o,
Let (o1, 02) be an optimal switching strategy, for all p € (0, 1),

op=pxoi+(1-p) x o2

91



Focus on the partition of plays ¢ size of play reaching the target
i number of non-negative cycles
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Focus on the partition of plays ¢ size of play reaching the target
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All plays conforming to o4

l ‘
Good zones
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Focus on the partition of plays ¢ Size of play reaching the target
Fix a memoryless strategy for Eve f number of non-negative cycles

All plays conforming to o+
| Weight of each play is < dVall

l

Good zones

SP < dval
= E(SP) < dVal

Zones to control
E(SP) <¢

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Focus on the partition of plays ¢ Size of play reaching the target
Fix a memoryless strategy for Eve / number of non-negative cycles

Green zone
All plays conforming to o4 Plays contain many non-negative cycles
| Weight of each play is < dVaI||Vp, 3/ s.t. expectation < § |

f |
Zones to control
E(SP) < ¢

|

Good zones

SP < dval
= E(SP) < dVal

T

| Blue zone | IRed zone |
Plays with many negative cycles and few  Rest of plays
non-negative cycles Jp s.t. expectation < 5

vp, I, 3L s.t. weights < dVal

101



Deterministic simulate memoryless | |Adam () Eve

Claim
For all v and for all memoryless strategies p, there exists a
deterministic strategy o such that

dVval’(v) < mVal’(v)
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Claim
For all v and for all memoryless strategies p, there exists a
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Deterministic simulate memoryless | |Adam () Eve

Claim
For all v and for all memoryless strategies p, there exists a

deterministic strategy o such that

dVval’(v) < mVal’(v)

Intuition
In v4, Adam chooses two times ©

and one time vy.
Counter-example of intuition

dval’(vy) =0> — % =mVal’(vy)
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Deterministic simulate memoryless | |Adam () Eve

Claim
For all v and for all memoryless strategies p, there exists a
deterministic strategy o such that

dVval’(v) < mVal’(v)

Tools for the proof

» Build a switching strategy
o = (o1,0p) for p

» Value iteration for the fixpoint that
gives the value
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Focus on the switching strategy  |Adam () Eve

Let p be a memoryless strategy
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Focus on the switching strategy | |Adam () Eve
Let p be a memoryless strategy
Fix o, an attractor strategy We know mVal” for all vertices.

Compute mVal’

Based on an equation given by a fixed-point
mVal’(v) = 3", e P(v, V) (w(v, V') + mVal’(v'))

0 Properties of o4
) . 1 Plays conforming to ¢ reach
@ > the target with weight < dval ©
1 B > a negative cycle ©

Null cycle Attractor distance
How do we choose the good vertex? o1(v) = minyegy) d(v')

o1(v) C argmin,, cgy{w(v, v') + mVal’(v')} = G(v)
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Conclusion

Contributions

1. Adam has the same hope using memory or randomness.

2. Existence of an optimal memoryless strategy for Adam is
testable in polynomial time.
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Conclusion

Contributions

1. Adam has the same hope using memory or randomness.

2. Existence of an optimal memoryless strategy for Adam is
testable in polynomial time.

Perspectives

» A polynomial-time algorithm to compute the value

» Extension to probabilistic value (memory and
randomisation)

Thank you! Questions?
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