Selective Monitoring Without Delay for Probabilistic Systems

Julie Parreaux¹ supervised by Stefan Kiefer²

¹ENS Rennes

²Oxford University

August 30, 2018

Challenge: fault detection and control of large complex systems in runtime

Formal verification methods to proof the correctness in runtime

- Test: feasible but not proof
- Model Checking: proof for all runs but not feasible
- Monitoring: proof for the current run

Challenge: fault detection and control of large complex systems in runtime

Formal verification methods to proof the correctness in runtime

- Test: feasible but not proof
- Model Checking: proof for all runs but not feasible
- Monitoring: proof for the current run

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Monitoring and probabilities

Monitoring problem

Input: a system S, a monitor C and a run r of S*Output*: r is a correct run on S

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Monitoring and probabilities

Monitoring introduces overhead **Problem**: Minimize overhead

Monitoring with probability

 Runtime Verification with State Estimation problem ¹(RVSE): model with probabilistic system

¹Runtime Verification with State Estimation, Stoller et al., 2012

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Monitoring and probabilities

Monitoring introduces overhead Minimize overhead : use probability **Problem**: Uncertainty vs Overhead

Monitoring with probability

- Runtime Verification with State Estimation problem (RVSE): model with probabilistic system
- Runtime Verification with Particle Filtering problem ²(RVPF): trade-off between uncertainty and overhead

²Runtime Verification with Particle Filtering, Kalajdzic et al., 2013

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Monitoring and probabilities

Monitoring introduces overhead Minimize overhead : use probability Uncertainty vs Overhead : trade-off

Our approach

The smallest overhead achievable without compromising precision at all.

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

Diagnosability

Diagnosability problem

Input: a system SOutput: Exists a monitor for S

Credit image: www.Dory.fr and www.istockphoto.com

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

Diagnosability

Diagnosability problem

Input: a system SOutput: Exists a monitor for S

Discrete event system ³: P to check and EXPTIME to build the monitor ⁴

³Diagnosability of discrete event systems, Sampath et al., 1995 ⁴A polynomial algorithm for testing diagnosability of discrete-event systems, Jiang et al., 2001

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

Diagnosability

Diagnosability problem

Input: a system SOutput: Exists a monitor for S

Discrete event system : P to check and EXPTIME to build the monitor **Probabilistic system** ³: PSPACE problem ⁴⁵

³Diagnosability of stochastic discrete-event systems, Thorsley et al., 2005 ⁴Foundation of Diagnosis and Predictability in Probabilistic Systems, Bertrand et al., 2014

⁵Accurate Approximate Diagnosability of Stochastic Systems, Bertrand et al., 2016

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

Selective monitoring

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Selective monitoring

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Selective monitoring

A feasible optimal policy

Contribution: a feasible policy without delay 000

Conclusion

Selective monitoring without delay

Our goal

Design a feasible optimal policy without delay

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Selective monitoring without delay

Our goal

Design a feasible optimal policy without delay

Decide when it is possible

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Selective monitoring without delay

Credit image: www.Dory.fr; www.123rf.com; www.pinterest.fr and www.istockphoto.com

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Selective monitoring without delay

Our goal

Design a feasible optimal policy without delay

Decide when it is possible Minimize the number of observations

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Selective monitoring without delay

Our goal

Design a feasible optimal policy without delay

Decide when it is possible Minimize the number of observations Decide as soon as possible

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Selective monitoring without delay

Credit image: www.Dory.fr; www.123rf.com; www.pinterest.fr and www.istockphoto.com

A feasible optimal policy 00000

Contribution: a feasible policy without delay

Conclusion

a

b

а

Markov Chain and Deterministic Finite Automaton

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Markov Chain and Deterministic Finite Automaton

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Non-Hidden Markov Chain

Each label identifies a unique state

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

Non-Hidden Markov Chain

A feasible optimal policy

Contribution: a feasible policy without delay 000

Conclusion

Observation policy

Observation policy: choice between observing and skipping

Observation policy

aaaaaaa ⇒ a⊥⊥aaa⊥

Assumption: the policy decides with a finite prefix

A feasible optimal policy

Contribution: a feasible policy without delay

Conclusion

A feasible optimal policy

Input: a Markov Chain \mathcal{M} , a Deterministic Finite Automaton \mathcal{A} and a threshold *r Output*: feasible policy whose expected number of observations is smaller than *r* A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

A feasible optimal policy

Input: a Markov Chain $\mathcal{M},$ a Deterministic Finite Automaton \mathcal{A} and a threshold r

Output: feasible policy whose expected number of observations is smaller than *r*

Result in the general case ⁶

Problem is undecidable.

⁶Selective Monitoring, Grigore et al., 2018

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

A feasible optimal policy

Input: a Markov Chain $\mathcal{M},$ a Deterministic Finite Automaton \mathcal{A} and a threshold r

Output: feasible policy whose expected number of observations is smaller than *r*

Result in the general case

Problem is undecidable.

Result in the non-Hidden Markov Chain case ⁶

Problem is decidable in P

There exists a feasible optimal policy can be compute in P.

⁶Selective Monitoring, Grigore et al., 2018

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

A feasible optimal policy with delay

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

A feasible optimal policy with delay

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

A feasible optimal policy with delay

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

A feasible optimal policy with delay

A feasible optimal policy

Contribution: a feasible policy without delay $_{\rm OOO}$

Conclusion

A feasible optimal policy with delay

A feasible optimal policy

Contribution: a feasible policy without delay •oo Conclusion

A feasible policy without delay *p*_{ZeroDelay}

Apply the policy on $w = eb^{\omega}$

The policy skips the next letter

A feasible optimal policy

Contribution: a feasible policy without delay •oo Conclusion

A feasible policy without delay *p*_{ZeroDelay}

Apply the policy on $w = ebb^{\omega}$

The policy observes the next letter

A feasible optimal policy

Contribution: a feasible policy without delay •oo Conclusion

A feasible policy without delay *p*_{ZeroDelay}

Apply the policy on $w = eb^{\omega}$

The policy return yes

A feasible optimal policy

Contribution: a feasible policy without delay $\circ \bullet \circ$

Conclusion

Results in general case

Feasible policy without delay

If v is a deciding prefix then the observation of v by $\rho_{ZeroDelay}$ is also deciding.

Non-optimal policy

The policy $\rho_{ZeroDelay}$ is not optimal.

Complexity

We can compute $\rho_{ZeroDelay}$ in PSPACE.

A feasible optimal policy

Contribution: a feasible policy without delay $_{\odot \odot \bullet}$

Conclusion

Results in non-Hidden Markov Chain case

Optimal policy

The policy $\rho_{ZeroDelay}$ is optimal.

Complexity

We can compute $\rho_{ZeroDelay}$ in P.

	General case	Non-Hidden Markov Chain case
Feasible	\checkmark	\checkmark
Without delay	\checkmark	\checkmark
Optimality	×	\checkmark
Complexity	PSPACE	Р

- Complexity hardness result on the optimal policy choice
- Undecidability result
- Feasible optimal policy without delay in other classes of Markov Chain
- Policy implementation and study in practice

Prefix

Class of prefix

• enabled: emit by the MC

eae is enabled but eaa is not enabled

Prefix

Class of prefix

- enabled: emit by the MC
- negatively deciding: all infinite word describe a faulty run

ec is negatively deciding

Prefix

Class of prefix

- enabled: emit by the MC
- negatively deciding: all infinite word describe a faulty run
- positively deciding: all infinite word describe a correct run

eaeb is positively deciding

Deciding policy

A policy *decides w* when the observation of *w* has a deciding prefix.

Feasible policy

A *feasible* policy decides *w* if and only if *w* has a deciding prefix.

Non-optimality

Non-optimal policy

The policy $\rho_{ZeroDelay}$ is not optimal.

 $3 = Ex(
ho_{ZeroDelay}) > Ex(
ho) = 2.5$