Reaching Your Goal Optimally by Playing at Random with no Memory

Julie Parreaux

Benjamin Monmege Pierre-Alain Reynier

September 24, 2020

Motivation : game theory for synthesis

Classic approach
Check the correctness
of a system

Game theory

Interaction between two antagonistic agents: environment and controller

Code synthesis

Correct by construction: synthesis of controller

Different sorts of games

Qualitative games

Reach or avoid some (sequences of) states

Quantitative games

- Consider quantitative parameters : energy consumption...
- Compare distinct strategies

Different sorts of games

Qualitative games

Reach or avoid some (sequences of) states

Quantitative games

- Consider quantitative parameters : energy consumption...
- Compare distinct strategies

Shortest-Path games

- Combination of a qualitative with a quantitative objective
- Reach a target with a minimum cost

culture target (T)

$$\pi = v_1$$

$$\pi = v_1 v_0$$

Eve

$$\pi = v_1 v_0 v_1$$

$$\pi = v_1 v_0 v_1 v_2$$

Play

Infinite path or reach the target

$$\pi = (\mathbf{v}_i)_i \in \mathbf{V}^{\omega} \qquad \pi = (\mathbf{v}_i)_i \odot$$

$$\pi = \mathbf{v}_1 \mathbf{v}_0 \mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \odot$$

Play

Infinite path or reach the target

$$\pi = (\mathbf{v}_i)_i \in \mathbf{V}^{\omega} \qquad \pi = (\mathbf{v}_i)_i \odot$$

Eve

How to play?

Move a token along an edge

$$\pi = V_1 V_0 V_1 V_2 V_3 \odot$$

Shortest Path payoff of a play π

$$\mathbf{SP}(\pi) = \left\{ egin{array}{l} \sum_{i=0}^{n-1} w((\pi_i, \pi_{i+1})) \\ +\infty \end{array}
ight.$$

if $\exists n$ (the smallest) s.t. $\pi_n = \bigcirc$

if π does not reach \odot

Play

Infinite path or reach the target

$$\pi = (\mathbf{v}_i)_i \in \mathbf{V}^{\omega} \qquad \pi = (\mathbf{v}_i)_i \odot$$

How to play?

Move a token along an edge

$$\pi = v_1 v_0 v_1 v_2 v_3 \odot$$

$$\mathbf{SP}(\pi) = 0 + (-1) + 1 + 1 + 0 = 1$$

Shortest Path payoff of a play π

$$\mathbf{SP}(\pi) = \left\{ egin{array}{l} \sum_{i=0}^{n-1} w((\pi_i, \pi_{i+1})) \\ +\infty \end{array}
ight.$$

if $\exists n$ (the smallest) s.t. $\pi_n = \bigcirc$

if π does not reach \odot

Objectives

Eve maximise the payoff Adam minimise the payoff

Shortest Path payoff of a play π

$$\mathbf{SP}(\pi) = \left\{ egin{array}{l} \sum_{i=0}^{n-1} w((\pi_i, \pi_{i+1})) \\ +\infty \end{array}
ight.$$

if $\exists n$ (the smallest) s.t. $\pi_n = \bigcirc$

if π does not reach \odot

Strategies for Adam

Strategies for Adam

Strategies for Adam Infinite memory

 $\sigma: V^*V_{Adam} \rightarrow \Delta(V)$

Strategies for Adam Infinite memory

 $\sigma: V^*V_{Adam} \rightarrow \Delta(V)$

Finite memory Moore machine

Strategies for Adam Infinite memory

Memoryless

$$\sigma: V_{Adam} o \Delta(V)$$

Finite memory

Moore machine

Strategies for Adam Infinite memory

$$\sigma: V^*V_{Adam} \rightarrow \Delta(V)$$

Memoryless

$$\sigma: V_{Adam} \rightarrow \Delta(V)$$

Finite memory

Moore machine

Deterministic

$$\sigma: V^*V_{Adam} o V$$

$$\sigma: V^* \times V_{\mathsf{Adam}} \to V$$

$$v_0$$
 v_1
 v_0
 v_1
 v_1
 v_1

$$\sigma$$
 Adam σ

$$au$$
 Eve

Value

$$\overline{\mathsf{dVal}}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma: \textit{V}^* imes \textit{V}_{\mathsf{Adam}} o \textit{V}$$

$$\sigma$$
 Adam

$$au$$
 Eve

Value

$$\overline{\mathsf{dVal}}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Determinacy

$$\mathsf{dVal}(v) = \overline{\mathsf{dVal}}(v) = \underline{\mathsf{dVal}}(v)$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma: V^* \times V_{\mathsf{Adam}} o V$$

$$v_0$$
 v_1
 v_1
 v_1

$$\sigma$$
 Adam

$$au$$
 Eve

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \sup_{\underline{\tau}} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))$$

$$\mathsf{dVal}^{\sigma}(v)$$

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma: V^* \times V_{\mathsf{Adam}} o V$$

$$au$$
 Eve

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \sup_{\underline{\tau}} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))$$

$$\mathsf{dVal}^{\sigma}(v)$$

Unicity

Bellman equation may have many solutions.

$$\mathsf{dVal}(v) = \left\{ \begin{array}{ll} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} \left(w(v,v') + \mathsf{dVal}(v') \right) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} \left(w(v,v') + \mathsf{dVal}(v') \right) & \text{if } v \in V_{\mathsf{Adam}} \end{array} \right.$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic Strategies $\sigma: V^* \times V_{Adam} \rightarrow V$

$$\sigma$$
 A

Adam

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Value iteration

Compute dVal as a greatest fixed point

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016. Acta Informatica

Deterministic Strategies $\sigma: V^* \times V_{Adam} \rightarrow V$

$$\sigma$$

Adam

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Value iteration

Compute dVal as a greatest fixed point

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma$$
 Ad

Adam

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v,\sigma,\tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Value iteration

Compute dVal as a greatest fixed point

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma$$
 A

Adam

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Value iteration

Compute dVal as a greatest fixed point

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic Strategies $\sigma: V^* \times V_{Adam} \rightarrow V$

$$\sigma$$
 ρ

Adam

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathsf{SP}(\mathsf{Play}(v,\sigma,\tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Value iteration

Compute dVal as a greatest fixed point

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma$$
 Adam

$$(au)$$
 Eve

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Value iteration

Compute dVal as a greatest fixed point

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma$$
 Adam

 (τ) Ev

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Value iteration

Compute dVal as a greatest fixed point

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic Strategies $\sigma: V^* \times V_{Adam} \rightarrow V$

$$\sigma$$

Adam

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v,\sigma,\tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Value iteration

- Compute dVal as a greatest fixed point
- Complexity: pseudo-polynomial

$$\mathsf{dVal}(v) = \begin{cases} 0 & \text{if } v = \textcircled{0} \\ \max_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Eve}} \\ \min_{v'} (w(v, v') + \mathsf{dVal}(v')) & \text{if } v \in V_{\mathsf{Adam}} \end{cases}$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016. Acta Informatica

$$\sigma: V^* \times V_{\mathsf{Adam}} \to V$$

$$v_0$$
 v_1 v_1 v_1 v_2 v_3 v_4 v_4 v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_8

$$\sigma$$
 Adam

$$au$$
 Eve

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

$$\mathsf{dVal}^{\sigma^*}(v) \leqslant \mathsf{dVal}(v)$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016. Acta Informatica

$$\sigma: V^* \times V_{\mathsf{Adam}} \to V$$

$$au$$
 Eve

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v,\sigma,\tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Optimal strategy for Adam An optimal strategy for Adam may require finite memory.

$$\mathsf{dVal}^{\sigma^*}(v) \leqslant \mathsf{dVal}(v)$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma: V^* \times V_{\mathsf{Adam}} \to V$$

$$au$$
 Eve

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \sup_{\underline{\tau}} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))$$

$$\mathsf{dVal}^{\sigma}(v)$$

Optimal strategy for Adam Switching strategy:

 $ightharpoonup \sigma_1$: reach negative cycle

$$\mathsf{dVal}^{\sigma^*}(v) \leqslant \mathsf{dVal}(v)$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma: V^* \times V_{\mathsf{Adam}} \to V$$

Adam (

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \sup_{\underline{\tau}} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))$$
$$\mathsf{dVal}^{\sigma}(v)$$

Optimal strategy for Adam Switching strategy:

 $ightharpoonup \sigma_1$: reach negative cycle

 $ightharpoonup \sigma_2$: reach \odot

$$\mathsf{dVal}^{\sigma^*}(v) \leqslant \mathsf{dVal}(v)$$

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

$$\sigma: V^* \times V_{\mathsf{Adam}} \to V$$

$$\sigma$$
 Adam

$$au$$
 Eve

Value

$$\mathsf{dVal}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbf{SP}(\mathsf{Play}(v, \sigma, \tau))}_{\mathsf{dVal}^{\sigma}(v)}$$

Optimal strategy for Adam Switching strategy:

 $ightharpoonup \sigma_1$: reach negative cycle

 $ightharpoonup \sigma_2$: reach \odot

Optimal strategy $dVal^{\sigma^*}(v) \leqslant dVal(v)$

Optimal strategy for Eve Eve has a memoryless optimal strategy.

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\underbrace{\tau}} \mathbb{E}^{\sigma,\tau}(\mathsf{SP})$$

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \underbrace{\sup_{ au} \mathbb{E}^{\sigma, au}(\mathbf{SP})}_{\mathsf{mVal}^{\sigma}(v)}$$

Memoryless strategies $\sigma: V_{\mathsf{Adam}} \to \Delta(V)$

 $\sigma: V_{\mathsf{Adam}} o \Delta(V)$

$$\widehat{ au}$$
 Eve

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \underbrace{\sup_{ au} \mathbb{E}^{\sigma, au}(\mathbf{SP})}_{\mathsf{mVal}^{\sigma}(v)}$$

$$\mathsf{mVal}^{{\boldsymbol{\sigma}},{\boldsymbol{\tau}}}(v) = \sum_{v'} \mathbb{P}^{{\boldsymbol{\sigma}},{\boldsymbol{\tau}}}(v,v') (w(v,v') + \mathsf{mVal}^{{\boldsymbol{\sigma}},{\boldsymbol{\tau}}}(v'))$$

 $\sigma: V_{\mathsf{Adam}} \to \Delta(V)$

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\substack{ au \ \mathsf{mVal}^{\sigma}(v)}} \mathbb{E}^{\sigma, au}(\mathsf{SP})$$

Unicity

A unique fix point : $mVal^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\substack{\tau \\ \mathsf{mVal}^{\sigma}(v)}} \mathbb{E}^{\sigma,\tau}(\mathsf{SP})$$

Compute $mVal^{\sigma,\tau}$

$$\label{eq:mval} \begin{split} \mathsf{mVal}^{\sigma,\tau}(\nu_1) &= p \times \mathsf{mVal}^{\sigma,\tau}(\nu_0) \\ \mathsf{mVal}^{\sigma,\tau}(\nu_0) &= q(\mathsf{mVal}^{\sigma,\tau}(\nu_1) - 1) - 10(1-q) \end{split}$$

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Compute
$$mVal^{\sigma,\tau}$$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q-10(1-q)}{1-pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q-10(1-q)}{1-pq}$

Value

$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \underbrace{\sup_{\tau} \mathbb{E}^{\sigma, \tau}(\mathsf{SP})}_{\mathsf{mVal}^{\sigma}(v)}$

Adam

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Compute mVal $^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q - 10(1 - q)}{1 - pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q - 10(1 - q)}{1 - pq}$

Adam

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\underbrace{\tau}} \mathbb{E}^{\sigma,\tau}(\mathbf{SP})$$
Compute mVal^{σ}

▶ If
$$p < \frac{9}{10}$$

► If
$$p \ge \frac{9}{10}$$

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Compute mVal $^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma, au}(v_1) = p rac{-q - 10(1 - q)}{1 - pq}$$
 $\mathsf{mVal}^{\sigma, au}(v_0) = rac{-q - 10(1 - q)}{1 - pq}$

Adam

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\underbrace{\tau}} \mathbb{E}^{\sigma,\tau}(\mathbf{SP})$$
Compute mVal^{σ}

▶ If
$$p < \frac{9}{10}$$
, then $q = 1$:

▶ If
$$p \geqslant \frac{9}{10}$$

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} o \Delta(V)$$

Compute $mVal^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q - 10(1 - q)}{1 - pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q - 10(1 - q)}{1 - pq}$

Adam

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\underbrace{\tau}} \mathbb{E}^{\sigma,\tau}(\mathbf{SP})$$
Compute mVal^{σ}

▶ If
$$p < \frac{9}{10}$$
, then $q = 1$:
$$mVal^{\sigma}(v_1) = \frac{-p}{1-p}$$

$$mVal^{\sigma}(v_0) = \frac{-1}{1-p}$$

▶ If
$$p \ge \frac{9}{10}$$

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} o \Delta(V)$$

Compute mVal $^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q - 10(1 - q)}{1 - pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q - 10(1 - q)}{1 - pq}$

Adam

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\underbrace{\tau}} \mathbb{E}^{\sigma,\tau}(\mathbf{SP})$$
Compute mVal^{σ}

If
$$p < \frac{9}{10}$$
, then $q = 1$:

$$mVal^{\sigma}(v_1) = \frac{-p}{1-p}$$

$$mVal^{\sigma}(v_0) = \frac{-1}{1-p}$$

▶ If $p \geqslant \frac{9}{10}$, then q = 0:

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Compute mVal $^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q - 10(1 - q)}{1 - pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q - 10(1 - q)}{1 - pq}$

Adam

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\underbrace{\tau}} \mathbb{E}^{\sigma,\tau}(\mathbf{SP})$$
Compute mVal^{σ}

▶ If
$$p < \frac{9}{10}$$
, then $q = 1$:
$$mVal^{\sigma}(v_1) = \frac{-p}{1-p}$$

$$mVal^{\sigma}(v_0) = \frac{-1}{1-p}$$

► If
$$p \geqslant \frac{9}{10}$$
, then $q = 0$:

$$mVal^{\sigma}(v_1) = -10p$$

$$mVal^{\sigma}(v_0) = -10$$

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Compute $mVal^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q - 10(1 - q)}{1 - pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q - 10(1 - q)}{1 - pq}$

 σ Adam

T Eve

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\tau} \mathbb{E}^{\sigma,\tau}(\mathbf{SP})$$

Compute $mVal^{\sigma}$ $mVal^{\sigma}(\nu)$

If
$$p < \frac{9}{10}$$
, then $q = 1$:

$$mVal^{\sigma}(v_1) = \frac{-p}{1-p}$$

$$mVal^{\sigma}(v_0) = \frac{-1}{1-p}$$

► If
$$p \geqslant \frac{9}{10}$$
, then $q = 0$:

$$mVal^{\sigma}(v_1) = -10p$$

$$mVal^{\sigma}(v_0) = -10$$

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} o \Delta(V)$$

Compute $mVal^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q - 10(1 - q)}{1 - pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q - 10(1 - q)}{1 - pq}$

 σ Adam

T Eve

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\underbrace{ au}} \mathbb{E}^{\sigma, au}(\mathsf{SP})$$

Compute $mVal^{\sigma}$ $mVal^{\sigma}(v)$

► If
$$p < \frac{9}{10}$$
, then $q = 1$:
 $\text{mVal}^{\sigma}(v_1) = \frac{-p}{1-p} < -9$
 $\text{mVal}^{\sigma}(v_0) = \frac{-1}{1-p}$

► If
$$p \geqslant \frac{9}{10}$$
, then $q = 0$:

$$mVal^{\sigma}(v_1) = -10p$$

$$mVal^{\sigma}(v_0) = -10$$

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Compute $mVal^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q - 10(1 - q)}{1 - pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q - 10(1 - q)}{1 - pq}$

σ Adam

au Eve

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\tau} \mathbb{E}^{\sigma,\tau}(\mathsf{SP})$$

Compute $mVal^{\sigma}$ $mVal^{\sigma}(v)$

► If
$$p < \frac{9}{10}$$
, then $q = 1$:
 $\text{mVal}^{\sigma}(v_1) = \frac{-p}{1-p} < -9$
 $\text{mVal}^{\sigma}(v_0) = \frac{-1}{1-p} < -10$

▶ If
$$p \geqslant \frac{9}{10}$$
, then $q = 0$:

$$mVal^{\sigma}(v_1) = -10p$$

$$mVal^{\sigma}(v_0) = -10$$

$$\mathsf{mVal}^{\sigma, au}(v) = \sum_{v'} \mathbb{P}^{\sigma, au}(v, v') (w(v, v') + \mathsf{mVal}^{\sigma, au}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Compute $mVal^{\sigma,\tau}$

$$\mathsf{mVal}^{\sigma,\tau}(v_1) = p \frac{-q - 10(1 - q)}{1 - pq}$$

 $\mathsf{mVal}^{\sigma,\tau}(v_0) = \frac{-q - 10(1 - q)}{1 - pq}$

 σ Adam

T Eve

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\tau} \mathbb{E}^{\sigma,\tau}(\mathsf{SP})$$

Compute $mVal^{\sigma}$ $mVal^{\sigma}(v)$

► If
$$p < \frac{9}{10}$$
, then $q = 1$:
 $\text{mVal}^{\sigma}(v_1) = \frac{-p}{1-p} < -9$
 $\text{mVal}^{\sigma}(v_0) = \frac{-1}{1-p} < -10$

► If
$$p \geqslant \frac{9}{10}$$
, then $q = 0$:

$$mVal^{\sigma}(v_1) = -10p$$

$$mVal^{\sigma}(v_0) = -10$$

$$\mathsf{mVal}^{\sigma, au}(v) = \sum_{v'} \mathbb{P}^{\sigma, au}(v, v') (w(v, v') + \mathsf{mVal}^{\sigma, au}(v'))$$

$$\sigma: V_{\mathsf{Adam}} \to \Delta(V)$$

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\underbrace{\tau}} \mathbb{E}^{\sigma,\tau}(\mathsf{SP})$$

Value in a MDP

Computable in polynomial time

Bellman equation in a Markov Chain

$$\mathsf{mVal}^{\sigma,\tau}(v) = \sum_{v'} \mathbb{P}^{\sigma,\tau}(v,v') (w(v,v') + \mathsf{mVal}^{\sigma,\tau}(v'))$$

Stochastic Shortest Paths and Weight-Bounded Properties in Markov Decision Processes, C. Baier, N. Bertrand, C. Dubslaff, D. Gburek and O. Sankur, 2018, LICS.

$$\sigma: V_{\mathsf{Adam}} o \Delta(V)$$

Value

$$\overline{\mathsf{mVal}}(v) = \inf_{\sigma} \sup_{\substack{\tau \ \mathsf{mVal}^{\sigma}(v)}} \mathbb{E}^{\sigma,\tau}(\mathsf{SP})$$

Value in a MDP

Computable in polynomial time

ε -optimal strategy

$$\mathsf{mVal}^{\sigma^*}(\nu) \leqslant \overline{\mathsf{mVal}}(\nu) + \varepsilon$$

Bellman equation in a Markov Chain

$$\mathsf{mVal}^{\sigma, au}(v) = \sum_{v'} \mathbb{P}^{\sigma, au}(v, v') (w(v, v') + \mathsf{mVal}^{\sigma, au}(v'))$$

Stochastic Shortest Paths and Weight-Bounded Properties in Markov Decision Processes, C. Baier, N. Bertrand, C. Dubslaff, D. Gburek and O. Sankur, 2018, LICS.

Contribution

$$dVal = \overline{mVal}$$

Claim

For all v, there exists p such that $\mathsf{mVal}^{\rho_p}(v) \leqslant \mathsf{dVal}(v)$.

Claim

For all v, there exists p such that $\mathsf{mVal}^{\rho_p}(v) \leqslant \mathsf{dVal}(v)$.

Strategy ρ_p

Let $\langle \sigma_1, \sigma_2 \rangle$ be an optimal switching strategy,

Claim

For all v, there exists p such that $\mathsf{mVal}^{\rho_p}(v) \leqslant \mathsf{dVal}(v)$.

Strategy ρ_p

$$\rho_p = \mathbf{p} \times \mathbf{\sigma_1} + (\mathbf{1} - \mathbf{p}) \times \mathbf{\sigma_2}$$

Claim

For all v, there exists p such that $\mathsf{mVal}^{\rho_p}(v) \leqslant \mathsf{dVal}(v)$.

Properties of ρ_p

▶ For all τ , $\mathbb{P}^{\rho_p,\tau}(\diamond ©) = 1$

Strategy ρ_p

$$\rho_p = \mathbf{p} \times \mathbf{\sigma_1} + (\mathbf{1} - \mathbf{p}) \times \mathbf{\sigma_2}$$

Claim

For all v, there exists p such that $\mathsf{mVal}^{\rho_p}(v) \leqslant \mathsf{dVal}(v)$.

Properties of ρ_p

- ▶ For all τ , $\mathbb{P}^{\rho_p,\tau}(\diamond \odot) = 1$
- Eve has an optimal memoryless deterministic strategy.

Strategy ρ_p

$$\rho_{p} = \boldsymbol{p} \times \boldsymbol{\sigma_{1}} + (\mathbf{1} - \boldsymbol{p}) \times \boldsymbol{\sigma_{2}}$$

An analysis of stochastic shortest path problems, D. Bertsekas and J. Tsitsiklis, 1991, Mathematics of Operations Research.

Claim

For all v, there exists p such that $\mathsf{mVal}^{\rho_p}(v) \leqslant \mathsf{dVal}(v)$.

Problem

Presence of non-negative cycles

Strategy ρ_p

$$\rho_p = \mathbf{p} \times \mathbf{\sigma_1} + (\mathbf{1} - \mathbf{p}) \times \mathbf{\sigma_2}$$

Claim

For all v, there exists p such that $mVal^{\rho_p}(v) \leq dVal(v)$.

Problem

Presence of non-negative cycles

Tool for the proof

Control the non-negative cycles with a partition of plays

Strategy ρ_p

$$\rho_p = p \times \sigma_1 + (1-p) \times \sigma_2$$

Focus on the partition of plays

 ℓ size of play reaching the target i number of non-negative cycles

Focus on the partition of plays

 ℓ size of play reaching the target i number of non-negative cycles

Focus on the partition of plays Fix a memoryless strategy for Eve

 ℓ size of play reaching the target i number of non-negative cycles

Good zones

$$\begin{aligned} \textbf{SP} &\leqslant \textbf{dVal} \\ \Rightarrow \mathbb{E}(\textbf{SP}) &\leqslant \textbf{dVal} \end{aligned}$$

Focus on the partition of plays Fix a memoryless strategy for Eve

 ℓ size of play reaching the target i number of non-negative cycles

Focus on the partition of plays ℓ size of play

Fix a memoryless strategy for Eve

 ℓ size of play reaching the target i number of non-negative cycles

Strategy σ_p

$$\sigma_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$

Focus on the partition of plays

Fix a memoryless strategy for Eve

 ℓ size of play reaching the target i number of non-negative cycles

Yellow zone

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016. Acta Informatica

ℓ size of play reaching the target Focus on the partition of plays i number of non-negative cycles Fix a memoryless strategy for Eve Yellow zone Green zone All plays conforming to σ_1 Plays contain many non-negative cycles Weight of each play is ≤ dVal Good zones Zones to control $SP \leq dVal$ $\mathbb{E}(\mathsf{SP}) \leqslant \varepsilon$

 $\Rightarrow \mathbb{E}(SP) \leqslant dVal$

Focus on the partition of plays ℓ size of play reaching the target ℓ number of non-negative cycles

Focus on the partition of plays | size of play re | | i number of non | | i number of

 ℓ size of play reaching the target i number of non-negative cycles

Plays with many negative cycles and few non-negative cycles

Focus on the partition of plays

 ℓ size of play reaching the target i number of non-negative cycles

Fix a memoryless strategy for Eve

Plays with many negative cycles and few

non-negative cycles

 $\forall p, I, \exists L \text{ s.t. weights} \leq \text{dVal}$

ℓ size of play reaching the target Focus on the partition of plays i number of non-negative cycles Fix a memoryless strategy for Eve Yellow zone Green zone All plays conforming to σ_1 Plays contain many non-negative cycles Weight of each play is \leq dVal $| \forall p, \exists I \text{ s.t. expectation } \leq \frac{\varepsilon}{2}$ Good zones Zones to control $SP \leq dVal$ $\mathbb{E}(\mathsf{SP}) \leqslant \varepsilon$ $\Rightarrow \mathbb{E}(SP) \leq dVal$ Red zone Blue zone

Plays with many negative cycles and few non-negative cycles

 $\forall p, I, \exists L \text{ s.t. weights} \leq \text{dVal}$

Rest of plays

Focus on the partition of plays ℓ size

Fix a memoryless strategy for Eve

 ℓ size of play reaching the target i number of non-negative cycles

Diue Zone

Plays with many negative cycles and few non-negative cycles $\forall p, I, \exists L \text{ s.t. weights} \leq \text{dVal}$

Rest of plays

 $\exists p \text{ s.t. expectation} \leqslant \frac{\varepsilon}{2}$

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that

$$\mathsf{dVal}^\sigma(v)\leqslant \mathsf{mVal}^\rho(v)$$

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

First Idea: Adam's strategy

 \triangleright v_2 : 10 times v_1 and 1 time \odot

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

First Idea: Adam's strategy

- \triangleright v_2 : 10 times v_1 and 1 time \odot
- \triangleright v_4 : 3 times v_3 and 1 time \odot

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

First Idea: Adam's strategy

- \triangleright v_2 : 10 times v_1 and 1 time \odot
- \triangleright v_4 : 3 times v_3 and 1 time \odot
- \triangleright v_0 : 2 times v_3 and 1 time v_2

Claim

For all ν and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

First Idea: Adam's strategy

$$\triangleright$$
 v_2 : 10 times v_1 and 1 time \odot

$$\triangleright$$
 v_4 : 3 times v_3 and 1 time \odot

$$\triangleright$$
 v_0 : 2 times v_3 and 1 time v_2

dVal^{$$\sigma$$} $(v_1) = 0 > -\frac{100}{33}$

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

Tools for the proof

- ▶ Build a switching strategy $\sigma = \langle \sigma_1, \sigma_2 \rangle$ for ρ
- Value iteration for the fixpoint that gives the value

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

Tools for the proof

- ▶ Build a switching strategy $\sigma = \langle \sigma_1, \sigma_2 \rangle$ for ρ
- Value iteration for the fixpoint that gives the value

Claim

For all v and for all memoryless strategies ρ , there exists a deterministic strategy σ such that $dVal^{\sigma}(v) \leq mVal^{\rho}(v)$

Tools for the proof

- ▶ Build a switching strategy $\sigma = \langle \sigma_1, \sigma_2 \rangle$ for ρ
- Value iteration for the fixpoint that gives the value

Eve
Adam

___ Eve

Adam

How do we choose the good vertex? Let ρ be a memoryless strategy

How do we choose the good vertex? Let ρ be a memoryless strategy

_ Eve

Adam

We know mVal^p for all vertices.

O Eve

Let ρ be a memoryless strategy Fix σ_2 an attractor strategy We know mVal $^{\rho}$ for all vertices.

Adam

O Eve

Let ρ be a memoryless strategy Fix σ_2 an attractor strategy We know mVal $^{\rho}$ for all vertices.

Adam

Attractor distance

O Eve

Let ρ be a memoryless strategy Fix σ_2 an attractor strategy We know mVal $^{\rho}$ for all vertices.

Adam

Attractor distance $\sigma_1(v)$ chooses the minimal distance

No optimal memoryless strategy

No optimal memoryless strategy

No optimal memoryless strategy

Optimal memoryless strategy

No optimal memoryless strategy

Optimal memoryless strategy

Optimality proposition

- We can characterize and test in polynomial time the existence of an optimal memoryless strategy.
- 2. A memoryless strategy optimal is deterministic.

Conclusion

Contributions

- 1. Adam has the same hope using memory or randomness.
- 2. Existence of an optimal memoryless strategy for Adam is testable in polynomial time.

Conclusion

Contributions

- 1. Adam has the same hope using memory or randomness.
- 2. Existence of an optimal memoryless strategy for Adam is testable in polynomial time.

Perspectives

- A polynomial-time algorithm to compute the value
- Extension to probabilistic value (memory and randomisation)

Conclusion

Contributions

- 1. Adam has the same hope using memory or randomness.
- 2. Existence of an optimal memoryless strategy for Adam is testable in polynomial time.

Perspectives

- A polynomial-time algorithm to compute the value
- Extension to probabilistic value (memory and randomisation)

Thank you! Questions?