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Motivation : game theory for synthesis

Classic approach

Check the correctness
of a system

.

Game theory
Interaction between two
antagonistic agents : Code synthesis

environment and controller Correct by

construction :
synthesis of
controller
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Different sorts of games

Qualitative games
Reach or avoid some (sequences of) states

Quantitative games

» Consider quantitative parameters : energy consumption...
» Compare distinct strategies
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Different sorts of games

Qualitative games
Reach or avoid some (sequences of) states

Quantitative games

» Consider quantitative parameters : energy consumption...
» Compare distinct strategies

Shortest-Path games

» Combination of a qualitative with a quantitative objective
» Reach a target with a minimum cost
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Shortest Path Game [ Jadam () Eve

© target (T)
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D Adam Q Eve

How to play?
Move a token along an edge

™=V

414



Shortest Path Game

D Adam Q Eve

How to play?
Move a token along an edge

™= Vi

414



Shortest Path Game

D Adam Q Eve

How to play?
Move a token along an edge

™= ViV Vq

414



Shortest Path Game

D Adam Q Eve

How to play?
Move a token along an edge

m™= ViWViVo

414



Shortest Path Game [ Jadam () Eve

Play
Infinite path or reach the target

T=(WV)ieVY 1=(v)®
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Infinite path or reach the target

T=(WV)ieVY 1=(v)®

How to play?
Move a token along an edge

™= ViV Vq V2V3©
SP(r) =0+ (-1)+1+1+0=1
Shortest Path payoff of a play 7
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Shortest Path Game [ Jadam () Eve

Objectives

Eve maximise the payoff
Adam minimise the payoff

Shortest Path payoff of a play 7
S w((mi, mipq))  if 3n (the smallest) s.t. 7 = @
SP(r) =

+00 if = does not reach ©®

414



Strategies for Adam
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Strategies for Adam

A strategy

Trading Memory for Randomness, K. Chatterjee, L. Alfaro and T. Henzinger, 2004, QEST
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Strategies for Adam
Infinite memory
o:V* VAdam — A(V)
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Strategies for Adam
Infinite memory
o: V* VAdam — A(V)

Memoryless

Finite memory
Moore machine

Deterministic
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Deterministic Strategies (0|Adam (7)Eve
o: V*x VAdam_>V
Value

dVal(v) = inf sup SP(Play(v, o, 7))

dval“ (v)

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Deterministic Strategies (0|Adam (7)Eve
o: V*x VAdam_>V
Value

dVal(v) = inf sup SP(Play(v, o, 7))

dval“ (v)

) Determinacy
dVal(v) = dVal(v) = dVal(v)

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Value
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Bellman equation
0 ifv=0
dVal(v) = ¢ max, (w(v, V') +dVal(V')) ifve Ve
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Deterministic Strategies (0|Adam (7)Eve

O’:V*XVAdam—>V

Value

0, —10 -1 0, -1 dVal(v) = inf sup SP(Play(v, o, 7))

dval“ (v)

Unicity
Bellman equation may have many
solutions.

Bellman equation

0 ifv=0
dval(v) = ¢ max, (w(v,V')+dVal(v')) ifve Vee

min,s (w(v, V') +dVal(v')) if v € Vagam

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Deterministic Strategies (0|Adam (7)Eve
o: V*x VAdam_>V
Value

dVal(v) = inf sup SP(Play(v, o, 7))

-9
dval“ (v)

Value iteration

-10 1

» Compute dVal as a greatest fixed point

Bellman equation
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Deterministic Strategies (0|Adam (7)Eve
o: V*x VAdam_>V
Value

~10 -1 -10 dVal(v) = inf sup SP(Play(v, o, 7))

dval“ (v)

Value iteration

» Compute dVal as a greatest fixed point

» Complexity: pseudo-polynomial

Bellman equation
0 ifv=0
dval(v) = ¢ maxy (w(v, V') +dVal(V')) ifve Vee
{ min,s (w(v, V') +dVal(v')) if v € Vagam
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Deterministic Strategies (0|Adam (7)Eve
o: V*x VAdam_>V
Value

~10 -1 -10 dVal(v) = inf sup SP(Play(v, o, 7))

dval° (v)

Optimal strategy for Adam

An optimal strategy for Adam may
require finite memory.

Optimal strategy
dval’ (v) < dVal(v)

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Deterministic Strategies (0|Adam (7)Eve
o: V*x VAdam_>V
Value

~10 -1 -10 dVal(v) = inf sup SP(Play(v, o, 7))

dval“ (v)

Optimal strategy for Adam
Switching strategy:

» o4 : reach negative cycle

Optimal strategy
dval’ (v) < dVal(v)

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Optimal strategy for Adam
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Deterministic Strategies (0|Adam (7)Eve
o: V*x VAdam_>V
Value

~10 -1 -10 dVal(v) = inf sup SP(Play(v, o, 7))

dval“ (v)

Optimal strategy for Adam
Switching strategy:

» o4 : reach negative cycle
» oo : reach ©)

Optimal strategy

. Optimal strategy for Eve
dval”(v) < dval(v)

Eve has a memoryless optimal strategy.

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Memoryless strategies (0|Adam (7)Eve
(o VAdam — A(V)

Value
mVal(v) = inf sup E>7 (SP)

~—_——
mVal? (v)
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Memoryless strategies (0|Adam (7)Eve
(o VAdam — A(V)

Value
mVal(v) = inf sup E”" (SP)
N
mVal? (v)

Bellman equation in a Markov Chain
mval™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))
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Memoryless strategies (0|Adam (7)Eve
(o VAdam — A(V)

Value
mVal(v) = inf sup E" (SP)
g T
mVal? (v)
Unicity

A unique fix point : mVal”"

Bellman equation in a Markov Chain
mval™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))

V/
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Memoryless strategies (0|Adam (7)Eve
(o VAdam — A(V)

Value
mVal(v) = inf sup E”" (SP)
N
mVal? (v)

Compute mVal””
mVal”"(vy) = p x mVal”" (v)
mVal”"(vp) = g(mVal”"(vy) —1) —10(1 — q)

Bellman equation in a Markov Chain
mval™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))

V/

74



Memoryless strategies (0|Adam (7)Eve
(o VAdam — A(V)

Value
mVal(v) = inf sup E”" (SP)
N
mVal? (v)

Compute mVal””
mVal®" (v4) = p=95191-a)

1
o, _ —q—10(1—q)
mVal”"(vo) = =55

Bellman equation in a Markov Chain
mval™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))

V/
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Memoryless strategies (0|Adam (7)Eve
(o VAdam — A(V)

Value
mVal(v) = inf sup E”" (SP)
N
mVal? (v)

Compute mVal’
> Ifp< s, theng=1:

Compute mVal””
mVal”" (v) = p=951%1=9) > Ifp> %

1=
o, _ —q—10(1—q)
mVal”"(vo) = =55

Bellman equation in a Markov Chain
mval™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))

V/
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Memoryless strategies

Compute mVal””
mVa|U7T(V1) — pm

1—-pq
o,T _ —q—10(1—q)
mVal”"(vo) = =55

@ Adam @ Eve
Value

mVal(v) = inf sup E" (SP)

—_———

mVal? (v)
Compute mVal’

> Ifp< s, theng=1:

mVal’(vy) = 5
mVal”(v) = 1=
> lip> 5

Bellman equation in a Markov Chain
mval™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))

V/
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Memoryless strategies

Compute mVal””
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1—-pq
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@ Adam @ Eve

Value
mVal(v) = inf sup E>7 (SP)
-~

mVal? (v)
Compute mVal’

> Ifp< s, theng=1:
mVal?(vy) %
mVal”(v) = 1=

> Ifp> 5, theng=0:

Bellman equation in a Markov Chain
mval™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))
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@ Adam @ Eve
Value

mVal(v) = inf sup E" (SP)
-~

mVal? (v)
Compute mVal’

> Ifp< s, theng=1:

mVal?(vy) = % <-9
mVal”(v) = 1=
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Memoryless strategies
o : Vadam — A(V)

Compute mVal””
mVal”’"(vy) = p=15— 2 10(1-9)

Tpa
mVal”’ (vp) = ~—.—2 O,Eq a)

Bellman equation in a Markov Chain

— Z P77 (v, V') (w(v, V') + mVal”" (V"))

mVal”"(v)

V/

@ Adam @ Eve
Value

mVal(v) = inf sup E" (SP)

4

mVal? (v)
Compute mVal’

> Ifp< s, theng=1:
mVal’(vi) = 5 < -9
mVal”(vp) = 5 < —10
> Ifp> 5, theng=0:
mVal?(vq) = —10p
mVal’(vp) = —10
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Memoryless strategies

~10 -1

—10

Compute mVal””

1
o, _ —q—10(1—q)
mVal”"(vo) = =55

mVal”"(vy) = pi_q_m(;_q)

@ Adam @ Eve

Value
mVal(v) = inf sup E”" (SP)
N
mVal? (v)

Compute mVal’
> Ifp< s, theng=1:
mVal?(vy) = % <-9
mVal”(vp) = 5 < —10

> Ifp> 5, theng=0:
mVal?(vq) = —10p
mVal’(vp) = —10

Bellman equation in a Markov Chain
mval™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))
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Memoryless strategies (0|Adam (7)Eve
(o VAdam — A(V)

Value
10 _1 10 mVal(v) = inf sup E”"(SP)
;/—/
mVal? (v)

Value in a MDP
Computable in polynomial time

Bellman equation in a Markov Chain
mVal™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))

Stochastic Shortest Paths and Weight-Bounded Properties in Markov Decision Processes, C. Baier, N.
Bertrand, C. Dubslaff, D. Gburek and O. Sankur, 2018, LICS.
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Memoryless strategies (0|Adam (7)Eve
(o VAdam — A(V)

Value
~10 1 10 mVal(v) = inf supE>" (SP)
o T
mVal? (v)
Value in a MDP e-optimal strategy
Computable in polynomial time mVal® (v) < mVal(v) + ¢

Bellman equation in a Markov Chain
mVal™” (v) = > P77 (v, V') (w(v, V') + mVal®" (V"))

V/

Stochastic Shortest Paths and Weight-Bounded Properties in Markov Decision Processes, C. Baier, N.
Bertrand, C. Dubslaff, D. Gburek and O. Sankur, 2018, LICS.
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Contribution

dVal = mVal
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Memoryless simulate deterministic

Claim
For all v, there exists p such that
mVal?(v) < dval(v).
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Memoryless simulate deterministic " Jadam () Eve

—-10 .

Claim

For all v, there exists p such that
mVal??(v) < dVval(v).

Properties of p,

» Forall 7, PPp7(0@) =1

Strategy pp
Let (o1, 02) be an optimal switching strategy, for all p € (0, 1),

pp=Ppx o1+ (1-p) x 02
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Memoryless simulate deterministic " Jadam () Eve

Claim
For all v, there exists p such that
mVal??(v) < dVval(v).

Properties of p,

» Forall 7, PPp7(0@) =1

» Eve has an optimal
memoryless deterministic
strategy.

Strategy pp
Let (o1, 02) be an optimal switching strategy, for all p € (0, 1),

pp=Ppx o1+ (1-p) x 02

An analysis of stochastic shortest path problems, D. Bertsekas and J. Tsitsiklis, 1991, Mathematics of
Operations Research.
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Memoryless simulate deterministic
Adam Eve
Jagam O
Claim

For all v, there exists p such that
mVal?(v) < dval(v).

Problem
Presence of non-negative cycles

Strategy pp
Let (o1, 02) be an optimal switching strategy, for all p € (0, 1),

pp=Ppx a1+ (1-p) x o2
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Memoryless simulate deterministic " Jadam () Eve

Claim
For all v, there exists p such that
mVal?(v) < dval(v).

Problem
Presence of non-negative cycles

i Tool for the proof

Control the non-negative cycles
with a partition of plays

Strategy pp
Let (o1, 02) be an optimal switching strategy, for all p € (0, 1),

pp=Ppx o1+ (1-p) x 02

9/14



Focus on the partition of plays ¢ size of play reaching the target
i number of non-negative cycles
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Focus on the partition of plays ¢ size of play reaching the target
Fix a memoryless strategy for Eve f number of non-negative cycles

All plays conforming to o4

l ‘
Good zones

SP < dval
= E(SP) < dVal

Zones to control
E(SP) < ¢

Strategy o,
Let (o1, 02) be an optimal switching strategy, for all p € (0, 1),

op=pxoi+(1-p) x o2
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Focus on the partition of plays ¢ Size of play reaching the target
Fix a memoryless strategy for Eve f number of non-negative cycles

All plays conforming to o+
| Weight of each play is < dVall

l

Good zones

SP < dval
= E(SP) < dVal

Zones to control
E(SP) <¢

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye,
G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica
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Deterministic simulate memoryless | |Adam () Eve

Claim
For all v and for all memoryless strategies p, there exists a
deterministic strategy o such that dval’(v) < mVval’(v)

First Idea: Adam’s strategy

> v»: 10times vy and 1time ©  Counter-example

> v,: 3times v3 and 1 time © dVal(vy) = 0 > 100 _ mVal (v;)

> vy: 2times vz and 1 time v 33 /
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Attractor distance
o1(v) chooses the minimal distance
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~10 -1 -10

No optimal memoryless strategy Optimal memoryless strategy

Optimality proposition

1. We can characterize and test in polynomial time the
existence of an optimal memoryless strategy.

2. A memoryless strategy optimal is deterministic.
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Contributions
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2. Existence of an optimal memoryless strategy for Adam is

testable in polynomial time.
Perspectives

» A polynomial-time algorithm to compute the value

» Extension to probabilistic value (memory and
randomisation)

Thank you! Questions?
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