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Abstract: Games theory is well-established in the construction of complex reactive systems
correct by construction. Two-player games model interaction between two antagonistic agents on
a system: an environment and a controller. The controller strategy synthesis problem for the
system requires we build a controller that ensures the system specification whenever the
environment does. It can be modelled by the winning strategy synthesis on a game. We search to
build a strategy as simple as possible. A natural criterion is the memory needed for this strategy.
In the internship, we will focus on two classes of games : quantitative and priced timed games.
This bibliographic review introduces theses games with their specificities. For each game, we
give the complexity of the problem of finding a winning strategy and the memory needed for the
strategies. These state of the art results give the context of the internship and justify the study of
the trade-off between memory and probabilities for strategies in these two classes of games.
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1 Introduction

The verification and correction of complex reactive systems are difficult. When an error is found,
debug these systems is another hard problem. Game theory on graph is a well-established tech-
nique to design systems which are correct by construction. To build this system, we design a
controller such that the systems ensure its specification. We solve the controller synthesis problem
: build a correct controller for a given system model. In this problem, we can not ensure that the
environment and the controller collaborate together. The controller is built such that properties
are ensured whatever the environment performs. Games on graphs model the system behaviour
by interactions between two antagonistic agents (called players) : an environment (the system’s
environment) and a controller (to control the system).

A two-player game models interaction between two players : Adam and Eve, with antagonistic
objectives. In this situation, we focus on winning strategy problem for both players. A game
is composed of a graph (usually named arena) and an objective. The graph gives the rules of
the game: it describes the available behaviours of the players. An objective defines who wins
the game: it models the system’s specification. We suppose that the considered games have no
tie : Eve or Adam always win, specification is satisfied or not. We must decide who wins the
game when the game starts in a given vertex. Moreover, for the winner, we would decide if there
exists a way for this player to play and ensure that he wins. When the system’s specification
is encoded in the objective, the controller synthesis problem can be approached by the winning
strategy synthesis problem on a game.

There exist many games on graphs. The different instantiations of the graph (with or without
weights, probability distributions on transitions, finite or infinite, ...) and objectives build dis-
tinct games. In this bibliographic review, we will focus on quantitative and timed games with
a shortest path objective. Quantitative games can model quantitative parameters on the system.
For example, these games can model energy consumption or functional requirement. It is a way
to order the strategy for an objective and choose the best. Timed games model timed reactive
systems or systems with time issues. These games are an example of infinite games. However,
they can be represented with a timed automaton that is an extension of a finite automaton with
time. When we add quantitative parameters in timed automata, we obtain priced automata. They
describe priced timed games. For quantitative and priced timed games, we focus on the shortest
path objective. It is an extension of a reachability objective as a combination of two objectives : a
reachability objective and a minimisation of the system’s execution’s weight.

In the internship, we will focus on one particular problem : the synthesis of an optimal strategy.
It searches to build this optimal strategy if it exists. It is a natural extension of the problem to the
existence of an optimal strategy problem : we search if an optimal strategy exists. The existence
problem asks whether there is a strategy for a player such that whatever the adversary plays the
system’s execution has a weight ≤ c, for c a threshold. This problem allows one to solve other
problems as the value problem that consists in computing the optimal value for all vertices of the
arena. This value is the optimal weight that a player can be expected whatever the adversary
plays. It is a way to compute who wins the game. The value problem asks whether the value for
a vertex is ≤ c, for c a threshold.

We study the synthesis problem with a question on the memory needed for this optimal strat-
egy if we can build it. When a strategy is synthesised, we search the simplest one possible : it is a
strategy without memory. However, in some games such as quantitative or priced timed games,
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memory is needed to obtain an optimal strategy. We search to quantify this memory for each game
where it is necessary.

In Section 2, we introduce the basic notion for theses games and we present an example of an
infinite game : a timed game. In Section 3, we introduce quantitative games. After presenting
classical objectives for theses games, we present the synthesis of optimal strategy for the shortest
path objective. In Section 4, we extend timed games with weights. We study the decidability
classes of games for previous problems.

2 Game Theory on Graph

A two-player game between Adam and Eve on a graph is composed of two elements: an arena (a
graph) and a winning condition called objective. Given these two elements, we design a particular
game. The important problems on a game are the existence and the synthesis of a winning strategy
for at least one player of this game.

2.1 Syntax and semantics

A game G = (A, W) is defined by an arenaA and an objective W. An arena of a game is a directed
graph A = (V, E) (not necessarily finite, see Section 2.3 for an example) where E ⊆ V × V is the
transition relation. A run is an infinite path in the arena. We denote π = v1v2 . . . a run in G where
vi ∈ V and (vi−1, vi) ∈ E for all i. A finite run is a run that finishes in a blocking vertex i.e. a vertex
which has exit transitions. For the next, we suppose, without loss of generality, that there are no
blocking vertices. Otherwise, blocking vertices can be transformed into an absorbing vertex by
adding a self-loop. A history is a finite prefix of a run.

We consider a turn-based semantic to describe the choice of the players. A single token repre-
senting the current state of the game is moved by the players. The current player who is decided
by the token vertex attribution chooses the next move of the token. Formally, to represent this
semantic, we consider in the arena that V = VEve ∪ VAdam where VEve is Eve’s vertices and VAdam
Adam’s vertices such that VEve ∩ VAdam = ∅. Figure 1 represents an arena of a turn-based game
where VEve is represented by the circle and VAdam by the rectangle. If the token is in v0 ∈ VAdam,
Adam chooses to move to v0 or v1. As the same, in v6 ∈ VEve, Eve chooses to move to v3 or v5. A
run in this turn-based game is π = v6v3v2(v0v1)

ω.
Now, we define how Eve can win in a game G = (A, W): the objective. More precisely, we

focus on Eve’s objective: W ⊆ Vω (W can be an infinite set). Eve wins under W with a run π if
and only if π ∈ W. When the game has some blocking vertices, we define a finite winning run π
such that the token reaches a deadlock vertex for Adam. Moreover, we assume that Adam wins
when Eve does not win, there is no tie in a game. This hypothesis implies that the Adam objective
set is the complement of W.

There exist many objectives but we focus on a particular objective: the Reachability objective
denoted Reach(T) where T ⊆ V is a subset of vertices to represent the target. Let π = (vi)i a run in
a game G, Eve wins with π if there exists i such that vi ∈ T. Adam solves the dual objective, i.e. the
safety objective, he must not reach T. He wins with π if for all vi /∈ T. A game G = (A, Reach(T))
is a reachability game.

Example 1. Consider the reachability game represented in Figure 1 with T = {v0}. The run π =
v6v3v2(v0v1)

ω is winning for Eve, but the run π′ = v6v3v2(v4v2)ω is winning for Adam.
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Figure 1: An arena for a regular game where
Eve vertices are circle and Adam ones are
rectangle.
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Figure 2: A concurrent timed game where Eve
plays with {a} and Adam with {b}.
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Figure 3: An arena of a quantitative game. Eve ver-
tices are circle and Adam are rectangle one.

Related work on ω-regular objectives We can extend the reachability objective with ω-regular
objectives [11]. These objectives are a concise syntax with the notion of vertex colours. Formally,
let a finite set of colours C to be a finite subset of N, we introduce the colouring function ξ : V → C.
For example, in Figure 1, ξ(v0) = 1. For a run π in G, the colour of π is a natural extension of the
colouring matching ξ : Vω → Cω. The run colour is a word (over the colour) based on the colour
of the run vertices (called ω-regular objective). A game with an objective of this class is a regular
game.

A Parity objective accepts a run π such that its colour satisfies a parity condition. Let p(π) =
min(inf(ξ(π))) be the minimal colour that occurs infinitely often in an infinite run π. A parity
objective accepts the run π if and only if p(π) is even. Let F be a set of subsets of C, a Müller
objective accepts a run π such that its colour verifies inf(ξ(π)) ∈ F , i.e. the set of colours that
occur infinitely often is an element of F . The reachability objective is an ω-regular objective. If we
consider C = {0, 1} such that all ξ(v) = 1 if and only if v ∈ T, then we accept a run π if this colour
verifies max(ξ(π)) = 1.

Example 2. Figure 1 represents an arena of a regular game G with C = {1, 2, 3, 4}. The colouring function
ξ is represented by vertices labels on G. Let π = v6v3v2(v0)ω and π′ = (v2v4v6v3)ω be two runs of G.

Case of G with a Parity objective. The run π is wining for Adam because p(π) = min(inf(ξ(π))) =
min(inf(ξ(v6v3v2(v0)ω))) = min(inf(231(1)ω)) = min{1} = 1 and p(π) is odd. However, the run π′

is winning for Eve because p(π′) = min(inf(π′)) = min{2, 3} = 2 and p(π′) is even.
Case of G with a Müller objective with F = {{1, 2}, {1, 2, 3, 4}}. The run π is wining for Eve because

inf(ξ(π)) = inf(ξ(v6v3v2(v0v1)
ω)) = inf(232(12)ω) = {1, 2} ∈ F . However, the run π′ is winning

for Adam because inf(ξ(π′)) = {2, 3} /∈ F .
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2.2 Strategies

To win the game G = (A, W), Eve must make a good choice at each her turn. These choices are
described by a strategy. It is a matching σ : V∗VEve → V mapping history in G to the vertex she
wants to move the token to. A strategy for Adam is similarly defined by σ : V∗VAdam → V. Let
π be a run and σ be a Eve’s strategy (respectively Adam’s strategy σ), we say that π = v0v1 . . .
is conform to σ if for all i such that vi ∈ VEve (respectively VAdam), then σ(v0v1 . . . vi) = vi+1. For a
game G = (A, W), σ is a winning strategy for Eve if and only if all runs conform with σ are in W.
For a given vertex v, Eve has a winning strategy σ if for all run π starting in v and conforms with
σ are in W. We define analogously the winning strategy for Adam.

The determinacy of a game G gives a symmetrical argument to reason on G. A game G is
determined if and only if, for all vertices of G, Eve or Adam have always a winning strategy. It
justifies that we only focus on Eve’s point of view.

Theorem 1 ([11]). Every game G with an ω-regular objective is determined.

Let G be a game, a classical problem is to decide the existence of a winning strategy for Eve.
When we can decide that this strategy exists, we want to compute one (synthesis problem). An
example of a simple strategy is a strategy built by an attractor. This notion is the base element for
many objectives. We illustrate this notion on reachability games in the example 3.

Example 3. Let G be a reachability game with a set of vertices T. In G, we can compute the winning
strategy for Eve in polynomial time with an attractor. It defines the set of vertices where Eve wins. We
use the function Pre that defines the set of vertices such that whatever Adam plays, Eve reaches X on
one step. Formally, Pre is defined for all X subset of vertices V, as Pre(X) = {v ∈ VEve|∃(v, v′) ∈
E, v′ ∈ X} ∪ {v ∈ VAdam|∀(v, v′) ∈ E, v′ ∈ X}. The Eve’s attractor for T is the least fixed point of
: X 7→ Pre(T ∪ X). It can be computed iteratively as following in polynomial time [11]. We start with
X0 = ∅ and for each iteration based on Xi, we compute the set Xi+1 = Pre(T ∪ Xi). Intuitively, at each
iteration, we add to Xi+1 all Eve’s vertices such that it exists a transition to reach Xi ∪ T and all Adam’s
vertices, such that all transitions from it reach Xi ∪ T. Eve’s winning strategy is defined by the witness
which allows to reach Xi.

Let the reachability game represented in Figure 1 with T = {v0}. Let X0 = ∅, we describe the Eve’s
attractor computation. In the first step, X1 = Pre(T ∪ X0) = {v1, v2}. We note that v2 ∈ X1 as v2
reaches T with (v2, v0), but v0 /∈ X1 because v0 does not reach T from all edges: we can take (v0, v1).
Then, we have X2 = Pre(T ∪ X1) = {v0, v1, v2, v3, v5}, X3 = Pre(T ∪ X2) = {v0, v1, v2, v3, v5, v6} and
X4 = Pre(T ∪ X3) = V In the last step, v4 ∈ X4 because at this moment, all edges from v4 reach T ∪ X3.
Eve’s winning strategy is represented by pink arrows in Figure 1.

Let the reachability game represented in Figure 1 with T = {v1}. Eve’s attractor computation converges
in two steps when we add {v5, v6}. By the determinacy result, Eve has a winning strategy when the game
starts from v5 or v6 and Adam has a winning strategy in the other cases.

Related work on different types of strategies To compute the simplest strategy, we need to
order strategies. One criterion to compare strategies is the memory they use. In general, a strategy
needs infinite memory since we must remember the whole history of the run. In several cases,
knowing the whole history is not necessary through. A strategy is said memoryless (or positional) if
for all two distinct history v0v1 . . . vi and v′0v′1 . . . v′i with vi = v′i, then σ(v0v1 . . . vi) = σ(v′0v′1 . . . v′i).
In this case, we denote σ : VEve → V a memoryless strategy for Eve. For example, a strategy
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based on an attractor (see example 3) is a memoryless strategy. We also consider finite strategy
memories. They can be described by a Moore machine (M, m0, up, dec) where M is a finite set
representing the memory of the strategy, m0 ∈ M, up : M × V → M is the memory update
function and dec : M × V → V a decision function such that for all histories π and vertices v,
σ(πv) = dec(mem(πv), v) where mem(π) is defined by induction on the length of the history π as
follows : mem(v0) = m0 and mem(πv) = up(mem(π), v). In this case, we say that |M| is the size
of the strategy.

The memory is not the unique parameter to compare strategies. Stochastic games are games
where the transition relation is a probabilistic distribution over vertices. For such games, it is
natural to use a probabilistic strategy. A probabilistic strategies for Eve is defined as σ : V∗VEve →
D(V) where D is a probabilistic distribution over adjacent vertices [9].

2.3 An example of infinite game: timed games

Timed games are a particular class of infinite games (where the arena is infinite). The arena of this
game is a graph where vertices are a location (from a finite set of locations) and the real value of
some "clocks". However, it can be represented in a finite way. We use timed automata to represent
finitely these games. We only study the reachability objective on these games so we call them,
reachability timed games.

We store time with some variables called clocks. Let C be a set of clocks, we call valuation a
function ν : C → R≥0 such that for all clocks c ∈ C, ν(c) is the value of c. We denote V(C) the
set of valuations of C. Let c ∈ C, there exist two actions on c: let some time elapse and reset
c. If we would let pass t ∈ R≥0 time units, we denote, for all ν ∈ V(C), (ν + t)(c) = ν(c) + t.
Time passes with the same speed for all clocks in C. Let C ⊆ C be a set of clocks. The valuation
ν[C := 0] returns 0 for all c ∈ C and it returns ν(c) otherwise. This valuation models the reset of
clocks of C. Moreover, we give guards that are some constraints of clocks. Let c, c′ ∈ C, i ∈N and
./ ∈ {<,≤,=,≥,>}, a simple constraint over c and c′ is the form c ./ i or c− c′ ./ i. A guard over
C is a conjunction of simple constraints: this defines a convex set of clocks valuations. We denote
Guard(C) the set of guards in C.

A timed automaton is a tuple A = (L, C, Σ, δ, Inv) where L is a finite set of locations, C is a finite
set of clocks, Σ is a finite alphabet, δ ⊆ L × Σ × Guard(C) × L × 2C is the set of transitions and
Inv : L → Guard(C) is a function to assign an invariant defined by a guard for each location of
A. In this automaton, a transition is available if the valuation satisfies the guard on the transition
and the invariant in the new location when we have reset the clocks. A configuration of a timed
automaton is a location and the valuation of all clocks such that it satisfies this location’s invariant.
The graph of configurations of a timed automaton is an infinite graph such that the vertices of this
graph are the configurations and the edges are given by δ. There exist an edge between two
configurations (l1, v1) and (l2, v2) if and only if there exist a ∈ Σ and g ∈ Guard(C), such that
(l1, a, g, l2, v2) ∈ δ.

Example 4. Let A be the timed automaton represented in Figure 2 such that L = {v0, v1}, C = {x}, Σ =
{a, b}, δ = {(v0, a, {x > 0}, v1, ν[x := 0]), (v0, b, {x > 0}, v0, ν[x := 0]), (v1, a, {x > 0}, v1, ν[x :=
0]), (v1, b, {x > 0}, v1, ν[x := 0])} and Inv : Q→ true.

A timed game is based on the configuration graph of a timed automaton: it is its arena. In each
location, players make two actions: choose a delay and an available transition with this delay. It
chooses the delay to spend in the location (it can be null) before to take the chosen transition. This
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delay must satisfy the location invariant and the guard of the chosen transition. There exist two
ways to make the vertices partition on the arena : concurrent games and turn-based games. An
arena of a turn-based timed game is based on a timed automaton where L is split in two distinct sets
LEve and LAdam as already studied before. In a turn-based reachability timed game, attractors can
be adopted do work in this timed setting.

An arena of a concurrent game is based on the timed automaton where Σ is split in two distinct
sets ΣEve and ΣAdam. Each set contains the actions that can perform each player. For each location
v, we define ΓEve(v) = {(a, δ) | a ∈ ΣEve is an available transition and δ is the delay} ∪ {(⊥, 0)}
the set of possible choices of Eve. We suppose that (⊥, 0) describes a hidden transition to stay in v
with the same valuation for all clocks (no reset and no delay). We define as the same ΓAdam(v). The
player who chooses the smallest delay wins this round and applies his choice. When they propose
the same delay, we use an external strategy called a scheduler to choose who wins the round. This
game introduces an element of surprise. Turn-based games are a special case of concurrent games
where action (⊥, 0) is disallowed. In this class of games, we have a concurrent game where for all
locations, we only have one player action to quit the location.

Example 5. Let G be the concurrent timed game represented in Figure 2 where ΣEve = {a} and ΣAdam =
{b}. We have ΓEve(v0) = {(a, δ) | δ > 0} ∪ {(⊥, 0)}.

We focus on the reachability objective with T the set of target vertices for Eve in concurrent
timed games. A natural Adam winning strategy always chooses (⊥, 0). An infinite run conforms
with this Adam strategy implies that the time converges for this run. An infinite run π is time
convergent if its time is finite. It is divergent otherwise. To avoid this undesirable behaviour, the
player responsible for this situation loses the run. A time divergent strategy is a strategy such that a
run conform with this strategy is either time divergent or take only a finite number of transitions.
This strategy is not responsible for the time convergent for all run conform with it. A winning
strategy for Eve is a time divergent strategy that reaches the target for all time divergent run.

We need to carefully define the memory used by a strategy. In a timed game, we need to know
infinitely precisely the value of the clocks (see example 6): storing a configuration requires infinite
memory. Nevertheless, a strategy is generally said memoryless when we only to store the current
configuration. A strategy is said finite-memory when it stores a finite number of configuration
or an extra finite memory describe by a Moore machine. Otherwise, the strategy is said infinite
memory. For example, if we need an extra clock with an infinitely precise valuation, it is an infinite
memory strategy.

In a concurrent reachability timed games, the problem of the existence of a winning strategy is
decidable. However, this strategy may require infinite memory to control the surprise’s element of
the game [10]. In the concurrent reachability timed game on Figure 2 with T = {v1}, the winning
strategy for Eve needs infinite memory. It maintains precisely a global clock to choose the good
delay when she is in v0: until Eve choice is not taken, she proposes a delay closer to 0. To make
this choice, she needs to use a new global infinitely precise clock y : she chooses ( 1

2ν(y) , a) at each
turn. This strategy is a winning strategy because either Adam always chooses (⊥, 0) and time is
convergent or Adam can choose at each turn a delay non-null and there exists a moment where
Eve chooses a smaller delay and the time diverges.

We can make a trade-off between memory used and probabilities. We reduce the memory used
with a probabilistic strategy that chooses a delay uniformly at random in a given interval. A prob-
abilistic strategy for reachability timed game reaches almost surely a target with finite memory.
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Theorem 2 ([9]). Let G = (A, Reach(T)) be a concurrent reachability timed game with T a set of loca-
tions. Eve has a winning, randomized, finite-memory strategy πEve such that for all locations where Eve
can reach T, for all Adam’s time divergent strategies πAdam, PrπEve,πAdam

s (Reach(T)) = 1.

Example 6. Let G be the concurrent reachability timed game in Figure 2 with T = {v1}. By Theorem 2,
Eve has a winning randomized, finite-memory strategy. Let πEve(p, ν) = (a, Uni f orm(0, 1− ν(x))) a
strategy that chooses the action a with a delay chosen uniformly at random in the interval ]0, 1− ν(x)]. It
is a winning strategy. Let δj be the delay proposed by Adam in the round j. The probability to never choose
Eve’s action is ∏∞

j=1(1− δj) = 0 if ∑∞
j=1 δj = ∞. As Adam uses a time-divergent strategy, ∑∞

j=1 δj = ∞.
Thus, the probability to choose Eve’s action is 1 and she reaches v1 with probability 1.

3 Quantitative Games

When a game has many strategies, we would like to compare them and choose the best one. A
way to classify strategies is to introduce a measure with weights. For example, we can model
energy used or created by a robot during a task with weights. We would minimise the energy
consumed to solve the objective. Formally, we consider another sort of graphs for the arena of the
game, weighted graph. We suppose that weights are in Z. We begin by focusing on finite games
with weights: quantitative games.

3.1 Quantitative games

A quantitative game is a turn-based game with an arena described by a finite weighted graph A =
(V, E, w) where V = VAdam ∪VEve, E ⊂ V ×V and w : E → Z. Figure 3 represents a quantitative
game. A run π ∈ Vω in this game is defined as a run in the classical game.

Example 7. In Figure 3 we represent an arena of a quantitative game where Eve has the circle ver-
tices and Adam has the rectangle ones. We have, for example, w(v3, v0) = −2. A run in this game is
v0v1v2v3(v1v0)ω.

An objective in quantitative games is given by a particular function : the payoff. Intuitively this
function gives the weight of a run on the game. For a given payoff, Eve’s objective is to maximise
it and Adam’s objective is to minimise it. For each vertex v of the game, we define valGEve(v) and
valGAdam(v) as the value for Eve and Adam. It is the best value that Eve and Adam can guarantee
whatever the adversary plays when the game starts in v. When the game is not ambiguous we
can skip G in the notation.

Under this objective, an optimal strategy is a winning strategy for this objective. In other words,
an optimal strategy for Eve ensures that she reaches the value given by valEve. We have the same
for Adam. For this game, we study a particular property : the determinacy. A game is determined
if for all vertices v, valAdam(v) = valEve(v). When a game is determined, we denote by val(v)
the value valEve(v) = valAdam(v) of v and we search if we can solve the game : decide whenever
val(v) ≥ x where x ∈ Q is a threshold. This problem is called the value problem. To answer it,
we search when the strategy for Eve guarantees a payoff greater than x whatever Adam plays,
we solve the existence of an optimal strategy problem. We also compute a vector (val(v))v that
contains all values of the game.
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Related work on classical payoff There exist many payoffs for a given quantitative game
[12]. Each payoff can express a particular property. Quantitative games can express the ω-
regular objective when colours are represented by weights. For example, the payoff Sup(π) =
sup w((πi, πi+1)) expresses the reachability of T : if we take 1 in all incident edge of T and 0 oth-
erwise. As Eve would maximise this payoff, we consider the maximum on a run π: she wins if
the payoff is 1.

Now, we consider arithmetic operations for the payoff. A way to compute the weight
of an infinite run is to take the average of the weights in the run. As this average may
not be well-defined, we define the Mean-payoff objective for a run π as MeanPayoff(π) =
lim infn→∞

1
n ∑n−1

i=0 w((πi, πi+1)). A game G = (A, MeanPayoff) is a Mean-payoff game.

Example 8. Consider the Mean-payoff game represented in Figure 3. The MeanPayoff of the run π =
v0(v1v2v3)ω is the average weight of the cycle (v1v2v3), i.e. 5/3.

Theorem 3 ([12]). Mean-payoff games are determined and both players have memoryless optimal strate-
gies.

Example 9. On the Mean-payoff game of Figure 3, Eve and Adam have memoryless optimal strategies,
denoted by σEve and σAdam respectively, such that σEve(v0) = v1, σEve(v2) = v3, σAdam(v1) = v2,
σAdam(v3) = v1, and σAdam(v4) = v0.

The Mean-payoff objective is a long-term objective : it is prefix independent. In economy, for
example, the prefix is more important than the long-term. The Discounted payoff is an objective
that can consider more the prefix. For a run π and a parameter λ ∈ ]0, 1[, the Discounted payoff
is DiscountedPayoffλ(π) = (1− λ)∑∞

i=0 λiw((πi, πi−1)). A game G = (A, DiscountedPayoff) is a
discounted game.

Theorem 4 ([12]). Discounted games are determined and both players have memoryless optimal strategies.

Example 10. Consider the discounted game in Figure 3. Let λ = 0.9, Eve and Adam have memoryless
optimal strategies, denoted by σEve and σAdam respectively, such that σEve(v0) = v1, σEve(v2) = v3,
σAdam(v1) = v2, σAdam(v3) = v3, and σAdam(v4) = v0. We note that this strategy is the same as for the
corresponding Mean-payoff game (see Example 9): when λ is close to 1 the discounted objective is the same
as the Mean-payoff objective. Now, let λ = 0.5, only Adam changes his optimal choice : σAdam(v1) = v0.
When λ = 0.1, the optimal strategy changes for both players: σEve(v0) = v4, σEve(v2) = v3, σAdam(v1) =
v0, σAdam(v3) = v0, and σAdam(v4) = v0.

Another interesting objective is simply to sum the weights along the run. We define the Total-
payoff objective : for a run π we have TotalPayoff(π) = lim supn→∞ ∑n−1

i=0 w((πi, πi+1)). A game
G = (A, TotalPayoff) is a total-payoff game.

Example 11. Consider the total-payoff game in Figure 3. For the run π = v0(v1v2v3)ω, the total-payoff
is the sum of the weight of the cycle, i.e. +∞.

Theorem 5 ([12]). Total-payoff games are determined and both players have a memoryless optimal strategy.

3.2 Shortest path objective

We have seen that payoffs can be used to encode reachability objectives. Another way to extend
this objective is the shortest path objective. In this case, Adam wants to reach a target with the
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Figure 4: A shortest path game with T = {vt}
where vertices are labelled by their value. Eve
vertices are circle and Adam are rectangle one.
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v1
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1
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t1

b, y ≤ 2, ∅, 0

t2

a, y = 2, ∅, 1

t3

a, y = 2, ∅, 7

t4

Figure 5: A concurrent shortest path timed
game with T = {v3} with ΣAdam = {a} and
ΣEve = {b}.

smallest total payoff possible. Eve wants to avoid this case: she would not reach the target and
when it is not possible, she reaches it with the greatest total-payoff possible. Formally, we define
the payoff Shortest path for a run π and a set of vertices’ target T by :

ShortestPath(π) =

{
+∞ if πk /∈ T for all k ≥ 0
∑k−1

i=0 w((πi, πi+1)) if k ≥ 0 is the minimal index such that πk ∈ T

A game G = (A, ShortestPath) is a shortest path game.
We note that these games are determined [5]. Like the previous games, we solve the value

problem for a game with the problem of optimal strategy synthesis for Adam.

Example 12. Figure 4 represents a shortest path game where vt is the only target (T = {vt}). Next to each
vertex, we write the optimal value when the game begins in this vertex.

When we suppose that the weights in the game are non-negative, the optimal strategy for
Adam can be computed with a sort of Dijkstra algorithm. So the value problem is solved in
polynomial time [12]. However, when we add negative weights, we cannot use Bellman–Ford
algorithm or other graph algorithms. A reason for this is that Adam’s optimal strategy needs
memory.

Example 13. In the shortest path game represented in Figure 4, Adam’s optimal strategy needs finite
memory. In fact, when the game starts in the vertex v1, Adam can ensure the value−10 if he chooses twelve
times to go to the vertex v0. He can take twelve times the negative cycle if Eve agrees with that. Then
he chooses the vertex v2 and, if needed, he finishes to choose the target. This is a finite-memory strategy
because we need to remember the time spent on the negative cycle. If we suppose that Adam can only use a
memoryless strategy, he has two choices in v1. He can always choose v0 to stay in the negative cycle. In this
case, Eve chooses v1 to stay in the cycle and never reach T. Or he can choose v2 and does not enter in the
negative cycle. In this case, Adam reaches T but with a payoff of 2. In fact Eve chooses v3 in v2 to maximise
the payoff.

In the rest of this section, we consider arbitrary weights. There is an iterative algorithm to
build an optimal strategy for Adam with a pseudo-polynomial time complexity [4]. It computes
a switching strategy: it is two memoryless strategies combined with some (pseudo-polynomial)
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memory. Intuitively, this algorithm computes the first strategy to reach the optimal value (reach a
negative cycle or the smallest path to reach the target) and a second strategy based on an attractor
to reach the target. We apply the first one until we have enough resources to go to the target and
obtain the optimal value.

Theorem 6 ([5]). Let G be a shortest path game. We can compute in pseudo-polynomial time the values in
G.

Sketch of the proof. We will present the main idea of this algorithm. It computes the value as a fixed
point of F : R|V| → R|V| such that for x ∈ R|V| we define y ∈ R|V| such that for all v ∈ V,

yv =


0 if v ∈ T
max(v,v′)∈E [w(v, v′) + xv′ ] if v ∈ VEve \ T
min(v,v′)∈E [w(v, v′) + xv′ ] if v ∈ VAdam \ T

We can iteratively compute the fixed point of F. We note that the presence of vertex with ∞ value
can be done a computation that no terminate.

Find the vertices with value +∞ By definition of the payoff, a vertex has a value +∞ if and
only if Adam cannot reach the target from it. We can use classical attractor technique to compute
the set of vertices V+∞ = {v ∈ V|val(v) = +∞} with the same equations as in Example 3.

Find the vertices with value −∞ A vertex has a value −∞ if and only if Adam controls a
negative cycle. The presence of these vertices is the main technical difficulty. Adam would take
a maximum of time this cycle that minimises the payoff. To reach the target, Adam must quit
this cycle. The vertices with value −∞ are exactly those with a value negative in the Mean-payoff
game on the same arena. With this equivalence between shortest path and Mean-payoff game, we
can deduce a threshold such that when the iteratively computed value of the game is less than of
this threshold imply, we know that the value is −∞. We remark that it can be used to compute the
value in a Mean-payoff game [12].

The value is computed in pseudo-polynomial time by this algorithm.

Now we study the synthesis problem of optimal strategies.

Theorem 7 ([4]). Let G be a shortest path game.

1. Eve has an optimal memoryless strategy computable in pseudo-polynomial time.

2. Adam has an optimal pseudo-polynomial memory strategy computable in pseudo-polynomial time.

Sketch of the proof. 1. For all vertices whose value is +∞, the strategy for Eve is the at-
tractor strategy where the target is V+∞. For all vertices with value −∞ all strategies
of Eve are equally bad. For other vertices, Eve’s optimal strategy σ∗Eve is σ∗Eve(πv) =
argmax{v′|∀(v, v′) ∈ E, w(v, v′) + val(v′)}. It is clearly memoryless and we can prove by
induction the optimality.

2. For all vertices with value +∞, all strategies of Adam are equally bad. Otherwise, Adam’s
optimal strategy σ∗Adam = (σt

Adam, σo
Adam) is a combination of two memoryless strategies.

The first one σt
Adam is a classical attractor for Adam to reach the target. The memory-

less strategy σt
Adam is computed in polynomial time. The second one is based on the al-

gorithm to find the vertices with value −∞. We use the same technique as for Eve :
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σo
Adam(πv) = argmin{v′|(v, v′) ∈ E, w(v, v′) + val(v′)}. It is clearly a memoryless strat-

egy. With these two strategies, we define σAdam such that σAdam is consistent with σo
Adam until

the total payoff is at least val(v) + c where c is the longest path in the arena. Next σAdam is
consistent with σt

Adam. We prove by induction on n = val(v) + c that the payoff of a run from
v consistent with σn

Adam is at least max(n, val(v)).

Example 14. In the shortest path game of Figure 4, we have represented Adam’s optimal strategy which
is computed by the algorithm. In each Adam vertex, the green arrow gives the strategy to reach a negative
cycle (σo

Adam) and the pink arrow gives the strategy to reach the target (σt
Adam).

Related work on this objective A shortest path game is very close to a total payoff game. There
exists a polynomial-time reduction from a total payoff game to a shortest path game. So we can
use this result to compute the value of a total payoff game and its strategies [5].

If we consider a divergent game, the problem of the value is P-complete [7]. A divergent game
is a game without a null cycle. By the structure of the game, we can ensure that the iterative
algorithm in the general case converges at most |V| steps.

In some cases, we can naturally introduce probabilities. When we do not know precisely the
behaviour of the adversary, we model the behaviour of the adversary with a probabilistic strategy.
A variant of the classical shortest path objective is the minimization of the expectation of the
shortest path under a stochastic behaviour of the adversary [6].

4 Priced Timed Games

Quantitative games are finite games with weights. A way to consider infinite games is to add
time. A timed game with weights is called a priced timed game. We add weights on transitions
and locations in the timed automaton. The weight of a run depends on the chosen transitions
and the time spend in each chosen locations. We study this game with a shortest path objective.
Unfortunately, for the two semantics of the game (concurrent and turn-based) the value problem
and the existence of an optimal strategy are undecidable.

4.1 Priced timed game with shortest path objective

A priced timed game is a timed game with weights in this arena. It is represented by a priced timed
automaton. A priced timed automaton is a timed automaton with weights on theses transitions and
locations. Formally, a priced timed automaton is a tuple A = (L, C, Σ, δ, Inv, w) where L is a finite
set of locations, C a finite set of clocks, Σ a finite alphabet, δ ⊆ L× Σ× Guard(C)× L× 2C a set
of transitions, Inv : L → Guard(C) the invariant in each locations and w : L ∪ δ → Z a priced
function. As for a timed game, there exist two semantics for theses games : concurrent games and
turn-based games. A run in a priced timed game is an infinite sequence of pairs of locations and
delays spend in it, denoted π = (vi, δi)i ∈ (V, R≥0)ω.

Example 15. Let A be the priced timed automaton represented in Figure 5 such that V = {v0, v1, v2, v3},
C = {y}, Σ = {a, b}, δ = {t1 = (v0, a, {y ≤ 2}, v1, ∅), t2 = (v0, b, {y ≤ 2}, v2, ∅), t3 = (v1, a, {y =
2}, v3, ∅), t4 = (v2, a, {y = 2}, v3, ∅)} and Inv : Q → true. Moreover, w(v0) = w(v3) = w(t1) =
w(t2) = 0, w(v1) = 10, w(v2) = w(t2) = 1 and w(t4) = 7.
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The objectives on priced timed games are described by a payoff function as in quantitative
games. This function computes the weight of a run in function of weights of taken transition
and the weight of the time spent in each location. The payoff of a Shortest path objective, as in
quantitative games, for a set T of vertices and for all runs π = (vi, δi)i is :

ShortestPath(π) =

{
+∞ if πk /∈ T for all k ≥ 0
∑k−1

i=0 w((vi, vi+1)) + δiw(vi) if k ≥ 0 is the minimal index such that πk ∈ T

A game G = (A, ShortestPath) is a shortest path timed game. For these games, as in the previous
section, we can define valAdam and valEve the values that Adam and Eve can ensure whatever the
adversary plays. A shortest path timed game is determined if and only if valAdam(v) = valEve(v)
for all vertices v. In this case, we denote val(v) = valAdam(v) = valEve(v).

4.2 Concurrent shortest path timed games

We consider a concurrent game with non-negative weights, i.e. we suppose that the priced func-
tion is w : L ∪ δ → N. In a concurrent game, Σ is split in two sets ΣAdam and ΣEve as already
studied before. In the general case, the value problem and the existence of an optimal strategy
problem are undecidable.

Example 16. Consider the concurrent shortest path timed game in Figure 5 with ΣAdam = {a} and
ΣEve = {b}. The value of Adam in v0 is valAdam(v0) = inf0≤t≤2 max(10(2− t) + 1, (2− t) + 7) =
inf0≤t≤2 max(21− 10t, 9− t) = 1. The optimal strategy for Adam in v0 is σAdam(v0) = (a, 2). The value
of Eve in v0 is valEve(v0) = sup0≤t≤2 min(21− 10t, 9− t) = 9. The optimal strategy for Eve in v0 is
σEve(v0) = (b, 0). In this concurrent game, in the first round Eve wins with the null delay, so Eve wins
the game because she reaches the target with her value.

Theorem 8 ([2]). Let G be a concurrent game with non-negative weights.

1. Given a threshold ./ c, the value problem asks whether infσAdam ShortestPath(π) ./ c where π is
conform with σAdam. It is undecidable.

2. Given a threshold ./ c, the existence problem asks whether there is a strategy σAdam for Adam such
that for every strategy σEve for Eve, it holds ShortestPath(π) ./ c where π is conform with σAdam
and σEve. It is undecidable.

Related work on decidable games There exists a subclass of games where the value problem
[2] and the existence of an optimal strategy problem are decidable [1]. Theses games verify the
non-Zenoness hypothesis. It permits to bound the game. Under this hypothesis, the payoff of an
infinite run is infinite, otherwise, it can be finite. Formally, we use a technical restriction on the
region automaton. For a game under the non-Zenoness hypothesis, the existence of an optimal
strategy problem is decidable [1]. If we relax this hypothesis a little, the value problem is still
approximable [2].

4.3 Turn-based shortest path games

We consider a turn-based game with arbitrary weights. In a turn-based game, L is split into two
sets LEve and LAdam as already studied before. Turn-based priced timed games are determined.
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Figure 6: A turn-based shortest path timed game where Eve’s vertices are circles ones and Adam’s
are rectangle ones.

For these games, the existence of an optimal strategy problem is undecidable for two clocks or
more [5]. However, we do not know if the existence of an optimal strategy problem is decidable
for only one clock.

Example 17. Consider the turn-based shortest path timed game in Figure 6 where Adam’s vertices are
rectangle ones and Eve’s vertices are circle ones. We can compute the value of Adam in v0 as valAdam(v0) =
inf0≤t≤2 max(5t + 10(2− t) + 1, 5t + (2− t) + 7) = inf0≤t≤2 max(21− 5t, 9 + 4t) = 14 + 1

3 . The
optimal strategy for Adam in v0 is σAdam(v0) = (a, 4

3 ).

Theorem 9 ([5]). The existence of an optimal strategy problem for a turn-based shortest path game is
undecidable for two clocks or more.

Simple priced timed game Simple priced timed games are a subclass of games where the existence
of an optimal strategy problem and the value problem are decidable [3]. It is a priced timed
game with only one clock x that it is never reset and its valuation is bounded by 1. Moreover, all
guards over x are 0 ≤ x ≤ 1. Formally, a simple priced timed game is represented by a tuple
A = (L, C, Σ, δ, w) where L = LEve ∪ LAdam, C = {x}, δ ⊆ L× Σ× L and w : L ∪ δ → Z. In this
game, the total time spent is between 0 and 1. When x reaches 1, the current player must play
with a delay null.

The problems of the value and existence of optimal strategy are decidable for those games [3].
The idea of optimal strategies is based on quantitative games. The only difference is on the weight
for the time spent in each location.

Theorem 10 ([3]). Let G a simple priced timed game. The value problem for all vertices, as well as a pair
of optimal strategy (σAdam, σEve) can be computed in exponential time.

Sketch of the proof. The main idea is to reduce the simple priced timed game on a quantitative
game. We consider urgent locations where the current player must play with a delay null. When
the locations of a game are all urgent locations, we obtain a quantitative game where time cannot
pass. We can apply the quantitative game’s algorithms to compute the value and optimal strategy.
The idea of the transformation is the following. When we consider a minimal weight’s location,
Eve would spend minimal time in it and Adam would spend the maximal time.

The optimal strategies computed by this algorithm has the same structure of the switching
strategy in the case of quantitative games. It is computed in the game where all locations become
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urgent. An optimal strategy for Eve is always memoryless. However, an optimal strategy for
Adam is finite-memory [3].

Related work on decidable games There exist other subclasses of decidable games. The pre-
vious result on simple priced timed games can be extended to games with one clock where the
number of resets is bounded, i.e. there are no cycles in the region automaton that contains a reset.
Based on the same technique that for the simple priced timed game, the value problem can be
solved in exponential time [3]. We consider some other restrictions to give a decidable game.

A bi-valued priced timed game has only one clock that is bounded by the greatest constant in
the guards. Moreover, we suppose that the weight on the vertices are in {−d, 0, d} for d ∈ N

[5]. Bi-valued priced timed games are determined. The value and the existence of optimal strat-
egy problems are decidable for these games. Moreover, an optimal strategy for Adam uses finite
memory and an optimal strategy for Eve may need infinite memory. The optimal strategy can be
approximated in pseudo-polynomial time [5].

A divergent priced timed game is a game under a generalisation of the strictly non-Zenoness
hypothesis in the case of non-negative weights. In this case, there are no restrictions on the number
of clocks of the game, the restriction is under the payoff of a run. The problem of the value is
in 2EXPTIME and EXPTIME-hard [7]. The problem of the existence of an optimal strategy is
2EXPTIME [8].

5 Conclusion

In this bibliographic review, we have presented some games on graphs. These games are based
on the same formalism : an arena (a graph) and an objective. For a given game, we focus on
the existence of a winning strategy for each player. During the strategy synthesis, we study the
memory requirement. For the internship, we study two classes of games : quantitative and priced
timed games with a shortest path objective for both. For these games, we study the existence
of an optimal strategy problem: it consists in deciding if an optimal strategy exists for Adam.
This problem solves another problem : the value problem. It decides the winning player in a
determined game. Moreover, it can extend the optimal strategy synthesis problem when we search
the memory needed.

In quantitative games with a shortest path objective, the value problem and the existence of
an optimal strategy problem are both decidable in pseudo-polynomial time. The optimal strategy
for Adam needs finite-memory: a pseudo-polynomial memory. One goal of the internship is to
study the trade-off between memory and probability for theses games. We search if there exists
a probabilistic and memoryless strategy. An idea is to combine with probability the two memo-
ryless strategies of the switching strategy. Moreover, another question is whether there exists a
probabilistic strategy better than a deterministic strategy.

In turn-based priced timed games with a shortest path objective, the value problem and the
existence of an optimal strategy problem are both undecidable for at least two clocks. There exist
subclasses of games where theses problems become decidable. When the existence of an optimal
strategy problem is decidable, we extend this to the synthesis problem. In this case, we search
the memory requirement for the optimal strategy. The second goal of the internship is to study a
trade-off between memory and probabilistic for theses games. As in [10], we search if there exists
a probabilistic strategy which needs less memory than in the deterministic strategy. To begin, we
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can focus on simple priced timed games and study if the probabilistic memoryless strategy can be
used for these games. Moreover, we can study if probabilistic strategies, we do better for this class
of games.
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