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Abstract: Game theory is well established in the construction of complex reactive systems correct
by construction. Two-player games model the interaction between two antagonistic agents on a
system: an environment and a controller. The synthesis problem requires the construction of a
controller, ensuring the system’s specifications regardless how the environment reacts. Game the-
ory models it by the synthesis problem of a winning strategy for the controller.
During the internship, we study the tradeoff between memory and randomness for strategies in
two classes of games: quantitative games and weighted timed games. We show that in the context
of quantitative games, randomization brings no advantages to the controller. In particular, we
build an ε-optimal strategy, when it exists, whose probabilities are parameterized by ε. Also, we
characterize and decide in polynomial time the class of quantitative games for which the random-
ized strategies are optimal. Finally, we give the first elements to extend these results to the timed
setting.
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1 Introduction

Verification of complex reactive systems is difficult. Detecting, finding and debugging an error are
three difficult sub-problems of verification. Game theory on graphs is another approach to this prob-
lem designing correct systems by construction. A controller ensuring the system’s specifications
dealing with a potentially hostile environment must ensure them regardless of the environment’s
actions. Building such a controller for a given system model is the synthesis problem. Games on
graphs model the system behaviour by interactions between two antagonistic agents (called play-
ers): environment and controller, to solve the synthesis problem of controllers.

A two-player game models the interaction between two players: Eve and Adam, with antago-
nistic objectives. It includes a graph (generally called an arena) and an objective. A graph speci-
fying the available behaviours of the players gives the rules of the game. An objective specifying
the system defines the winner. We assume that games have no ties: there always exists a winner,
the specifications are satisfied or not. Given a graph and an objective and a given initial vertex,
we want to decide the winner. Also, for the winner, we are looking to see if there exists a way
to ensure he wins (generally called a winning strategy). As the system specification is encoded
in the objective on a game, the synthesis problem can be approached by the synthesis problem of
winning strategy.

There exist many graphs (finite or infinite, with or without weights, probability distributions
on transitions) modelling different parameters on these systems. In this internship, we will focus
on quantitative and weighted timed games, respectively, defined by finite or infinite weighted graphs.
Quantitative games can model quantitative parameters such as energy consumption or functional
needs of the system. Timed games, that are infinite games, model timed reactive systems or sys-
tems with time issues. However, they can be finitely represented with a timed automaton which
extends a finite automaton with time. When we add quantitative parameters to these timed au-
tomata, we get a weighted timed automata to describe weighted timed games.

Many possible objectives describe the distinct properties of the system. The system seeks,
for example, to reach a system’s state with the reachability objective, or to avoid a set of states
with safety objective. These qualitative objectives, as well as their extensions with the ω-regular
objectives, have already been well studied [19]. In addition to these qualitative objectives, more
quantitative objectives are useful for selecting a particular strategy among all those which are cor-
rect regarding a qualitative objective. Some measures of interest, mainly studied in the literature
on quantitative game theory [21], are the average gain (called mean-payoff), the anticipated gain
(called discounted-payoff) or the total gain (called total-payoff).

The combination of quantitative and qualitative objectives allows us to select a good strategy
from among those valid for the selected metric. One of the simplest combinations consists of
shortest-path objectives [7] combining a reachability objective with total-payoff. It requires to
reach a state of the system while minimizing the total weight. Another interesting combination is a
parity objective (modelling all omega-regular objectives) with mean-payoff. It requires a controller
of good average quality over the long-term for any omega-regular objectives. In this internship,
we focus on the shortest-path objective for quantitative and weighted timed games.

For a given objective, we will focus on a particular problem: the computation of the value
allowing a better idea of the interest of a player in a quantitative game. It defines from a vertex
the best possible cost of the system execution for a player. We then define the value problem for
Adam (respectively Eve) such that for a given vertex, its value is 6 c (respectively > c), for c a
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fixed threshold. When the value is known, we can focus on the optimal strategy ensuring to get this
value. The existence problem asks if there exists a strategy for Adam (respectively Eve) such that
whatever the strategy of the adversary, the system execution has a total weight 6 c (respectively
> c), for c a fixed threshold. To solve this problem, it usually studies the synthesis problem of an
optimal strategy consisting in computing it.

We reduce properties of the strategy by allowing the use or not of memory or randomness.
We study the existence problem of an optimal (or winning) strategy by choosing its properties.
For most of classical qualitative and quantitative objectives, controller admits strategies without
memory nor randomness allowing them to win or play optimally. The situation is more complex
when combining qualitative and quantitative objectives. For some of these, at least one of the
players may need memory to play optimally. The shortest-path objective is the first example
where the controller uses memory to play optimally [7]. Controllers with a combined objective of
parity and mean-payoff need memory, and even infinite memory, to play optimally [16].

Randomness in strategies is often crucial in game theory. For example, in matrix games (like
rock-paper-scissors) Nash equilibria are only ensured when players can play at random [22]. To
our knowledge, in the context of two-player games on graphs without randomness, such strate-
gies have been very little used [14, 17]. Indeed, strategies without randomness, called determinis-
tic, are enough to play optimally or win. However, they have a natural place in stochastic games
[9, 14, 15].

In this internship, we will focus on the shortest-path quantitative games where the controller
may need (pseudo-polynomial) memory to play optimally. Our goal is then to simulate this mem-
ory using randomness, bringing us back to the problem of the stochastic shortest-path already
well studied [1, 3, 18]. We then study the implication of using randomness without memory on
the value. We, therefore, study the tradeoff between memory and randomness in strategies for
shortest-path games with integer weights. Some previous works have studied such a tradeoff for
qualitative stochastic games [14] and even in timed games [17].

We are particularly interested in two sets of strategies: deterministic strategies with memory,
as well as randomised strategies without memory. Our contribution shows that the controller can
reach the same value for both sets of strategies. In particular, we compute a randomised ε-optimal
strategy without memory, when it exists, where probabilities are parametrized by ε. Also, we
simulate a probabilistic strategy with a deterministic strategy. We also show that for some games,
no optimal randomized strategies exist. We characterize, and decide in polynomial time, the class
of games admitting an optimal randomized strategy without memory.

We then study how to extend our results in quantitative games to weighted timed games.
However, in weighted timed games, the problem of the value is undecidable. Thus, we focus
on a class of decidable game: the divergent games. In this class of games, we define the notion
of randomized strategies without memory. Then, we conjecture that the value defined by these
randomized strategies is the same as that value for deterministic strategies.

In this report, we start by introducing the basic notions of game theory in Section 2. We also
focus on basic games like stochastic games or timed games which are an example of infinite games.
In Section 3, we introduce quantitative games. After studying their classical objectives, we focus
on the shortest-path games and their deterministic strategies or strategies without memory. These
different notions allow us to present our main contribution in Section 4. In Section 5, we extend
quantitative games to weighted timed games. We study the decidable classes of games for the
value problem. Finally, in Section 6, we focus on divergent games. We present a proof scheme
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allowing to extend the result of Section 4 in the context of these games.

2 Game Theory on Graph

In this section, we formally introduce some notions, as winning strategies, on game theory. More-
over, we present some particular classes of games: stochastic games (Section 2.3) and timed games
(Section 2.4). We denote by Z the set of integers and Z∞ = Z ∪ {−∞,+∞}. For a finite set V,
we denote by ∆(V) the set of distributions over V, which are mappings δ : V → [0, 1] such that
∑v∈V δ(v) = 1. The support of a distribution δ is the set {v ∈ V | δ(v) > 0}, denoted by supp(δ).
A Dirac distribution is a distribution with singleton support: the Dirac distribution of support {v}
is denoted by Diracv.

2.1 Syntax and Semantics

A two-player game between Adam and Eve on a graph is composed of two elements: an arena
(given by a directed graph) and a winning condition called objective. We design a particular game
with these two elements.

Definition 1. A game on a graph is a tuple 〈V, E,Win〉where 〈V, E〉 is a directed graph defining the
game arena whose transitions are given by the relation E ⊆ V ×V, and Win ⊆ Vω is the objective
of the game.

Consider a game G = 〈V, E,Win〉. Its arena 〈V, E〉 can be finite or infinite as in Section 2.4 for
an example. For all vertices v ∈ V, we denote E(v) = {v′ | (v, v′) ∈ E} the set of adjacent vertices
of v in E. A play is an infinite path in its arena π = v1v2 . . . where vi ∈ E(vi−1), for all i ∈ N∗. A
finite play is a play that ends in a deadlock vertex, i.e. a vertex v such that E(v) = ∅. Without loss
of generality, we can assume that all vertices in G are deadlock-free. Otherwise, a deadlock vertex
can be transformed into an absorbent vertex by adding a self-loop. The history is a finite prefix of
a play. We denote π[k] the history of π of size k ∈N.

We consider turn-based semantics based on a single token to describe the choice of players. Its
location, representing the current state of the game, gives the current player by the membership
of vertex. Then the current player chooses the next location regarding E. Formally, this semantics
is defined by a partition of the vertices into two sets: VAdam the Adam set of vertices, and VEve the
one of Eve such as V = VAdam ∪ VEve and VAdam ∩ VEve = ∅. In the drawings, we depict VEve by
circles and VAdam by rectangles.

Example 2. In Figure 1, if the token is in v0 ∈ VAdam, Adam can choose to go to v0 or v1. Likewise, for
v6 ∈ VEve, Eve can choose to go to v3 or v5. A play in this turn-based game is π = v6v3v2(v0v1)

ω.

Now we define Eve’s objective in a game G = 〈V, E,Win〉. Its objective Win ⊆ Vω characterizes
winning plays for Eve. More precisely, Eve wins under Win with a play π if and only if π ∈ Win.
Also, we assume that there is no tie in G: Adam wins when Eve loses. This assumption implies that
Adam’s objective is the complement of Win.

There exist many objectives, but we only focus on the reachability objective. Under this objec-
tive, Eve must reach one target’s vertex, since Adam’s objective is a safety objective: he must avoid
all the target vertices. Formally, let T ⊆ V be the target set and π play in G, Eve wins with π if
and only if there exists i such that vi ∈ T. Otherwise, Adam wins. We denote 〈V, E, Reach(T)〉 a
reachability game in which T is the target set.
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Figure 1: A ω-regular game where colours are in vertices labels.

Example 3. Consider the reachability game represented in Figure 1 with T = {v0}. The play π =
v6v3v2(v0v1)

ω is winning for Eve, but the play π′ = v6v3v2(v4v2)ω is winning for Adam.

Related work on ω-regular objectives ω-regular objectives naturally extend the reachability
objective [19]. These objectives have a concise syntax given by some vertex colours. Formally,
from a finite set of colours C being a subset of N, we introduce the colouring matching ξ : V → C.
For example, in Figure 1, ξ(v0) = 1. For a play π in G, the colour of π is an extension of the
colouring matching ξ : Vω → Cω. The colour of play is a word (over colours) based on the colour
of the vertices of play (called ω-regular objective). We consider C = {0, 1} to express with ω-regular
objective, the reachability objective for a target set T. We define ξ(v) = 1 if and only if v ∈ T. A
play π wins if and only if its colour satisfies max(ξ(π)) = 1. A game with an omega-regular
objective of this class is a regular game.

Example 4. Consider the regular game in Figure 1 with C = {1, 2, 3, 4}. Its colouring function, ξ, is
given by the labels on its vertices. We then consider two plays π = v6v3v2(v0)ω, and π′ = (v2v4v6v3)ω.
Their colour is ξ(π) = ξ(v6v3v2(v0)ω) = 231(1)ω, and ξ(π) = ξ((v2v4v6v3)ω) = (2223)ω.

We present two main ω-regular objectives: the Parity objective and the Müller objective. A
Parity objective accepts a play π if its colour satisfies a parity condition. For example, we consider
p(π) = min{c | c appears infinitely often in ξ(π)} which calculates the minimum colour which
occurs infinitely often in π. A play π satisfies a parity objective if and only if p(π) is even.

Example 5. Let us consider the regular game in Example 4 with a Parity objective given by the function p
described as above. Adam wins with the play π = v6v3v2(v0)ω because p(π) = min{1} = 1 and p(π) is
odd. However, Eve wins with π′ = (v2v4v6v3)ω because p(π′) = min{2, 3} = 2 and p(π′) is even.

Now, consider F the set of subsets of C, a Müller’s objective accepts a play π if and only if its
colour satisfies {c | c appears infinitely often in ξ(π)} ∈ F , i.e. the set colours that occur infinitely
often is an element of F .

Example 6. Consider the regular game in Example 4 with a Müller objective given by F =
{{1, 2}, {1, 2, 3, 4}}. Eve wins with the play π = v6v3v2(v0)ω because {1, 2} ∈ F . However, Eve
wins with π′ = (v2v4v6v3)ω because {2, 3} /∈ F .
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2.2 Strategies

To achieve its objective in a game, Eve needs to choose a good vertex for each round. These choices
are described with a strategy. It is a matching χ : V∗VEve → ∆(V) mapping each history of G on
a distribution over vertices giving the probable moves of the token. We assume for all history π
and vertex v ∈ VEve that the support of χ(πv) is in E(v). A strategy for Adam denoted ρ is defined
analogously. Let π be a play, and σ be a strategy for Eve, respectively for Adam, π is conformed to
σ if for all i such that vi ∈ VEve, respectively VAdam, then σ(v0v1 . . . vi)(vi+1) > 0. For two strategies
for Eve, ρ, and Adam, χ, respectively, and a vertex v, we denote Play(v, χ, ρ) the set of plays starting
in v and conforming to χ and ρ.

Strategies without randomisation were first introduced. It only chooses one possible vertex
to the token’s move. Formally, a deterministic (or pure) strategy assigns at each history a Dirac
distribution, i.e., its support is a singleton. For example, a strategy based on an attractor (see
Example 8) is deterministic. We denote τ : V∗VEve → V (respectively σ : V∗VAdam → V) a
deterministic strategy for Eve (respectively Adam). We let dSEve and dSAdam the set of deterministic
strategies for players Eve and Adam, respectively.

In general, the whole history of a play is necessary to compute a strategy. However, in a
majority of cases, the history is not required. A memoryless (or positional) strategy assigns for
each vertex a unique distribution. In other words, for two distinct histories π and π′, and v ∈
VEve, a memoryless strategy σ is such that σ(πv) = σ(πv′). For example, a strategy based on an
attractor (see Example 8) is memoryless. We denote χ : VEve → V (respectively ρ : VAdam → V) a
memoryless strategy for Eve (respectively Adam). We let mSEve and mSAdam the set of memoryless
strategy for players Eve and Adam, respectively.

Sometimes a bit of memory may be needed to change the strategy during the play. There exist
several ways to represent this memory. We assume that a deterministic finite automaton defines
the strategy.

Definition 7. A Deterministic Finite Automaton (DFA) is a tuple 〈Q, choice, update, q0〉 where Q is a
set of finite states, update : Q×V → Q is a transition relation, choice : Q×V → ∆(V) is a function
to select the probabilistic distribution over adjacent vertices, and q0 is the initial state.

A finite-memory strategy for Eve is based on a DFA 〈Q, choice, update, q0〉 that represents its
memory. Thus its size is |Q| + |update| + |choice|. For all Eve’s vertices and all states of Q, this
strategy applies a chosen distribution and updates its memory. A finite-memory strategy for Adam
is analogously defined.

For a game 〈V, E,Win〉, χ is a winning strategy for Eve, if and only if, for all strategies for Adam
ρ and v ∈ V, Play(v, χ, ρ) ⊆ Win. For a given vertex v, Eve has a winning strategy χ from v if,
for all ρ, Play(v, χ, ρ) ⊆ Win. Moreover, a strategy χ for Eve is said almost surely winning if, for all
strategies ρ for Adam and v ∈ VEve, P

ρ,χ
v (Win) = 1 where P is a probability measure induced by χ

and ρ. We define analogously (almost) winning strategies for Adam.
Deciding on the existence of a winning strategy for each player is a classic problem in game

theory. Also, if this strategy exists, we want to compute it (this is the synthesis problem). A
strategy based on an attractor is an example of an elementary strategy. It is computed in Example 8
for a reachability game. Further, it is a base element for many objectives.

Example 8. In a reachability game 〈V, E, Reach(T)〉, with T ⊆ V a target set, we compute a winning
strategy for Eve in polynomial time with an attractor [19]. Intuitively, it defines the set of vertices where
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Eve is guaranteed to win using the Pre function defined on X ⊆ V a set of vertices. It calculates for X the
set of vertices so that whatever Adam’s choice, Eve reaches X in one step. Formally, Pre is defined for all the
subsets of vertices X ⊆ V, by

Pre(X) = {v ∈ VEve | ∃v′ ∈ E(v), v′ ∈ X} ∪ {v ∈ VAdam | ∀v′ ∈ E(v′), v′ ∈ X}

The Eve attractor for T ⊆ V is the smallest fixpoint of X 7→ Pre(T ∪ X) iteratively computed as follows
in polynomial time. From X0 = ∅, it is computed for each iteration with the set Xi+1 = Pre(T ∪ Xi).
Intuitively, at each iteration, we add to Xi all Eve’s vertices having an exit transition reaching T ∪ Xi and
all Adam’s vertices whose all its exit transitions reach T ∪Xi. From each Eve’s vertices, the witness to reach
Xi defines a winning strategy for Eve.

Consider the reachability game in Figure 1 with T = {v0}. Let X0 = ∅, we describe the computation
of an attractor for Eve. For the first iteration, X1 = Pre(T ∪ X0) = {v1, v2}. We note that v2 ∈ X1 as v2
reaches T with (v2, v0), but v0 /∈ X1 because all transitions from v0 do not reach T: we can take (v0, v1).
Then we have X2 = Pre(T ∪ X1) = {v0, v1, v2, v3, v5}, X3 = Pre(T ∪ X2) = {v0, v1, v2, v3, v5, v6},
and X4 = Pre(T ∪ X3) = V. In the last iteration, v4 ∈ X4 because at this time, all transitions from v4
reach T ∪ X3. Eve’s winning strategy, τ∗ depicted with blue arrows in Figure 1 is defined as τ∗(v1) = v0,
τ∗(v2) = v0, τ∗(v5) = v1, and τ∗(v6) = v5.

Deterministic strategies for regular games Randomized strategies have been first introduced in
stochastic games (see Section 2.3) [14], and are not common in regular games: deterministic strate-
gies satisfy already important properties like the existence of winning strategy and determinacy.
Thus, we only consider deterministic strategies for Adam and Eve. For all vertices v, Play(v, τ, σ)
is the unique play from v conforming to τ ∈ dSEve and σ ∈ dSAdam.

The determination of a game gives a symmetrical argument to reason about it. A game is
determined, if and only if for all its vertices v, Eve or Adam always has a winning strategy from v.
Thus, we can focus on Eve’s point of view.

Theorem 9 ([19]). Every game with an ω-regular objective is determined.

Example 10. Consider the reachability game in Figure 1 with T = {v1}. Eve’s attractor computation
converges in two iterations when we have added {v5, v6}. Thus, Eve has a winning strategy when the game
starts from v5 or v6. In other cases, by the determinacy result (Theorem 9), Adam has a winning strategy.

2.3 Markov Decision Process: an Example of Stochastic Games

When we do not know precisely the behaviour of one of the players, we can model it with proba-
bilities. The arena will directly contain probabilities modelling its choice. The other player, there-
fore, plays as before. We present a natural example of stochastic games: the Markov decision
process also called one and half-player games [14]. It contains a classical player and a stochastic
player.

Definition 11. A Markov Decision Process (MDP) is a tuple 〈S, A, P〉 where S is a finite set of states,
A is a finite set of actions, and P : V × A → ∆(V) is a partial function mapping some pair of
vertices and actions to a distribution of probabilities over the successor vertices.
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Figure 2: On the left an MDP where the player has two choices on s0. On the right an MC induced
by a memoryless deterministic strategy τ(s0) = β on the MDP.

Example 12. The MDP in Figure 2 is defined by S = {s0, s1, s2}, and A = {α, β, γ}. The partial function
is also given by P(s0, β)(s1) = 1/2, P(s0, β)(s2) = 1/2, P(s0, α)(s2) = 3/4, P(s0, α)(s3) = 1/4,
P(s1, γ)(s0) = 1/2, P(s1, β)(s0) = 1/2, P(s2, γ)(s2) = 1, and P(s3, γ)(s3) = 1.

To play in an MDP, the player must choose an action. The final move for the token will then be
made by the distribution of the stochastic player. A play is, therefore, an infinite sequence (si, αi) ∈
(S× A)ω such that for all i, P(si, αi, si+1) > 0. For example π = (s0, β)(s1, γ)(s0, α)((s0, γ))ω is a
play in the MDP in Figure 2. A strategy is a mapping χ : V∗ → ∆(A) matching all histories to a
distribution over actions. We analogously define from two-player games, deterministic, memory-
less or finite-memory strategies. For example χ is a deterministic memoryless strategy in the MDP
in Figure 2 defined by χ(s0) = β, and χ(s1) = χ(s2) = γ. Moreover, we analogously define plays
conformed to strategies. In an MDP, when the player has chosen its strategy, there will remain no
‘ ‘choices” to make, and we will obtain a Markov chain. For a given strategy χ and a vertex v,
Play(v, χ) the set of plays conforming with χ from v induces a Markov chain. Note that Play(v, χ)
is a finite Markov chain if χ is memoryless.

Definition 13. A Markov chain (MC) is a tuple 〈V, P〉where V is a set of vertices, and P : V → ∆(V)
is a function mapping each vertex to a distribution of probabilities over the successor vertices.

Example 14. On the right of Figure 2, we have a MC induced by χ where χ(s0) = β, and χ(s1) = χ(s2) =
γ. This MC is defined by V = {s0, s1, s2}, and the function is P(s0)(s1) = 1/2, P(s0)(s2) = 1/2,
P(s1)(s0) = 1/2, P(s0)(s3) = 1/2, P(s2)(s2) = 1, and P(s3)(s3) = 1.

To compute the probabilities of reaching a target in an MDP, we begin with the computation for
a given strategy χ inducing the MC,Mχ. From an initial vertex v we let P

χ
v denote the probability

measure, induced by χ, over the sets of paths inMχ. A property is any measurable subset of finite
or infinite paths in the MC with respect to the standard cylindrical sigma-algebra. For example,
we denote by P

ρ
v(�T) the probability of the set of plays that reach the target set T ⊆ V of the

vertices.

Example 15. Let us compute probability to reach {s3} from s0 in the MC in Figure 2. A path reaches {s3}
if it makes some cycle (s1, s0) and then go to s3 from s1. Thus, the probability to reach s3 is the probability
to take the cycle n ∈ N∗ times before to take the edge (s1, s3). We have P

χ
s0(�s3) = ∑n(1/4)n × 1/2 =

4/3× 1/2 = 2/3
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To compute the probability of a property in an MDP, we use the probabilities induced by a
strategy. Minimum or maximum probability of satisfying this property is then studied. These
probability measures quantify over the strategies used. Formally for a property P and an initial
vertex v, the maximum, respectively minimum, probability of satisfying the property is

Pmax
v (P) = sup

χ
P

χ
v (P) and Pmin

v (P) = inf
χ

P
χ
v (P)

Example 16. In MDP in Figure 2, Pmax
s0

(�{s3}) = 2/3 and Pmin
s0

(�{s3}) = 1/4.

Minimal reachability probabilities A classic problem in MDP is to compute Pmax
v (P) and

Pmin
v (P) for an initial vertex v and a property P with a linear program [2]. We focus on the

computation of Pmin
v (�T) where T is a target set. More precisely, we want to characterize when

Pmin
v (�T) = 1 with properties on finite MC. Note that infinite MC is not useful by the following

Lemma.

Lemma 17 ([2]). Let 〈S, A, P〉 be a finite MDP, T ⊂ S and v ∈ S. There exists a memoryless strategy χ
that minimizes the probabilities of reaching T, i.e. for all states s : P

χ
v (�T) = Pmin

v (�T).

In an MC, reachability is almost surely ensured (with probability 1) for vertices included in a
bottom strongly connected component (bottom SCC) that are (finite) sets of vertices forming a well
from which it is not possible to exit. A play in a bottom SSC will, therefore, reach each vertex at
least once. Also, a play in an MC will always reach a bottom SSC. Formally, let 〈V, P〉 be an MC.
A subset T ⊆ V is said strongly connected if for each (s, t) ∈ T× T there exists a finite path v0 . . . vn
such that v0 = s, vn = t and for all 0 6 i 6 n, vi ∈ T. A strongly connected component (SCC) denotes
a strongly connected set of vertices that no proper subset of T is strongly connected. A bottom
strongly connected component T is an SCC from with no vertex outside T is reachable, i.e. for
each vertex t ∈ T, ∑s∈T P(s, t) = 1.

Example 18. Bottom SCC in the MC in Figure 2 are {s2} and {s3}

Theorem 19 ([2]). For each vertex v of a finite MC: Pv{�T | T is a bottom SCC} = 1.

Lemma 17 guarantees that we can limit ourselves to finite MCs to calculate Pmin(�T). We can,
therefore, apply Theorem 19 to characterize when Pmin(�T) = 1.

Lemma 20 ([2]). Let 〈S, A, P〉 be a finite MDP, T ⊂ S and v ∈ S. Pmin
v (�T) = 1 if and only if for all χ,

all reachable bottom SCC from v in induced MC contains an element of T.

2.4 Timed Games: an Example of Infinite Games

Timed games are a particular class of infinite games. Their arena is an infinite graph whose vertices
include a location, from a finite set of locations, and real values of some ‘clocks”. However, this
graph (and therefore this game) can be finitely represented with a timed automaton. We only
study these games with a reachability objective, so we call them reachability timed games.

We store the time on some variables called clocks. Let C be a set of clocks we call valuation a
function ν : C → R>0 such that for all clocks c ∈ C, ν(c) is the real value of c. We denote by V(C)
the set of valuations of C. For each c ∈ C, there exist two possible actions on c: let some time elapse
and reset c. We suppose that time elapses at the same speed for all clocks in C. If we let t ∈ R>0
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l0 l1
a, x > 0, {x}

{a, b}, x > 0, {x}b, x > 0, {x}

Figure 3: A concurrent timed game where Eve’s action is {a} and Adam one is {b}.

units of time elapse, we note, for all ν ∈ V(C), (ν + t)(c) = ν(c) + t. A valuation can reset some
clocks of C and for any subset of clocks C, the valuation ν[C := 0] returns 0 for all c ∈ C, and ν(c)
otherwise. Also, these valuations are subject to guards, which are constraints on some clocks. Let
c, c′ ∈ C, i ∈N, and ./ ∈ {<,6,=,>,>}, an elementary constraint on c and c′ is of the form c ./ i
or c− c′ ./ i. A guard on C is a conjunction of elementary constraints that defines a convex set of
clock valuations. We note Guard(C) this set of guards set on C. This clock extends the notion of
finite automaton to define timed automata.

Definition 21. A timed automaton is a tuple 〈L, C, Σ, d, Inv〉 where L is a finite set of locations, C is
a finite set of clocks, Σ is a finite alphabet, d ⊆ L× Σ× Guard(C)× L× 2C is a transitions relation,
and Inv : L→ Guard(C) assigns at each location an invariant given by a guard.

Example 22. The timed automaton in Figure 3 is defined by L = {l0, l1}, C = {x}, Σ = {a, b}, d =
{(l0, a, {x > 0}, l1, ν[x := 0]), (l0, b, {x > 0}, l0, ν[x := 0]), (l1, a, {x > 0}, l1, ν[x := 0]), (l1, b, {x >
0}, l1, ν[x := 0])}, and Inv : Q→ true.

For a timed automaton, we define a configuration by a location, and a valuation satisfying this
invariant of location. For example, (l0, 0) or (l0, 0.5) are configurations in the timed automaton
of Figure 3. A transition is available for a configuration when its valuation satisfies the guard,
and the new invariant of location after the resetting clocks. For example, in Figure 3, from (l0, 0)
no transitions are available, but from (l0, 0.5) both transitions are available. The semantics of a
timed automaton is given by its configuration graph explaining all the relationships between the
configurations. Note also that these graphs have infinite vertices and exit degrees.

Definition 23. The graph of configurations 〈L×RC>0, E〉 of a timed automaton 〈L, C, Σ, d, Inv〉 is such
that its vertices are the configurations of automaton, and d characterizes its transition: for two
configurations (l1, v1) and (l2, v2), ((l1, v1), (l2, v2)) ∈ E, if and only if, there is a ∈ Σ, and g ∈
Guard(C), such that (l1, a, g, l2, v2) ∈ d.

The graph of configurations for a timed automaton is the arena of a timed game. In each config-
uration, players play with two actions: choose a delay that satisfies the invariant of location, and
a transition available after this delay. One turn of a play consists of elapsing the chosen delay (it
can be null) before making the transition. There exist two partitions of the vertices of arena, the
graph of configurations, to choose which player plays: turn-based games, and concurrent games.
A turn-based timed arena is based on a timed automaton where L is partitioned into two distinct
sets LAdam, and LEve as already studied before. In a turn-based reachability timed game, attractors
can be adapted to work in this timed setting.

An arena concurrent timed game is based on a timed automaton where Σ is partitioned into two
distinct sets ΣAdam, and ΣEve containing the actions of each player. In these two sets, we add the
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action ⊥ describing a hidden transition to stay in the same location with the same valuation (no
reset nor delay). For each configuration (l, ν), we define

ΓEve(l, ν) = {(a, t) | a ∈ ΣEve labels an available transition from (l, ν) for the delay t} ∪ {(⊥, 0)}

the set of Eve’s possible choices. The set ΓAdam(l, ν) for Adam is analogously defined. On each turn,
the two players simultaneously choose an element of their Γ: an action and a delay. The player
who chooses the shortest delay wins this turn and applies his choice. When players choose the
same delay, we use an external strategy, called a scheduler, to choose the turn winner. This game
introduces an element of surprise. Note that turn-based games are a particular case of concurrent
games, where for all locations, only actions of a single player are present in the location and for
which the choice (⊥, 0) is disallowed.

Example 24. The action of players in the concurrent timed game in Figure 3 are ΣEve = {a}, and ΣAdam =
{b}. We have, for the location l0, ΓEve(l0) = {(a, t) | t > 0} ∪ {(⊥, 0)} and ΓAdam(l0) = {(b, t) | t >
0} ∪ {(⊥, 0)}.

In timed games, we carefully define the memory used by a strategy. It usually uses an infinitely
precise value of clocks (see Example 27), so storing a configuration requires infinite memory. We
define a memoryless strategy as a strategy only storing the current configuration. A finite-memory
strategy stores a finite number of configurations or uses a DFA. Otherwise, it is an infinite-memory
strategy. For example, an infinite-memory strategy uses an extra clock with an infinitely precise
valuation, as in Example 25.

Strategies for concurrent reachability timed games We focus on concurrent reachability timed
games 〈L, C, Σ, d, Inv, Reach(T)〉with T ⊆ L the target set. In such games, always choose (⊥, 0) is a
natural winning strategy for Adam, the play can not reach T, but a play conformed to it has a finite
duration. To avoid this undesirable behaviour, the responsible player winning a turn infinitely-
often always loses. We define a converge-time play as a play with a finite duration. Otherwise,
we call it a diverge-time play. For each player, we only consider strategy (called a diverge-time
strategy) such that for all converge-time time conforming, this player is not responsible for the
converge-time. More precisely, a diverge-time strategy is a strategy such that all conformed plays
are either diverge-time or only gives a finite number of choices. A winning strategy for Eve is thus
a time-divergent strategy such that all conformed plays reach T. We analogously define winning
strategies for Adam. In a concurrent reachability timed games, the existence problem of a winning
strategy is decidable. However, this strategy may require infinite memory to control the element
of surprise of the game [17].

Example 25. Consider the concurrent reachability timed games in Figure 3 where T = {l1}. Winning
strategies for Eve need infinite memory. As long as Eve’s choice is not winning, she needs to choose a delay
closer to 0. For this, she precisely maintains an extra global value of clock to choose the right delay when
it is in l0. Formally, if the current configuration is (l0, ν) for a valuation ν, it uses a new infinitely precise
global clock without reset, y, then she chooses ( 1

2ν(y) , a) at each turn. If the current configuration is (l1, ν)

for a valuation ν, then she chooses (1, a). It is a winning strategy because either Adam always chooses
(⊥, 0) and the conformed play is time-convergent, or Adam can choose a delay no null at each turn, and
there exists a moment when Eve chooses a smaller delay, and the play is time-divergent.
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Figure 4: A quantitative game with integer weights.

A randomized strategy that does not requires an additional clock reduces the memory used
by uniformly chooses at random a delay in a given interval. A finite-memory divergent-time ran-
domized strategy almost surely achieves Eve’s objective in a concurrent reachability timed game.

Theorem 26 ([14]). Let 〈L, C, Σ, d, Inv, Reach(T)〉 be a concurrent reachability timed game with T ⊆ L
the target set. Eve has a finite-memory randomized strategy χ such that for all locations l where Eve can
reach T, and all Adam’s time-divergent strategies ρ, P

χ,ρ
l (Reach(T)) = 1.

Example 27. Consider the concurrent reachability timed game in Figure 3 with T = {l1}. By Theorem 26,
Eve has an almost-winning finite-memory randomized strategy. Let τ(l0, ν) = (a, Uni f orm(0, 1− ν(x)))
be an almost-winning strategy that chooses the action a with a delay chosen uniformly at random in the
interval (0, 1− ν(x)]. Let tj be the delay proposed by Adam in the round j under a time-divergent strategy.
The probability to never choose Eve’s action is 0 if ∑∞

j=1 tj = ∞ ensuring by the time-divergent strategy for
Adam. Thus, the probability for choosing the Eve’s action is 1, and she reaches l1 with probability 1.

3 Shortest-Path Games

When a player has several winning strategies, we would like to compare them to choose the best
one. One way to classify them is to introduce some metrics defined with integer weights. For
example, we can model the energy used or created by a robot during a task. The robot then seeks
to reach its omega-regular objective by minimizing the energy consumed.

3.1 Quantitative Games

Quantitative games allow us to model and define these different measures. We then consider
weighted graphs as arenas. A play π ∈ Vω is analogously defined from a classic game. Only its
objective adapts to these new measures.

Example 28. The arena of the quantitative game in Figure 4 depicts weights on transitions, for example,
w(v3, v0) = −2. A run in this game is v0v1v2v3(v1v0)ω.

An objective in a quantitative game is given by a particular function: the payoff mapping a cost
at each play on the game. For a given payoff, Eve’s objective is to maximize it, and Adam’s one
is to minimize it. For each vertex v, we define Eve’s value denoted ValG(v)) (respectively Adam’s
value denoted ValG(v)) as the best payoff that Eve (respectively Adam) can guarantee whatever the
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adversary is doing when the game starts in v. When the game is clear from the context, we can
skip G in the notation.

Definition 29. A quantitative game is a tuple 〈VEve, VAdam, E, w, P〉where V = VEve ]VAdam is a finite
set of vertices partitioned into two sets VEve and VAdam of Eve and Adam respectively, E ⊆ V × V
is a transition relation, w : E→ Z is a weight function, and P is a payoff function.

Under a payoff, we can not use the notion of winning strategy, but we study the optimality
of strategies. A strategy is optimal for a player if it guarantees its value. In other words, any
play from v conforming to an optimal strategy for Eve (respectively for Adam) has a payoff higher
(respectively lower) than ValG(v) (respectively ValG(v)). In this game, as winning strategies do not
exist, the determination is defined with the concept of value. A game is determined if for all vertices
v, Val(v) = Val(v). When a game is determined, we denote Val(v) the value Val(v) = Val(v) of
v, and decide if Val(v) > x where x ∈ Q is a threshold. Generally, solving this problem is done
by the existence problem of an optimal strategy for one player. The computation of the optimal
strategy, if it exists, allows us to compute a vector containing all the values of the game (Val(v))v.

Related work on classical payoff There exist many possible payoffs for quantitative games [21].
Each of them expresses a precise property on plays. In particular, quantitative games can express
a ω-regular objective whose colours are represented by the weights. For example, the payoff
Sup(π) = sup w(vi, vi+1) expresses the reachability of T when the arena has the weight 1 for
every incident edge of T, and 0 otherwise. As Eve would maximize this payoff, we only consider
the maximum on a play π, and she wins if her payoff is 1.

Arithmetic operations, as average or sum, also define a payoff. A mean-payoff (MP) objective
computes the cost of a play as an average. It may not be well defined, so

MP(π) = lim inf
n→∞

1
n

n−1

∑
i=0

w(vi, vi+1)

is the mean-payoff for a play π. A game 〈VEve, VAdam, E, w, MP〉 is a mean-payoff game.

Example 30. Consider the mean-payoff game in Figure 4. For the play π = v0(v1v2v3)ω the mean-payoff
is given by the average on the cycle (v1v2v3), i.e. MP(π) = 5/3.

Theorem 31 ([21]). Mean-payoff games are determined and both players have memoryless deterministic
optimal strategies.

Example 32. Let the mean-payoff game in Figure 4. By Theorem 31, Eve and Adam have memoryless
deterministic optimal strategies. The strategy τ∗ defined by τ∗(v0) = v1, and τ∗(v2) = v3 is a memoryless
optimal strategy for Eve. The strategy σ∗ defined by σ∗(v1) = v2, σ∗(v3) = v1, and σ∗(v4) = v0 is a
memoryless optimal strategy for Adam.

The mean-payoff is a long-term objective, so it is independent of its prefix of play. In eco-
nomics, for example, the prefix of play is more important than its long-term. The discounted-payoff
(DP) objective can take more account its prefix of play. For a play π and a parameter λ ∈ (0, 1),

DPλ(π) = (1− λ)
∞

∑
i=0

λiw(vi, vi−1)

is a discounted-payoff objective. A game 〈VEve, VAdam, E, w, DPλ〉 is a discounted game with pa-
rameter λ ∈ (0, 1).
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Theorem 33 ([21]). For all λ ∈ (0, 1), discounted games with parameter λ are determined and both players
have memoryless deterministic optimal strategies.

Example 34. Let the discounted game in Figure 4 with the parameter λ = 0.9. By Theorem 33, Eve
and Adam have memoryless deterministic optimal strategies. The strategy τ∗ defined by τ∗(v0) = v1,
and τ∗(v2) = v3 is an optimal strategy for Eve. The strategy σ∗ defined by σ∗(v1) = v2, σ∗(v3) =
v3, and σ∗(v4) = v0 is an optimal strategy for Adam. We note that these strategies are optimal for the
corresponding mean-payoff game (see Example 32). When λ is close to 1, the discounted-payoff objective is
close to the Mean-payoff objective [21].

Now, let consider the parameter λ = 0.5. In this game, only Adam changes its optimal choice by
σ∗(v1) = v0. However, with the parameter λ = 0.1, the optimal strategy changes for both players:
τ∗(v0) = v4, τ∗(v2) = v3, σ∗(v1) = v0, σ∗(v3) = v0, and σ∗(v4) = v0.

Another interesting payoff, the total-payoff (TP) objective computes the cost of a play with a
sum. For a play π,

TP(π) = lim sup
n→∞

n−1

∑
i=0

w(vi, vi+1)

defines the total-payoff objective. A game 〈VEve, VAdam, E, w, TP〉 is a total-payoff game.

Example 35. Consider the total-payoff game in Figure 4. For the play π = v0(v1v2v3)ω, the total-payoff
is infinite because π is an infinite path. It can be finite only if the play is finite.

Theorem 36 ([21]). Total-payoff games are determined and both players have a memoryless deterministic
optimal strategy.

3.2 Shortest-Path Objectives

The shortest-path objective derives from the shortest-path problem on weighted graphs. It consists
of reaching a target while minimizing the weight to go there. This problem is extended to the case
of two-player games where the second player avoids it or maximizes the weight. This problem is
also extended to the case of MDPs.

3.2.1 Shortest-Path Game

Shortest-path games combine a reachability objective with a total-payoff objective. In this case,
Adam wants to reach a target with the smallest total-payoff possible. Eve wants to avoid this
case: she would not reach the target, and when it is not possible, she reaches it with the greatest
total-payoff. Combining qualitative and quantitative objectives, enabling to select a good strat-
egy among the valid ones for the selected metrics, often leads to the need for memory to play
optimally. Formally, we define the shortest-path payoff (SP) for a play π and a target set T by :

SP(π) =

{
+∞ if πk /∈ T for all k > 0
TP(π[k]) if k > 0 is the minimal index such that πk ∈ T

Definition 37. A shortest-path game (SPG) is a tuple 〈VEve, VAdam, E, w, T, SP〉 where V = VEve ]
VAdam ] T is a finite set of vertices partitioned into the sets VEve and VAdam of Eve and Adam respec-
tively, and a set T of target vertices, E ⊆ V \ T ×V is a set of directed edges, and w : E→ Z is the
weight function, associating an integer weight with each edge.

13



vEve vAdam

,

0

−1

−10 0

vEve vAdam

,

−1

−10

p, 0

1−p, 0

vEve vAdam

,

q,−1

1−q,−10

p, 0

1−p, 0

Figure 5: On the left, a shortest-path game, where Adam requires memory to play optimally. In
the middle, the Markov Decision Process obtained when letting Adam play at random, with a
parametric probability p ∈ (0, 1). On the right, the Markov Chain obtained when Eve plays along
a memoryless randomised strategy, with a parametric probability q ∈ [0, 1].

Example 38. The left of Figure 5 represents a shortest-path game where , is the only target.

In a shortest-path game, without loss of generality, we assume that non-target vertices are
deadlock-free, i.e. for all vertices v ∈ V \ T, E(v) 6= ∅. We note that these games are determined
[7, Theorem 1].

Related work on this objective A shortest-path game is very close to a total-payoff game. There
exists a polynomial-time reduction from a total-payoff game to a shortest-path game. So we can
use results on values and strategies computation for shortest-path game to total-payoff game [7].
Moreover, there exists a link between shortest-path gales and mean-payoff games. The computa-
tion of the values (with Equation (2)) can be used in a mean-payoff game [21].

In a divergent shortest-path game, its arena does not contain null cycles. Their SCCs contain
only positive cycles (positive SCC) or only negative cycles (negative SCC). In such a game, the
value can be computed in polynomial time. This algorithm starts by identifying and removing
the vertices of values +∞ via an attractor to the target for Adam. Then it computes the values by
SCC in reverse topological order. In a positive SCC, there exists no vertex of value −∞, the value
iteration of (2) converges after |SCC| steps. In a negative SCC, the vertices of−∞ are computed by
an attractor to the target for Eve. For the other vertices, the same result is applied as in a positive
SCC by multiplying the weights by −1 [11].

3.2.2 Stochastic Shortest-Path Problem

When the adversary’s behaviour is modelled by probabilities, the minimization of expectation of
a path reaching a target is a variant of the shortest-path problem [9]. This objective has been well
studied under the name of stochastic shortest-path problem on MDP [3, 18, 1].

The stochastic shortest-path problem in MDP requires adding a cost function in MDP. For a
MDP 〈S, A, P〉 we define a partial function r : S× A× S → Z mapping a weight for any triplet
(s, α, s′) such that P(s, α, s′) > 0. This weight function is naturally transferred to MC induced by a
strategy. Given a random variable X on the infinite paths in the MC, we let E

χ
v (X) the expectation

of X for the probability measure P
ρ
v. Also, in the case where X = SP, the computation of the

expectation in the MC 〈V, P〉 is given by the Bellman equation. Thus, the vector (Eχ
v (SP))v∈V is
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the only solution to the system of equations

E
χ
v (SP) =

{
0 if v ∈ T

∑v′∈E(v) P(v, v′)× (w(v, v′) + E
χ
v′(SP)) if v /∈ T

(1)

We can extend the computation of the expectation in the MPD to quantify on the strategies to
obtain the minimum or maximum expectation of a random variable. Formally, if X is a random
variable, we define for a vertex v, the minimal and the maximal expectation by

Emin
v (X) = min

χ∈mSEve
E

χ
v (X) and Emax

v (X) = max
χ∈mSEve

E
χ
v (X)

Let T be a target set, and v an initial vertex, the stochastic shortest-path problem in an MDP
consists of the calculation of Emin

v (�T), as well as the calculation of optimal strategy ensuring this
expectation. When for all χ ∈ mSEve P

χ
v (�T) = 1, [3] assures us that there exists a memoryless

deterministic strategy.

Proposition 39 ([3]). Let 〈S, A, P〉 be an MDP and T ⊆ S such that for all strategies χ and vertices v,
P

χ
v (�T) = 1. Then,

1. Emin
v (�T) satisfies the Bellman equation (1);

2. there exists an optimal memoryless strategy.

In reality, [3] shows that such a strategy exists in a more general framework. Indeed, this result
remains true if, for each strategies, either for all v P

χ
v (�T) = 1 or there exists v such that SP from

v is +∞. In the context of an MDP not satisfying this hypothesis, an optimal finite-memory deter-
ministic strategy exists [1]. It is based on the same principle as optimal deterministic strategies in
two-player games (see Section 3.3). Furthermore, they have shown that the computation of E can
be performed in polynomial time.

Theorem 40 ([1]). Given an arbitrary MDP, T a target set, and an initial vertex v, one can compute
Emin

v (�T) in polynomial time.

3.3 Deterministic Strategies

In this section, we give a formal definition of values obtained by deterministic strategies. We also
give some classical results on these values. For this document, let G = 〈VEve, VAdam, E, w, T, SP〉
be a shortest-path game. Recall a deterministic strategy gives a unique choice, its distribution is a
Dirac. For all vertices v, we let Play(v, τ, σ) be the unique play from v conforming to deterministic
strategies τ : V∗VEve → V and σ : V∗VAdam → V of Eve and Adam, respectively, and we denote by
SP(Play(v, σ, τ)) its payoff. Then, we formally define the value of strategies σ and τ by letting for
all v,

dValσ(v) = sup
τ′∈dSEve

SP(Play(v, τ′, σ)) and dValτ(v) = inf
σ′∈dSAdam

SP(Play(v, τ, σ′))

Finally, we formally define the value for Adam and for Eve: for all vertices v,

dVal(v) = inf
σ∈dSAdam

dValσ(v) and dVal(v) = sup
τ∈dSEve

dValτ(v)

15



Example 41. We describe the deterministic value of the game in Figure 5. First, let us consider the vertex
vAdam as initial. Adam could directly reach the target, thus leading to a payoff of 0. But he can also choose
to go to vEve, in which case Eve either jumps directly in the target (leading to a beneficial payoff −10), or
comes back to vAdam, but having already capitalized a total payoff −1. Adam can continue this way ad
libitum until he is satisfied (at least 10 times) and jumps to the target. This guarantees a value at most
−10 for Adam, when starting in vAdam. Reciprocally, Eve can guarantee a payoff at least −10 by directly
jumping into the target when she plays for the first time. Thus, the value is −10 when starting from vAdam
or vEve.

If we remove the edge from vEve to the target (of weight −10), we obtain another game in which
dVal(vAdam) = dVal(vEve) = −∞ since Adam can decide to turn as long as he wants in the negative
cycle, before switching to the target.

Finally, recall that deterministic strategies σ? of Adam and τ? of Eve are optimal (respectively,
ε-optimal for a positive real number ε) if, for all vertices v: dValσ

?
(v) = dVal(v) and dValτ

?
(v) =

dVal(v) (respectively, dValσ
?
(v) 6 dVal(v) + ε and dValτ

?
(v) > dVal(v)− ε).

Related work on deterministic values Now we present the main results from [7] on which we
base our contributions. We will use the iterative calculation resulting from a fixpoint based on an
operator to compute the value and the synthesis of an optimal strategy for Adam.

When we assume that weights are non-negative, the principle of Dijkstra algorithm computes
an optimal strategy for Adam in polynomial time. Thus, the value problem, i.e. deciding for v ∈ V
if dVal(v) < x, where x ∈ Q is a threshold, is solved in polynomial time [21]. However, when
we add negative weights, we cannot use the principle of the Bellman–Ford algorithm or those of
other graph algorithms. One reason for this is that the optimal strategy for Adam needs memory
(see Example 42). However, there exists a pseudo-polynomial time algorithm to compute values
and optimal finite (pseudo-polynomial) strategies [7].

Example 42. In the shortest-path game in Figure 5, Adam cannot achieve this deterministic value (com-
puted in Example 41) by playing memoryless, since it either results in a total-payoff 0 (directly going to
the target) or Eve has the opportunity to keep Adam in the negative cycle forever, thus never reaching the
target. Therefore, Adam needs memory to play optimally.

The value is given by fixpoint computation based on the operator F : (Z ∪ {+∞})V → (Z ∪
{+∞})V defined for all x = (xv)v∈V ∈ (Z∪ {+∞})V and all vertices v ∈ V by

F (x)v =


0 if v ∈ T
minv′∈E(v)(w(v, v′) + xv′) if v ∈ VAdam

maxv′∈E(v)(w(v, v′) + xv′) if v ∈ VEve

(2)

Theorem 43 ([7]). Deterministic values of a shortest-path game can be computed in pseudo-polynomial
time.

An optimal strategy for Adam, if it exists, is generally computed by an iterative algorithm of
pseudo-polynomial time complexity [7]. We note that an optimal strategy can not exist for any
vertex v such that dVal(v) = −∞. In this case, Adam controls a negative cycle, and it wants to
spend as much time as possible in it, which minimizes its payoff. However, to reach its goal, it
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must exit this negative cycle. It computes switching strategies originated from [7], that is a partic-
ular kind of deterministic strategies. It is composed of two memoryless deterministic strategies
combined using (pseudo-polynomial) memory. Intuitively, the first strategy guarantees the deter-
ministic value for all conforming plays by reaching a negative cycle or giving the shortest-path to
the target. The second strategy, based on an attractor, ensures to reach the target. The switching
strategy consists of playing along with the first one until eventually switching to the second one
when the length of the current finite play is greater than a parameter. It is optimal from vertices
of finite value, and they can get a value as low as wanted from vertices of value −∞.

Theorem 44 ([7]). In a shortest-path game,

1. Eve has an optimal deterministic memoryless strategy computable in pseudo-polynomial time.

2. For all vertices with a finite deterministic value, Adam has an optimal deterministic pseudo-
polynomial memory strategy computable in pseudo-polynomial time. For all vertices with determin-
istic value −∞, there exists a sequence of optimal deterministic finite-memory strategies computable
in pseudo-polynomial time such that its value converges to −∞.

Deterministic values of a shortest-path game can be computed in pseudo-polynomial time.

Example 45. For all n ∈ N, let σn = (σ1, σ2, α) be a switching strategy. In Figure 5, we have
σ1(vAdam) = vEve, σ2(vAdam) = ,, and α = 3(40 + n) + 1. Moreover, σn is optimal for n = 10.

If we consider the game in Figure 5 without the edge from vEve to the target (of weight−10), the previous
strategy σn = (σ1, σ2, α) defines a sequence of strategy that his value converge to −∞.

Now, we consider the game in Figure 6. We have σ1(v1) = v0 and σ1(v3) = v1, σ1(v1) = v2 and
σ1(v3) = ,, and α = 5(60 + n) + 1, for all n ∈N.

3.4 Memoryless Strategies

The above definitions can be adapted to memoryless (randomized) strategies. To keep the ex-
planations simple, we define only the upper value above, without counting on hypothetical de-
termination results in this context. Once we have fixed a strategy without memory (random-
ized) ρ ∈ mSAdam, we get an MDP where Eve always has to choose how to react. We denote by
Gρ = 〈V, A, P〉 the MDP induced by ρ where V contains the same set of vertices as G, A = V ∪{⊥}
contains the adjacent vertices in the game as well as an additional action ⊥ denoting the random
choice of ρ, and the distribution P defined by:

• if v ∈ VEve, P(v, v′) is only defined if (v, v′) ∈ E in which case P(v, v′) = Diracv′ , and P(v,⊥)
is also undefined;

• if v ∈ VAdam, P(v,⊥) = ρ(v), and P(v, v′) is undefined for all v′ ∈ V.

The cost function used for MDPs is trivially transferred from the game.

Example 46. In Figure 5, a shortest-path game is presented with its MDP in the middle induced by a
memoryless strategy for Adam. He chooses to go to vEve with probability p ∈ (0, 1) and to the target vertex
with probability 1− p.

Another more complex example is given in Figure 6 where the memoryless strategy for Adam consists,
in vertex v1, to choose successor v0 with probability p ∈ (0, 1) and successor v2 with probability 1− p, and
in vertex v3, to choose successor v1 with the same probability p and the target vertex with probability 1− p.
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Figure 6: On the left, a more complex example of shortest-path game. On the right, the MDP
associated with a randomised strategy of Adam with a parametric probability p ∈ (0, 1).

In such an MDP, when Eve has chosen her strategy, we obtain an MC. For all MDP Gρ, and all
memoryless strategies χ ∈ mSEve, we define Gρ,χ the MC induced by the strategy χ and the action
⊥. Formally, Gρ,χ = 〈V, P〉 is defined by V contains the set of vertices of G, and P associates to a
vertex v ∈ VAdam, P(v) = ρ(v) and a vertex v ∈ VEve, P(v) = χ(v).

Example 47. On the right of Figure 5 is depicted the MC obtained when Eve decides to go to vAdam with
probability q ∈ [0, 1] and to the target vertex with probability 1− q.

In Gρ,χ, we denote by P
ρ,χ
v (�T) the probability of the set of plays reaching the target set T ⊆ V.

Likewise, we denote by E
ρ,χ
v (SP) the expected weight of a path in this MC according to the weights

of G. Eve’s objective then becomes to maximize the gain in the MDP Gρ. Consequently, we define
the value of the strategy ρ as the worst scenario for Adam:

mValρ(v) = sup
χ∈mSEve

E
ρ,χ
v (SP)

This definition has meaning (otherwise it is worth +∞) only if P
ρ,χ
v (�T) = 1 for all χ, that is to

say when the strategy ρ ensures the accessibility of a target vertex with probability 1, whatever
the strategy of the opponent. In this case, by denoting P the distribution of MC Gρ,χ, the vector
(E

ρ,χ
v (SP))v∈V is the only solution to the system of equations (1).
Since Adam wants to minimise the shortest-path payoff, we finally define the memoryless up-

per value as
mVal(v) = inf

ρ∈mSAdam
mValρ(v)

Once again, we say that a memoryless strategy ρ is optimal (respectively, ε-optimal for a positive
real number ε) if mValρ(v) = mVal(v) (respectively, mValρ(v) 6 mVal(v) + ε). To Eve, we only
consider optimality and ε-optimality in the MDP Gρ.

Example 48. For the game in Figure 5, we let σ and τ the memoryless strategies inducing the MC on the
right. Letting x = E

ρ,χ
vAdam(TP) and y = E

ρ,χ
vEve(TP), the system (1) rewrites as

x = (1− p)× 0 + p× y and y = q× (−1 + x) + (1− q)× (−10)

We thus have x = p(9q− 10)/(1− pq). Two cases happen, depending on the value of p: if p < 9/10,
then Eve maximises x by choosing q = 1, while she chooses q = 0 when p > 9/10. In all cases, Eve will
therefore play deterministically: if p < 9/10, the expected payoff from vAdam will then be mValρ(vAdam) =
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−p/(1− p) > −9; if p > 9/10, it will be mValρ(vAdam) = −10p. This value is always greater than
the optimum −10 that Adam were able to achieve with memory, since we must keep 1− p > 0 to ensure
reaching the target with probability 1. There are no optimal strategies for Adam, but an ε-optimal one
consisting in choosing probability p > 1− ε/10. We thus obtain mVal(vAdam) = mVal(vEve) = −10 as
before.

The fact that Eve can play optimally with a deterministic strategy in the MDP Gρ is not specific
to this example. Indeed, in an MDP Gρ such that P

ρ,χ
v (�T) = 1 for all χ, Eve cannot avoid reaching

the target: she must then ensure the most expensive play possible. Considering the MDP G̃ρ

obtained by multiplying all the weights in the graph by−1, the objective of Eve becomes a shortest-
path objective. We can then deduce from Proposition 39 that she has an optimal deterministic
memoryless strategy. The same applies in the original MDP Gρ.

Proposition 49. In the MDP Gρ such that P
ρ,χ
v (�T) = 1 for all χ, Eve has an optimal deterministic

memoryless strategy.

4 Shortest-Path Games : Memory or Randomisation

The contribution of this internship consists in showing that values are the same when restricting
both players to memoryless or deterministic strategies:

Theorem 50. For all shortest-path games G, for all vertices v, we have dVal(v) = mVal(v).

We show this theorem, in the two next sections, by simulating deterministic strategies with
memoryless ones and vice versa. We start here by ruling out the case of values +∞. Indeed,
dVal(v) = +∞ characterizes that Adam is not able to reach a target vertex from v with determin-
istic strategies. This also implies that Adam has no memoryless randomised strategies to ensure
reaching the target with probability 1, and thus mVal(v) = +∞. Reciprocally, if mVal(v) = +∞,
then Adam has no memoryless strategies to reach the target with probability 1 (since this is the
only reason for having a value +∞). Since reachability is a purely qualitative objective, and the
arena contains no probabilities, Adam cannot use memory to guarantee to reach the target: there-
fore, this also means that dVal(v) = +∞. In the end, we have shown that dVal(v) = +∞ if and
only if mVal(v) = +∞. We thus remove every such vertex, which does not change the values of
other vertices in the game.

Example 51. Consider the shortest-path game in Figure 6, where we remove the edge between v3 and the
target (of weight 0). In this game, all vertices have a deterministic value +∞. In fact, all plays conformed
to the strategy for Eve, τ, defined by τ(v0) = v1 and τ(v2) = v1, cannot reach the target. Against this
strategy, whatever Adam chooses (at random or not), he cannot reach the target. So, the memoryless value
is +∞.

Assumption. From now on, all shortest-path games G are such that dVal(v) and mVal(v) are dif-
ferent from +∞, for all vertices v.

4.1 Simulating Deterministic Strategies with Memoryless Strategies

Towards the proof of Theorem 50, we show in this section that, for all shortest-path games G =
〈VEve, VAdam, E, w, T, SP〉 (where no value is +∞) and the vertices v ∈ VEve, mVal(v) 6 dVal(v). So,
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we consider the switching strategies σ = 〈σ1, σ2, α〉. In particular, we use an interesting property of
the strategy σ1. It is such that every finite cyclic play v0v1 . . . vkv0 conforming to σ1 has a negative
total weight: this is called an NC-strategy (for negative-cycle-strategy) in [7]. The fake-value of σ1 from
a vertex v0 is defined by

fakeσ1(v0) = sup{TP(v0v1 · · · vk) | vk ∈ T, v0v1 · · · vk conforming to σ1}

letting sup ∅ = −∞: it consists in considering only the games conforming σ1 which reach the
target. The strategy σ1 is said to be fake-optimal if fakeσ1(v) 6 dVal(v) for all vertices v. We then use
a more precise result on the NC strategies.

Proposition 52 ([7]). Fix a memoryless strategy σ2 computed from an attractor computation. Then, there
exists a fake-optimal NC-strategy σ1. Moreover, for all such fake-optimal NC-strategies, and all n ∈N, the
switching parameter α = (2W(|V| − 1) + n)|V|+ 1 defines a switching strategy σ = 〈σ1, σ2, α〉 with a
value dValσ(v) 6 max(−n, dVal(v)), from all initial vertices v ∈ V.

Definition of a memoryless (randomised) strategy. Let n ∈N, we consider the switching strat-
egy σ = 〈σ1, σ2, α〉 described before, of value dValσ(v) 6 max(−n, dVal(v)), and simulate it
with a memoryless (randomised) strategy for Adam, denoted ρp, with a parametrised probability
p ∈ (0, 1). This new strategy is a probabilistic superposition of the two memoryless deterministic
strategies σ1 and σ2.

Formally, we define ρp on each strongly connected components (SCC) of the arena according
to the presence of a negative cycle. In an SCC that does not contain negative cycles, for each vertex
v ∈ VAdam of the SCC, we let ρp(v) = Diracσ1(v): Adam chooses to play the first strategy σ1 of the
switching strategy, thus looking for a negative cycle in the next SCCs (in topological order) if any.
In an SCC that contains a negative cycle, for each vertex v ∈ VAdam of the SCC, we let ρp(v) be
the distribution of support {σ1(v), σ2(v)} that chooses σ1(v) with probability p and σ2(v) with
probability 1− p, except if σ1(v) = σ2(v) in which case we choose it with probability 1. Note that
MDPs in Figures 5 and 6 are obtained by applying this strategy ρp.

We fix some vertex v0 ∈ V. In the rest of this section, we prove the following result:

Proposition 53. For ε small enough and p close enough to 1, mValρp,τ(v0) 6 dValσ(v0) + ε.

This entails the expected result. Indeed, if dVal(v0) ∈ Z, we get (with n = |dVal(v0)|) that
mValρp(v0) 6 dVal(v0) + ε, and thus mVal(v0) 6 dVal(v0) since this holds for all ε > 0. Otherwise,
dVal(v0) = −∞, and letting n tend towards +∞, we also get mVal(v0) = −∞.

We first prove that ρp is one of the strategies of Adam that guarantee to reach the target with
probability 1 in the MDP Gρp no matter how Eve reacts.

Proposition 54. For all strategies χ ∈ mSEve, P
ρp,χ
v0 (� T) = 1.

Proof. Recall that we designed our arena so that target vertices are the only deadlocks. Thus, by
using the characterisation of Lemma 20, minχ∈mSEve P

ρp,χ
v0 (� T) = 1 if and only if for all χ ∈ mSEve,

all bottom SCCs of the MC Gρp,χ (the ones from which we cannot exit) consist in a unique target
vertex. Suppose in the contrary that Eve has a memoryless strategy χ such that the MC Gρp,χ

contains a bottom SCC C with no target vertices.
If all vertices of C belong to Eve, then they all have a successor in C and therefore there also

exists a deterministic memoryless strategy τ′ for which all vertices v ∈ C are such that dValτ
′
(v) =
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Figure 7: On the left, a game graph with no negative cycles where ρp is optimal. The MC obtained
when playing a different randomised memoryless strategy.

+∞, and thus dVal(v) = +∞: this contradicts our hypothesis that all vertices have a deterministic
value different from +∞.

Otherwise, for all vertices v ∈ VAdam ∩ C, since C is a bottom SCC of Gρp,χ, the distribution
ρp(v) has its support included in C. If C is included in an SCC of G with no negative cycles,
supp(ρp(v)) = {σ1(v)}. Playing with σ1(v) in C will end up in a cycle (since there are no dead-
locks) that must be negative, by the hypothesis on σ1, which is impossible. Thus, C must be
included in an SCC of G with a negative cycle. Then, supp(ρp(v)) = {σ1(v), σ2(v)} ⊆ C, and in
particular the attractor strategy is not able to reach a target vertex. Thus, playing the deterministic
switching strategy σ will result in not reaching a target vertex either, so that dVal(v) = +∞ for
v ∈ VAdam ∩ C which also contradicts our hypothesis.

We can, therefore, apply Proposition 49. This result is very helpful since it allows us to only
consider deterministic memoryless strategies τ to compute, for all initial vertices v0, mValρp(v0) =
supτ mValρp,τ(v0). We thus consider such a strategy τ and we now show that mValρp,τ(v0) 6
dValσ(v) + ε whenever p < 1 is close enough to 1 (in function of ε > 0). By gathering the finite
number of lower bounds about p, for all deterministic memoryless strategies of Eve (there are a
finite number of such), we obtain a lower bound for p such that mValρp(v0) 6 dValσ(v0) + ε, as
expected to prove Proposition 53.

The case where the whole arena does not contain any negative cycles is easy. In this case, ρp
chooses the strategy σ1 with probability 1, by definition since no SCCs contain a negative cycle
(this is the only reason why we defined ρp as it is, for such SCCs): a play from initial vertex v0
conforming to ρp is thus conforming to σ1. Since the graph contains no negative cycles and all
cycles conforming to σ1 must be negative, all plays from v0 conforming to σ1 reach the target set of
vertices, with a total payoff at most dValσ(v0). This single play has probability 1 in the MC Gρp,τ,
thus E

ρp,τ
v0 (SP) 6 dValσ(v0), which proves that mValρp(v) 6 dValσ(v0) as expected.

Example 55. If the definition of ρp would not distinguish the SCCs with no negative cycles from the other
SCCs, we would not have the optimality of ρp as shown before. Indeed, consider the arena on the left of
Figure 7, which has no negative cycles. We have dVal(v0) = −2 and dVal(v1) = −1. As a switching
strategy, we can choose σ1(v0) = v1, σ1(v1) = ,, σ2(v0) = , and σ2(v1) = v0. Then, ρp is equal to
σ1 (and thus independent of p), and mValρp(v0) = −2 and mValρp(v1) = −1. However, if we would have
chosen to still mix σ1 and σ2, we would obtain a strategy ρ′p, and the MC on the right of Figure 7. Then, we

get mValρ
′
p(v0) = −2p2/(1− p(1− p)) and mValρ

′
p(v1) = (p2− 3p + 1)/(1− p(1− p)) whose limits

are −2 and −1 respectively, when p tends to 1. This strategy ρ′p would then still be ε-optimal for p close
enough to 1.

Now, suppose that the arena contains negative cycles. We let c > 0 be the maximal size of an
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elementary cycle (that visits a vertex at most once) in G, w− > 0 be the opposite of the maximal
weight of an elementary negative cycle in G, and w+ > 0 be the maximal weight of an elementary
non-negative cycle in G (or 0 if such cycle does not exist).

Example 56. In the game in Figure 5, we have c = 2, w− = 1, and w+ = 0 (since there is no non-negative
cycles). In the game in Figure 6, we have c = 3, w− = 1, and w+ = 3.

The difficulty initiates from the possible presence of non-negative cycles too. Indeed, when
applying the switching strategy σ, all cycles conforming to σ1 have a negative weight. This is
no longer true with the probabilistic superposition ρp, as can be seen in the example of Figure 6.
Finding an adequate lower-bound for p requires to estimate E

ρp,τ
v0 (SP), by controlling the weight

and probability of non-negative cycles, balancing them with the ones of negative cycles. The
crucial argument comes from the definition of the superposition ρp:

Lemma 57. All cycles in Gρp,τ of non-negative total weight contain at least one edge of probability 1− p.

Proof. Suppose on the contrary that all edges have probability p or 1, then the cycle is conforming
to strategy σ1, and has, therefore, a negative weight.

We now partition the set Π of plays starting in v0, conforming to ρp and τ, and reaching the
target set of vertices, into subsets Πi,` regarding the number i of edges of probability 1− p they go
through, and their length ` (we always have i 6 `). The partition is depicted in Figure 8:

• Π0,N, depicted in yellow, contains all plays with no edges of probability 1− p;

• Π>I,N, depicted in green, contains all plays having at least

I =
⌈

2w+

γW
+

8(w+ + |V|W)

ε

⌉
edges of probability 1− p where γ = c

(
1 + w+

w−

)
> 1;

• Π<I,>L, depicted in blue, contains all plays with at most I edges of probability 1− p, and of
length at least L = Iγ + 2|dValσ(v0)|+|V|W

w− c + |V|;

• Π̃, depicted in red, is the rest of the plays.

We let γ0,N (respectively, γ<I,>L, γ>I,N, and γ̃) be the previous expectation restricted to plays
in Π0,N (respectively, Π<I,>L, Π>I,N, Π̃). By linearity of expectation,

mValρp,τ(v0) = Eρp,τ(SP) = γ0,N + γ<I,>L + γ>I,N + γ̃

Proving that mValρp,τ(v0) 6 dValσ(v0) + ε will be done by showing that, under assumptions on p,
yellow and blue zones are such that γ0,N + γ<I,>L 6 dValσ(v0) + ε/2, while red and green zones
are such that γ>I,N + γ̃ 6 ε/2. Indeed, plays with a large number of non-negative cycles contain
a large number of edges of probability 1− p, by Lemma 57. But if p is made close enough to 1, the
probability of this set of plays will be small enough.
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Figure 8: Partition of plays Π.

Example 58. All zones not necessarily contain any plays, in this case, its expectation is null. For example,
the green zone Π>I,N contains plays only if the arena contains non-negative cycles. Also, Eve’s choices,
through the chosen strategy, influence the presence of play in zones. For example, in the game in Figure 5,
if Eve chooses vEve, then the yellow zone Π0,N is empty, but if Eve chooses ,, then the blue zone Π<I,>L is
empty.

Proof of Proposition 53. All plays of Π0,N reach the target without edges of probability 1− p, i.e. by
conforming to σ1. By fake-optimality of σ1, their total payoff is upper-bounded by dValσ(v0).
Notice that in case of dVal(v0) = −∞, no plays conforming to σ1 starting in v0 reach the target,
since Adam has the opportunity to stay as long as he wants in negative cycles: thus Π0,N = ∅ in
this case, and γ0,N = 0.

All plays of Πi,`, with 1 6 i < I and ` > L, go through i edges of probability 1 − p. By
Lemma 57, they contain at most i elementary cycles of non-negative total weight (each of weight
is at most w+). The total length of these cycles is at most ic. Once we have removed these cycles
from the play, it remains a play of length at least `− ic. By a repeated pumping argument, it still
contains at least

⌊
`−ic−|V|

c

⌋
elementary cycles, that have all a negative total weight (each has a

weight at most −w−). The remaining part, once removed the last negative cycles it contains, has
length at most |V|, and thus a total payoff at most |V|W. In summary, the total payoff of a play in
Πi,` is at most

iw+ +

⌊
`− ic− |V|

c

⌋
(−w−) + |V|W 6 Iw+ +

L− Ic− |V|
c

(−w−) + |V|W

= −2|dValσ(v0)| 6 0 (3)

Let us then consider three cases.

• If dValσ(v0) > 0, we note that all plays in Π<I,>L have a non-positive total payoff, therefore
at most dValσ(v0). Thus,

γ0,N + γ<I,>L 6 dValσ(v0)P(Π0,N) + dValσ(v0)P(Π<I,>L)

= dValσ(v0)
(
P(Π0,N) + P(Π<I,>L)

)
6 dValσ(v0)

• If dValσ(v0) < 0 and Π<I,>L 6= ∅, we have γ0,N 6 0 (whatever dVal(v0) = −∞ or not).
Moreover, a play in Πi,` goes through i edges of probability 1− p and at most ` edges of
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probability p, other edges having probability 1. So, it has probability at least (1− p)i p`. We
can deduce that

γ<I,>L 6
I−1

∑
i=1

∞

∑
`=L

(1− p)i p`
(

iw+ +

⌊
`− ic− |V|

c

⌋
(−w−) + |V|W

)
︸ ︷︷ ︸

60 by (3)

6 dValσ(v0)

the last inequality being true when p is close enough to 1, as shown in Appendix B.

• If dValσ(v0) < 0 and Π<I,>L = ∅, then dVal(v0) 6= −∞, since otherwise a play is conformed
to σ1 for L rounds, and then switching to σ2 for at most |V| 6 I rounds, would be in Π<I,>L.
Thus, γ0,N + γ<I,>L = γ0,N 6 dValσ(v0)P(Π0,N). Moreover, by the same argument, all plays
in Π0,N are acyclic and their length is at most |V|: they go through no edges of probability
1− p, and thus at most |V| edges of probability p. Therefore, P(Π0,N) > p|V|, and thus, once
again because dValσ(v0) < 0, when p > (1− ε/2|dValσ(v0)|)1/|V| which is less than 1 for ε
small enough,

γ0,N + γ<I,>L 6 dValσ(v0)p|V| 6 dValσ(v0) +
ε

2

In all cases, we have γ0,N + γ<I,>L 6 dValσ(v0) + ε/2.

To conclude, we now show that γ>I,N + γ̃ 6 ε/2. First, a play of Π>I,N has a large total
payoff, but a low probability to happen, which enables us to control its expected payoff. Indeed,
consider a play of Πi,N, with i > I. By Lemma 57, it contains at most i elementary cycles of non-
negative total weight. The remaining of the play may contain negative cycles, as well as an acyclic
part reaching the target in at most |V| steps. The total payoff of the whole play is thus at most
iw+ + |V|W. Moreover, P(Πi,N) 6 (1− p)i since all the plays contain i edges of probability 1− p.
In the overall,

γ>I,N 6
∞

∑
i=I

(iw+ + |V|W)(1− p)i = (1− p)I
(

w+

p
I +

w+(1− p)
p2 +

|V|W
p

)
6

ε

4

where the last inequality holds for p close enough to 1, as shown in Appendix B.
Finally, all plays of Π̃ have a length less than L (and thus a total payoff at most LW) and a

number i of edges of probability 1− p such that 0 < i < I. By a similar argument as before, if
p > LW/(LW + ε/4), we have

γ̃ 6
I

∑
i=1

LW(1− p)i = LW
(1− p)(1− (1− p)I)

p
6 LW

1− p
p

6
ε

4

since p 7→ (1− p)/p is decreasing on (0, 1).

This ends the proof that for all vertices v, mVal(v) 6 dVal(v). Let us illustrate the computa-
tion of the lower-bound on probability p of the memoryless strategy ρp in the previously studied
examples.

Example 59. For the game in Figure 5, with initial vertex vAdam, we have γ = 2. For ε = 0.1, we
then have I = 2400, and L = 4903. The lower-bound on p is then 0.9999995, which gives a value
mValρp(vAdam) = −10p = −9.999995.

For the game in Figure 6, with initial vertex v2, we have γ = 12. For ε = 0.1, we then have I =
3121, and L = 37730. The lower-bound on p is then 0.99999998, which gives a value mValρp(v2) ≈
−7.9999996. We see that the lower-bound are correct, even if they could certainly be made coarser.
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4.2 Simulating Memoryless Strategies with Deterministic Strategies

To finish the proof of Theorem 50, we will show that dVal(v) 6 mVal(v), for all vertices v. For a
given memoryless strategy ρ ensuring Adam to reach the target set T with probability 1, we build
a deterministic strategy σ which guarantees a value dValσ(v) 6 mValρ(v) from vertex v. Then,
as in the previous section, if mVal(v) is finite, for an ε-optimal memoryless strategy ρ, we get a
deterministic strategy such that dValσ(v) 6 mVal(v) + ε, and thus dVal(v) 6 mVal(v) + ε. We can
conclude since this holds for all ε > 0. In case mVal(v) = −∞, if ρ guarantees a value at most −n
with n ∈N, then so does the deterministic strategy σ, which also ensures that dVal(v) = −∞.

Definition of the deterministic strategy σ We fix a memoryless strategy ρ, and an initial vertex
v0. Strategy σ will be a switching strategy σ = 〈σ1, σ2, α〉, with σ2 a deterministic memoryless
strategy obtained by an attractor computation towards T, and α = max(0, |V|W −mValρ(v0))×
|V|+ 1. In the rest of this section, we will detail how to define σ1 to obtain the following property:

Proposition 60. The switching strategy σ = 〈σ1, σ2, α〉 built from the memoryless (randomised) strategy
ρ satisfies dValσ(v0) 6 mValρ(v0).

We now take care of the construction of σ1, that selects, for each vertex v ∈ VAdam a successor
in supp(ρ(v)).Thus, we limit ourselves to the edges present in the MDP Gρ. For each vertex
v ∈ VAdam we let Av = argminv′∈supp(ρ(v)) [w(v, v′) +mValρ(v′)] the successors of v that minimise
the expected value at horizon 1. We let A be the game obtained from G by removing all edges
(v, v′) ∈ E such that v′ /∈ Av.

Lemma 61. (i) Each finite play of A from a vertex v has a payoff at most mValρ(v).
(ii) Each cycle in the game A has a non-positive total weight.

Proof. We prove the property (i) on finite plays π ofA by induction on the length of π, for all initial
vertices v. If π has length 0, this means that v ∈ T, in which case SP(π) = 0 = mValρ(v). Consider
then a play π = vπ′ of length at least 1, with π′ starting from v′, so that SP(π) = w(v, v′)+SP(π′).
By induction hypothesis, SP(π′) 6 mValρ(v′), so that SP(π) 6 w(v, v′) +mValρ(v′).

Suppose first that v ∈ VEve. By Proposition 49, we know that Eve can play optimally in the MDP
Gρ with a memoryless deterministic strategy. For each possible memoryless deterministic strategy
τ of Eve, we have mValρ(u) > E

ρ,τ
u (SP) for all u ∈ VEve, and by the system (1) of equations, letting

u′ = τ(u), E
ρ,τ
u (SP) = w(u, u′) + E

ρ,τ
u′ (SP). We thus know that mValρ(u) > w(u, u′) + E

ρ,τ
u′ (SP).

By taking a maximum overall memoryless deterministic strategies τ of Eve, Proposition 49 ensures
that

∀u ∈ VEve ∀u′ ∈ E(u) mValρ(u) > w(u, u′) +mValρ(u′) (4)

In particular, mValρ(v) > w(v, v′) +mValρ(v′) > SP(π).
If v ∈ VAdam, then v′ ∈ Av so that w(v, v′) +mValρ(v′) is minimum over all possible successors

v′ ∈ supp(ρ(v)). The system (1) of equations implies that, for an optimal strategy χ of Eve,

mValρ(v) = E
ρ,χ
v (SP) ∑

v′′∈E(v)
P(v, v′′)× (w(v, v′′) + E

ρ,χ
v′′ (SP))

= ∑
v′′∈supp(ρ(v))

P(v, v′′)× (w(v, v′′) +mValρ(v′′)) > w(v, v′) +mValρ(v′) (5)
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so that we also get mValρ(v) > SP(π).

We then prove the property (ii) on cycles. Consider thus a cycle v1v2 · · · vkv1 of A, and let
w1 = w(v1, v2), w2 = w(v2, v3), . . . , wk = w(vk, v1) be the sequence of weights of edges. We also
let vk+1 = v1. We show that w1 + w2 + · · · + wk 6 0. Let i ∈ {1, 2, . . . , k}. If vi ∈ VEve, by (4),
mValρ(vi) > wi +mValρ(vi+1). If vi ∈ VAdam, by the reasoning applied above in (5), we also know
that mValρ(vi) > wi +mValρ(vi+1). By summing all the inequalities above, we get

k

∑
i=1

mValρ(vi) >
k

∑
i=1

wi +
k

∑
i=1

mValρ(vi) i.e. w1 + w2 + · · ·+ wk 6 0

Example 62. Consider again the game in Figure 7, and the memoryless strategy ρ′p giving rise to the

MDP/MC in Figure 7. Recall that mValρ
′
p(v0) = −2p2/(1− p(1− p)) and mValρ

′
p(v1) = (p2 − 3p +

1)/(1− p(1− p)). Consider p close enough to 1 so that mValρ
′
p(v0) 6 −3/2 and mValρ

′
p(v1) 6 −1/2.

Then, we have Av0 = {v1} and Av1 = {,}. The corresponding game graphA contains only edges (v0, v1)

and (v1,,), and thus no cycles. The unique finite play from vertex v0 has payoff −2 6 mValρ
′
p(v0). In

particular, the only possible memoryless deterministic strategy σ1 in A is optimal in G.

Contrary to the previous example, not all choices of σ1 might be good. We thus build one
particular memoryless deterministic strategy σ1 in A, that will be an NC-strategy, i.e. that will
follow only negative cycles. By Lemma 61(ii), we naturally have to forbid null cycles. For each
vertex v0, we let dv the distance of v to the target given by an attractor to the target in Gρ. Notice
that this may be different from the distance given in the whole arena since some edges are taken
with probability 0 in ρ, but still, dv < +∞ since ρ ensures to reach T with probability 1 (see
Example 63). Then, for all vertices v ∈ VAdam, we let σ1(v) be any vertex v′ of Av that minimises
the distance dv′ .

Example 63. Consider once again the game in Figure 7, but with a new memoryless strategy ρ′′p defined
by ρ′′p(v0) = Diracv1 and ρ′′p(v1) = δ such that δ(v0) = 1− p and δ(,) = p, where p ∈ (0, 1). Then,

we can check that mValρ
′′
p (v0) = −2 and mValρ

′′
p (v1) = −1. Thus, Av0 = {v1} and Av1 = {v0,,}.

Not all memoryless deterministic strategies taken in A are NC-strategies, since it contains the null cycle
v0v1v0. We thus apply the construction before, using the fact that d, = 0, dv1 = 1 and dv0 = 2 (since the
edge (v0,,) is not present in A). Thus, σ1 is defined by σ1(v0) = v1 and σ1(v1) = ,, and is indeed an
NC-strategy.

Lemma 64. Strategy σ1 is an NC-strategy, i.e. all cycles of A conforming with σ1 have a negative total
weight.

Proof. Let v1v2 · · · vkv1 be a cycle ofA that conforms to σ1, with v1 a vertex of minimal distance dv1

among the ones of the cycle. We can choose v1 such that it belongs to Adam: otherwise, this would
contradict the attractor computation in A. By Lemma 61(ii), its total weight is non-positive. Sup-
pose that it is 0. Then, in the proof of Lemma 61(ii), all inequalities mValρ(vi) > wi +mValρ(vi+1)
are indeed equalities. In particular, mValρ(v1) = w1 + mValρ(v2). Since v2 ∈ Av1 , (5) ensures
that all successors v′ ∈ supp(ρ(v1)), mValρ(v1) = w(v1, v′) +mValρ(v′). Vertex v2 has been cho-
sen for σ1(v1) because it has minimal distance dv2 in all successors v′ ∈ supp(ρ(v1)). But this is
contradicting the fact that v1 has minimal distance among all vertices of the cycle.
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Figure 9: On the left, a shortest-path game for which Adam does not admit an optimal memoryless
strategy. In the middle, the computation table of f (i) for all vertex on this game. On the right, the
arena of GA(3)

induced by this game.

Proof of Proposition 60. Let π be a play conforming to σ, from vertex v0. Since σ is a switching
strategy, it necessarily reaches T. If σ conforms to σ1, by Lemma 61(i), it has a payoff SP(π) 6
mValρ(v0). Otherwise, it is obtained by a switch, and is thus longer than α = max(0, |V|W −
mValρ(v0))× |V|+ 1. Then, it contains at least max(0, |V|W−mValρ(v0)) elementary cycles, before
it switches to the attractor strategy σ2. Once we remove the cycles, it remains a play of length at
most |V|, and thus of payoff at most |V|W. Since all cycles conforming to σ1 have a total weight at
most −1, by Lemma 64, SP(π) is at most (−1)×max(0, |V|W −mValρ(v0)) + |V|W 6 mValρ(v0).

This concludes the proof of Theorem 50.

4.3 Characterisation of Optimality

All shortest-path games admit an optimal deterministic strategy for both players: however, as
we have seen in Example 42, Adam may require memory to play optimally. In this case, we also
have seen in Example 48 that Adam does not have an optimal memoryless (randomised) strategy:
he only has ε-optimal ones, for all ε > 0. But some shortest-path games indeed admit optimal
memoryless strategies for Adam: the strategy ρp described in Section 4.1 is indeed optimal in
arena not containing negative cycles, for instance. In this section, we characterise the shortest-
path games in which Adam admits an optimal memoryless strategy. For sure, Adam does not have
an optimal strategy if there is some vertex v of value dVal(v) = −∞.

Assumption. In this section, we therefore suppose that all shortest-path games are such that
dVal(v) 6= −∞ for all vertices v.

We first recall the deterministic values computations consists of a value iteration based on the
operatorF defined by equation (2). We let f (0)v = 0 if v ∈ T and +∞ otherwise. By monotony ofF ,
the sequence ( f (i) = F i( f (0)))i∈N is non-increasing. It is proved to be stationary, and convergent
towards (dVal(v))v∈V .

We introduce a new notion, being the most permissive strategy of Adam at each step i > 0 of the
computation. It maps each vertex v ∈ VAdam to the set A(i)

v = {v′ ∈ E(v) | w(v, v′) + f (i−1)
v′ = f (i)v }

of vertices that Adam can choose. For each such most permissive strategy A(i), we let GA(i)
be the

arena where we remove all edges (v, v′) with v′ /∈ A(i)
v .
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Example 65. Consider the game in Figure 5, which we know does not allow an optimal memoryless strat-
egy. The computation of f (i) gives us f (2)vEve = −1 and f (2)vAdam = 0. This computation has not converged for
i = |V| − 1 = 2, because f (3)vEve = −1 and f (3)vAdam = −1. So by Proposition 66, Adam does not admit an
optimal memoryless strategy.

Consider the game G in Figure 9. We iteratively compute, for each vertex, the function f in the middle
that converge for i = |V| − 1 = 3. Thus, we can deduce A(3)

v for each vertex v. For example, A(3)
v1 =

{v0} 6= E(v1) because f (2)v0 + 0 = −10 = f (3)v0 , and f (2), + 0 = 0 6= f (3)v0 . The game GA(3)
is depicted

on the right. In GA(3)
, Adam cannot reach the target. By Proposition 66, Adam does not admit an optimal

memoryless strategy. In this case, the convergence of f (i) is not sufficient, we need the condition on GA(i)
to

conclude the existence of an optimal memoryless strategy.
Consider the game in Figure 5 such that the output of Adam is worth −10, so w(vAdam,,) = −10.

The computation of f (i) gives us f (2)vAdam = −10 and f (2)vEve = −10. This computation converged for i =

|V| − 1 = 2, because f (3)vAdam = −10 and f (3)vEve = −10. Also A(3)
vAdam = {,, vEve} so Adam can reach the

target in GA(2)
. So by Proposition 66, Adam admits an optimal memoryless strategy.

Proposition 66. The following assertions are equivalent:

1. Adam has an optimal memoryless deterministic strategy in G (for dVal);

2. Adam has an optimal memoryless (randomised) strategy in G (for mVal);

3. f (|V|−1)
v = f (|V|)(v) = dVal(v) for all vertices v (this means that the sequence ( f (i)) is stationary as

soon as step |V| − 1), and Adam can guarantee to reach T from all vertices in the arena GA(|V|−1)
.

Proof. Implication 1⇒ 2 is trivial by the result of Theorem 50.
For implication 3 ⇒ 1, consider any memoryless deterministic strategy σ∗ that guarantees

Adam to reach T from all vertices in the arena GA(|V|−1)
. Then, for all vertices v, we show by induc-

tion on n, that each play π from v that reaches the target in at most n steps, and conforming to σ∗,
has a payoff SP(π) 6 dVal(v). This is trivial for n = 0. If π = vπ′ with π′ starting in v, then

SP(π) = w(v, v′) + SP(π′) 6 w(v, v′) + dVal(v′) = w(v, v′) + f (|V|−1)(v)

If v ∈ VEve, we have SP(π) 6 w(v, v′) + f (|V|−1)(v) 6 f (|V|)(v) = dVal(v). If v ∈ VAdam, since v′ ∈
A(|V|−1)

v , SP(π) = f (|V|)(v) = dVal(v). This ends the proof by induction. To conclude that 1 holds,
since σ∗ guarantees to reach the target, all plays conforming to it reach the target in less than |V|
steps, which proves that dValσ

∗
(v) 6 dVal(v), showing that σ∗ is optimal.

For implication 1 ⇒ 3, consider an optimal memoryless deterministic strategy σ∗, such that
for all v, dValσ

∗
(v) = dVal(v).

First, we show that f (|V|−1)(v) = dVal(v) for all vertices v. For that, consider the deterministic
strategy τ of Eve defined for all finite plays π having n 6 |V| vertices, ending in a vertex v ∈ VEve,
by τ(π) = v′ such that w(v, v′) + f (|V|−1−n)

v′ = f (|V|−n)
v . For longer finite plays, we define τ

arbitrarily. Then, let π be the play from v conforming to σ∗ and τ. Since σ∗ ensures reaching
the target and is memoryless deterministic, π reaches the target in at most |V| − 1 steps. Let
π = v0v1v2 · · · vk−1vk with k 6 |V|. Let us show that SP(π) > f (|V|−1)

v . We prove by induction
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on 0 6 j 6 k that ∑k−1
i=j w(vi, vi+1) > f (|V|−1−j)

vj . When j = k− 1, the result is trivial since the sum

is 0 = f (0)vk > f (|V|−1−(k−1))
vk . Otherwise, by induction hypothesis ∑k−1

i=j w(vi, vi+1) > w(vj, vj+1) +

f (|V|−1−(j+1))
vj+1 . If vj ∈ VEve, vj+1 is chosen by τ so that w(vj, vj+1) + f (|V|−1−(j+1))

vj+1 = f (|V|−1−j)
vj . If

v ∈ VAdam, by definition of F , w(vj, vj+1) + f (|V|−1−(j+1))
vj+1 > f (|V|−1−j)

vj . We can conclude in all
cases, so that f (|V|−1)(v) = dVal(v) for all vertices v.

Then, we show that Adam can guarantee to reach T from all vertices in the game graph GA(|V|−1)
.

Let us suppose that this is not the case. Then, there exists a set V ′ of vertices in which Eve can
guarantee to keep Adam for ever, in the game GA(|V|−1)

: for all v′ ∈ V ′ ∩ VAdam, A(|V|−1)
v′ ⊆ V ′,

and for all v′ ∈ V ′ ∩ VEve, E(v) ∩ V ′ 6= ∅. Since σ∗ guarantees to reach the target, there exists
v ∈ V ′ ∩ VAdam such that σ∗(v) = v′ /∈ V ′: then w(v, v′) + dVal(v′) > dVal(v) (here we use that
dVal(v) = f (|V|−1)

v = f (|V|)v ). Consider an optimal memoryless deterministic strategy τ∗ of Eve in
G. Then, the play π from v conforming to σ∗ and τ∗ starts by taking the edge (v, v′) and continues
with a play π′. By optimality, we know that SP(π) = dVal(v) and SP(π′) = dVal(v′). However,
SP(π) = w(v, v′) + SP(π′) = w(v, v′) + dVal(v′) > dVal(v) which raises a contradiction.

We finish the proof by showing 2⇒ 1. For that, consider an optimal memoryless (randomized)
strategy ρ∗ for mVal. By following the construction of Section 4.2, we build a memoryless deter-
ministic strategy σ1. Lemma 64 ensures that σ1 is an NC-strategy so that every cycles conforming
to σ1 has a negative total weight. Let us show that such a negative cycle cannot exist, which will
ensure that all plays conforming to σ1 reach the target, and thus the optimality of σ1. Suppose that
a cycle v1v2 · · · vkv1 conforms to σ1. By following the notations of the proof of Lemma 61(ii) we
suppose that, v1 is a Adam’s vertex such that its distance dv1 is minimal on the cycle. Note that a
such vertex exist, otherwise only Eve has the minimal distance vertices on the cycle and that con-
tradict the attractor notion. As v1 has a minimal distance, dv2 > dv1 and there exists u ∈ E(v1) such
that du < dv1 , and ω(v1, u) +mValρ

∗
(u) > ω1 +mValρ

∗
(v2). By (1), mValρ

∗
(v1) > ω1 +mValρ

∗
(v2).

By optimality of ρ∗, this rewrites in mVal(v1) > ω1 +mVal(v2). By Theorem 50, this also rewrites
in dVal(v1) > ω1 + dVal(v2). As v1 ∈ VAdam, this contradicts the fact that the vector dVal is a
fixpoint of F , that conclude the proof.

This characterisation is testable in polynomial time since it is enough to compute vectors
f (|V|−1) and f (|V|), check their equality, compute the sets of sets A(|V|−1)

v (this can be done while
computing f (|V|)) and check whether Adam can guarantee reaching the target in GA(|V|−1)

by an
attractor computation. The proof of implication 3⇒ 1 allows one to build an optimal memoryless
deterministic strategy in this case.

5 Shortest-Path Timed Games

We want to extend our results to infinite games with weights. One way to consider infinite games
is to add time. As in quantitative games, weights allow us to measure the performance of a given
strategy. However, strategies in timed games require two choices for each player: the choice of
time spent in a location and the next available transition. Weights are therefore added on the tran-
sitions and locations in a timed automaton to obtain a priced timed game. Thus, payoffs depend
on the transitions taken as well as the delays spent in each location. We will study these games
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Figure 10: A concurrent shortest-path timed game with a target set T = {v3}, Adam’s action is
{a}, and Eve’s action is {b}.

with the shortest-path objective. Unfortunately, for the two semantics of the game (concurrent and
turn-based), the value problem and the existence problem of an optimal strategy are undecidable.

5.1 Weighted Timed Games with Shortest-Path Objective

A weighted timed game is a timed game with weights in its arena. It is finitely represented by
a weighted timed automaton that is a timed automaton with weights on theses transitions and
locations.

Definition 67. A weighted timed automaton is a tuple 〈L, C, Σ, d, Inv, w〉 where L is a finite set of
locations, C is a finite set of clocks, Σ is a finite alphabet, d ⊆ L× Σ× Guard(C)× L× 2C is a set
of transitions, Inv : L → Guard(C) maps an invariant on each locations and w : L ∪ d → Z is a
weighted function.

A play in a weighted timed game is an infinite sequence of pairs of locations and delays spend
in it, denoted π = (li, ti)i ∈ (L, R>0)ω. As for a timed game, there exist two semantics for theses
games : concurrent games and turn-based games.

Example 68. The weighted timed automaton in Figure 10 is defined by L = {l0, l1, l2,,}, C = {y}, Σ =
{a, b}, d = {e1 = (l0, a, {y 6 2}, l1, ∅), e2 = (l0, b, {y 6 2}, l2, ∅), e3 = (l1, a, {y = 2},,, ∅), e4 =
(l2, a, {y = 2},,, ∅)}, and Inv : Q→ true. Moreover, weights are defined by w(l0) = w(l3) = w(e1) =
w(e2) = 0, w(l1) = 10, w(l2) = w(e2) = 1, and w(e4) = 7.

The objectives on priced timed games are described by a payoff function as in quantitative
games. This function computes the cost of a play regarding the taken transitions, and the time
spent in each location. The payoff of a shortest-path objective, as in quantitative games, for a set T
of vertices and all runs π = (li, ti)i, is

SP(π) =

{
+∞ if lk /∈ T for all k > 0
∑k−1

i=0 w((li, li+1)) + tiw(li) if k > 0 is the minimal index such that lk ∈ T

For a shortest-path timed game 〈L, C, Σ, d, Inv, w, SP〉, as in quantitative games, we can define Val
and Val the values that Adam and Eve can ensure whatever the adversary plays.
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5.2 Concurrent Shortest-Path Timed Games

In a concurrent shortest-path timed game, Σ is partitioned into two sets ΣAdam and ΣEve as already
studied before. In the general case, the value problem and the existence problem of an optimal
strategy are undecidable.

Definition 69. A concurrent shortest-path timed game is a tuple 〈L, C, ΣAdam, ΣEve, d, Inv, w, SP〉where
Σ = ΣAdam ] ΣEve is the set of action partitioned into two sets : Adam’s actions and Eve’s ones, and
〈L, C, Σ, d, Inv, w, SP〉 is a shortest-path timed game.

To keep it simple, we assume that the strategies are built on the Γ sets (see Section 2.4). During
these games, it is assumed that the action (⊥, 0) is not available.

Example 70. Consider the concurrent shortest-path timed game in Figure 10 with ΣAdam = {a} and
ΣEve = {b}. Adam’s value in ∗(l0, ν0) where ν0 = 0 is

Val(l0, ν0) = inf
06t62

max(10(2− t) + 1, (2− t) + 7) = inf
06t62

max(21− 10t, 9− t) = 1

The optimal strategy for Adam in (l0, ν0) is σ∗(l0, ν0) = (a, 2). The Eve’s value in l0 is

Val(l0, ν0) = sup
06t62

min(21− 10t, 9− t) = 9

The optimal strategy for Eve in τ∗(l0, ν0) is τ∗(l0, ν0) = (b, 0).

Theorem 71 ([5]). Let G be a concurrent shortest-path game with non-negative weights.

1. Given a threshold ./ c, the value problem asks whether infσ∈dSAdam SP(π) ./ c where π is conforming
with σ. It is undecidable.

2. Given a threshold ./ c and a vertex v, the existence problem asks whether there is a strategy σ for
Adam such that for every strategy τ for Eve, it holds Play(v, τ, σ) ./ c. It is undecidable.

Related work on decidable concurrent shortest-path timed games There exist subclasses of
games where the value problem [5] and the existence problem of an optimal strategy are decidable
[4]. Theses games verify the non-Zenoness hypothesis to bound the game. Under this hypothesis,
the payoff is finite only if the play is finite. Formally, it is given by a technical restriction on the
region automaton (see Section 6). For a game under the non-Zenoness hypothesis, the existence
problem of an optimal strategy is decidable [4]. If this hypothesis is relaxed slightly, the value
problem is still approximable [5].

5.3 Turn-Based Shortest-Path Timed Games

We consider a turn-based shortest-path timed game with arbitrary weights. In a turn-based game,
L is partitioned into two sets LAdam and LEve as already studied before.

Definition 72. A turn-based shortest-path timed game is a tuple 〈LAdam, LEve, T, C, Σ, d, Inv, w, SP〉
where L = LAdam ] LEve ] T is the set of locations partitioned into three sets : Adam’s actions,
Eve’s ones and T the target, and 〈L, C, Σ, d, Inv, w, SP〉 is a shortest-path timed game.
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Figure 11: A turn-based shortest path timed game with two clocks.

Example 73. Consider the turn-based shortest-path timed game in Figure 11. We can compute the value
for Adam in (l0, ν0) with ν0 = (0, 0) as

Val(l0, ν0) = inf
06t62

max(5t + 10(2− t) + 1, 5t + (2− t) + 7) = inf
06t62

max(21− 5t, 9 + 4t) =
43
3

The optimal strategy for Adam in (l0, ν0) is σ∗(l0, ν0) = (a, 4
3 ), and σ∗(v2, ν1) = σ(v3) = (a, 2

3 ) with
ν1 = (4/3, 0). In fact, a play π conformed to σ∗ from (l0, ν0) admits a cost 20/3 in (l1, ν1). Then Eve
must play with a null delay to (l2, ν1) and

SP(π) =
20
3

+ 10× 2
3
+ 1 =

43
3

or with a null delay to (l3, ν1) and

SP(π) =
20
3

+
2
3
+ 7 =

43
3

Turn-based shortest-path timed games are determined. For these games, the existence problem
of an optimal strategy is undecidable for two clocks or more. However, we do not know if it is
decidable for only one clock.

Theorem 74 ([8]). The existence of an optimal strategy problem for a turn-based shortest-path timed game
is undecidable for two clocks or more.

Simple priced timed games Simple priced timed games are a subclass of turn-based shortest-
path timed games where the existence problem of an optimal strategy and the value problem are
decidable [6]. It contains only one clock x that it never reset and its valuation is bounded by 1.
Moreover, all guards over x are 0 6 x 6 1.

Definition 75. A simple priced timed game is represented by a tuple 〈LAdam, LEve, T, C, Σ, d, w, SP〉
where L = LAdam ] LEve ] T, C = {x}, d ⊆ L× Σ× L and w : L ∪ d → Z. In this game, the total
time spent is between 0 and 1. When x reaches 1, the current player must play with a delay null.

The value problem and existence problem of optimal strategy are decidable for those games.

Theorem 76 ([6]). Let G be a simple priced timed game. The value problem can be computed in exponential
time. It is solved, for all vertices, by a pair of optimal strategy σ for Adam, and τ for Eve.
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Sketch of the proof. The main idea is to reduce the simple priced timed game on a quantitative
game. It is based on urgent locations where the current player must play with a delay null. When
all locations in a game are urgent, time cannot pass, and the game is quantitative. For this partic-
ular game, compute the value and optimal strategy algorithms for quantitative games work. The
idea of the transformation from a simple priced timed game to a quantitative game is the follow-
ing: at each step, let consider the location with minimal weight to choose the delay as follow Eve
would spend minimal time in it, and Adam would spend the maximal time.

The optimal strategies computed by this algorithm have the same structure as the switching
strategies for quantitative games. It is computed in the game where all locations are urgent. There
exists an optimal memoryless strategy for Eve. However, an optimal strategy for Adam is finite-
memory [6].

Related work on decidable games There exist other subclasses of decidable games. The pre-
vious result on simple priced timed games can be extended to games with one clock where the
number of resets is bounded, i.e. there are no cycles in the region automaton that contains a reset.
Based on the same technique that for the simple priced timed game, the value problem can be
solved in exponential time [6]. Let consider some other restrictions to obtain a decidable game.

A bi-valued priced timed game has only one clock that is bounded by the greatest constant in
the guards. Moreover, we suppose that the weight on the vertices is in {−d, 0, d} for d ∈ N

[8]. Bi-valued priced timed games are determined. The value and the existence of optimal strat-
egy problems are decidable for these games. Moreover, an optimal strategy for Adam uses finite
memory and an optimal strategy for Eve may need infinite memory. The optimal strategy can be
approximated in pseudo-polynomial time [8].

A divergent weighted timed game (see Section 6.1) is a game under a generalisation of the strictly
non-Zenoness hypothesis in the case of non-negative weights. In this case, there are no restrictions
on the number of clocks of the game. The value problem is in 2EXPTIME and EXPTIME-hard [11].
The existence problem of an optimal strategy is 2EXPTIME [12].

6 Divergent Shortest-Path Timed Games

In this section, we focus on divergent shortest-path timed games for which the value problem is
decidable. They are formally defined by the concept of region automaton. In divergent shortest-
path timed games, we can define a memoryless (randomized) value to extend our previous result
(see Section 4). Thus, we need to introduce randomness into such games.

We denote by QN = {n/2N | n ∈ N} be a subset of granularity N of QN . For all a ∈ R>0,
bac ∈ N denotes the integral part of a, and fract(a) ∈ [0, 1) its fractional part, such that a =
bac+ fract(a).

6.1 Regions and Region Automaton

Regions are a finite partition of RC>0 to abstract the semantics of a timed automaton as a finite state
system. They are induced by an equivalence relation on valuations. In particular, in each region,
a transition is available for all valuations: a guard is satisfied or not. Time has the same effect on
all valuations for each region. For all valuations in a region, all valuations reach the same region
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Figure 12: On the left, regions for two clocks where the maximal constant is 2. On the right, regions
with a granularity 1/22 for two clocks where the maximal constant is 2.

when delay pass. This remains true for clocks resets, they reach a region where reset clocks have a
null value. To ensure that the partition is finite, we use an upper bound on the value of the clocks.
This constant is defined as the maximum constant appearing in Guard(G) of the timed automaton
G.

Definition 77. Let C be a set of clocks, N ∈ N∗ be a granularity, and M be a maximal constant.
1/2N-regions are subsets of valuations r characterised by a valuation ı ∈ RC>0,6M called the integral
part of r such that ı(c) ∈ QN for every c ∈ C, and an ordered partition R0 ] R1 ] · · · ] Rm splitting
C into m + 1 subsets. The ordered partition is denoted 0 = R0 < R1 < · · · < Rm, where R0 can be
empty but Ri 6= ∅ for 1 6 i 6 m.

We denote by RegN(C, M) the set of 1/2N regions over C with a maximal constant M. The
regions with a granularity 0 are the classical regions [10]. A valuation ν in RC>0 belongs to a 1/2N

region r if

• for all c ∈ C, ı(c)2N = bν(c)2Nc;

• for all c ∈ R0, fract(ν(c)2N) = 0;

• for all 0 6 i 6 m, for all c, c′ ∈ Ri, fract(ν(c)2N) = fract(ν(c′)2N).

• for all i, j such that 0 6 i < j 6 m, for all c ∈ Ri and all c′ ∈ Rj, fract(ν(c)2N) < fract(ν(c′)2N).

Example 78. The left of Figure 12 represents regions over two clocks with granularity N = 0 and a
maximal constant M = 2. The red region contains only one valuation (0, 0) and is characterized by
ı = (0, 0) and 0 = {x, y}. The set of valuations {(0, y) | 0 < y < 1} is the green region. It is
characterized by ı = (0, 0) and 0 = {x} < {y}. The set of valuations {(x, 1) | 0 < x < 1} is the purple
region. It is characterized by ı = (0, 1) and 0 = {y} < {x}. The set of valuation {(x, y) | 0 < x < 1}
is the blue region. It is characterized by ı = (0, 0) and 0 < {x, y}. A valuation in a yellow region is for
example (0.5, 0.6). It is characterised by ı = (0, 0) and 0 < {x} < {y}. The right of Figure 12 represents
regions over two clocks with granularity N = 2 and a maximal constant M = 2.

A region automaton is a finite automaton that is built by labelling configurations with their re-
gion and collapsing configurations with the same location and region. It abstracts paths in a timed
automaton by a sequence of regions alternating between time elapsing and taking transitions. This
automaton accepts the untimed language of a timed automaton by simulating its execution.
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Figure 13: On the left, a divergent shortest-path timed game. In the middle, regions for one clock
to the game. On the right, a partial region automaton from the game.

Definition 79. A region automaton of a timed automaton A = 〈L, C, Σ, d, Inv〉 is a finite automaton
R(A) = 〈L × RegN(C, M), C, Σ, d′, Inv〉 whose locations are labelled by regions and such that d′

contains all transitions ((l, r), r′′, e, (l′, r′)) such that e = (l, a, g, l′, C) is a transition of A, r′′ is a
time successor of r (i.e. there exists ν ∈ r, ν′′ ∈ r′′ , and d > 0 such that ν′′ = ν + d), r′′ satisfies g,
and r′′[C := 0] = r′.

Example 80. The right of Figure 13 depicts a partial region automaton from the game on the left. It is the
reachable states from the initial configuration (lAdam, 0) depicted by (lAdam, r3).

A region automaton allows us to build two types of games: a timed game and an fi-
nite game. A timed game on the region automaton denoted R(G) where transitions are la-
belling by guards. It is another way to represent G by giving more information: the regions.
It corresponds to a classical timed game labelling (and duplicating) the vertices (and transi-
tions) by the regions. Let G be a game in the left of Figure 13, a play in R(G) is given by
(((lAdam, r0, ), 0.5)((lEve, r3), 1))∗((lEve, r3), 0)(,, r3).

A second game denoted ΓN(G), can be built using a region automaton. In this game, players
play at the corners of the regions [10]. A valuation ν is at the corner of a region 1/2N r if it belongs
to the topological closure of r and its coordinates are in QN . Each region has |C| + 1 corners
maximum. For example, consider regions in the middle of Figure 13. Corner of r0 is 0, its unique
valuation. Corners of r3 are 0 and 1. In such a game the vertices are tuples (l, r, v) containing a
location l, a region r and a corner v of r. The transitions are then described by the existence of a
delay and an available transition between two vertices. For a fine granularity, this game can be
untimed by removing the guards.

6.2 Divergent Games and Deterministic Values

The class of divergent shortest-path timed games is defined by a restriction over the total weight
of a play. In these games, cycles having a total weight as close to 0 as wanted are prohibited.
For example, the shortest-path timed game in the left of Figure 13 is divergent. To formalize this
condition, we use the region automaton.
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Definition 81. A shortest-path timed game G is divergent if every finite play π in G following a
cycle in the region automatonR(G) satisfies TP(π) /∈ (−1, 1).

Recall, in a timed game, for all configurations (l, ν), a deterministic strategy for Adam makes a
choice in

ΓAdam(l, ν) = {(a, t) | a ∈ Σ labels an available transition from (l, ν) for the delay t}

Formally, a deterministic strategy for Adam is a matching σ : (L×RC)∗(LAdam ×RC) → ΓAdam. A
deterministic strategy for Eve is analogously defined.

As for quantitative games, we formally define the value of strategies σ and τ by letting for all
configurations (l, ν),

dValσ(l, ν) = sup
τ′∈dSEve

SP(Play((l, ν), τ′, σ)) and dValτ(l, ν) = inf
σ′∈dSAdam

SP(Play((l, ν), τ, σ′))

Finally, the value for Adam and for Eve is : for all vertices (l, ν),

dVal(l, ν) = inf
σ∈dSAdam

dValσ(l, ν) and dVal(l, ν) = sup
τ∈dSEve

dValτ(l, ν)

Moreover, a divergent shortest-path timed game is determined and we note for all configurations
(l, ν), dVal(l, ν) = dVal(l, ν) = dVal(l, ν) the common value.

Example 82. Consider the divergent shortest-path game on the left of Figure 13. First, let us consider
the configuration (lAdam, 0) as initial. Adam could directly reach the target, thus leading to a payoff of 1.
But he can also choose to go to lEve with a delay 0, in which case Eve either jumps directly in the target
(leading to a beneficial payoff −11), or comes back to lAdam, but having already capitalized a total payoff
−3. Adam can continue this way ad libitum until he is satisfied (at least 4 times) and jumps to the target.
This guarantees a value at most −10 for Adam, when starting in (lAdam, 0). At each turn, he is in the
configuration (lAdam, 0). Reciprocally, Eve can guarantee a payoff at least−10 by directly jumping into the
target when she plays for the first time. Thus, the value is −10 when starting from (lAdam, 0).

The value is given by fixpoint computation based on the operator Ftemp that summarises a
turn of the game [10]. It is based on value function, a mapping from a configuration L×R>0 to a
value in R = R ∪ {−∞,+∞}. Formally Ftemp : ((L×RC>0 → R) → (L×RC>0 → R) defined for
all x = (x(l,ν))(v,ν)∈L×∈RC>0

∈ (L× RC>0 → R) and all configurations (l, ν) ∈ L× RC>0 by

Ftemp(x)(l,ν) =


0 if v ∈ T
inf

(l,ν) a,t→(l′,ν′)
(w(l, l′) + tw(l) + x(l′,ν′)) if v ∈ LAdam

sup
(l,ν) a,t→(l′,ν′)

(w(l, j′) + tw(l) + x(l′,ν′)) if v ∈ LEve

(6)

where (l, ν)
a,t→ (l′, ν′) is an available transition from (l, ν) labelled by action a and delay t.

6.3 How to Play at Random in Timed Games?

To define a randomized strategy for Adam, we need to define a distribution over all possible
actions ΓAdam. Formally, a memoryless strategy for Adam is a mapping ρ : (LAdam × RC>0) →
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Figure 14: On the left, a divergent shortest-path timed game from a configuration need two delays
to play optimally. On the right, a MC induced by strategies with a finite support for distributions.

∆(ΓAdam) matching each configuration of Adam to a distribution on Adam’s possible choices. Thus,
the stochastic model induced is an infinite (with an infinite degree) MDP or MC. The notion of
value is more subtle to define. However, we hope to succeed in defining the value with integrals
as in the models presented in [13, 18].

In this internship, we limit, for each configuration (l, ν), the distribution support to finite sup-
port. In other words, we restrict ΓAdam(l, ν) to a finite set of possible choices. However, this
restriction allows for several delays per transition. Formally, a memoryless strategy for Adam is
defined by ρ : (LAdam ×RC>0) → ∆(Γ′Adam) where Γ′Adam is a finite subset of ΓAdam. A memoryless
strategy for Eve is defined analogously.

Example 83. Consider the divergent shortest-path game in the left of Figure 14 and an initial configuration
(lAdam, 0). The deterministic value for (lAdam, 0) is −10 ensured by an optimal switching strategy σ =
〈σ1, σ2, α〉. It is defined by σ1(lAdam, 0) = (a, 0) and σ2(lAdam, 0) = (a, 2) to ensure that Eve chooses the
target. The MC on the right induced by ρ defined by ρ(lAdam, 0)(a, 0) = p, ρ(lAdam, 0)(b, 2) = 1− p, and
τ defined by τ(lEve, 0) = (a, 1) and τ(lEve, 0) = (b, 0). If we suppose that each transition has only one
delay, p = 0 or p = 1 in ρ, then total-weight of conformed play is 1 or +∞ that is greater than −10.

However, even finite support for distribution for each configuration, the MC induced by two
memoryless strategies can be infinite. This MC can have an infinite set of vertices if strategies build
an infinite set of reachable configurations. However, this MC fas finite degree. The definition of
value then remains analogous to quantitative games.

Example 84. Consider the divergent shortest-path game depicted on the left of Figure 15. Consider
the memoryless strategy for Adam, ρ, such that ρ(lAdam, x)(a, 0) = p1, ρ(lAdam, x)(b, 2 − x) = p2,
and ρ(lAdam, x)(c, 0) = p3 for 0 6 x < 1, and p1 + p2 + p3 = 1, and ρ(lAdam, x)(b, 2 − x) =
1 for 1 6 x 6 2. The memoryless strategy for Eve, χ, is defined by χ(lEve, 0)(a, 1/2) = 1,
χ(lEve, (2n − 1)/2n)(a, 1/2n+1) = 1, for all n ∈ N∗. A play conformed to these strategies is
(lAdam, 0)(lEve, 0)(lAdam, 1/2)(lEve, 1/2)(lAdam, 3/4)(lEve, 3/4) . . . until Adam switch to the target af-
ter some reset of clocks with probability 1.

In Gρ,χ induced by memoryless strategies for Adam and Eve, we denote by P
ρ,χ
v (�T) the prob-

ability of the set of plays that reach the target set T ⊆ V of vertices. Similarly, E
ρ,χ
v (SP) is the

expected weight of a path in this MC, weights being the ones taken from G. We can define the
value with an expectation over the MC. We therefore define the value of strategy ρ as the worst-
case scenario for him:

mValρ(v) = sup
χ∈mSEve

E
ρ,χ
v (SP)
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Figure 15: On the left, a divergent shortest-path timed game that can induce an infinite MC. On
the right, a partial MC obtained with a strategy with a distribution of finite support.

This definition only makes sense (otherwise it is +∞) if P
ρ,χ
v (�T) = 1 for all χ, i.e. if strategy ρ

ensures the reachability of a target vertex with probability 1, no matter how the opponent plays.
In this case, letting P the probability mapping defining the MC Gρ,χ, the vector (Eρ,χ

v (SP))v∈V is
the only solution to the system of equations

E
ρ,χ
l (TP) =


0 if v ∈ T

∑(a,t)∈ΓAdam(l) P(l, l′)× (w(l, l′) + tw(l) + E
ρ,χ
l′ (SP)) if l ∈ LAdam

∑(a,t)∈ΓEve(l) P(l, l′)× (w(l, l′) + tw(l) + E
ρ,χ
l′ (SP)) if l ∈ LEve

(7)

where l′ is the location reached by the available transition labelled with a for the delay t.
Since Adam wants to minimise the shortest-path payoff, we finally define the memoryless up-

per value as
mVal(v) = inf

ρ∈mSAdam
mValρ(v)

6.4 Memoryless Values

The next contribution will consist in showing that values in divergent shortest-path timed games
are the same when restricting both players to memoryless or deterministic strategies:

Conjecture 85. For all divergent shortest-path timed games G, for all configurations (l, ν), we have
dVal(l, ν) = mVal(l, ν).

In this section, we give our intuitions towards the proof of this conjecture. To simplify, we will
only consider configurations with finite values. Moreover, by the same argument as in quantitative
games (see Section 4), we can rule out the configurations with values +∞. For configurations (l, ν)
with value −∞, we need to show that we can ensure value as low as we want. To this end, we use
the same construction as in quantitative games where the value is replaced by max(−n, dVal(l, ν))
or max(−n,mVal(l, ν)) for all n ∈N.
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Figure 16: Scheme of proof. We write x ε
= y to denote |x− y| 6 ε.

Let (l, ν) be an initial configuration in a divergent shortest-path timed game G. To prove that
dVal(l, ν) > mVal(l, ν) we use some approximations of the deterministic value, depicted in Fig-
ure 16, to approximate the deterministic value in G with a deterministic value in a finite game,
ΓN(G). Thus, by Theorem 50, we obtain an approximation of the deterministic value in G with a
memoryless strategy in ΓN(G). Finally, we obtain the memoryless value in G with a memoryless
randomized strategy built from an ε-optimal memoryless strategy in ΓN(G).

We present this approximation sequence. The deterministic value in a divergent shortest-path
timed game G is computed by a fixpoint of Ftemp (6). There is, therefore, P ∈ N such that the
P-th iteration of Ftemp approaches dValG(l, ν). We denote by dValPG(l, ν) the value computed by
the P-th iteration of Ftemp and dValG(l, ν)

ε
= dValPG(l, ν). For the last approximation, we consider

ΓN(G) a finite game induced by G. Let dValP
′

ΓN(G)(l, ν) the value induced by the P′-th iteration of
F (2). By the same approximation on the fixpoints (see Section 3.3), there exists P′ ∈ N such
that dValΓN(G)(l, ν)

ε
= dValP

′

ΓN(G)(l, ν). To conclude this approximation sequence, we need to prove

dValPG(l, ν)
ε
= dValP

′

ΓN(G)(l, ν). We need to find the good N ∈ N such that the value in the timed
game is ε-close to the value in the finite game. We want to build the finite game with an iterative
calculation of Ftemp so that each iteration on Ftemp to a region 1/2N is an epsilon-approximation.
Thus the subdivision on the result of the P-th iteration is our finite game.

Reciprocally, we will use the same proof technique as in Section 4.2: simulating a randomized
memoryless strategy with a finite-memory deterministic strategy. The deterministic strategy is
based on the value induced by the randomized memoryless strategy in each vertex. In a quanti-
tative game, the cycles of value zero induce an additional difficulty: null cycle can not reach by a
switching strategy. To address this difficulty, we use a distance based on an attractor to the target.
In the case of divergent shortest-path timed games, such cycles do not exist by assumption, so this
additional difficulty should not occur.

7 Conclusion

In this internship, we studied some games on graphs: quantitative games and weighted timed
games with a shortest-path objective. These games are based on the same formalism: an arena (a
finite or infinite weighted graph) and an objective combining a qualitative objective (reachability)
and a quantitative objective (total-payoff). In the context of these games, we solve the value prob-
lem giving the interest of a player regarding the type of strategies used. We studied the tradeoff
between memory and randomness in the context of computing the optimal values.

In quantitative games, we have shown that Adam guarantees the same value when he is lim-
ited to deterministic strategies or randomized memoryless strategies. For this, we simulate de-
terministic strategies with an ε-optimal randomized memoryless strategy where probabilities are
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parametrized by ε. Reciprocally, we simulate a randomized memoryless strategy with a switch-
ing strategy. We also studied the existence of optimal memoryless strategies, which appears to be
equivalent to the existence of optimal memoryless deterministic strategies, and testable in poly-
nomial time.

In shortest-path timed games, the value problem and the existence of an optimal strategy prob-
lem are both undecidable for at least two clocks. We, therefore, focus on a class of games for which
these problems are decidable: divergent shortest-path timed games. For these games, we conjec-
ture that Adam can guarantee the same value with deterministic or memoryless strategies but
with randomness. We give a proof scheme using as a black-box the result obtained in finite quan-
titative games.

Future works

Many questions remain open following this internship. We detail some of them here.
In quantitative games, we could also define more general lower and upper values

Val(v)/Val(v) when we let Adam and Eve play unrestricted strategies (randomized and with mem-
ory). The results of Blackwell’s determination [20] imply that, for such unrestricted strategies, the
shortest-path games are always determined so that Val(v) = Val(v) = Val(v). A natural ques-
tion is whether Val(v) = dVal(v) The reasoning of Section 4.2 only used the vector of values
(mValρ(v))v∈V to define the deterministic switching strategy σ, without using anywhere that ρ is
memoryless. We have, therefore, shown that dVal(v) 6 Val(v). Conversely, however, the proof in
Section 4.1 cannot be directly translated if we allow Adam to use memory and randomization. In
particular, we no longer know how Eve can react, which could break the result of Proposition 54.

Also, in these games, the value is computed in pseudo-polynomial time [7]. We hope that
randomized strategies give us a polynomial-time algorithm to compute the value. Indeed, if
we succeeded in computing an epsilon-optimal strategy in polynomial time for ε small enough,
arounding procedure would them allow us to get the exact values in polynomial time.

In divergent shortest-path timed games, we want to prove the conjecture 85. For that, we
need to check that the value of a timed game is well approximable by the value of a finite game.
Also, we wish to study the generalization of the concept of value when the distribution used in
the strategies is more general, than just finite support. However, defining the concept of value
for such strategies is more challenging in particular because of the necessary mathematical tools
(integrals) but also by the intuition that this concept carries.
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A Sketch of Proofs for Quantitative Games

Theorem 86 ([7]). Deterministic values of a shortest-path game can be computed in pseudo-polynomial
time.

Sketch of the proof. We present the main idea of this algorithm. It iteratively computes in pseudo-
polynomial time the deterministic value as a fixpoint of F . However this computation does not
converge when vertices have an infinite value.

Find vertices v such that dVal(v) = +∞ By definition of the payoff, a vertex has a value +∞
if and only if Adam cannot reach the target from it. A classical attractor technique with the same
equations as in Example 8 computes the set of vertices V+∞ = {v ∈ V | dVal(v) = +∞}.

Find vertices v such that dVal(v) = −∞ A vertex has a deterministic value −∞ if and only if
Adam controls a negative cycle. They are exactly those whose a negative value in a mean-payoff
game defined on the same arena. With this equivalence between the shortest-path and the mean-
payoff games, a threshold can be deduced. When the iterative computed value is less than this
threshold, its value is necessary −∞.

Theorem 87 ([7]). In a shortest-path game,

1. Eve has an optimal deterministic memoryless strategy computable in pseudo-polynomial time.

2. For all vertices with a finite deterministic value, Adam has an optimal deterministic pseudo-
polynomial memory strategy computable in pseudo-polynomial time. For all vertices with determin-
istic value −∞, there exists a sequence of optimal deterministic finite-memory strategies computable
in pseudo-polynomial time such that its value converges to −∞.

Deterministic values of a shortest-path game can be computed in pseudo-polynomial time.

Sketch of the proof. Let give us the main argument to compute the strategy for Eve (item 1). For
all vertices v such that dVal(v) = +∞, the strategy for Eve is an attractor where the target is
V+∞ the vertices set with a deterministic value +∞. For all vertices v such that dVal(v) = −∞
all strategies for Eve are equally bad. For other vertices, Eve’s optimal strategy τ∗ is τ∗(πv) =
argmaxv′∈E(v){w(v, v′) + dVal(v′)}. It is memoryless and its optimality is proved by induction on
the play’s size.

Now, we give the main argument to compute the strategy for Adam (item 2). For all vertices
v such that dVal(v) = +∞, all strategies for Adam are equally bad. Otherwise, Adam builds a
switching strategy that is a combination of two memoryless strategies. The first one is computed
with the same technique as for Eve: σ1(πv) = argminv′∈E(v){w(v, v′) + dVal(v′)} is a memoryless
strategy. It reaches a negative cycle or a shortest-path to the target. The second one, computed in
polynomial time, σ2, is a classical attractor for Adam to reach the target. With these two strategies,
we define σn such that it is conformed to σ1 until the size of the current play is at least α =
(2W(|V| − 1) + n)|V| + 1, next it is conformed to σ2. By induction on n, authors prove that the
total-weight of a play from v consistent with σn is at least max(−n, dVal(v)). If dVal(v) > −∞,
there exist n such that σn is optimal. Otherwise, the sequence of (σn)n has a value to converge to
−∞.
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B Computations for Proof of Proposition 53

B.1 Computations for γ0,N + γ<I,>L 6 dValσ(v0)

When dValσ(v0) < 0 and Π<I,>L 6= ∅, it remains to show under which conditions over p,

S =
I−1

∑
i=1

∞

∑
`=L

(1− p)i p`
(

iw+ +

⌊
`− ic− |V|

c

⌋
(−w−) + |V|W

)
6 dValσ(v0)

Upper-bounding
⌊
`−ic−|V|

c

⌋
(−w−) by

(
`−ic−|V|

c − 1
)
(−w−) = `−ic−|V|−c

c (−w−), we can split the
double sum S in three parts:

S = (w+ + w−)
I−1

∑
i=1

∞

∑
`=L

(1− p)i p`i︸ ︷︷ ︸
S1

− w−

c

I−1

∑
i=1

∞

∑
`=L

(1− p)i p``︸ ︷︷ ︸
S2

+

(
−|V| − c

c
(−w−) + |V|W

) I−1

∑
i=1

∞

∑
`=L

(1− p)i p`︸ ︷︷ ︸
S3

Using the fact that L > 2 (L = Iγ + 2|dValσ(v0)|+|V|W
w− c + |V| > |V| > 1 otherwise, for the unique

v ∈ V, dVal(v) = 0 or +∞ regarding v ∈ T or not), we have

S1 6
∞

∑
i=1

i(1− p)i
∞

∑
`=2

p` =
1− p

p2 × p2

1− p
= 1

S3 6
∞

∑
i=1

(1− p)i
∞

∑
`=1

p` =
1− p

p
× p

1− p
= 1

and

S2 =
I−1

∑
i=1

(1− p)i
∞

∑
`=L

p``

= (1− p)
1− (1− p)I−1

p
× pL(−Lp + L + p)

(1− p)2

=
(1− (1− p)I−1)pL−1(−Lp + L + p)

1− p

>
(1− (1− p)I−1)pL

1− p
(since −Lp + L > 0)

>
1

4(1− p)
(since p > 1

21/L > 1
2 and 1− (1− p)I−1 > 1

2 by 0 6 I)

Therefore, we obtain

S 6 (w+ + w−)− w−

c
1

4(1− p)
+

(
−|V| − c

c
(−w−) + |V|W

)
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The right term goes towards −∞ when p→ 1. In particular, when

p > 1− w−

4(cw+ + 2cw− + |V|w− + c|V|W − dValσ(v0)c)

we obtain
S 6 dValσ(v0)

B.2 Computations for γ>I,N 6 ε/4

It remains to show that

(1− p)I
(

w+

p
I +

w+(1− p)
p2 +

|V|W
p

)
6

ε

4

We let here δ = 2|dValσ(v0)|+|V|W
w− c + |V| so that L = Iγ + δ. Since, p > LW/(LW + ε/4) = (IγW +

δW)/(IγW + δW + ε/4),

1− p 6
ε/4

IγW + δW + ε/4
=

1
4IγW/ε + 4δW/ε + 1

By also using that p > 1/2 > 1/4, thus 1/p 6 4 and 1/p2 6 4, we obtain

γ>I,N 6
(

1
4IγW/ε + 4δW/ε + 1

)I (
4w+ I + 4(w+ + |V|W)

)
The value 4IγW/ε + 4δW/ε + 1 being greater than 1, we can write

γ>I,N 6
(

1
4IγW/ε + 4δW/ε + 1

)I−1 (
4w+ I

4IγW/ε + 4δW/ε + 1
+ 4(w+ + |V|W)

)
Since x/(ax + b) 6 1/a whenever a, x, b > 0, we have I

4IγW/ε+4δW/ε+1 6 ε
4γW . Moreover, 4IγW

ε +
4δW

ε + 1 > IγW
2ε and thus

γ>I,N 6
(

2ε

IγW

)I−1 ( εw+

γW
+ 4(w+ + |V|W)

)
But (

2ε

IγW

)I−1 ( εw+

γW
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)
6

ε
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IγW

2ε
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4w+
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+
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ε
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2w+

γW
+
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(

IγW
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+
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)
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where ξ = 4εw+

γ2W2 +
16(w++|V|W)

γW . Consider ε small enough so that γW/2ε > 1 and ξγW/2ε > 2

(the two terms tend to +∞ when ε tends to 0). Then, (I − 1) ln
(

IγW
2ε

)
> (I − 1) ln(I), and it is

sufficient to prove that

(I − 1) ln(I) > ln
(

ξγW
2ε

)
Since the mapping I 7→ (I − 1) ln(I) is increasing, and I > ξγW

2ε (by definition),

(I − 1) ln(I) >
(

ξγW
2ε
− 1
)

ln
(

ξγW
2ε

)
> ln

(
ξγW

2ε

)

B.3 Lower Bound over p

If we gather all the lower bounds over p that we need in the proof, we get that:

• if dValσ(v0) > 0, we must have

p > max
(

LW
LW + ε/4

,
1
2

)
• if dValσ(v0) < 0, we must have

max

(
LW

LW + ε/4
,

1
21/L ,

(
1− ε

2|dValσ(v0)|

) 1
|V|

,

1− w−

4(cw+ + 2cw− + |V|w− + c|V|W + |dValσ(v0)|c)

)
with ε small enough so that this bound is less than 1.
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