
Selective Monitoring Without Delay for Probabilistic
System

Julie Parreaux1

Supervisor: Stefan Kiefer2

1 ENS Rennes
Julie.Parreaux@ens-rennes.fr

2 Oxford University, UK
stekie@cs.ox.ac.uk

May 21, 2018 to August 17, 2018

Abstract.

Monitoring is an efficient tool to check correctness in runtime. A monitor observes
the output produced by a Markov Chain and decides if the run is correct or faulty. A
selective monitor chooses the observed letters with a policy. It skips letters to reduce the
monitoring overhead. A selective monitor without delay preserves the time to make the
decision.

We study selective monitoring without delay on labelled Markov Chains. We design
a policy without delay. In the general case, this policy is not optimal, and we compute it
in PSPACE. However, we introduce a particular class of MC: the non-Hidden Markov
Chain. In this class, the policy is optimal, and we compute it in P.

Keywords: Runtime monitoring · Probabilistic system · Markov chain · Automata

1 Introduction

Fault detection is a crucial and challenging task in the automatic control of large com-
plex systems. Several formal verification methods try to ensure the correctness of these
systems. One of this methods is monitoring. It can check the correctness of systems
at runtime. It is an alternative to testing and verification. Testing a system increases
the confidence in the tested system but it cannot guarantee correctness. Verification can
guarantee correctness but it is not feasible at runtime. Monitoring is a trade-off between
these two methods. It is equivalent to real-time model checking in runtime. It is feasible
and can guarantee the correctness of the current run.

In runtime verification, monitoring consists of deciding if the run is faulty. The
system sends some messages to a monitor which decides. Efficient monitoring does
not add lots of overhead to the execution of the system. It must inform on the faulty
event as soon as possible. Else, the monitor is not useful. Overhead must be minimized.
For some problems, such as the Quality Virtual Machine (QVM) problem [1] and the
Adaptative Runtime Verification (ARV) problem [3], there exist efficient techniques
to monitoring with a budget overhead. Frequently, these techniques use probability to
reduce overhead.



2

We use probabilistic systems to make an efficient monitor. Probability can reduce
the monitoring overhead. It introduces uncertainty in the analysis. The Runtime Ver-
ification with State Estimation (RVSE) problem [12] models some runtime gaps with
probabilistic models. Sampling reduces the monitoring overhead. Probability reduces
the overhead of the monitoring but it introduces uncertainty on the model and the re-
sult. The problem of Runtime Verification with Particle Filtering (RVPF) [9] studies the
trade-off between the uncertainty and the overhead of the monitoring. Our approach is
the opposite: we ask for the smallest overhead achievable without compromising preci-
sion at all.

Monitoring probabilistic systems is an important problem. We consider a Markov
Chain with labelled transitions and a finite automaton which accepts a language of in-
finite words. Computing the probability that the random word emitted by this Markov
Chain is accepted by this automaton is a classical problem. It is at the heart of proba-
bilistic systems. In this work, we assume that a finite prefix already may determine if
an infinite word is accepting. Compute this probability is a non-trivial diagnosability
problem.

The diagnosability is the first problem when we would monitor a system. The exis-
tence of a monitor is a prerequisite for studying the monitor performance. The diagnos-
ability problem asks if a monitor exists for a given system. For a class of models, two
sub-questions solve this problem. First, some properties decide the existence of a mon-
itor for the model. Model characteristics define these properties. Second, we build this
monitor. This problem, initially, has been studied for discrete event systems with La-
belled Transition System (LTS) [10]. It was shown that diagnosability can be decided in
polynomial time but building monitor is in EXPTIME [8]. Then, this problem has been
extended to the probabilistic systems with labelled Markov Chain [13]. Many notions
of probabilistic systems diagnosability exist and have several names [11,4]. For all of
these different notions, with only one exception, diagnosability is a PSPACE-complete
problem [4,5].

Given a monitor, we can study its performance. Observations produce overhead in
the monitoring. We would build a monitor to skip several observations. The monitor ob-
serves when it wants some information about the system. Selective monitoring designs
a policy for the monitor. This policy decides when the monitor can skip observations.
However, the probability of deciding if the run is correct or faulty may decrease when
we skip an observation. In a faulty run, the policy might skip the unique “fault” letter.
In this case, we can not know if the observation is faulty. We do not study this trade-off,
we require that the policy is feasible (i.e. the probability of deciding does not decrease
when we skip a letter). Our goal is to reduce monitoring overhead of a feasible optimal
policy.

A policy is optimal when the expected cost of decision of this policy is minimal
for all feasible policies. The cost of decision is the number of observations made dur-
ing a run of the system. It was shown [6] that whether there is a feasible policy whose
excepted cost is smaller than a given threshold is undecidable, even for diagnosable
systems. We identify a class of Markov Chains, the non-Hidden Markov Chain. In this
class, each label identifies a unique state. Non-Hidden Markov Chains are always diag-
nosable and there exists a feasible optimal policy [6].



3

The feasible optimal policy designed in [6] decides with a delay. A policy which
observes all emitted letters decides before the optimal policy. Monitoring without delay
is an important property. A useful monitor alerts if the run is faulty before the bad event
arrives. A policy with delay may alert later. We would like to design an optimal feasible
policy without delay. This policy decides at the same time as a policy which observes
all letters. Moreover, this policy observes the fewest possible letters. We design this
policy (algorithm 2) and prove that it is feasible and without delay in the general case
(Theorem 2). We study the cost of decision of the policy and prove it not optimal in the
general case (Theorem 3). For non-Hidden Markov Chains, we prove that this policy is
optimal (Theorem 5). We can compute it in polynomial time (Corollary 3).

For the rest of the document, we give some notions needed to build our policy (sec-
tion 2). We discuss more precisely optimal feasible policies (section 3). We present our
feasible policy without delay in the general case (section 4). Then, we study properties
of this policy on of the non-Hidden Markov Chain case (section 5).

2 Preliminaries

A (labelled) Markov Chain is a graph with weighted transitions that emitted one letter
at each step. A right monitor to this is a Deterministic Finite Automaton. Its accepted
language is the Markov Chain emitted word when the run is correct. An observation
policy sends a letter or a skip symbol to the monitor. It choices when the monitor skips
a letter. A belief describes the possible state in the Markov Chain and the Deterministic
Finite Automaton after an observation. We use belief to study observations.

2.1 Markov Chain and Deterministic Finite Automaton

Definition 1. A (discrete-time, finite-state, labelled) Markov Chain (MC) is a quadru-
ple (S, Σ, M, s0) where:

– S is a finite, nonempty, set of states;
– Σ is a finite, nonempty, alphabet;
– s0 is an initial state;
– M : Σ −→ [0, 1]S×S specifies the transition such that ∑a∈Σ M(a) is a stochastic

matrix, i.e. the value of each rows sums 1.

Intuitively, if the MC is in the state s, it emits a and moves to s′ with the probability
M(a)(s, s′). Moreover, we can extend the definition of M : Σ∗ −→ [0, 1]S×S. If the
MC is in the state s, it emits u ∈ Σ∗ and moves to s′ with the probability M(u)(s, s′).

Example 1. In the MC in the Figure 3, M(a)(s0, s1) = 1
4 . When the MC is in s0 it

emits a and moves in s1 with probability 1
4 . As the same, M(bbb)(s0, s3) =

1
4 .

We identify a class of MC: the non-Hidden Markov Chains. A non-Hidden Markov
Chain identifies each state with a unique letter.

Definition 2. An MC M = (S, Σ, M, s0) is called non-Hidden if the emitted letter
identifies the next state, i.e., there exists a function−→. : Σ→ S such that M(a)(s, s′) >
0 implies s′ = −→a .



4

Example 2. In the non-Hidden MC (Figure 1), the state s0 is identified by a, the state
s1 by e, the state s2 by c and the state s3 by b. In particular, if we observe the letter a,
the next state of the MC must be s0.

s0

s1s2 s3

1 : e1
3 : a

1
3 : c 1

3 : b

1 : b1 : c

Fig. 1: An non-Hidden MC.

q0 q1

q2

q f
e

a c

b

Σ

Σ

Fig. 2: DFA to monitor the non-Hidden MC.

Definition 3. A Deterministic Finite Automaton (DFA) is a quintuple (Q, Σ, δ, q0, F)
where:

– Q is a finite, nonempty, set of states;
– Σ is a finite, nonempty, alphabet;
– δ : Q× Σ −→ Q is a transition function;
– q0 is an initial state;
– F ⊆ Q is a set of accepting states.

A DFA defines a language over infinite words L ⊆ Σω as follows:

L = {w ∈ Σω | δ(q0, u) ∈ F for some prefix u of w}

This definition does not require accepting states are visited infinitely often: only
one time suffices. Moreover, we can assume, without lost generality, there is a unique
accepting state (F = { f }) and δ( f , a) = f for all a ∈ Σ. Else, we build a new state
as the unique accepting state. For each accepting state and all letter of Σ, we add a
transition between it and the new state. These states are not accepting states in the DFA.

Example 3. The DFA (Figure 2) defines the language L = e(ae)∗bΣw.

We can extend the definition of a DFA. We introduce nondeterminism in it to obtain
a Nondeterminism Finite Automaton (NFA). An NFA is a quintuple (Q, Σ, δ,Q0, F),
as a DFA, where Q0 ⊆ Q is a nonempty set of initial states and δ : Q× Σ → 2Q

is the transition function. The NFA defines the language L = {w ∈ Σω | δ(q0, u) ∈
F for some prefix u of w}.

For the rest of the document, we fix the notations of an MCM = (S, Σ, M, s0) and
a DFA A = (Q, Σ, δ, q0, F).



5

2.2 Observation policy

An observation policy over an MC and its DFA is a choice between observing or skip-
ping the next emitted letter. An observation is the result of one of these choices. It
is either a letter of Σ or a special symbol ⊥ /∈ Σ. It is defined on a new alphabet
Σ⊥ = Σ ∪ {⊥}.

Definition 4. An observation policy ρ : Σ∗⊥ −→ {0, 1} is a function that, given the
observation made so far, says whether we should observe the next letter.

For each observation policy ρ, we can associate a projection πρ : Σω −→ Σω
⊥ such

that πρ(a1a2...) = o1o2... where

on+1 =

{
an+1 if ρ(o1...on) = 1
⊥ if ρ(o1...on) = 0 for all n ≥ 0

The see-all policy, denoted by •, is such that π•(w) = w, i.e., it does not skip any
letter.

Two observations are in relation o1 ∼ o2 if and only if o1 and o2 are the same letter
in Σ or at least of them is equal to ⊥. We extend this relation for the (infinite or finite)
sequence of the same length. We denote w & v when u ∼ v holds for the length-|v|
prefix of w.

Example 4. The DFA in the Figure 4 denotes the language L = {u}bΣw with u ∈ Σ2.
For all w ∈ L, we have w & ⊥⊥b. For all length-|3| prefix of w ∈ L, u, u ∼ ⊥⊥b.
We have u = u′b with u′ ∈ Σ2 and u′ ∼ ⊥⊥.

An observation can be infinite. Only a finite prefix of observation is needed to char-
acterise this one. We distinguish two types of prefix: prefixes emit by the MC (called
enabled) and the other ones. The rest of prefix type is defined in function of what hap-
pens if we observe all, now. All infinite completed word of a negatively deciding prefix
describes a faulty run. Reciprocally, all infinite completed word of a positively decid-
ing prefix describes a correct run. If a prefix is positively or negatively deciding, it is
a deciding prefix. An infinite word is deciding when one of these prefixes is deciding.
A confused prefix can be complete in a not deciding word. A very confused cannot be
complete in a deciding word. Finally, a prefix is said finitary if it is deciding or very
confused.

Definition 5. For all observation prefix v:

– v is enabled when Pr({w & v}) > 0;
– v is negatively deciding when Pr({w & v | w ∈ L}) = 0;
– v is positively deciding when Pr({w & v | w /∈ L}) = 0;
– v is confused when Pr({vu | vu deciding}) < Pr({uw | u ∼ v});
– v is very confused when Pr({vu | vu deciding}) = 0;
– v is finitary when Pr({vu | vu deciding or very deciding}) = Pr({uw | u ∼ v}).



6

Example 5. For the non-Hidden MC (Figure 1) and its DFA (Figure 2), ⊥⊥⊥b is a
positively deciding prefix. For all w which complete ⊥⊥⊥b, ⊥⊥⊥bw ∈ L. Recipro-
cally, ⊥⊥⊥c is a negatively deciding prefix. There does not exist any way to complete
⊥⊥⊥c such that this word is in L. When w ∈ L, the third letter of w is b.

Definition 6. An observation policy ρ decides w if and only if πρ(w) has a deciding
prefix.

Lemma 1. (cf. [6, lemma 1]) For any w, if some policy decides w then • decides w.

The lemma 1 implies maxρ(Pr({w | ρ decides w})) = Pr({w | • decides w}).
A feasible policy reaches this maximum.

Definition 7. A policy ρ is a feasible policy if and only if Pr({w | ρ decides w}) =
Pr({w | • decides w}), whether, Pr({w | • decides w implies ρ decides w}) = 1.

A monitor is an algorithm to implement a policy. For each letter (in the entrance), it
returns “yes”, “no” or n ∈N where n is the number of skipped letters.

2.3 Belief

A belief is a subset of states from the product S × Q where it could be
now. For each observation v, the function ∆(B, v) updates the belief B. The
result of this function is the set of the reachable states from B with v. A
belief NFA B is the NFA based on the composition between an MC and a
DFA. We have B = (S × Q, Σ⊥, ∆, B0, ∅) where B0 = {(s0, q0)} and:
aaaaaaaa ∆((s, q), a) = {(s′, q′) | M(a)(s, s′) > 0, δ(q, a) = q′} for a ∈ Σ

∆((s, q),⊥) = ⋃
a∈Σ ∆((s, q), a)

Reasoning algorithmically on belief is easier than on prefixes. We define the relation
between prefixes and beliefs. For any s ∈ S, we denote Prs the probability measure of
the MCMs which is obtained fromM when s is the initial state. As the same, for any
q ∈ Q, we denote Lq ⊆ Σω the language of the DFA Aq which is obtained from A
when q is the initial state.

Definition 8. For any pair (s, q) we define:

– (s, q) is negatively deciding if and only if Prs(Lq) = 0;
– (s, q) is positively deciding if and only if Prs(Lq) = 1.

We extend the definition to the belief.

Definition 9. For all belief B, B is:

– negatively (positively) deciding if and only if all its elements are;
– confused if and only if Prs({uv | ∆(B, u) is deciding}) < 1 for some (s, q) ∈ B;
– very confused if and only if ∆(B, u) is empty or not deciding for all u;
– finitary if and only if Prs({uv | ∆(B, u) is deciding or very confused}) = 1 for all
(s, q) ∈ B.



7

s0

s1

s2

s3

s4

s5

s6

1
4 : a

1
4 : b 1

4 : b

1
4 : a

1 : a

1 : b

1 : b

1 : b

1 : a

1 : a

Fig. 3: A general MC.

q0 q1 q2

q3

q f

a, b a, b

a

b

Σ

Σ

Fig. 4: DFA to control the previ-
ous general MC.

s0, q0

s1, q1

s2, q1

s3, q2s3, q f

s4, q1

s5, q1

s6, q2 s6, q3

a

b b

aa

b

b
b

b

a

a a

Fig. 5: A natural representation of belief pairs from the MC (Figure 3) and its DFA
(Figure 4). We have represented only non-⊥ observations.

Example 6. Consider the MC in Figure 3 and its DFA (Figure 4). We fix B0 =
{(s0, q0)}. A natural representation of belief pairs from this MC and its DFA is given
in Figure 5.

∆(B0, a) = {(s1, q1), (s4, q1)} ; ∆(B0,⊥) = {(s1, q1), (s4, q1), (s2, q1), (s5, q1)}
∆(B0, aa) = {(s3, q2)} ; ∆(B0,⊥a) = {(s3, q2), (s6, q2)}

The belief ∆(B0, aa) is (positively) deciding because (s3, q2) is positively deciding:
Prs3(Lq2) = Prs3(b

ω) = 1. However, ∆(B0,⊥a) is not deciding. Indeed, (s3, q2) is
positively deciding and (s6, q2) is negatively deciding (Prs6(Lq2) = Prs6(b

ω) = 0). It
is also not confused because (s3, q2) and (s6, q2) are deciding.

Lemma 2. (cf. [6, lemma 4]) Let v be an observation prefix.

1. v is enabled if and only if ∆(B0, v) 6= ∅.
2. v is negatively deciding if and only if ∆(B0, v) is negatively deciding.
3. v is positively deciding if and only if ∆(B0, v) is positively deciding.
4. v is confused if and only if ∆(B0, v) is confused.
5. v is very confused if and only if ∆(B0, v) is very confused.
6. v is finitary if and only if ∆(B0, v) is finitary.

Lemma 3. For all belief B and v ∈ Σ∗, ∆(B, ε) is deciding⇒ ∆(B, v) is deciding.

We fix, for the rest of this document, these notations: for all a ∈ Σ⊥, Ba = ∆(B, a);
Bρ,i is the belief computed by the policy ρ in step i and Bρ,i,a = ∆(Bρ,i, a). When we
have no doubt about the policy ρ, we can suppress ρ of the notation to avoid clutter.



8

s0, q0 s1, q1

s2, q2

s3, q f

e

a

c

b
b

c

Fig. 6: A natural representation of belief pairs
from the non-Hidden MC (Figure 1) and its
DFA (Figure 2). We have represented only non-
⊥ observations.

s0 s1s2

1
3 : c1

3 : b

1 : b 1
3 : a 1 : c

Fig. 7: An MC with an arbitrarily
long length shortest deciding pre-
fix.

For all belief B, we define the language LB = Ld
B ∩ Le

B with Ld
B =

{v | ∆(B, v) is deciding} and Le
B = {v ∈ Σ∗ | ∆(B, v) 6= ∅}. Intuitively, the lan-

guage LB is the language of the enabled deciding prefix from B.

Example 7. In the representation of belief pairs in Figure 6, let B = {(s0, q0)}. We
have Ld

B = Σ∗ \ {(ea)∗} and Le
B = e(ae)∗{b + c}Σ∗. So, LB = e(ae)∗{b + c}Σ∗.

Lemma 4. For all belief B.

1. LB ⊆ Σ∗ and LB ) Σ∗.
2. v ∈ LB ⇔ ∆(B, v) is deciding and ∆(B, v) 6= ∅.
3. For all a ∈ Σ, Le

Ba
⊆ Le

B⊥
.

4. LB⊥ ⊆
⋃

a∈Σ LBa .

2.4 Cost of decision

The cost of decision for a policy ρ and a word w is noted by Cρ(w). It is the number of
letters observed by the policy to decide w.

Definition 10. For all policy ρ and word w, let v = o1o2... be the shortest deciding
prefix of πρ(w). The cost of decision for ρ and w is defined as follows:

Cρ(w) =
|v|−1

∑
k=0

p(o1...ok)

Our goal is to design a feasible optimal policy regarding the cost of decision. We
note Ex(Cρ) the expectation of the cost of decision of this policy ρ. The expectation
respects to the probability distribution induced by the MC. We would find a feasible
policy without delay that minimizes Ex(Cρ). Finding a feasible policy that minimizes
the expectation of the cost of decision is equivalent to compute for all feasible policy ρ
without delay:

cin f = inf
ρ

Ex(Cρ)



9

3 An optimal policy in the general case

The lighted see-all policy is a naive policy to decide if a given run is correct. It observes
all letters until the observation prefix is finitary. However, observe a letter has an expen-
sive cost. Our goal is to minimize this cost. We would a feasible policy to decide with a
minimum number of observations. To simplify the problem, we suppose the considered
system has a diagnoser. We can check is it on PSPACE [4, Theorem 8].

Define a feasible policy with an optimal expectation of the number of observing
letter is an optimization problem. The decision problem associated with this one asks
if there is a feasible policy whose expected cost is smaller than a given threshold. It is
undecidable in the general case [6, Theorem 15].

In the non-Hidden MC case, the procrastination policy is an optimal feasible policy
[6]. The procrastination is the maximal number of skipping letters such that the obtained
belief is not confused. In other words, the procrastination number is the maximal of
letters such that the policy can skip since it becomes not feasible. The procrastination
number definition is based on : for a belief B and k ∈ N, if ∆(B,⊥k) is confused then
∆(B,⊥k+1) is also confused.

Definition 11. For all belief B, the procrastination number is:

cras(B) = sup{k ∈N | ∆(B,⊥k) is not confused} ∈N∪ {−1, ∞}

If B is confused cras(B) = −1.

Example 8. For the belief B = {(s0, q0)} in Figure 6, we have cras(B) = ∞. Indeed,
∀k ∈N, ∆(B0,⊥k) is not confused.

The procrastination policy (Algorithm 1) skips the procrastination number let-
ters. This number can be equal to the infinity. A policy cannot skip an infinite num-
ber of letters. The procrastination policy is parametrized by a larger K ∈ N. We
define ρpro(K) with the monitor define by the Algorithm 1 and, for all belief B,
k(B) = min(K, cras(B)).

Algorithm 1 Procrastination policy ρpro(K) [6]
1: i← 0; B0 = {s0, q0}
2: while Bi is not deciding do
3: skip k(Bi) observations, then observe a letter ai
4: Bi+1 ← ∆(Bi,⊥k(Bi)ai)
5: i← i + 1
6: end while
7: Output yes/no decision

Example 9. Apply this policy on the word w = aabω in the MC in Figure 3 and its DFA
(Figure 4). By [6, Theorem 27], we choose K = |S|2 ∗ |Q|2 + 1 = 72 ∗ 52 + 1 = 1226.
As B0 is not deciding and cras(B0) = ∞ the policy skips the first K letters and observes



10

a0 = b. We have B1 = ∆(B0,⊥Kb) = {(s3, q f )} and B1 is deciding, the policy returns
yes and πρpros(w) = ⊥1226b.

Theorem 1. (cf. [6, Lemma 23 and Theorem 27]) For all K ∈ N, the policy ρpros(K)
is a diagnoser. There exists K such that it is an optimal policy.

We choose a value for K to apply the policy ρpros. The optimality of the policy is
guaranteed if K is great. In the example 9, we need to choose K = 1226. The policy
decides with the 1227th emitted letter. We can decide if we observe the two first letters.
The policy ρpros decides with delay. This delay depends on the choice of the value of K.
However, decide with a delay can be prohibited for some systems. In these systems, the
policy must alert since the bad event will arrive. Our goal is to design a feasible optimal
policy without delay.

4 A policy without delay

We want to a feasible optimal (regarding the cost of the decision) policy. It decides
without delay. In other words, we would a policy that when the policy • decides, it can
decide too . Our policy decides with a minimal number of observed letter. The constraint
“without delay” is a strong constraint. A policy without delay skips an emitted letter
when this letter gives any information about the run. It needs to guarantee that the
shortest observed deciding prefix is always deciding when it skips the next letter.

Algorithm 2 Policy ρZeroDelay

Main algorithm
1: i← 0; B0 ← (s0, q0)
2: while Bi is not deciding do
3: if can skip then
4: ai ← ⊥
5: else
6: ai ∈ Σ
7: end if
8: Bi+1 ← ∆(Bi, ai)
9: i← i + 1

10: end while
11: Output yes/no decision

Compute if the policy can skip the next letter
1: Compute B⊥ = ∆(Bi,⊥)
2: for all a ∈ Σ do
3: Compute Ba = ∆(Bi, a)
4: if ∃w : ∆(Ba, w) 6= ∅ ∧ ∆(Ba, w) is deciding ∧

∆(B⊥, w) is not deciding then
5: Return False
6: end if
7: end for
8: Return True

By definition, w is infinite: w ∈ Σω. In the practice, if Ba is deciding, w = ε. The
policy skips only it has already decided. We check the condition for w ∈ Σ∗. If w ∈ Σ∗

holds condition, wu ∈ Σω holds too. The condition is checked only on the prefix.
We can build an MC such that w has the shortest deciding prefix with a length

arbitrary long. For example, in the MC in Figure 7, for all n ∈N, there exist w = anbω



11

such that anb is the shortest deciding prefix. We test an infinite set of deciding prefix to
check the policy skipping condition.

Example 10. Apply the policy ρZeroDelay (Algorithm 2) on the word w = aabω emitted
by the MC in Figure 3 and its DFA (Figure 4).

B0 is not deciding. We compute if the policy can skip the next letter. We have
B0,⊥ = {(s1, q1), (s2, q1), (s4, q1), (s5, q1)} and B0,a = {(s1, q1), (s4, q1)}. More-
over, ∆(B0,a, a) = {(s3, q2)} is deciding but ∆(B0,⊥, a) = {(s3, q2), (s6, q2)} is
not deciding (example 6). So, we need to observe the next letter: a0 = a and
B1 = {(s1, q1), (s4, q1)}.

B1 is also not deciding. We compute if the policy can skip the next letter. We have
B1,⊥ = {(s3, q2), (s6, q2)} and B1,a = {(s3, q2)}. As, ∆(B1,a, ε) = B1,a is deciding
and ∆(B1,⊥, ε) = B1,⊥ is not deciding (example 6). So, we need to observe the next
letter: a0 = a and B2 = {(s3, q2)}.

B2 is deciding. Hence, w is positively deciding and πρZeroDelay(w) = aa.

Our policy decides to skip the next letter with this condition: (∀v, ∆(Ba, v) = ∅ ∨
(∆(Ba, v) is deciding ⇒ ∆(B⊥, v) is deciding)). We cannot cut down the condition
and guarantee the obtained policy is optimal and without delay. We cannot remove the
condition (∆(Ba, v) is deciding⇒ ∆(B⊥, v) is deciding). It guarantees that our policy
is without delay. If it skips a letter, then the observed prefix is not decided without delay.

We cannot remove the condition (∆(Ba, v) = ∅). It guarantees that our policy is op-
timal. Verify (∆(Ba, v) = ∅) is easier than verify (∆(Ba, v) is deciding ⇒ ∆(B⊥, v))
is deciding. By definition, (∆(Ba, v) = ∅) implies (∆(Ba, v)). If there exists a ∈ Σ
such that Ba = ∅, the policy can skip the next letter if and only if B⊥ is deciding. For
example, let the MC in Figure 1 and its DFA (Figure 2). With our policy ρZeroDelay,
as B⊥ = Be and for a ∈ Σ \ {e}, Ba = ∅, we skip the first letter. The policy
without this condition cannot skip the first letter. Indeed, (Ba = ∅) is deciding but
(B⊥ = {(s1, q1)}) is not deciding. Hence, without this condition, the policy is not
optimal.

Feasible policy without delay Our policy ρZeroDelay is feasible and without delay policy.
If v is a deciding prefix, the observation of v by ρZeroDelay is also deciding.

Theorem 2 (ρZeroDelay is feasible and without delays). For all deciding prefix v,
πρZeroDelay(v) is also deciding.

This theorem proves that ρZeroDelay is feasible because of v = π•(v). It also proves
that ρZeroDelay is without delay. If v is the shortest deciding prefix for v, ρZeroDelay
decides v.

Idea of proof. Let v a deciding prefix. We prove by induction on the number of the
policy application. The observed prefix build by ρZeroDelay at this step completed by
the rest of v is also deciding.



12

Optimal policy We require that ρZeroDelay observes a minimal number of letters to de-
cide. Our policy has to minimize Ex(CρZeroDelay). However, we prove its non-optimality,
in the general case.

Theorem 3 (ρZeroDelay is not optimal). For all feasible policy without delays ρ, we
do not have necessarily: Ex(CρZeroDelay) ≤ Ex(Cρ).

Idea of proof. We build a counterexample. The policy ρZeroDelay is not optimal on the
MC in Figure 12 and its DFA (Figure 13). The MC probability distribution decides the
next state (and the next emitted letter) and influences on the optimal policy choices.

Cost of decision The cost of decision of a policy is the number of policy observations
to decide. It depends on the MC probability distribution and the current belief. We
compute its expectation with a local approach: Ex(CρZeroDelay) = c(s0, q0). c(s, q) is
the expected cost of decision under ρZeroDelay from (s, q). We define c(s, q) as follows:

c(s, q) =
{

0 if (s, q) is deciding
∑(s′ ,q′) ∑a∈Σ MρZeroDelay(a)(skip + c(s′, q′)) otherwise

where skip = 1 if and only if the policy does not skip the next letter and 0 otherwise.
The composition between an MC and a DFA induces the MCMρZeroDelay . Its alpha-

bet contains a new symbol $. This symbol marks when the policy decides. c(s, q) labels
the state (s, q) inMρZeroDelay (seeMpro(K) in [6] for more details).

(s0, q0)
2

(s1, q1)
1

(s2, q1)
1

(s3, q2)
0

(s4, q1)
1

(s5, q1)
1

(s6, q2)
0

1
4 : a

1
4 : b 1

4 : b

1
4 : a1 : a

1 : b

1 : $

1 : b

1 : a

1 : $

Fig. 8: The MC MρZeroDelay from the MC in Figure 3.

Example 11. We compute Ex(CρZeroDelay) for the MC in Figure 3. We need to compute
c(s0, q0). In this MC, the policy does not skip any letter until it decides. So, skip = 1
for each (s, q). As (s3, q f ) and (s5, q2) are deciding, c(s3, q f ) = c(s5, q2) = 0. For
each s ∈ S, c(s, q1) = 1. Hence, c(s0, q0) = 2 1

4 + 2 1
4 + 2 1

4 + 2 1
4 = 2. This MC gives

the MρZeroDelay in Figure 8.



13

Complexity We evaluate the complexity of the policy ρZeroDelay. Compute the skip
condition is the most difficult work in our policy evaluation. We prove that the policy
evaluation is in PSPACE.

Theorem 4. For all belief B and a ∈ Σ, we have:

LBa ⊆ LB⊥ ⇔ (∀v, ∆(Ba, v) = ∅ ∨ (∆(Ba, v) is deciding⇒ ∆(B⊥, v) is deciding))

Idea of proof. Let B be a belief and a ∈ Σ. We apply the definition of LB and its
properties in the lemma 4.

Corollary 1. Given an MCM and a DFAA, the ρZeroDelay evaluation is in PSPACE.

Proof. For all a ∈ Σ, we decide the skipping condition to compute LBa ⊆ LB⊥ , by
the Theorem 4. The inclusion of NFA languages is a problem PSPACE-complete [7].
Hence, evaluate the policy is a problem PSPACE.

5 Non-Hidden Markov Chain case

We restrict our study to the non-Hidden MC case. In this section, we consider only
the non-Hidden MC. For this class, each label identifies only one state. The policy
ρZeroDelay is optimal and we can compute it in P.

Optimal policy In general, the policy ρZeroDelay is not optimal. For a non-Hidden
MC, we prove it is an optimal policy. In this MC’s class, our policy minimizes
Ex(CρZeroDelay).

Theorem 5 (ρZeroDelay is optimal in the non-Hidden MC case). Given a non-Hidden
MC and a DFA. For all feasible policy without delays ρ, we have Ex(CρZeroDelay) ≤
Ex(Cρ).

Idea of proof. Let ρ a feasible policy without delay. We prove by induction on the num-
ber of applications of the policies ρZeroDelay and ρ. The policy ρZeroDelay observes less
letters than ρ or ρZeroDelay. If ρ and ρZeroDelay observe the same number of letters, the
language from BρZeroDelay ,n is included in the language from Bρ,n.

Cost of decision The optimally result assumes that cin f = Ex(CρZeroDelay). By the study
of the cost of decision, cin f = c(s0, q0).

Example 12. We compute cin f for the non-Hidden MC (Figure 1). By the previous
remark, we need compute Ex(CρZeroDelay) = c(s0, q0). In this MC, the policy observes
only in the state (s1, q1). As (s2, q f ) and (s3, q2) are deciding, c(s2, q f ) = c(s3, q2) =

0. We have c(s1, q1) =
1
3 +

1
3 +

1
3 (1+ c(s0, q0)) = 1+ 1

3 c(s0, q0). Hence, c(s0, q0) =
3
2 and cin f =

3
2 . This MC gives the MρZeroDelay in Figure 9.

We compute cin f in P. Compute cin f is equivalent to compute c(s0, q0). c(s0, q0)
satisfies a system of linear equation where coefficients are come from the MC. We
solve this system in P. Moreover, the policy decides if it skips the next letter in P (see
Corollary 3).



14

(s0, q0)
1

(s1, q1)
1

(s2, q f )
0

(s3, q2)
0

1 : e1
3 : a

1
3 : c 1

3 : b

1 : $1 : $

Fig. 9: MρZeroDelay from the MC in Figure 1.

Complexity In the general case, we compute ρZeroDelay in PSPACE. However, in the
non-Hidden MC case, we can compute ρZeroDelay in P. If ε holds the skipping condition
of ρZeroDelay then all word w the condition holds.

Theorem 6. For all belief B such that B⊥ is not confused and for all a ∈ Σ,

LBa ⊆ LB⊥ ⇔ (ε /∈ LBa ∨ ε ∈ LB⊥)

Idea of proof. Let B a belief such that B⊥ is not confused and a ∈ Σ. We use some
properties from the language equivalence theory (section C). The non-Hidden MC
structure gives these properties. We use the definition of LB and the lemma 4.

Corollary 2. For all belief B and a ∈ Σ,

(Ba = ∅ ∨ Ba is deciding ⇒ B⊥ is deciding)⇔ (ε /∈ LBa ∨ ε ∈ LB⊥)

Example 13. Apply the police with this new condition on the word w = eaebω emitted
by the non-Hidden MC (Figure 1) and its DFA (Figure 2). The skipping condition is
proved in the Corollary 2.

B0 is not deciding. We have Be = {s1, q1} is not deciding and for all a ∈ Σ \ {e},
Ba = ∅. We have, for all a ∈ Σ, (Ba = ∅ ∨ Ba is deciding ⇒ B⊥ is deciding). We
skip the next letter and a0 = ⊥ and B1 = {(s1, q1)}.

B1 is not deciding. Bb = {s3, q2} is deciding and
B⊥ = {(s0, q0), (s2, q2), (s3, q f )} is not deciding. Bb deciding does not imply
B⊥ deciding. We observe the next letter and a1 = a and B2 = {(s0, q0)}.

As B2 = B0, we use the same reasoning of B0. We skip the next letter and a2 = ⊥
and B3 = {(s1, q1)} = B1. As the same B3 = B1, we observe the next letter a3 = b
and B4 = {(s3, q f )}.

B4 is deciding and πρZeroDelay(w) = ⊥a⊥b. This policy is more efficient than the •
policy. Its cost of decision is less than the cost of decision of •.

Compute (Ba = ∅ ∨ Ba is deciding ⇒ B⊥ is deciding) is in P [6, lemma 5]. In
the general case, check if B⊥ is confused, is in PSPACE [6, Lemma 5]. However, the
equivalent language in the for non-Hidden MC case gives a polynomial time algorithm
to check it (section C).



15

Corollary 3. Given a non-Hidden MCM and a DFA A, we compute ρZeroDelay in P.

Proof. Let a non-Hidden MCM and a DFA A. The skipping condition of ρZeroDelay
is equivalent to (Ba = ∅ ∨ Ba is deciding ⇒ B⊥ is deciding) if B⊥ is not confused
(Theorem 6 and Corollary 2). In the non-Hidden MC case, check if B⊥ is not confused is
in P (see section C). Moreover, compute (Ba = ∅∨ Ba is deciding ⇒ B⊥ is deciding)
if B⊥ is in P [6, lemma 5]. Hence, we compute ρZeroDelay in P.

6 Conclusion

We want to design a feasible optimal policy without delay regarding the cost of decision.
We have designed a feasible policy without delay ρZeroDelay (Algorithm 2). For each
letter, it choices between observing or skipping the next letter. It skips the next letter
if and only if this one gives any information to decide. The skipping condition checks
the inclusion between two NFAs languages (Theorem 4). We compute this policy in
PSPACE (Corollary 1). We have also proved the non-optimality of ρZeroDelay (Theorem
3). The optimal policy choices depend on the MC probability distribution.

We have introduced a particular class of MC: the non-Hidden MC. In this class,
each letter of the alphabet identifies a unique state. For a non-Hidden MC, ρZeroDelay is
optimal (Theorem 5). Moreover, we can compute this policy in P (Corollary 3).

We have started to introduce a new class of MC: Deterministic MC (section B). In
this class, each state is identified with a letter and a state. It is between a non-Hidden MC
and a general MC. We hope to obtain better results than in the general case. However,
we prove the non-optimality of ρZeroDelay for a Deterministic MC (Theorem 7). We use
the same counterexample of the general case. Moreover, we have not any gain on the
complexity in this case. We compute ρZeroDelay in PSPACE (Theorem 8).

In the general case and for the Deterministic MC, we will prove a hardness result on
the complexity to compute a feasible optimal policy without delay. We will prove that
an optimal choice between observing or skipping the first letter is PSPACE-hard (or at
least NP-hard). The MC probability distribution influences the optimal choice between
observing or skipping a letter. We will prove the feasible optimal policy without delay
is undecidable, in the general case. In the Deterministic MC, we hope to obtain a better
result: the feasible optimal policy without delay is decidable.

We can test our policy ρZeroDelay in the practice. We will implement the policy and
observe the result about its cost of decision on real systems. We will study if the selec-
tive monitoring without delay is efficient. In our work, we use only feasible policy. We
will study the trade-off between precision (probability to decide) and overhead (number
of observation). To finish, we will study ρZeroDelay in different classes of MC.

Acknowledgement

I wish to thank all the people who allowed me to do my internship in the best possible
conditions.
I wish to thank especially my supervisor for his welcome, his time and his help through-
out this internship. Thanks to him, I was able to attend FLoC and it was a great experi-
ence for me. This has allowed me to confirm my interest in research.



16

I also wanted to thank the people with whom I shared my office for their welcome and
help, among other things, to discover Oxford University.
I will end with a special thank you for Nathalie Bertrand who gave me the opportunity
to do this internship. His help and support were of great importance to me.

References

1. Matthew Arnold, Martin Vechev, and Eran Yahav. Qvm: An efficient runtime for detecting
defects in deployed systems. SIGPLAN Not., 43(10):143–162, October 2008.

2. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

3. Ezio Bartocci, Radu Grosu, Atul Karmarkar, Scott A. Smolka, Scott D. Stoller, Erez Zadok,
and Justin Seyster. Adaptive runtime verification. In Shaz Qadeer and Serdar Tasiran, editors,
Runtime Verification, pages 168–182, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

4. Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux. Foundation of Diagnosis and
Predictability in Probabilistic Systems. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’14), New Delhi, India,
December 2014.

5. Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux. Accurate approximate diagnos-
ability of stochastic systems. In Adrian-Horia Dediu, Jan Janoušek, Carlos Martín-Vide, and
Bianca Truthe, editors, Language and Automata Theory and Applications, pages 549–561,
Cham, 2016. Springer International Publishing.

6. Radu Grigore and Stefan Kiefer. Selective monitoring. CoRR, abs/1806.06143, 2018.
7. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

8. Shengbing Jiang, Zhongdong Huang, V. Chandra, and R. Kumar. A polynomial algorithm for
testing diagnosability of discrete-event systems. IEEE Transactions on Automatic Control,
46(8):1318–1321, Aug 2001.

9. Kenan Kalajdzic, Ezio Bartocci, Scott A. Smolka, Scott D. Stoller, and Radu Grosu. Runtime
verification with particle filtering. In Axel Legay and Saddek Bensalem, editors, Runtime
Verification, pages 149–166, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

10. Meera Sampath, Raja Sengupta, Stephane Lafortune, Kasim Sinnamohideen, and D Teneket-
zis. Diagnosability of discrete event systems. 40:1555 – 1575, 10 1995.

11. A. Prasad Sistla, Miloš Žefran, and Yao Feng. Monitorability of stochastic dynamical sys-
tems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification,
pages 720–736, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

12. Scott D. Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus Havelund, Scott A.
Smolka, and Erez Zadok. Runtime verification with state estimation. In Sarfraz Khurshid
and Koushik Sen, editors, Runtime Verification, pages 193–207, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

13. D. Thorsley and D. Teneketzis. Diagnosability of stochastic discrete-event systems. IEEE
Transactions on Automatic Control, 50(4):476–492, April 2005.

A Diagnosability

A diagnoser is a policy that decides surely. We study this existence to know if a mon-
itor exits for the system. We use this result when we do not consider the DFA in the
hypothesis. In this case, test, if a diagnoser exists is PSPACE.



17

Definition 12. A policy ρ is a diagnoser if and only if ρ decides almost surely.

Lemma 5. (cf. [6, proposition 7]) There exists a diagnoser if and only if ε is not con-
fused.

s0 s1s2

1
2 : a1

2 : a

1 : a

1
2 : a

1
2 : b

Fig. 10: An MC without diagnoser.

s0 s1 s2

s3

s4

1
4 : a

1
4 : b

1
2 : a

1
2 : b

1 : a

1
2 : a

1
2 : b

1 : b

Fig. 11: A Deterministic MC.

Example 14. The MC in the Figure 10 does not have a diagnoser because ε is confused.
For all n ∈N, we have Pr({w & an | w ∈ L}) > 0 and Pr({w & an | w /∈ L}) > 0,
so an is not deciding. If the MC takes the right transition first then almost surely it emits
b at some point. Thus, Pr({uw | u ∼ aaa...}) = 1

2 . Hence, Pr({εu | εu deciding}) <
Pr({uw | u ∼ ε}) and ε is confused.

B Deterministic Markov Chain case

We extend our study on the Deterministic Markov Chain case. In this MC class, a state
and a label identify each state. We hope obtains the better results than the general case.
However, the policy ρZeroDelay is not optimal and we compute the policy in PSPACE.

Definition 13. An MC M = (S, Σ, M, s0) is called Deterministic the emitted letter
and the current state identify the next state, i.e., there exists a function −→. : S× Σ→ S
such that M(a)(s, s′) > 0 implies s′ =

−−→
(s, a).

Example 15. The MC in the Figure 11 is a Deterministic MC. The state s2 and the letter
b identify the state s4, but the state s2 and the letter a identify the state s3.

A non-Hidden MC is a Deterministic MC. In a non-Hidden MC, each letter identi-
fies a state. Each letter and a state identify also a state.

Optimal policy As the general case, the policy ρZeroDelay is not optimal. For this class
of MC, ρZeroDelay is also not optimal.

Theorem 7 (Policy ρZeroDelay is not optimal in the Deterministic MC case). Given
a DMC and a DFA. For all feasible policy without delay ρ, we do not have necessary:
Ex(CρZeroDelay) ≤ Ex(Cρ).



18

Idea of proof. We take the same counterexample (Figures 12 and 13) that for the gen-
eral case (Theorem 3). It is a Deterministic MC. We prove the non-optimality of
ρZeroDelay with the same proof of the Theorem 3.

Theorem 8. Given an MCM and a DFA A, ρZeroDelay can be computed in PSPACE.

Proof. For all a ∈ Σ, we decide LBa ⊆ LB⊥ to compute the skip condition, by the The-
orem 4. The inclusion of NFA languages is a problem PSPACE-complete [7]. Hence,
evaluate the policy is a problem PSPACE.

C Language equivalent

Language equivalent in a certain DFA characterizes confusion. Consider the belief NFA
B. In the non-Hidden MC case, B becomes a DFA B′ when we disallow ⊥-transition.
For B′, we define the accepting states set by: F = {(s, q)|Prs(Lq) = 1}. We associate
for each state (s, q) the language Ls,q ⊆ Σ∗. It is the language deciding by B′ from the
initial state (s, q).

Example 16. The Figure 6 is the DFA B′ from the non-Hidden MC (Figure 1) and its
DFA (Figure 2). In this Figure, states that are unreachable from (s0, q0) are not drawn
here.

For this B′, we define L(s1, q1) = (ae)∗bb∗.

Definition 14. (s, q) and (s′, q′) are language equivalent when (s, q) ≈ (s′, q′) if and
only if Ls,q = Ls′ ,q′ .

Example 17. The Figure 6, (s1, q1) and (s0, q0) are not language equivalent. Indeed,
Ls1,q1 = (ae)∗bb∗ and Ls0,q0 = a(ae)∗bb∗. Hence Ls1,q1 6= Ls0,q0 .

Lemma 6. (cf. [6, Lemma 18]) We compute the relation ≈ in polynomial time.

Definition 15. A belief B is settled when all (s, q) ∈ B are language equivalent

Example 18. In the Figure 6, the belief B = ∆((s1, q1),⊥) is not settled. Indeed,
(s3, q f ) and s2, q2 is in B. We have Ls3,q f = b∗ and Ls2,q2 = ∅. Hence, Ls3,q f 6= Ls2,q2 ,
and (s3, q f ) and (s2, q2) are not language equivalent.

Lemma 7. (cf. [6, Lemma 19]) A belief B is confused if and only if there is a ∈ Σ such
that ∆(B, a) is not settled.

It follows that one can check in polynomial time whether a given belief is confused.

Example 19. In the Figure 6, the belief B = ∆((s1, q1),⊥) is not confused. Indeed,
∆(B, e) = (s1, q1), ∆(B, b) = (s3, q f ) and ∆(B, c) = (s2, q2) are settled. By the
lemma 7, B is not confused.



19

D Proofs

For the rest of the document, we fix these notations. For n ∈ N, vρ(n)(v) is the
observation prefix obtained by the policy ρ after n step. Thus, vρ(n)(v) is the length n
prefixes of πρ(v). We note lρ(n)(w) the number of non-⊥ observations in vρ(n)(w).
We define Bρ(n)(w) = ∆(B0, vρ(n)(w)). For all a ∈ Σ⊥, Bρ,n,a = ∆(Bρ(n)(w), a).
In the following, we suppress w in the notation to avoid clutter. If there is not doubt on
the policy, we suppress ρ in the notation to avoid clutter.

D.1 Proof of lemma 3

Here is Lemma 3 from the main body:

Lemma 3. For all belief B and v ∈ Σ∗, ∆(B, ε) is deciding⇒ ∆(B, v) is deciding.

Proof. Let B a belief and v ∈ Σ∗ such that ∆(B, ε) is positively deciding.
∆(B, ε) is positively deciding
aaaaa⇔ B is positively deciding aaa (by ∆(B, ε) = B)

⇔ ∀(s, q) ∈ B, Prs(Lq) = 1 (definition of deciding)
⇒ Prs({w & v | w ∈ Lq}) = 1 (definition of Prs(Lq))
⇔ v is positively deciding from B (definition of deciding)
⇔ ∆(B, v) is deciding (lemma 2)

We have the same reasoning if ∆(B, ε) is negatively deciding. We replace 1 by 0.
Hence, ∆(B, ε) is deciding⇒ ∆(B, v) is deciding.

D.2 Proof of lemma 4

Here is Lemma 4 from the main body:

Lemma 4. For all belief B.

1. LB ⊆ Σ∗ and LB ) Σ∗.
2. v ∈ LB ⇔ ∆(B, v) is deciding and ∆(B, v) 6= ∅.
3. For all a ∈ Σ, Le

Ba
⊆ Le

B⊥
.

4. LB⊥ ⊆
⋃

a∈Σ LBa .

Proof. We prove all itemize. Let B a belief.

1. We have LB ⊆ Σ∗ by union of two languages in Σ∗. Moreover, LB ) Σ∗ because
in the example 7, we have LB = e(ae)∗{b, c}Σ∗. For B = {(s0, q0)} and for
a∗ ∈ Σ∗, a /∈ LB. Hence, LB ⊆ Σω and LB ) Σω.

2. Show v ∈ LB ⇔ (∆(B, v) is deciding ∧ ∆(B, v) 6= ∅).
v ∈ LB ⇔ v ∈ Le

B and v ∈ Ld
B aaa (definition of LB)

⇔ ∆(B, v) 6= ∅ and ∆(B, v) deciding (definition of Le
B and Ld

B)
Hence, v ∈ LB ⇔ (∆(B, v) is deciding ∧ ∆(B, v) 6= ∅).



20

3. Show that for all a ∈ Σ, Le
Ba
⊆ Le

B⊥
. Let a ∈ Σ and v ∈ Le

Ba
.

v ∈ Le
Ba
⇒ ∆(Ba, v) 6= ∅ aaa (definition of Le

B)
⇒ ∆(B⊥, v) 6= ∅ (∆(Ba, v) ⊆ ∆(B⊥, v) and ∆(Ba, v) 6= ∅)
⇒ v ∈ Le

B⊥
(definition of Le

B)
Hence, Le

Ba
⊆ Le

B⊥
4. Show that LB⊥ ⊆

⋃
a∈Σ LBa . Let v ∈ LB⊥ .

v ∈ LB⊥ ⇒ v ∈ Ld
B⊥

aaa (definition of LB)

⇒ ∆(B⊥, v) is deciding (definition of Ld
B)

⇒ for all a ∈ Σ, ∆(Ba, v) is deciding (definition of B⊥)

⇒ for all a ∈ Σ, ∆(Ba, v) = ∅ (1) (excluded middle)or ∆(Ba, v) 6= ∅ and deciding
Moreover, we have
v ∈ LB⊥ ⇒ v ∈ Le

B⊥
aaa (definition of LB)

⇒ ∆(B⊥, v) 6= ∅ (definition of Le
B)

⇒ exists a ∈ Σ, ∆(Ba, v) 6= ∅ (definition of B⊥)
⇒ exists a ∈ Σ, ∆(Ba, v) 6= ∅ and deciding (1)
⇒ exists a ∈ Σ, v ∈ lB (definition LB)
⇒ v ∈ ⋃a∈Σ LBa

Hence, Ld
B⊥
⊆ ⋃a∈Σ LBa .

Remark 1. For all a ∈ Σ, we do not have necessarily LBa ⊆ LB⊥ or LB⊥ ⊆ LBa . In the
belief in Figure 6, let B = {(s0, q0)}. We have LBe = (ae)∗b∗ ∪ (ae)∗c∗ and LB⊥ =
(ae)∗b∗ ∪ (ae)∗c∗. As, LBe = LB⊥ , LBa ⊆ LB⊥ and LB⊥ ⊆ LBa . In the belief in Figure
5, let B = {(s0, q0)}. We have LBa = ba∗ ∪ ab∗ and LB⊥ = {b, a}aa∗ ∪ {b, a}bb∗.
So, LBa ( LB⊥ (b ∈ LBa and b /∈ LB⊥ ) and LB⊥ ( LBa (a∗ /∈ LBa and a∗ ∈ LB⊥ ).

D.3 Proof of theorem 2

Here is Theorem 2 from the main body:

Theorem 2 (ρZeroDelay is feasible and without delays). For all deciding prefix v,
πρZeroDelay(v) is also deciding.

Proof. Let v a deciding prefix. We define this claim to prove the theorem.

Claim. Let v a deciding prefix. For all v1 such that v = v1v2 then vρZeroDelay(|v1|)(v)v2
is deciding.

We prove this claim by induction on the length of v1. We define Pn: "If v = v1v2
with |v1| = n, then vρZeroDelay(n)(v)v2 is deciding ".

Case 0 Let v where v = v1v2 with |v1| = 0. We have v1 = ε and v = v2. Hence,
[vρZeroDelay(0)(v)]v2 = εv2 = v is deciding by hypothesis. Hence, P0 holds.

Case n + 1 Let v where v = v1v2 with |v1| = n + 1. We can also write v as v =
v′1anv2 with |v′1| = n and an ∈ Σ.



21

– Suppose that ρZeroDelay observes an. Then vρZeroDelay(n + 1)(v) =

[vρZeroDelay(n)(v)]an. We have [vρZeroDelay(n + 1)(v)]v2 =

[vρZeroDelay(n)(v)]anv2. By Pn, [vρZeroDelay(n)(v)]anv2 is deciding
and[vρZeroDelay(n + 1)(v)]v2 is deciding. Hence, Pn+1 holds.

– Otherwise, suppose that ρZeroDelay skips an. Then vρZeroDelay(n + 1)(v) =

[vρZeroDelay(n)(v)]⊥. By Pn, [vρZeroDelay(n)(v)]anv2 is deciding. As
∆(Bn, anv2) = ∆(Bn,an , v2), ∆(Bn,⊥, v2) is also deciding.
By definition of ρZeroDelay, it skips an because (∀a ∈ Σ, ∀w : ∆(Bn,a, w) =
∅ ∨ ∆(Bn,a, w) is not deciding ∨ ∆(Bn,⊥, w) is deciding). In particular, if
∆(Bn,an , v2) is deciding, then ∆(Bn,⊥, v2) is also deciding.
By definition of a deciding belief, we conclude that [vρZeroDelay(n + 1)(v)]v2 is
deciding. Hence, Pn+1 holds.

That prove the claim: for all v1 such that v = v1v2 then [vρZeroDelay(|v1|)(v)]v2 is
deciding.

Let v1 = v, πρZeroDelay(v) = [vρZeroDelay(|v1|)(v)]v2 = [vρZeroDelay(|v1|)(v)]ε =

vρZeroDelay(|v1|)(v) (because v = v1 and v2 = ε). By the claim vρZeroDelay(|v1|)(v)v2 =

πρZeroDelay(v) is deciding.
Hence, πρZeroDelay(v) is deciding.

D.4 Proof of theorem 3

Here is Theorem 3 from the main body:

Theorem 3 (ρZeroDelay is not optimal). For all feasible policy without delays ρ, we do
not have necessarily: Ex(CρZeroDelay) ≤ Ex(Cρ).

Proof. In the general case, the policy ρZeroDelay is not optimal. Let this counterexample
with the MC in the Figure 12 and its DFA (Figure 13).

Let ρ the policy without delay such that ρ observes the first letter. If it observes 0, it
skips the two next letters. Its observes two letters to make a decision. Else, it observes
the next three letters. Its observes four letters to make a decision.

Let w = 0ω and apply the policies ρZeroDelay and ρ on the belief obtained from the
MC and its DFA. We have πρZeroDelay(w) = ⊥000 and πρ(w) = 0⊥⊥0. We compute
Ex(CρZeroDelay) and Ex(Cρ). ρZeroDelay always observes three letters to decide a word:
Ex(CρZeroDelay) = 3. The policy ρ observes two letters when 0 come first and four

letters otherwise. So, Ex(Cρ) = 4 1
4 + 2 3

4 = 2.5. Hence, Ex(CρZeroDelay) ≥ Ex(Cρ). In
function of the MC probabilistic distribution, the optimal can be not reach.

D.5 Proof of theorem 4

Here is Theorem 4 from the main body:



22

s0s1s2s3s4 s5

s6

s7

s8 s9

1
4 : 1 3

4 : 0

1
2 : 1

1
2 : 0

1
2 : 1

1
2 : 0

1
2 : 1

1
2 : 0

1 : 0 1
2 : 0

1
2 : 1

1 : 0

1 : 1

1
2 : 1

1
2 : 0

1 : 1

Fig. 12: MC for which ρZeroDelay is not optimal.

q0 q1

q2

q3

q4

q5

q6

q f

0, 1

1

0

0

1

0

1

0

1

0

1

Σ

Σ

Fig. 13: DFA to control this MC.

Theorem 4. For all belief B and a ∈ Σ, we have:

LBa ⊆ LB⊥ ⇔ (∀v, ∆(Ba, v) = ∅ ∨ (∆(Ba, v) is deciding⇒ ∆(B⊥, v) is deciding))

Proof. Let B a belief and a ∈ Σ.
Suppose that LBa ⊆ LB⊥ and let v ∈ Σ∗.

– Suppose that v /∈ LBa .
v /∈ LBa ⇒ v /∈ Ld

Ba
or v /∈ Le

Ba
(definition of LB)

⇒ ∆(Ba, v) = ∅ or (definition of Le
B

∆(Ba, v) is not deciding and Ld
B)

⇒ ∆(Ba, v) = ∅ ∨
(∆(Ba, v) is deciding⇒ ∆(B⊥, v) is deciding)

Hence, v holds (∆(Ba, v) = ∅ ∨ (∆(Ba, v) is deciding⇒ ∆(B⊥, v) is deciding)).
– Otherwise, suppose that v ∈ LBa .

v ∈ LBa ⇒ v ∈ LB⊥ (hypothesis)
⇒ ∆(Ba, v) and ∆(B⊥, v) are deciding (Lemma 4)
⇒ ∆(Ba, w) is deciding ⇒ ∆(B⊥, w) is deciding

Hence, v holds (∆(Ba, v) = ∅ ∨ (∆(Ba, v) is deciding⇒ ∆(B⊥, v) is deciding)).

Reciprocally, suppose that (∀w, ∆(Ba, v) = ∅ ∨ (∆(Ba, v) is deciding ⇒
∆(B⊥, v) is deciding)) and let w holds the property such that w ∈ LBa .

– Suppose that ∆(Ba, v) = ∅. By Lemma 4, v /∈ LBa . We have a contradiction, so
∆(Ba, v) 6= ∅.



23

– Otherwise, suppose that ∆(Ba, v) 6= ∅.
• Suppose that ∆(Ba, w) is not deciding. By Lemma 4, w /∈ LBa . We have a

contradiction because by hypothesis w ∈ LBa .
• Otherwise, suppose that ∆(Ba, w) is deciding.

∆(Ba, w) is deciding⇒ ∆(B⊥, w) is deciding (hypothesis)
⇒ w ∈ LB⊥ (Lemma 4)

Hence, w ∈ LB⊥ .
Hence, LBa ⊆ LB⊥ .

D.6 Proof of theorem 5

Here is Theorem 5 from the main body:

Theorem 5 (ρZeroDelay is optimal in the non-Hidden MC case). Given a non-Hidden
MC and a DFA. For all feasible policy without delays ρ, we have Ex(CρZeroDelay) ≤
Ex(Cρ).

Proof. Let ρ a policy without delay. We define this claim to prove the theorem.

Claim. For all w and all n ∈N:

lρZeroDelay(n) ≤ lρ(n) and (BρZeroDelay(n) � Bρ(n) or lρZeroDelay(n) < lρ(n))

We prove the claim by induction on n. Let w and define Pn: "lρZeroDelay(n) ≤ lρ(n) and
(BρZeroDelay(n) � Bρ(n) or lρZeroDelay(n) < lρ(n)".

Case 0 We have lρZeroDelay(0) = 0 = lρ(0) and BρZeroDelay(0) = B0 � B0 = Bρ(0).
Hence, P0 holds.

Case n + 1 Suppose that the property Pn holds.
– Suppose that ρZeroDelay does not observe the (n + 1)st letter. In other word it

skips the (n + 1)st letter. Then, lρZeroDelay(n + 1) = lρZeroDelay(n).
• Suppose lρZeroDelay(n + 1) < lρ(n + 1). Hence Pn+1 holds.
• Otherwise, by Pn, lρ(n + 1) ≤ lρZeroDelay(n + 1) = lρZeroDelay(n) ≤

lρ(n) = lρ(n + 1). So, lρ(n + 1) = lρ(n). ρ does not observe this
letter too. By Pn, BρZeroDelay(n) � Bρ(n) and BρZeroDelay(n + 1) =

∆(BρZeroDelay(n),⊥) � ∆(Bρ(n),⊥) = Bρ(n + 1). Hence Pn+1 holds.
– Otherwise, suppose that ρZeroDelay observes the (n+ 1)st letter an+1. From the

definition of ρZeroDelay and a non-Hidden MC, it follows that BρZeroDelay(n+ 1)
is settled and BρZeroDelay(n + 1) � Bρ(n + 1).
• Suppose lρZeroDelay(n) < lρ(n). Then, lρZeroDelay(n + 1) ≤ lρ(n) ≤ lρ(n +

1). Hence, Pn+1 holds.
• Otherwise, by Pn, BρZeroDelay(n) � Bρ(n).

By definition of ρZeroDelay, there exists a and w such that
∆(BρZeroDelay ,a, w) 6= ∅ and ∆(BρZeroDelay ,a, w) is deciding and
∆(BρZeroDelay ,⊥, w) is not deciding. As BρZeroDelay(n) � Bρ(n),



24

∆(Bρ,a, w) 6= ∅ and ∆(Bρ,a, w) is deciding and ∆(Bρ,⊥, w) is not
deciding. By the lemma 2, [vρ(n)]⊥u is not deciding but [vρ(n)]au is
deciding. As, ρ is a policy without delay, ρ observes the next letters. Thus,
lρZeroDelay(n + 1) = lρZeroDelay(n) + 1 ≤ lρ(n) + 1 = lρ(n + 1). Hence,
Pn+1 holds.

D.7 Proof of theorem 6

Here is Theorem 6 from the main body:

Theorem 6. For all belief B such that B⊥ is not confused and for all a ∈ Σ,

LBa ⊆ LB⊥ ⇔ (ε /∈ LBa ∨ ε ∈ LB⊥)

Proof. Let B a belief such that B⊥ is not confused and a ∈ Σ.
Suppose that LBa ⊆ LB⊥ and show that (ε /∈ LBa ∨ ε ∈ LB⊥ ).

– Suppose that ε /∈ LBa . Hence, (ε /∈ LBa ∨ ε ∈ LB⊥ ) holds.
– Otherwise, suppose that ε ∈ LBa .

ε ∈ LBa ⇒ ε ∈ LB⊥ aaa (LBa ⊆ LB⊥ )
Hence, (ε /∈ LBa ∨ ε ∈ LB⊥ ) holds.

Reciprocally, suppose that (ε /∈ LBa ∨ ε ∈ LB⊥ ) and show LBa ⊆ LB⊥ . Let v ∈ LBa .

– Suppose that ε /∈ LBa .
ε /∈ LBa ⇒ Ba is not deciding or Ba = ∅ aaa (Lemma 4)

⇒ Ba and B⊥ are not deciding or Ba = ∅ aaa (Lemma 4)
• Suppose that Ba = ∅. So LBa = ∅, because Le

Ba
= ∅ (there are no enable

prefix). Hence, LBa ⊆ LB⊥ .
• Otherwise, Ba and B⊥ are not deciding. We recall that B⊥ is not confused, by

hypothesis.
B⊥ is not confused
aaa⇒ ∀a ∈ Σ, ∆(B⊥, a) is settle ([6, Lemma 19])
⇒ ∆(B⊥, v0) is settle (v = v0v′)
⇒ ∀(s, q), (s′, q′) ∈ ∆(B⊥, v0), (s, q) ≈ (s′, q′) aaa (definition of settle)

⇒ ∀(s, q) ∈ ∆(Ba, v0), ∀(s′, q′) ∈ ∆(B⊥, v0), (Ba ⊂ B⊥)
(s, q) ≈ (s′, q′)

So, ∆(Ba, v0) and ∆(B⊥, v0) describe the same language. As v ∈ LBa ,
∆(∆(Ba, v0), v′) is deciding and not empty (where v = v0v′). Hence
∆(∆(B⊥, v0), v′) is not empty and is deciding.

Hence, LBa ⊆ LB⊥ .
– Otherwise, suppose that ε ∈ LB⊥ .

ε ∈ LB⊥ ⇒ B⊥ is deciding and B⊥ 6= ∅ aaaaa (lemma 4)
⇒ ∆(B⊥, v) is deciding and B⊥ 6= ∅ (1) (lemma 3)

Moreover, by hypothesis v ∈ LBa .
v ∈ LBa ⇒ ∆(Ba, v) is deciding and ∆(Ba, v) 6= ∅ aaa (lemma 4)

⇒ ∆(Ba, v) is deciding and ∆(B⊥, v) 6= ∅ (lemma 4)
⇒ ∆(B⊥, v) is deciding and ∆(B⊥, v) 6= ∅ ((1))
⇒ v ∈ LB⊥ (definition of LB)

Hence, LBa ⊆ LB⊥ .

Hence, (LBa ⊆ LB⊥ ⇔ (ε /∈ LBa ∨ ε ∈ LB⊥)).



25

D.8 Proof of corollary 2

Here is Corollary 2 from the main body:

Corollary 2. For all belief B and a ∈ Σ,

(Ba = ∅ ∨ Ba is deciding ⇒ B⊥ is deciding)⇔ (ε /∈ LBa ∨ ε ∈ LB⊥)

Proof. Let B belief and a ∈ Σ.
Suppose that (Ba = ∅ ∨ Ba is deciding ⇒ B⊥ is deciding) and show that (ε /∈

LBa ∨ ε ∈ LB⊥ ).

– Suppose that Ba = ∅. So, ε is not enable. By definition of LB, ε /∈ LBa . Hence,
(ε /∈ LBa ∨ ε ∈ LB⊥ ).

– Otherwise, suppose that (Ba is deciding ⇒ B⊥ is deciding). Suppose that Ba 6= ∅.
Else, we have in the previous case. As Ba ⊂ B⊥, B⊥ 6= ∅. By definition of LB,
ε ∈ LB⊥ . Hence, ε ∈ LB⊥ .

Hence, (ε /∈ LBa ∨ ε ∈ LB⊥ ).
Reciprocally, suppose that (ε /∈ LBa ∨ ε ∈ LB⊥ ) and show that (Ba = ∅ ∨

Ba is deciding ⇒ B⊥ is deciding).

– Suppose that ε /∈ LBa . By definition of LB, Ba = ∅ or Ba is not deciding. Hence,
(Ba = ∅ ∨ Ba is deciding ⇒ B⊥ is deciding) holds.

– Otherwise, suppose that ε ∈ LB⊥ . By definition of LB, B∅ 6= ∅ and B⊥ is deciding.
• Suppose that Ba is not deciding. Hence, (Ba is deciding ⇒ B⊥ is deciding)

holds.
• Otherwise, suppose that Ba is deciding. Hence, (Ba = ∅ ∨ Ba is deciding ⇒

B⊥ is deciding) holds.

Hence, ((ε /∈ LBa ∨ ε ∈ LB⊥)⇔ (Ba = ∅ ∨ Ba is deciding ⇒ B⊥ is deciding)).


	Selective Monitoring Without Delay for Probabilistic System
	Introduction
	Preliminaries
	Markov Chain and Deterministic Finite Automaton
	Observation policy
	Belief
	Cost of decision

	An optimal policy in the general case
	A policy without delay
	Non-Hidden Markov Chain case
	Conclusion
	Diagnosability
	Deterministic Markov Chain case
	Language equivalent
	Proofs
	Proof of lemma 3
	Proof of lemma 4
	Proof of theorem 2
	Proof of theorem 3
	Proof of theorem 4
	Proof of theorem 5
	Proof of theorem 6
	Proof of corollary 2



