
Weighted Timed Games:
Decidability, Randomisation and Robustness

PhD defense

Julie Parreaux

Aix–Marseille Université

October 24, 2023

From verification to synthesis

2/16

Critical software systems

From verification to synthesis

2/16

Verification
yes

no

From verification to synthesis

2/16

Verification
yes

no

From verification to synthesis

2/16

Verification
yes

no

From verification to synthesis

2/16

Verification
yes

no

From verification to synthesis

2/16

Verification
yes

no

From verification to synthesis

2/16

Verification
yes

no

From verification to synthesis

2/16

Verification
yes

no

Synthesis

From verification to synthesis

2/16

Verification
yes

no

Synthesis

From verification to synthesis

2/16

Verification
yes

no

Synthesis

From verification to synthesis

2/16

Verification
yes

no

Synthesis

Synthesis based on games on graphs

3/16

Synthesis based on games on graphs

3/16

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

within 20 seconds

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

with a cost ⩽ 4e

within 20 seconds

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Timed game synthesis
Timed properties requirement
over each action

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered with a cost ⩽ 4e
within 20 seconds4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coinrestart

coffee

2e

tea

2e

2e,

delivered delivered

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Timed game synthesis
Timed properties requirement
over each action

Synthesis based on games on graphs

3/16

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered with a cost ⩽ 4e
within 20 seconds4e

coin

coffeetea

wait

prepareprepare

delivered delivered
coin, −4e4e, restart

coffee
2e

tea
2e

2e, delivered delivered, 1e

Game synthesis
For the system’s point
of view: uncontrollable
actions from the
environment

Timed game synthesis
Timed properties requirement
over each action

Weighted timed
game synthesis
Each action has a cost
for the system

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
x 7→ 0
y 7→ 0

]
)

0.5, a−−−−→

(ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→

(ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→

(ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

+ +

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

1 × 0.5 +

0 + +

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

1 × 0.5 + 0 + +

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)⇝ −

8
3

1 × 0.5 + 0 −2 × 1.25−1 1 × 1
3 + 0+ +

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Deterministic strategy
Choose an edge and a delay

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Deterministic strategy
Choose an edge and a delay

From (ℓ1,

[
0
0

]
)

Choose a with t = 1
3

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Deterministic strategy
Choose an edge and a delay

From (ℓ1,

[
0
0

]
)

Choose a with t = 1
3

Weighted Timed Games

4/16

−2

ℓ0

1

ℓ1

,

a,0 ⩽ x < 1, y := 0,0

a,1 ⩽ x ⩽ 2, x := 0,−1

b,0 ⩽ y ⩽ 1,−10 b,1 ⩽ y ⩽ 2,0

Min Max

, target (T)

Play ρ (ℓ1,

[
0
0

]
)

0.5, a−−−−→ (ℓ0,

[
0.5
0

]
)

1.25, a−−−−→ (ℓ1,

[
0

1.25

]
)

1/3, b−−−−→ (,,

[
1/3

19/12

]
)

⇝ −
8
3

Deterministic strategy
Choose an edge and a delay

From (ℓ1,

[
0
0

]
)

Choose a with t = 1
3

What features on strategies are needed for Min?

Features on strategies needed for Min

5/16

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

,

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

0

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

−1

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

−2

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:

▶ σ1: reach cycle with a weight ⩽ −1

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

c0

−10

c1

−10

,
0

0

−1

−10 0

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Features on strategies needed for Min

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G.
Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Features on strategies needed for Min

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Features on strategies needed for Min

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Features on strategies needed for Min

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Infinite precision
From ℓ0, Min wants to reach the valuation 2/3

▶ if x ⩽ 2/3: Min plays 2/3−x

Features on strategies needed for Min

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Infinite precision
From ℓ0, Min wants to reach the valuation 2/3
▶ if x ⩽ 2/3: Min plays 2/3−x

Features on strategies needed for Min

5/16

Deterministic value
dVal(c) = inf

σ
sup
τ

cost(Play(c, σ, τ))︸ ︷︷ ︸
dValσ(c)

σ Min

τ Max
Optimal strategy for Min
dValσ(c) ⩽ dVal(c)

Finite memory
Switching strategy:
▶ σ1: reach cycle with a weight ⩽ −1
▶ σ2: reach ,
▶ K : number of turns before switch

0ℓ0

−2ℓ1 1

ℓ2

,

a, 0 ⩽ x ⩽ 3
a, 0 ⩽ x ⩽ 3

b, 1 ⩽ x < 3, 3 a, 2 ⩽ x ⩽ 3, 1 1

2

3

0
2/31 2 3 x

dVal(ℓ1)

via b

via aa

Infinite precision
From ℓ0, Min wants to reach the valuation 2/3
▶ if x ⩽ 2/3: Min plays 2/3−x
▶ otherwise, Min plays 0

Problems on weighted timed games

6/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Problems on weighted timed games

6/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Problems on weighted timed games

6/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Problems on weighted timed games

6/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

On Optimal Timed Strategies, T. Brihaye, V. Bruyère and J.-F. Raskin, 2005, FORMATS

Adding Negative Prices to Priced Timed Games, T. Brihaye, G. Geeraerts, S. Krishna, L. Manasa, B. Monmege, and
A. Trivedi, 2014, CONCUR

7/16

WTG

0-clock divergent 1-clock

N undecidable

PTIME EXPTIME EXPTIME

Z undecidable

pseudo-polynomial EXPTIME

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

WTG 0-clock

divergent 1-clock

N undecidable

PTIME EXPTIME EXPTIME

Z undecidable

pseudo-polynomial EXPTIME

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction, L. Khachiyan, E. Boros, K. Borys, K.
Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao, 2008, Theory of Computing Systems

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G.
Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

7/16

WTG 0-clock

divergent 1-clock

N undecidable PTIME

EXPTIME EXPTIME

Z undecidable pseudo-polynomial

EXPTIME

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

WTG 0-clock divergent

1-clock

N undecidable PTIME

EXPTIME EXPTIME

Z undecidable pseudo-polynomial

EXPTIME

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP

Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.l Fleury, and K. Larsen, 2004, FSTTCS

Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier,
2017, FOSSACS

7/16

WTG 0-clock divergent

1-clock

N undecidable PTIME

EXPTIME EXPTIME

Z undecidable pseudo-polynomial

EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP

Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.l Fleury, and K. Larsen, 2004, FSTTCS

Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier,
2017, FOSSACS

7/16

WTG 0-clock divergent

1-clock

N undecidable PTIME EXPTIME

EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME

EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

Almost optimal strategies in one clock priced timed games, P. Bouyer, K. Larsen, N. Markey, and J. Rasmussen,
2006, FSTTCS

Two-Player Reachability-Price Games on Single Clock Timed Automata., M. Rutkowski, 2011, QAPL

A Faster Algorithm for Solving One-Clock Priced Timed Games, T. Dueholm Hansen, R. Ibsen-Jensen, and P. Bro
Miltersen, 2013, CONCUR

7/16

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

One-Clock Priced Timed Games are PSPACE-hard., J. Fearnley, R. Ibsen-Jensen, and R. Savani, 2020, LICS

7/16

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG
c 7→ Val(c) is computable in exponential time

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG
c 7→ Val(c) is computable in exponential time

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0

Deterministic value problem
Deciding if dVal(c) ⩽ λ ?

7/16

WTG 0-clock divergent 1-clock

N undecidable PTIME EXPTIME EXPTIME

Z undecidable pseudo-polynomial EXPTIME

Property of divergence
All SCCs of the WTG contain only
cycles with a weight ⩽ −1 or ⩾ 1

PSPACE lower bound
The deterministic value problem is
PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG
c 7→ Val(c) is computable in exponential time

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0
▶ Value iteration algorithm: deterministic value is a fixed point of a given operator

Problems on weighted timed games

8/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

8/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

8/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

8/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

8/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Problems on weighted timed games

8/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))

Stochastic strategies

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

Min Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

Stochastic strategies

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies

Stochastic strategies

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies
▶ Infinite Markov Chain

Stochastic strategies

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies
▶ Infinite Markov Chain
▶ Replace cost(Play(c, η, θ)) by Eη,θ

c (cost)

Stochastic strategies

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies
▶ Infinite Markov Chain
▶ Replace cost(Play(c, η, θ)) by Eη,θ

c (cost)

Measurability conditions on η and θ

Stochastic strategies

9/16

−2

ℓ0

1

ℓ1

,

a, 0 ⩽ x < 1, y := 0, 0

a, 1 ⩽ x ⩽ 2, x := 0,−1

b
0 ⩽ y ⩽ 1

−10

b
1 ⩽ y ⩽ 2

0

η Min θ Max

Stochastic strategy
Distribution over possible choices

1. Edge a: finite distribution

2. Delay for a: infinite distribution

From (ℓ1,

[
0
0

]
)

Choose between a or b with B(1
2)

▶ a: choose t with U([0, 1))
▶ b: choose t with δ1.5

When we fix two strategies
▶ Infinite Markov Chain
▶ Replace cost(Play(c, η, θ)) by Eη,θ

c (cost)

Measurability conditions on η and θ

Stochastic values

10/16

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Stochastic values

10/16

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Stochastic values

10/16

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Stochastic values

10/16

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Stochastic values

10/16

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Theorem (CONCUR’20, ICALP’21): Trading memory with probabilities

▶ 0-clock weighted timed games

Stochastic values

10/16

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Theorem (CONCUR’20, ICALP’21): Trading memory with probabilities
dVal = Val = mVal

▶ 0-clock weighted timed games

Stochastic values

10/16

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Theorem (CONCUR’20, ICALP’21): Trading memory with probabilities
dVal = Val = mVal

▶ 0-clock weighted timed games

Stochastic values

10/16

P
ro

ba
bi

lis
tic

D
et

er
m

in
is

tic

Infinite memoryFinite memoryMemoryless

η : C∗CMin → ∆(C)

σ : C∗CMin → C

Probabilistic

Moore Machine

Moore Machine

η : CMin → ∆(C)

σ : CMin → C

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

0.1 0.9

0.8 0.2
0

c1

c0 c2

... c1 c0

c2 c3 c4 ...

...
...

...

m0

m1

m2

m3

m4

m0

m1

m2

m3

m4

c1

c0

c2

c3

c5

c6

,

0.6

0.4

0.8 0.2

c1

c0

c2

c3

c5

c6

,

mVal

dVal

Val = infη supθ E
η,θ
c (cost)

Theorem (CONCUR’20, ICALP’21): Trading memory with probabilities
dVal = Val = mVal

▶ 0-clock weighted timed games ▶ divergent weighted timed games

Trading memory with probabilities

11/16

dVal mVal
⩾

⟨σ1, σ2,K ⟩ ηp
Switching

strategy

Randomisation emulates memory

Trading memory with probabilities

11/16

dVal mVal
⩾

⟨σ1, σ2,K ⟩ ηp
Switching

strategy

Randomisation emulates memory

c0 c1

,

−1

−10

0

0

p,0

1−p,0

Min Max

Trading memory with probabilities

11/16

dVal mVal
⩾

⟨σ1, σ2,K ⟩ ηp
Switching

strategy

Randomisation emulates memory

c0 c1

,

−1

−10

0

0

p,0

1−p,0

Min Max

Trading memory with probabilities

11/16

dVal mVal
⩾

⟨σ1, σ2,K ⟩ p × σ1 + (1−p)× σ2
Switching

strategy

Randomisation emulates memory

c0 c1

,

−1

−10

0

0

p,0

1−p,0

Min Max

Trading memory with probabilities

11/16

dVal mVal
⩾

⟨σ1, σ2,K ⟩ p × σ1 + (1−p)× σ2
Switching

strategy

Randomisation emulates memory

c0 c1

,

−1

−10

0

0

p,0

1−p,0

▶ Max has a best response deterministic
memoryless strategy: τ

Min Max

Trading memory with probabilities

11/16

dVal mVal
⩾

⟨σ1, σ2,K ⟩ p × σ1 + (1−p)× σ2
Switching

strategy

Randomisation emulates memory

c0

−10

c1

−10

,
0

−1

−10

0

0

p,0

1−p,0

▶ Max has a best response deterministic
memoryless strategy: τ

9
10 1 p

mValηp (c1)

0

−9

−10

+∞

Min Max

Trading memory with probabilities

11/16

dVal mVal
⩾

⟨σ1, σ2,K ⟩ p × σ1 + (1−p)× σ2
Switching

strategy

Randomisation emulates memory

c0

−10

c1

−10

,
0

−1

−10

0

0

p,0

1−p,0

▶ Max has a best response deterministic
memoryless strategy: τ

9
10 1 p

mValηp (c1)

0

−9

−10

+∞

Min Max

Problems on weighted timed games

12/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Problems on weighted timed games

12/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Problems on weighted timed games

12/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Problems on weighted timed games

12/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Problems on weighted timed games

12/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Robustness in weighted timed games

13/16

ν

ν + t + ε

ν + t
t

δ > 0

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known ▶ δ tends to 0

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known

▶ δ tends to 0

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known

▶ δ tends to 0

Fixed-δ robust value
rValδ(c) = inf

χ
δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known

▶ δ tends to 0

Fixed-δ robust value
rValδ(c) = inf

χ
δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Encoding fixed-δ semantics into exact one

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known

▶ δ tends to 0

Fixed-δ robust value
rValδ(c) = inf

χ
δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Encoding fixed-δ semantics into exact one

Need a new clock

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known ▶ δ tends to 0

Fixed-δ robust value
rValδ(c) = inf

χ
δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Encoding fixed-δ semantics into exact one

Need a new clock

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known ▶ δ tends to 0

Fixed-δ robust value
rValδ(c) = inf

χ
δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Limit robust value
rVal(c) = lim

δ→0
δ>0

rValδ(c)

Encoding fixed-δ semantics into exact one

Need a new clock

Robustness in weighted timed games

13/16

Give to Max the power to perturb the delay chosen by Min

ν

ν + t + ε

ν + t
t

δ > 0 Fixed-δ semantics
Check the guard after the perturbation
∀ε ∈ [0, δ], ν + t + ε satisfies the guard

Two problems induced by our knowledge on δ

▶ δ is fixed and known ▶ δ tends to 0

Fixed-δ robust value
rValδ(c) = inf

χ
δ-robust

sup
ζ

δ-robust

cost(Play(c, χ, ζ))

χ Min

ζ Max

Limit robust value
rVal(c) = lim

δ→0
δ>0

rValδ(c)

rValδ is monotonic in δEncoding fixed-δ semantics into exact one

Need a new clock

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Robust Weighted Timed Automata and Games, P. Bouyer, N. Markey, and O. Sankur, 2013, FORMATS

14/16

WTG

acyclic divergent 1-clock

rValδ undecidable

decidable decidable decidable (in N)

rVal undecidable

decidable decidable

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

WTG acyclic divergent 1-clock

rValδ undecidable

decidable decidable decidable (in N)

rVal undecidable

decidable decidable

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Revisiting Robustness in Priced Timed Game, S. Guha, S. Krishna, L. Manasa, and A. Trivedi, 2015, FSTTCS

14/16

WTG acyclic divergent 1-clock

rValδ undecidable

decidable decidable

decidable (in N)

rVal undecidable

decidable decidable

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable

decidable decidable

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

Shrinking timed automata, O. Sankur, P. Bouyer, and N. Markey, 2011, FSTTCS

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Shrunk cells

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Shrunk cells
y =

∑
i ai xi + b

+ c δ

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable

decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Shrunk cells
y =

∑
i ai xi + b + c δ

x1

x2

0 2
0

1

Robust value problems
Deciding if rValδ(c) (resp. rVal(c)) is at most equal to λ?

14/16

WTG acyclic divergent 1-clock

rValδ undecidable decidable decidable decidable (in N)

rVal undecidable decidable decidable

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG
A combination of two existing methods

Cells
y =

∑
i ai xi + b

x1

x2

0 1
2 1 2

0

1
2

1

Shrunk DBM

x1

x2

0 1 2
0

1

2

Shrunk cells
y =

∑
i ai xi + b + c δ

x1

x2

0 2
0

1

Problems on weighted timed games

15/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Definition of

robust values Decidability of

rVal(c) < +∞ in

all WTGs
Computing robust

values in divergent

(and acyclic) WTG

Problems on weighted timed games

15/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Definition of

robust values Decidability of

rVal(c) < +∞ in

all WTGs
Computing robust

values in divergent

(and acyclic) WTG

Problems on weighted timed games

15/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Definition of

robust values Decidability of

rVal(c) < +∞ in

all WTGs
Computing robust

values in divergent

(and acyclic) WTG

Problems on weighted timed games

15/16

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Fixpoint characterisation
Decidability for

1-clock WTG

Software prototype

for 1-clock WTG

Switching strategies

in divergent WTG

Definition of

stochastic values

Memory is useless in

divergent WTG and

0-clock WTG

Probabilities are

useless in 1-clock

WTG, divergent WTG,

and 0-clock WTG

Definition of

robust values Decidability of

rVal(c) < +∞ in

all WTGs
Computing robust

values in divergent

(and acyclic) WTG

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Perspectives
Computation of (new) values

Using probabilities in (others) games

Implementation

Trading memory with prob-

abilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from

strategies with continuous

distribution on delays

Polynomial algorithm to

solve 0-clock WTG by

strategy iteration

Characterisation of memory

needed when probabilities

are allowed

Solving 1-clock WTG Solving robust acyclic

(1-clock) WTG

16/16

Appendix

Value Iteration does not converge in finite time in 1-clock WTG

Computation of deterministic value for 1-clock WTG

Existence of the expectation

Partition to compute stochastic values

Robust reachability

1/6

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG
Does not converge in finite time

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Value Iteration for 1-clock WTG
Does not converge in finite time

2/6

Min Max

F(X)(ℓ, ν) =

0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.

x0 1
0

1

x0 1
2

3
4 1

0

1/2
1/4

1

x00 11
2

3
4

0

1

−1/2

1/2
1/4

0ℓ0 −1 ℓ1

1 ℓ2,

a, x ⩽ 1, 0

a
x = 1, x := 0

0

b
x ⩽ 1

1

b
x ⩽ 1

a, x = 1

Decidability in 1-clock WTGs

3/6

c 7→ Val(c) is computable

in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Decidability in 1-clock WTGs

3/6

c 7→ Val(c) is computable

in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Encoding
Regions

polynomial

0

ℓ0, {0}

−1

ℓ1, {0}

−1

ℓ1, (0, 1)

−1
ℓ1, {1}

1

ℓ2, {0}

1

ℓ2, (0, 1)

1 ℓ2, {1}

,

x = 0

x ⩽ 1

x = 1

x = 1; x := 0

x = 1; x := 0

x = 1
x := 0

x = 0

x ⩽ 1
x = 1

x ⩽ 1

x = 1

x = 1

x = 1

x = 1

x = 1

Decidability in 1-clock WTGs

3/6

c 7→ Val(c) is computable

in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Encoding
Regions

polynomial

0

ℓ0, {0}

−1

ℓ1, {0}

−1

ℓ1, (0, 1)

−1
ℓ1, {1}

1

ℓ2, {0}

1

ℓ2, (0, 1)

1 ℓ2, {1}

,

x = 0

x ⩽ 1

x = 1

x = 1; x := 0

x = 1; x := 0

x = 1
x := 0

x = 0

x ⩽ 1
x = 1

x ⩽ 1

x = 1

x = 1

x = 1

x = 1

x = 1

,

t<0 t⩾0

t+∞

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ1
x := 0 δ2

x := 0

δ2
x := 0

δ1 : x := 0

δ1 : x := 0

δ2
x := 0

Finite unfolding

bound the number of reset

exponential

Decidability in 1-clock WTGs

3/6

c 7→ Val(c) is computable

in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Encoding
Regions

polynomial

0

ℓ0, {0}

−1

ℓ1, {0}

−1

ℓ1, (0, 1)

−1
ℓ1, {1}

1

ℓ2, {0}

1

ℓ2, (0, 1)

1 ℓ2, {1}

,

x = 0

x ⩽ 1

x = 1

x = 1; x := 0

x = 1; x := 0

x = 1
x := 0

x = 0

x ⩽ 1
x = 1

x ⩽ 1

x = 1

x = 1

x = 1

x = 1

x = 1

,

t<0 t⩾0

t+∞

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ1
x := 0 δ2

x := 0

δ2
x := 0

δ1 : x := 0

δ1 : x := 0

δ2
x := 0

Finite unfolding
bound the number of reset

exponential

Decidability in 1-clock WTGs

One-Clock Priced Timed Games with Negative Weights, T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, B.
Monmege, Log. Methods Comput. Sci., 2022

3/6

c 7→ Val(c) is computable

in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Encoding
Regions

polynomial

0

ℓ0, {0}

−1

ℓ1, {0}

−1

ℓ1, (0, 1)

−1
ℓ1, {1}

1

ℓ2, {0}

1

ℓ2, (0, 1)

1 ℓ2, {1}

,

x = 0

x ⩽ 1

x = 1

x = 1; x := 0

x = 1; x := 0

x = 1
x := 0

x = 0

x ⩽ 1
x = 1

x ⩽ 1

x = 1

x = 1

x = 1

x = 1

x = 1

,

t<0 t⩾0

t+∞

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ1
x := 0 δ2

x := 0

δ2
x := 0

δ1 : x := 0

δ1 : x := 0

δ2
x := 0

Finite unfolding
bound the number of reset

exponential

Back-time algorithm
Solving

pseudo-

polynomial

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Decidability in 1-clock WTGs

3/6

c 7→ Val(c) is computable
in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Encoding
Regions

polynomial

0

ℓ0, {0}

−1

ℓ1, {0}

−1

ℓ1, (0, 1)

−1
ℓ1, {1}

1

ℓ2, {0}

1

ℓ2, (0, 1)

1 ℓ2, {1}

,

x = 0

x ⩽ 1

x = 1

x = 1; x := 0

x = 1; x := 0

x = 1
x := 0

x = 0

x ⩽ 1
x = 1

x ⩽ 1

x = 1

x = 1

x = 1

x = 1

x = 1

,

t<0 t⩾0

t+∞

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ1
x := 0 δ2

x := 0

δ2
x := 0

δ1 : x := 0

δ1 : x := 0

δ2
x := 0

Finite unfolding
bound the number of reset

exponential

Back-time algorithm
Solving

pseudo-

polynomial

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Decidability in 1-clock WTGs

3/6

c 7→ Val(c) is computable
in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Encoding
Regions

polynomial

0

ℓ0, {0}

−1

ℓ1, {0}

−1

ℓ1, (0, 1)

−1
ℓ1, {1}

1

ℓ2, {0}

1

ℓ2, (0, 1)

1 ℓ2, {1}

,

x = 0

x ⩽ 1

x = 1

x = 1; x := 0

x = 1; x := 0

x = 1
x := 0

x = 0

x ⩽ 1
x = 1

x ⩽ 1

x = 1

x = 1

x = 1

x = 1

x = 1

,

t<0 t⩾0

t+∞

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ1
x := 0 δ2

x := 0

δ2
x := 0

δ1 : x := 0

δ1 : x := 0

δ2
x := 0

Finite unfolding
bound the number of reset

exponential

Back-time algorithm
Solving

pseudo-

polynomial

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Decidability in 1-clock WTGs

3/6

c 7→ Val(c) is computable
in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Encoding
Regions

polynomial

0

ℓ0, {0}

−1

ℓ1, {0}

−1

ℓ1, (0, 1)

−1
ℓ1, {1}

1

ℓ2, {0}

1

ℓ2, (0, 1)

1 ℓ2, {1}

,

x = 0

x ⩽ 1

x = 1

x = 1; x := 0

x = 1; x := 0

x = 1
x := 0

x = 0

x ⩽ 1
x = 1

x ⩽ 1

x = 1

x = 1

x = 1

x = 1

x = 1

,

t<0 t⩾0

t+∞

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ1
x := 0 δ2

x := 0

δ2
x := 0

δ1 : x := 0

δ1 : x := 0

δ2
x := 0

Finite unfolding
bound the number of reset

exponential

Back-time algorithm
Solving

pseudo-

polynomial

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Decidability in 1-clock WTGs

One-Clock Priced Timed Games with Negative Weights, T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, B.
Monmege, Log. Methods Comput. Sci., 2022

3/6

c 7→ Val(c) is computable
in exponential time

0ℓ0 −1 ℓ1

1 ℓ2,

x ⩽ 1

x = 1, x := 0

x ⩽ 1
1

x ⩽ 1

x = 1

Encoding
Regions

polynomial

0

ℓ0, {0}

−1

ℓ1, {0}

−1

ℓ1, (0, 1)

−1
ℓ1, {1}

1

ℓ2, {0}

1

ℓ2, (0, 1)

1 ℓ2, {1}

,

x = 0

x ⩽ 1

x = 1

x = 1; x := 0

x = 1; x := 0

x = 1
x := 0

x = 0

x ⩽ 1
x = 1

x ⩽ 1

x = 1

x = 1

x = 1

x = 1

x = 1

,

t<0 t⩾0

t+∞

δ1
x := 0

δ2
x := 0

δ1
x := 0

δ2
x := 0

δ1
x := 0 δ2

x := 0

δ2
x := 0

δ1 : x := 0

δ1 : x := 0

δ2
x := 0

Finite unfolding
bound the number of reset

exponential

Back-time algorithm
Solving

pseudo-

polynomial

2
3 x

Val(ℓ)

0 1 2 3
0

1

2

3

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Existence of the expectation: Eη,θ
c (cost)

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Probability of a path

Pη,θ
c (a π) =

∫
t∈I(c,a)

ηE(c)(a) Pη,θ
c1 (π) dηR+(c, a)(t)

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Existence of the expectation: Eη,θ
c (cost)

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki,
2014, Logical Methods in Computer Science

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Probability of a path

Pη,θ
c (a π) =

∫
t∈I(c,a)

ηE(c)(a) Pη,θ
c1 (π) dηR+(c, a)(t)

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Probability of a path

Pη,θ
c (a π) =

∫
t∈I(c,a)

ηE(c)(a) Pη,θ
c1 (π) dηR+(c, a)(t)

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Probability of a path

Pη,θ
c (a π) =

∫
t∈I(c,a)

ηE(c)(a) Pη,θ
c1 (π) dηR+(c, a)(t)

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost in a path

Eη,θ
c (a π) =

∫
t∈I(c,a)

ηE(c)(a)
[
(t wt(c) + wt(a)) Pη,θ

c1 (π) + Eη,θ
c1 (π)

]
dηR+(c, a)(t)

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Probability of a path

Pη,θ
c (a π) =

∫
t∈I(c,a)

ηE(c)(a) Pη,θ
c1 (π) dηR+(c, a)(t)

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost in a path

Eη,θ
c (a π) =

∫
t∈I(c,a)

ηE(c)(a)
[
(t wt(c) + wt(a)) Pη,θ

c1 (π) + Eη,θ
c1 (π)

]
dηR+(c, a)(t)

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Convergence ?

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Convergence ?
|Eη,θ

c (π)|

⩽ α−|π|

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Convergence ?
|Eη,θ

c (π)| ⩽ k |π| α−|π|

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Convergence ?
|Eη,θ

c (π)| ⩽ k |π|︸︷︷︸
|cost(π)|

α−|π|

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Convergence ?
|Eη,θ

c (π)| ⩽ k |π|︸︷︷︸
|cost(π)|

α−|π|︸ ︷︷ ︸
Pη,θ

c (π)

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

Existence of the expectation: Eη,θ
c (cost)

4/6

η Min θ Max

η, θ : C∗C → ∆(C)
Distribution over possible choices

1. Edge a: finite distribution ηE(c)

2. Delay for a: infinite distribution: ηR+ (c, a)

Measurability conditions
on η and θ

Path π = (c, a1 . . . an) = {t1, . . . , tn | c
t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Convergence ?
|Eη,θ

c (π)| ⩽ k |π|︸︷︷︸
|cost(π)|

α−|π|︸ ︷︷ ︸
Pη,θ

c (π)

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

▶ , must be reached quickly enough

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ)

=

E

+

E

+

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) =

E

+

E

+

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E +

E

+

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1

cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E +

E

+

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E +

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles

cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E +

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E + E

⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Red zone
Rest of plays

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E + E

⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Red zone
Rest of plays

E −→
p→1
p<1

0

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E + E

⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Red zone
Rest of plays

E −→
p→1
p<1

0

lim
p→1
p<1

E+ E ⩽ dVal⟨σ1,σ2K⟩(c)

ηp = p × σ1 + (1−p)× σ2

Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E + E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Red zone
Rest of plays

E −→
p→1
p<1

0

lim
p→1
p<1

E+ E ⩽ dVal⟨σ1,σ2K⟩(c)

ηp = p × σ1 + (1−p)× σ2

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

Probabilistic Robust Timed Game, Y. Oualhadj, PA. Reynier, and O. Sankur, 2014, CONCUR

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness:

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation:

Robust reachability under the excessive semantics is EXPTIME-complete

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard

Robust reachability under the excessive semantics is EXPTIME-complete

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

Robust Controller Synthesis in Timed Automata, O. Sankur, P. Bouyer, N.s Markey, and PA. Reynier, 2013, CONCUR

Robust Reachability in Timed Automata: Game-Based Approach, P. Bouyer, N. Markey, and O. Sankur, 2015, TCS

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed-δ semantics into the excess one

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed-δ semantics into the excess one

g,Y
u

/

g,Y

¬g

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed-δ semantics into the excess one
Max controls a posteriori the delay chosen by Min

g,Y
u

/

g,Y

¬g

Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed-δ semantics into the excess one
Max controls a posteriori the delay chosen by Min

g,Y
u

/

g,Y

¬g

	Appendix
	Value Iteration does not converge in finite time in 1-clock WTG
	Computation of deterministic value for 1-clock WTG
	Existence of the expectation
	Partition to compute stochastic values
	Robust reachability

