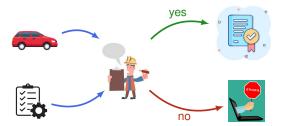
Weighted Timed Games: Decidability, Randomisation and Robustness PhD defense

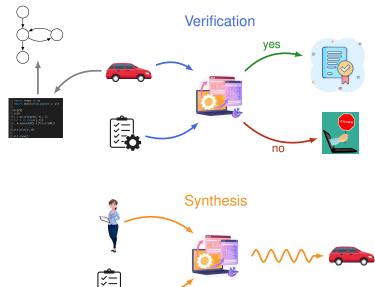
Julie Parreaux

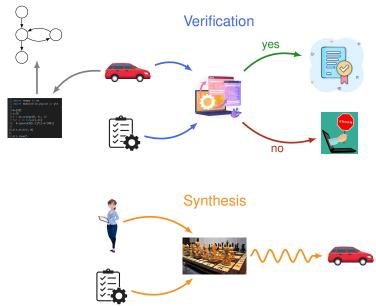
Aix-Marseille Université

October 24, 2023



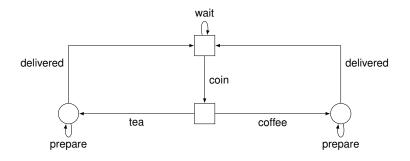
Synthesis



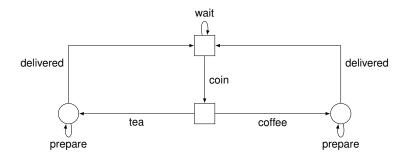


If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered

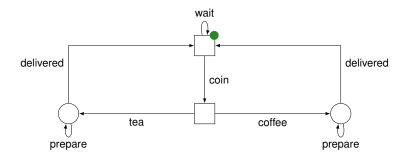


If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



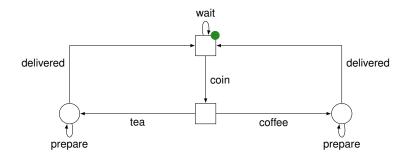
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



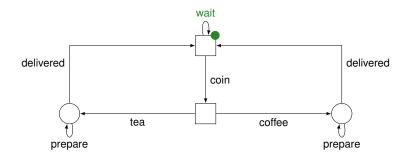
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



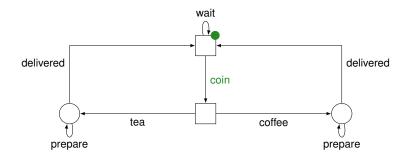
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



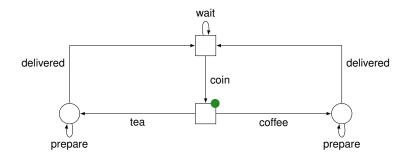
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



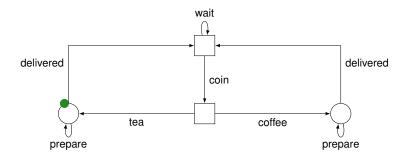
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



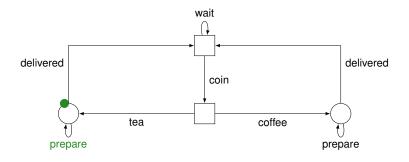
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



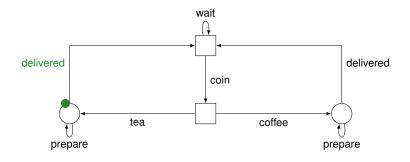
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



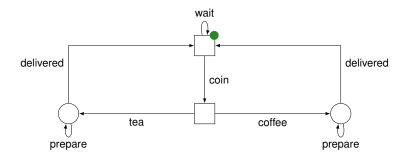
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



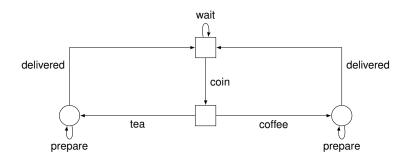
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered



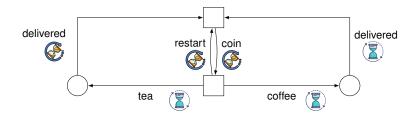
Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered within 20 seconds



Game synthesis

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered within 20 seconds



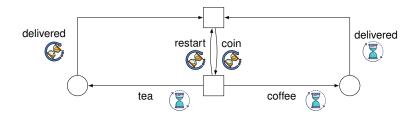
Game synthesis

For the system's point of view: uncontrollable actions from the environment

Timed game synthesis

Timed properties requirement over each action

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered with a cost $\leq 4 \in 4 \in 4 \in 4 \in 4$ within 20 seconds



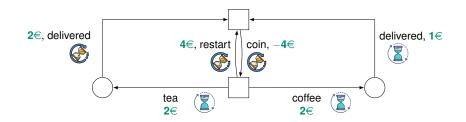
Game synthesis

For the system's point of view: uncontrollable actions from the environment

Timed game synthesis

Timed properties requirement over each action

If a coin is inserted, then a drink (coffee or tea) will eventually be delivered with a cost $\leqslant 4 \in 4 \in 4 \in 4 \in 4 \in 4$ within 20 seconds



Game synthesis

For the system's point of view: uncontrollable actions from the environment

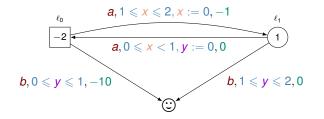
Timed game synthesis

Timed properties requirement over each action

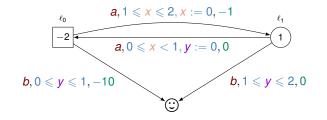
Weighted timed game synthesis

Each action has a cost for the system

⊙ target (T)

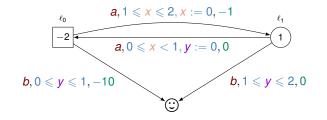


⊙ target (T)



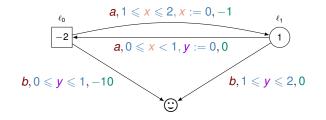
Play ρ $(\ell_1, \begin{bmatrix} x \mapsto 0 \\ y \mapsto 0 \end{bmatrix})$

⊙ target (T)



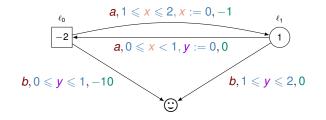
Play ρ $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix})$

⊙ target (T)



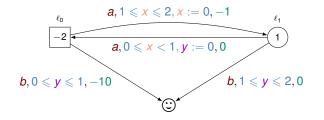
Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a}$

⊙ target (T)

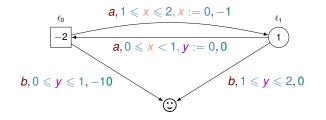


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix})$

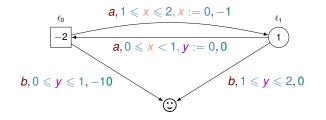
⊙ target (T)



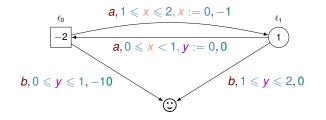
 $\mathsf{Play}\ \rho \qquad (\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, \ a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, \ a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, \ b} (\textcircled{\odot}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$



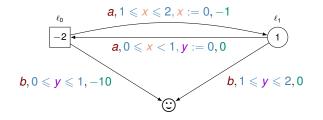
Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{O}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$
+ +



Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{O}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$
 $0 + +$

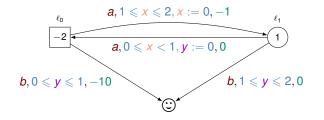


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{O}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$
 $1 \times 0.5 + 0 + +$



Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\bigcirc, \begin{bmatrix} 1/3\\19/12 \end{bmatrix}) \rightsquigarrow -\frac{8}{3}$
 $1 \times 0.5 + 0 + -2 \times 1.25 - 1 + 1 \times \frac{1}{3} + 0$

⊙ target (T)

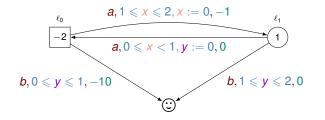


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$

Deterministic strategy

Choose an edge and a delay

⊙ target (T)

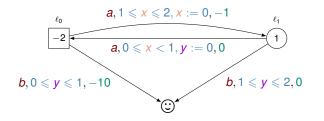


Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\textcircled{\odot}, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$

Deterministic strategy Choose an edge and a delay

From $\begin{pmatrix} \ell_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Choose *a* with $t = \frac{1}{3}$

⊙ target (T)



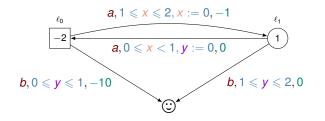
Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\bigcirc, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$

Deterministic strategy

Choose an edge and a delay

From
$$\begin{pmatrix} \ell_1, \begin{bmatrix} 0\\ 0 \end{bmatrix}$$
)
Choose *a* with $t = \frac{1}{3}$

⊙ target (T)



Play
$$\rho$$
 $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix}) \xrightarrow{0.5, a} (\ell_0, \begin{bmatrix} 0.5\\0 \end{bmatrix}) \xrightarrow{1.25, a} (\ell_1, \begin{bmatrix} 0\\1.25 \end{bmatrix}) \xrightarrow{1/3, b} (\bigcirc, \begin{bmatrix} 1/3\\19/12 \end{bmatrix})$

Deterministic strategy

Choose an edge and a delay

From
$$(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix})$$

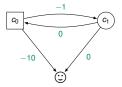
Choose *a* with $t = \frac{1}{3}$

What features on strategies are needed for Min?

Deterministic value

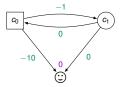
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value



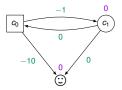
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value



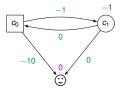
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value



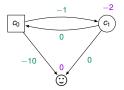
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value



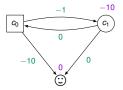
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value



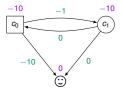
Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value



Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

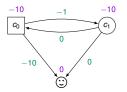


Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

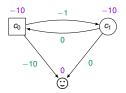


Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



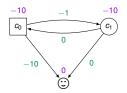
Finite memory

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



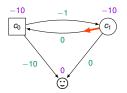
Finite memory

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



Finite memory

Switching strategy:

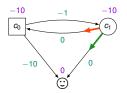
• σ_1 : reach cycle with a weight ≤ -1

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



Finite memory

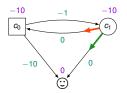
- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value

 $dVal(c) = \inf_{\sigma} \underbrace{\sup_{\tau} cost(Play(c, \sigma, \tau))}_{dVal^{\sigma}(c)}$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

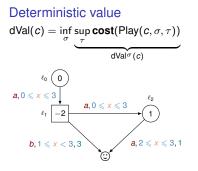
Deterministic value $dVal(c) = \inf_{\sigma} \sup_{\tau} cost(Play(c, \sigma, \tau))$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $\ell_1 \quad -2$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

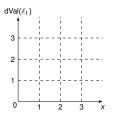
Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica



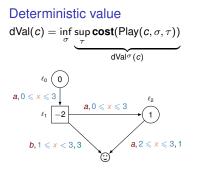
Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



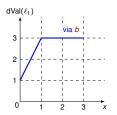
Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica



Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



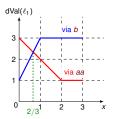
Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games, T. Brihaye, G. Geeraerts, A. Haddad and B. Monmege, 2016, Acta Informatica

Deterministic value $dVal(c) = \inf_{\sigma} \sup_{\tau} cost(Play(c, \sigma, \tau))$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $\ell_1 = 2$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$

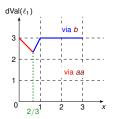


Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

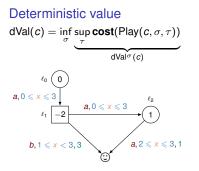
Deterministic value $dVal(c) = \inf_{\sigma} \sup_{\tau} cost(Play(c, \sigma, \tau))$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $\ell_1 = 2$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



Finite memory

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

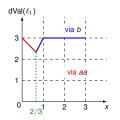


Finite memory

Switching strategy:

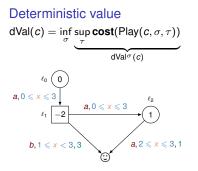
- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

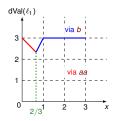


Finite memory

Switching strategy:

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

• if $x \leq 2/3$: Min plays 2/3-x

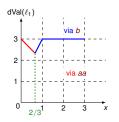
Deterministic value $dVal(c) = \inf_{\sigma} \sup_{\tau} cost(Play(c, \sigma, \tau))$ $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ ℓ_1 $dVal^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$ $dval^{\sigma}(c)$ $dval^{\sigma}(c)$ $a, 0 \le x \le 3$

Finite memory

Switching strategy:

- σ_1 : reach cycle with a weight ≤ -1
- σ₂: reach ☺
- K: number of turns before switch

Optimal strategy for Min $dVal^{\sigma}(c) \leq dVal(c)$



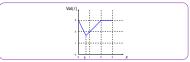
Infinite precision

From ℓ_0 , Min wants to reach the valuation 2/3

- if $x \leq 2/3$: Min plays 2/3-x
- otherwise, Min plays 0

Deterministic value problem

Deterministic value problem



Trading memory with probabilities

Deterministic value problem

Trading memory with probabilities

Robust optimal strategies

Deterministic value problem

Frading memory with probabilities

Robust optimal strategies

Deterministic value problem

Deciding if $dVal(c) \leq \lambda$?

Deciding if $dVal(c) \leq \lambda$?

	WTG		
\mathbb{N}	undecidable		
\mathbb{Z}	undecidable		

On Optimal Timed Strategies, T. Brihaye, V. Bruyère and J.-F. Raskin, 2005, FORMATS

Adding Negative Prices to Priced Timed Games, T. Brihaye, G. Geeraerts, S. Krishna, L. Manasa, B. Monmege, and A. Trivedi, 2014, CONCUR

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	
\mathbb{N}	undecidable		
\mathbb{Z}	undecidable		

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	
\mathbb{N}	undecidable	PTIME	
\mathbb{Z}	undecidable	pseudo-polynomial	

On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction, L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao, 2008, Theory of Computing Systems

Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games., T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, 2017, Acta Informatica

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	
\mathbb{N}	undecidable	PTIME		
\mathbb{Z}	undecidable	pseudo-polynomial		

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	
\mathbb{N}	undecidable	PTIME		
\mathbb{Z}	undecidable	pseudo-polynomial		

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier, 2017, FOSSACS

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP

Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.I Fleury, and K. Larsen, 2004, FSTTCS

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	
\mathbb{N}	undecidable	PTIME	EXPTIME	
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Optimal Reachability in Divergent Weighted Timed Games., D. Busatto-Gaston, B. Monmege, and P.-A. Reynier, 2017, FOSSACS

Optimal Reachability for Weighted Timed Game., R. Alur, M. Bernadsky, and P. Madhusudan, 2004, ICALP Optimal Strategies in Priced Timed Game Automata, P. Bouyer, F. Cassez, E.I Fleury, and K. Larsen, 2004, FSTTCS

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Almost optimal strategies in one clock priced timed games, P. Bouyer, K. Larsen, N. Markey, and J. Rasmussen, 2006, FSTTCS

Two-Player Reachability-Price Games on Single Clock Timed Automata., M. Rutkowski, 2011, QAPL

A Faster Algorithm for Solving One-Clock Priced Timed Games, T. Dueholm Hansen, R. Ibsen-Jensen, and P. Bro Miltersen, 2013, CONCUR

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	1

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	1

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

One-Clock Priced Timed Games are PSPACE-hard., J. Fearnley, R. Ibsen-Jensen, and R. Savani, 2020, LICS

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	1

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	3

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG $c \mapsto Val(c)$ is computable in exponential time

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	1

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

Theorem (CONCUR'22): the problem is decidable for 1-clock WTG

 $c\mapsto Val(c)$ is computable in exponential time

▶ Back-time algorithm: compute $c \mapsto Val(c)$ from x = 1 to 0

Deciding if $dVal(c) \leq \lambda$?

	WTG	0-clock	divergent	1-clock
\mathbb{N}	undecidable	PTIME	EXPTIME	EXPTIME
\mathbb{Z}	undecidable	pseudo-polynomial	EXPTIME	1

Property of divergence

All SCCs of the WTG contain only cycles with a weight $\leqslant -1$ or $\geqslant 1$

PSPACE lower bound

The deterministic value problem is PSPACE-hard for 1-clock WTG

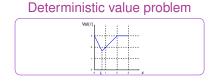
Theorem (CONCUR'22): the problem is decidable for 1-clock WTG

 $c \mapsto Val(c)$ is computable in exponential time

- ▶ Back-time algorithm: compute $c \mapsto Val(c)$ from x = 1 to 0
- Value iteration algorithm: deterministic value is a fixed point of a given operator

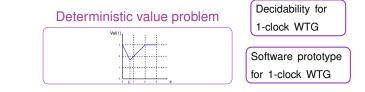
Deterministic value problem

Frading memory with probabilities

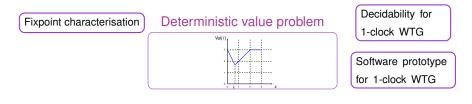


Decidability for 1-clock WTG

Frading memory with probabilities



Frading memory with probabilities



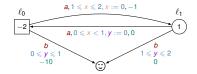
Frading memory with probabilities



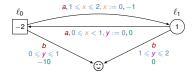
rading memory with probabilities



Trading memory with probabilities

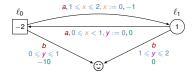


Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science



Stochastic strategy

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

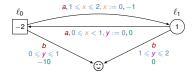


Stochastic strategy

Distribution over possible choices

1. Edge a: finite distribution

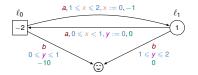
Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

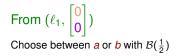


Stochastic strategy

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science



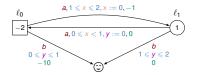


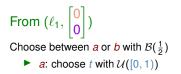
Stochastic strategy

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Min Max



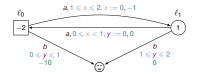


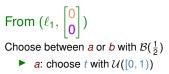
Stochastic strategy

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Min Max





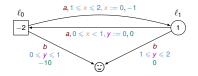
b: choose t with δ_{1.5}

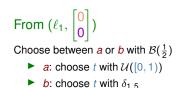
Stochastic strategy

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

(η) Min (θ) Max





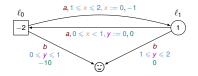
Stochastic strategy

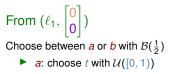
Distribution over possible choices

- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

When we fix two strategies

(η) Min (θ) Max





b: choose t with δ_{1.5}

Stochastic strategy

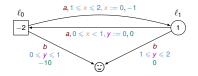
Distribution over possible choices

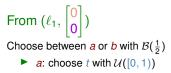
- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

When we fix two strategies

Infinite Markov Chain

 (η) Min θ Max





b: choose t with δ_{1.5}

Stochastic strategy

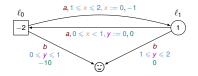
Distribution over possible choices

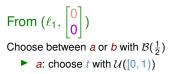
- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

When we fix two strategies

- Infinite Markov Chain
- Replace $cost(Play(c, \eta, \theta))$ by $\mathbb{E}_{c}^{\eta, \theta}(cost)$

 (η) Min θ Max





b: choose t with δ_{1.5}

Stochastic strategy

Distribution over possible choices

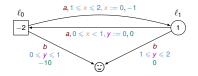
- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

When we fix two strategies

- Infinite Markov Chain
- Replace $cost(Play(c, \eta, \theta))$ by $\mathbb{E}_{c}^{\eta, \theta}(cost)$

Measurability conditions on η and θ

 (η) Min θ Max



From $(\ell_1, \begin{bmatrix} 0\\0 \end{bmatrix})$ Choose between *a* or *b* with $\mathcal{B}(\frac{1}{2})$ \blacktriangleright *a*: choose *t* with $\mathcal{U}([0, 1))$

b: choose t with δ_{1.5}

Stochastic strategy

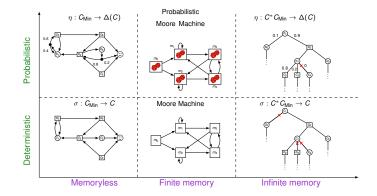
Distribution over possible choices

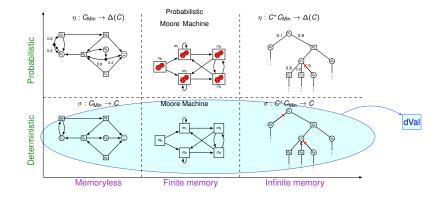
- 1. Edge a: finite distribution
- 2. Delay for a: infinite distribution

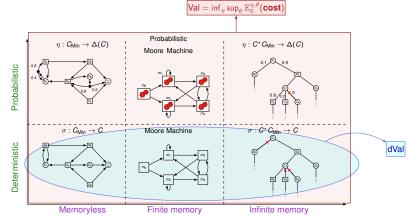
When we fix two strategies

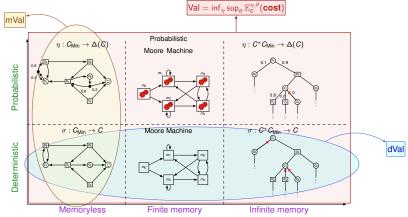
- Infinite Markov Chain
- Replace $cost(Play(c, \eta, \theta))$ by $\mathbb{E}_{c}^{\eta, \theta}(cost)$

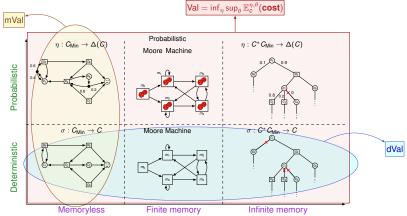
Measurability conditions on η and θ



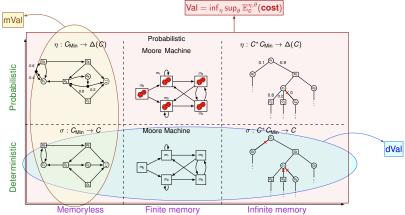






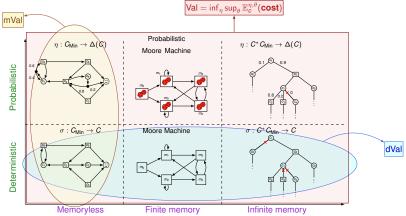


Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities



Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

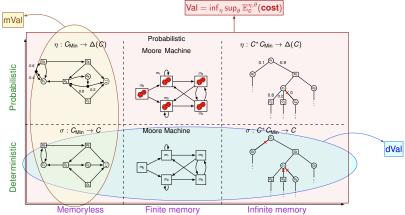
dVal = Val = mVal



Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

dVal = Val = mVal

O-clock weighted timed games



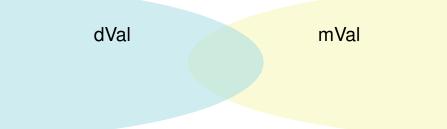
Theorem (CONCUR'20, ICALP'21): Trading memory with probabilities

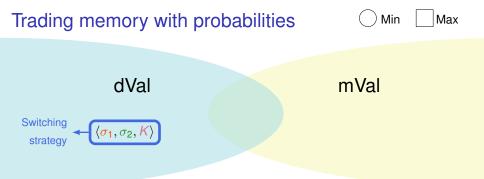
dVal = Val = mVal

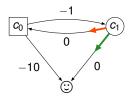
0-clock weighted timed games

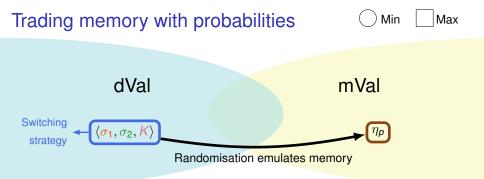
divergent weighted timed games

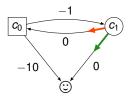
Trading memory with probabilities

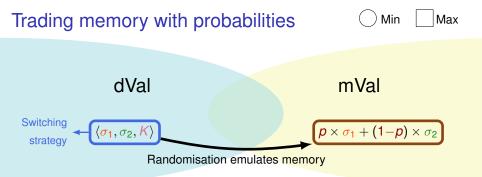


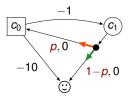


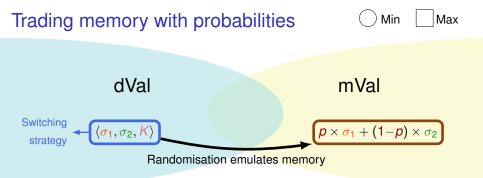


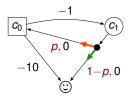




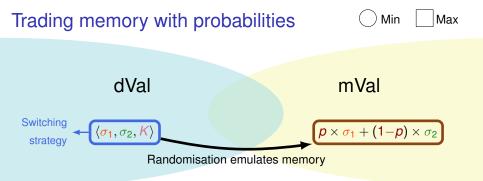


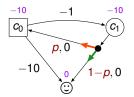




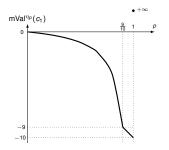


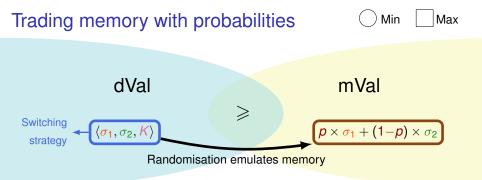
Max has a best response deterministic memoryless strategy: τ

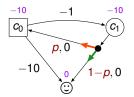




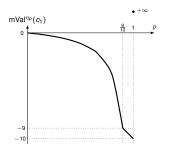
Max has a best response deterministic memoryless strategy: τ







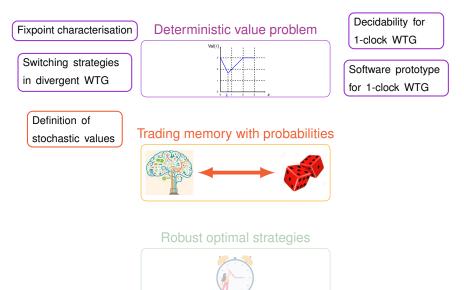
Max has a best response deterministic memoryless strategy: τ

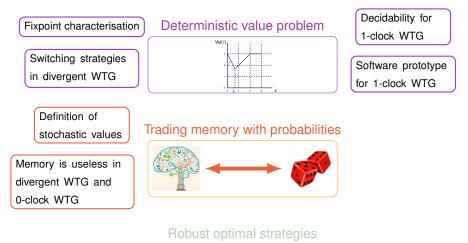


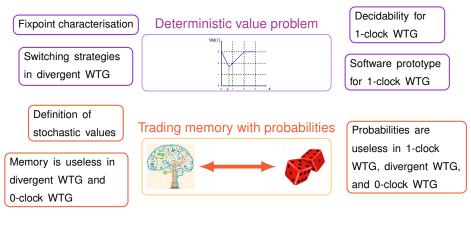


Trading memory with probabilities

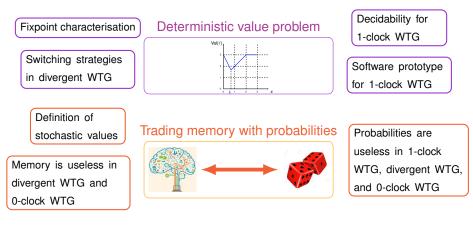
Robust optimal strategies







Robust optimal strategies



Robust optimal strategies

Give to Max the power to perturb the delay chosen by Min

Give to Max the power to perturb the delay chosen by Min

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on δ

 $\blacktriangleright \delta$ is fixed and known

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on $\boldsymbol{\delta}$

 $\blacktriangleright \delta$ is fixed and known

Fixed- δ robust value rVal^{δ}(c) = $\inf_{\substack{\chi \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \operatorname{cost}(\operatorname{Play}(c, \chi, \zeta))$

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on $\boldsymbol{\delta}$

 $\blacktriangleright \delta$ is fixed and known

 $\begin{aligned} \mathsf{Fixed-}\delta \text{ robust value} \\ \mathsf{rVal}^{\delta}(c) &= \inf_{\substack{\chi \\ \delta \text{ -robust}}} \sup_{\substack{\zeta \\ \delta \text{ -robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta)) \end{aligned}$

Encoding fixed- δ semantics into exact one

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on $\boldsymbol{\delta}$

 $\blacktriangleright \delta$ is fixed and known

 $\begin{aligned} \mathsf{Fixed-}\delta \text{ robust value} \\ \mathsf{rVal}^{\delta}(c) &= \inf_{\substack{\chi \\ \delta \text{ -robust}}} \sup_{\substack{\zeta \\ \delta \text{ -robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta)) \end{aligned}$

Encoding fixed- δ semantics into exact one

Need a new clock

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on $\boldsymbol{\delta}$

 $\blacktriangleright \delta$ is fixed and known

δ tends to 0
 δ

Fixed- δ robust value

 $\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$

Encoding fixed- δ semantics into exact one

Need a new clock

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on $\boldsymbol{\delta}$

 $\blacktriangleright \delta$ is fixed and known

δ tends to 0

Fixed- δ robust value

 $\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$

Encoding fixed- δ semantics into exact one

Need a new clock

 $\underset{\substack{\mathsf{V} \mathsf{Val}(c) \\ \delta > 0}{\mathsf{Limit robust value}} \mathsf{Val}^{\delta}(c)$

Give to Max the power to perturb the delay chosen by Min

Fixed- δ semantics

Check the guard after the perturbation $\forall \varepsilon \in [0, \delta], \nu + t + \varepsilon$ satisfies the guard

Two problems induced by our knowledge on $\boldsymbol{\delta}$

 $\blacktriangleright \delta$ is fixed and known

δ tends to 0

Fixed- δ robust value

 $\mathsf{rVal}^{\delta}(c) = \inf_{\substack{\chi \\ \delta \text{-robust} \\ \delta \text{-robust}}} \sup_{\substack{\zeta \\ \delta \text{-robust}}} \mathsf{cost}(\mathsf{Play}(c,\chi,\zeta))$

Encoding fixed- δ semantics into exact one

Need a new clock

 $\begin{array}{l} \text{Limit robust value} \\ \text{rVal}(c) = \lim_{\substack{\delta \to 0 \\ \delta > 0}} \text{rVal}^{\delta}(c) \end{array}$

rVal $^{\delta}$ is monotonic in δ

	WTG		
$rVal^\delta$	undecidable		
rVal	undecidable		

Robust Weighted Timed Automata and Games, P. Bouyer, N. Markey, and O. Sankur, 2013, FORMATS

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable			
rVal	undecidable			

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable			decidable (in \mathbb{N})
rVal	undecidable	1		1

Revisiting Robustness in Priced Timed Game, S. Guha, S. Krishna, L. Manasa, and A. Trivedi, 2015, FSTTCS

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	1	1	1

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	1	1

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

Deciding if rVal^{δ}(*c*) (resp. rVal(*c*)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	1	1

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

A combination of two existing methods

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

A combination of two existing methods

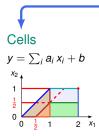
Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

A combination of two existing methods

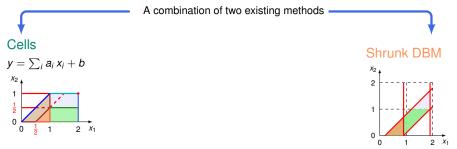


Optimal reachability for weighted timed games, R. Alur, M. Bernadsky and P. Madhusudan, 2004, ICALP

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		.

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG



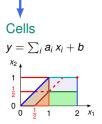
Shrinking timed automata, O. Sankur, P. Bouyer, and N. Markey, 2011, FSTTCS

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		.

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

A combination of two existing methods



Shrunk cells

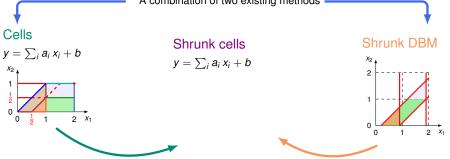
Shrunk DBM

Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		.

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

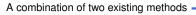
A combination of two existing methods

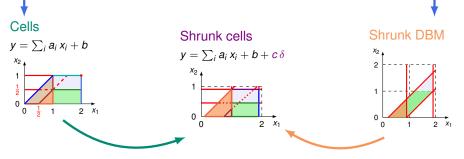


Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable		.

Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

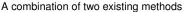


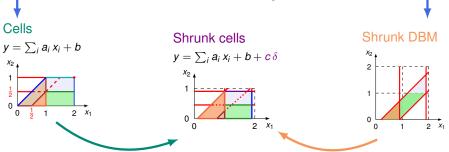


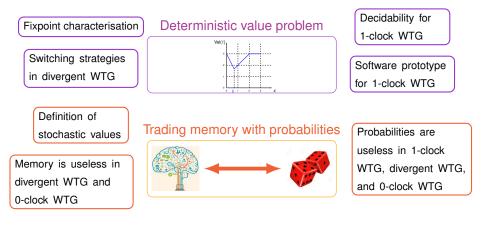
Deciding if $rVal^{\delta}(c)$ (resp. rVal(c)) is at most equal to λ ?

	WTG	acyclic	divergent	1-clock
$rVal^\delta$	undecidable	decidable	decidable	decidable (in \mathbb{N})
rVal	undecidable	decidable	decidable	

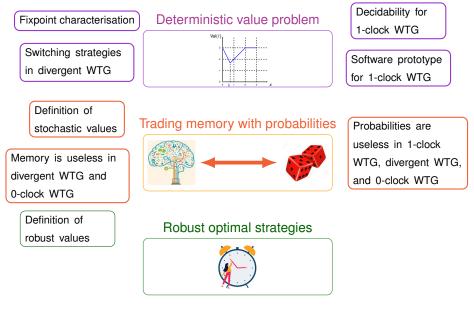
Theorem (SUBMITTED): Decidability of the robust value problem in acyclic WTG

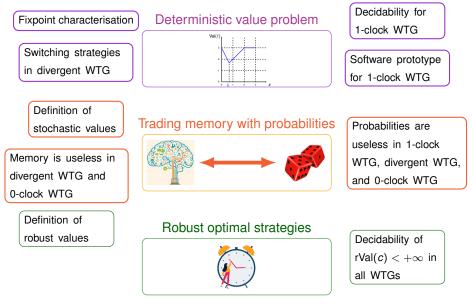


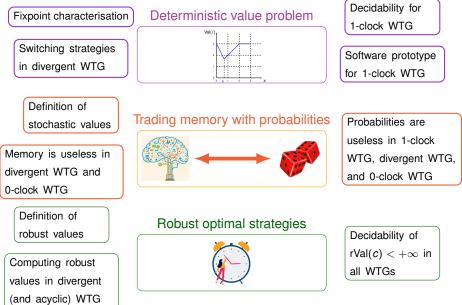




Robust optimal strategies







Computation of (new) values

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Robust values in 1-clock WTG

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Stochastic values in stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from strategies with continuous distribution on delays

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Stochastic values in

stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from strategies with continuous distribution on delays

Using probabilities in (others) games

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Stochastic values in stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from strategies with continuous distribution on delays

Using probabilities in (others) games

Polynomial algorithm to solve 0-clock WTG by strategy iteration

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Stochastic values in stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from strategies with continuous distribution on delays

Using probabilities in (others) games

Polynomial algorithm to solve 0-clock WTG by strategy iteration

Characterisation of memory needed when probabilities are allowed

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Stochastic values in stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from strategies with continuous distribution on delays

Using probabilities in (others) games

Polynomial algorithm to solve 0-clock WTG by strategy iteration

Characterisation of memory needed when probabilities are allowed

Implementation

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Stochastic values in stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from strategies with continuous distribution on delays

Using probabilities in (others) games

Polynomial algorithm to solve 0-clock WTG by strategy iteration

Characterisation of memory needed when probabilities are allowed

Implementation

Solving 1-clock WTG

Computation of (new) values

Trading memory with probabilities in 1-clock WTG

Stochastic values in stochastic timed games

Robust values in 1-clock WTG

Robust stochastic value from strategies with continuous distribution on delays

Using probabilities in (others) games

Polynomial algorithm to solve 0-clock WTG by strategy iteration

Characterisation of memory needed when probabilities are allowed

Implementation

Solving 1-clock WTG

Solving robust acyclic (1-clock) WTG

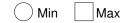
Value Iteration does not converge in finite time in 1-clock WTG

Computation of deterministic value for 1-clock WTG

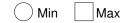
Existence of the expectation

Partition to compute stochastic values

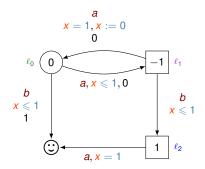
Robust reachability



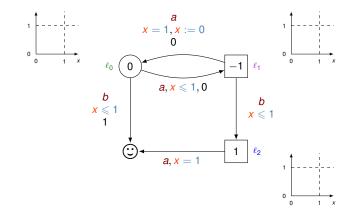
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;}\\ \sup_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Max.} \end{cases}$$



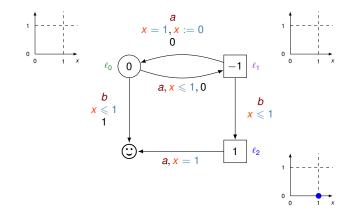
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;}\\ \sup_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Max.} \end{cases}$$



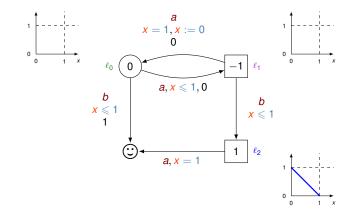
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



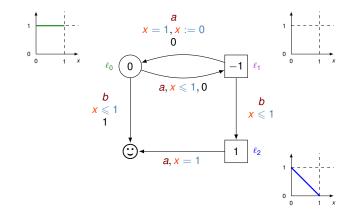
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



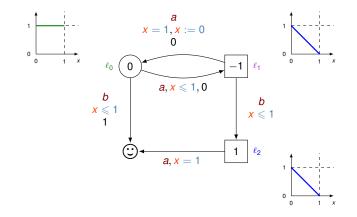
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



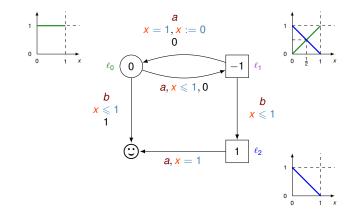
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



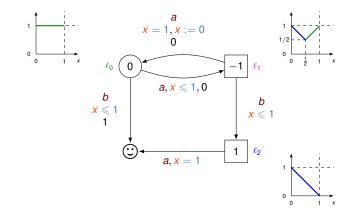
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



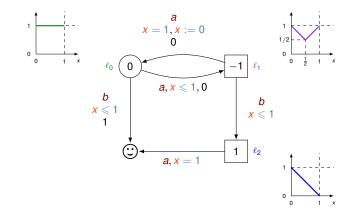
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



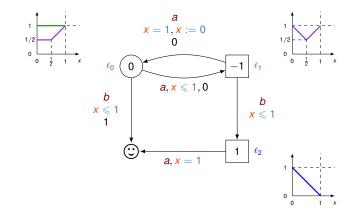
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



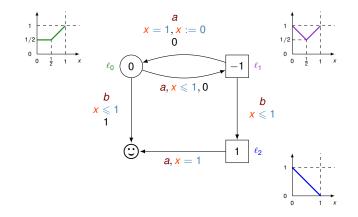
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



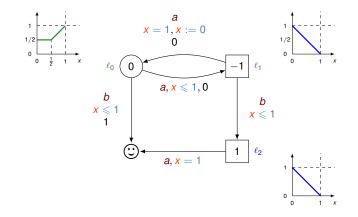
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



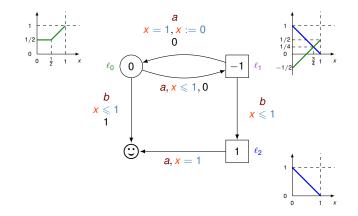
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



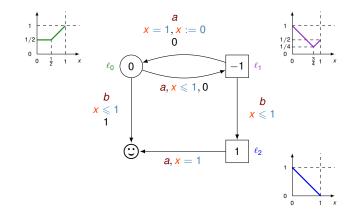
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \odot;\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



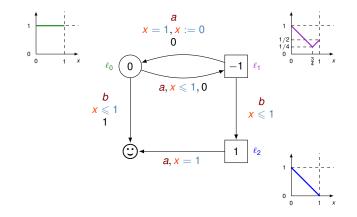
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \odot;\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



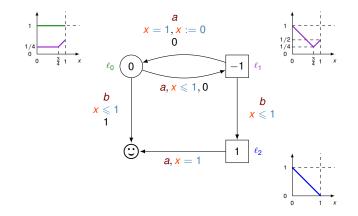
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



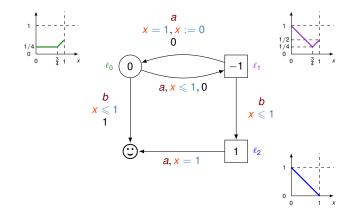
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \odot;\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$

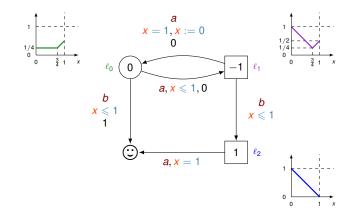


$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



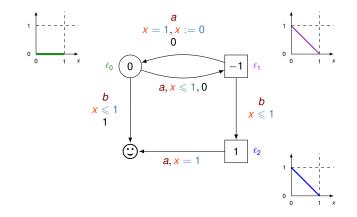
Does not converge in finite time

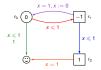
$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \textcircled{o};\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$



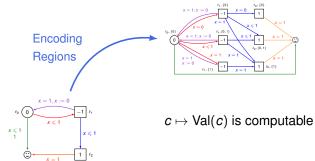
Does not converge in finite time

$$\mathcal{F}(X)(\ell,\nu) = \begin{cases} 0 & \text{if } \ell = \odot;\\ \inf_{\substack{(\ell,\nu) \xrightarrow{a,t} \\ \sup_{(\ell,\nu) \xrightarrow{a,t} \\ (\ell',\nu')}} (\operatorname{wt}(a) + t \operatorname{wt}(\ell) + X(\ell',\nu')) & \text{if } \ell \text{ belongs to Min;} \end{cases}$$

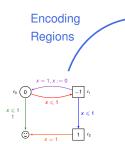


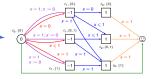


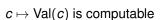
 $c \mapsto Val(c)$ is computable

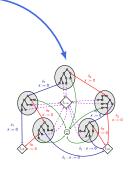


Finite unfolding





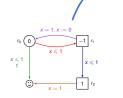




$\begin{array}{c} x = 1; x = 0 \\ x = 1 \\ x = 0 \\ x = 1; x = 1 \\ x = 1 \\$

Finite unfolding

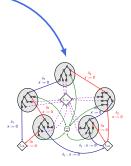
bound the number of reset

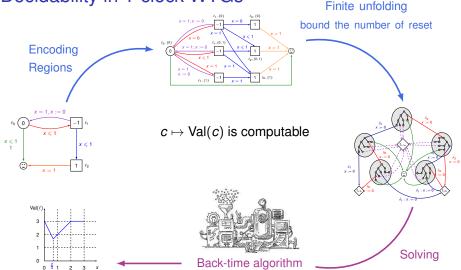


Encoding

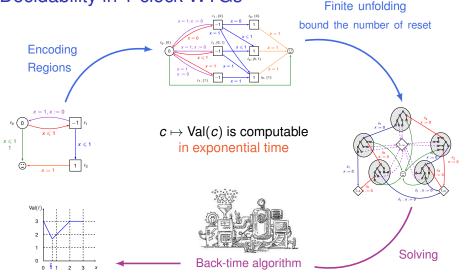
Regions

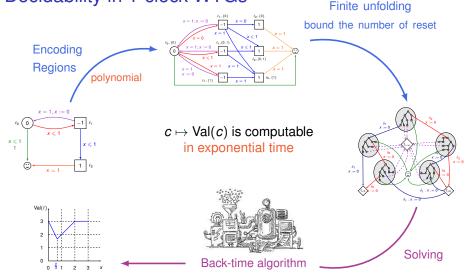
$c \mapsto Val(c)$ is computable





One-Clock Priced Timed Games with Negative Weights, T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, B. Monmege, Log. Methods Comput. Sci., 2022



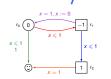


polynomial

 $\ell_0, \{0$

Finite unfolding

exponential



Encoding

Regions

 $c \mapsto Val(c)$ is computable in exponential time

x = 0

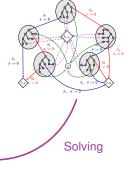
l2, (0, 1)

1 4.0

 $\ell_1, (0, 1$

x = 1; x := 0

Back-time algorithm



Finite unfolding x = 0bound the number of reset £, (0, Encoding Regions polynomial 42. {1} exponential x = 1, x := 0400 $c \mapsto Val(c)$ is computable *x* ≤ 1 *x* ≤ 1 *x* ≤ 1 in exponential time l2 x := 0x = 1Val(ℓ 3 pseudo-2 polynomial Solving 0 Back-time algorithm 3 0 2

One-Clock Priced Timed Games with Negative Weights, T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, B. Monmege, Log. Methods Comput. Sci., 2022

$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge **a**: finite distribution $\eta_E(c)$
- 2. Delay for **a**: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge **a**: finite distribution $\eta_E(c)$
- 2. Delay for **a**: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Existence of the expectation: $\mathbb{E}_{c}^{\eta,\theta}(\mathbf{cost})$ $\widehat{\eta}$ Min $\widehat{\theta}$ Max

$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge **a**: finite distribution $\eta_E(c)$
- 2. Delay for **a**: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \stackrel{t_1, a_1}{\longrightarrow} \dots \stackrel{t_n, e_n}{\longrightarrow} \}$$

Probability of a path

$$\mathbb{P}_{\boldsymbol{c}}^{\eta,\theta}(\boldsymbol{a}\,\pi) = \int_{t\in l(\boldsymbol{c},\boldsymbol{a})} \eta_{\boldsymbol{E}}(\boldsymbol{c})(\boldsymbol{a}) \, \mathbb{P}_{\boldsymbol{c}_{1}}^{\eta,\theta}(\pi) \, \mathrm{d}\eta_{\mathbb{R}^{+}}(\boldsymbol{c},\boldsymbol{a})(t)$$

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

Existence of the expectation: $\mathbb{E}_{c}^{\eta,\theta}(\mathbf{cost})$ $\widehat{\eta}$ Min $\widehat{\theta}$ Max

$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge **a**: finite distribution $\eta_E(c)$
- 2. Delay for **a**: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \stackrel{t_1, a_1}{\longrightarrow} \dots \stackrel{t_n, e_n}{\longrightarrow} \}$$

Probability of a path

$$\mathbb{P}^{\eta,\theta}_{\boldsymbol{c}}(\boldsymbol{a}\,\pi) = \int_{t\in l(\boldsymbol{c},\boldsymbol{a})} \eta_{\mathcal{E}}(\boldsymbol{c})(\boldsymbol{a}) \, \mathbb{P}^{\eta,\theta}_{c_1}(\pi) \, \mathrm{d}\eta_{\mathbb{R}^+}(\boldsymbol{c},\boldsymbol{a})(t)$$

Stochastic Timed Automata, N. Bertrand, P. Bouyer, T. Brihaye, Q. Menet, C. Baier, M. Grosser, and M. Jurdzinzki, 2014, Logical Methods in Computer Science

$\eta, \theta: C^*C \to \Delta(C)$

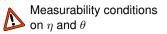
Distribution over possible choices

- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Probability of a path

$$\mathbb{P}_{\boldsymbol{c}}^{\eta,\theta}(\boldsymbol{a}\,\pi) = \int_{t\in l(\boldsymbol{c},\boldsymbol{a})} \eta_{\boldsymbol{E}}(\boldsymbol{c})(\boldsymbol{a}) \, \mathbb{P}_{\boldsymbol{c}_{1}}^{\eta,\theta}(\pi) \, \mathrm{d}\eta_{\mathbb{R}^{+}}(\boldsymbol{c},\boldsymbol{a})(t)$$



$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

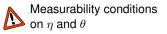
Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Probability of a path

$$\mathbb{P}^{\eta,\theta}_{\boldsymbol{c}}(\boldsymbol{a}\,\pi) = \int_{t\in I(\boldsymbol{c},\boldsymbol{a})} \eta_{\mathcal{E}}(\boldsymbol{c})(\boldsymbol{a}) \, \mathbb{P}^{\eta,\theta}_{\boldsymbol{c}_{1}}(\pi) \, \mathrm{d}\eta_{\mathbb{R}^{+}}(\boldsymbol{c},\boldsymbol{a})(t)$$

Expectation of cost in a path

$$\mathbb{E}_{\boldsymbol{c}}^{\eta,\theta}(\boldsymbol{a}\,\pi) = \int_{t\in l(\boldsymbol{c},\boldsymbol{a})} \eta_{\boldsymbol{\varepsilon}}(\boldsymbol{c})(\boldsymbol{a}) \left[(t \; \mathsf{wt}(\boldsymbol{c}) + \mathsf{wt}(\boldsymbol{a})) \; \mathbb{P}_{\boldsymbol{c}_1}^{\eta,\theta}(\pi) + \mathbb{E}_{\boldsymbol{c}_1}^{\eta,\theta}(\pi) \right] \; \mathrm{d}\eta_{\mathbb{R}^+}(\boldsymbol{c},\boldsymbol{a})(t)$$



$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

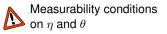
Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Probability of a path

$$\mathbb{P}^{\eta,\theta}_{\boldsymbol{c}}(\boldsymbol{a}\,\pi) = \int_{t\in I(\boldsymbol{c},\boldsymbol{a})} \eta_{\mathcal{E}}(\boldsymbol{c})(\boldsymbol{a}) \, \mathbb{P}^{\eta,\theta}_{\boldsymbol{c}_{1}}(\pi) \, \mathrm{d}\eta_{\mathbb{R}^{+}}(\boldsymbol{c},\boldsymbol{a})(t)$$

Expectation of cost in a path

$$\mathbb{E}_{\boldsymbol{c}}^{\eta,\theta}(\boldsymbol{a}\,\pi) = \int_{t\in l(\boldsymbol{c},\boldsymbol{a})} \eta_{\boldsymbol{\varepsilon}}(\boldsymbol{c})(\boldsymbol{a}) \left[(t \; \mathsf{wt}(\boldsymbol{c}) + \mathsf{wt}(\boldsymbol{a})) \; \mathbb{P}_{\boldsymbol{c}_1}^{\eta,\theta}(\pi) + \mathbb{E}_{\boldsymbol{c}_1}^{\eta,\theta}(\pi) \right] \; \mathrm{d}\eta_{\mathbb{R}^+}(\boldsymbol{c},\boldsymbol{a})(t)$$



$\eta, \theta: C^*C \to \Delta(C)$

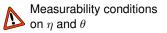
Distribution over possible choices

- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for **a**: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Expectation of cost

$$\mathbb{E}^{\eta, heta}_{c}(extsf{cost}) = \sum_{\pi} \mathbb{E}^{\eta, heta}_{c}(\pi)$$



$\eta, \theta: C^*C \to \Delta(C)$

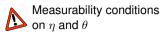
Distribution over possible choices

- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Expectation of cost

$$\mathbb{E}^{\eta, heta}_{c}(extsf{cost}) = \sum_{\pi} \mathbb{E}^{\eta, heta}_{c}(\pi)$$



$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

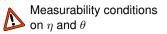
- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Expectation of cost

$$\mathbb{E}^{\eta, heta}_{c}(extsf{cost}) = \sum_{\pi} \mathbb{E}^{\eta, heta}_{c}(\pi)$$

For all
$$\theta$$
, $\mathbb{P}^{\eta,\theta}_{c}(\diamond \odot) = 1$



$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

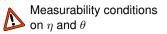
- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Expectation of cost

$$\mathbb{E}^{\eta, heta}_{c}(\mathsf{cost}) = \sum_{\substack{\pi \ arphi o \Im }} \mathbb{E}^{\eta, heta}_{c}(\pi)$$

For all
$$\theta$$
, $\mathbb{P}^{\eta,\theta}_{c}(\diamond \odot) = 1$



$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

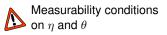
Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Expectation of cost

Convergence ?

$$\mathbb{E}^{\eta, heta}_{m{c}}(extsf{cost}) = \sum_{\substack{\pi \ arphi imes \odot \\ \pi arphi imes \odot}} \mathbb{E}^{\eta, heta}_{m{c}}(\pi)$$

For all
$$\theta$$
, $\mathbb{P}^{\eta,\theta}_{c}(\diamond \odot) = 1$



$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge **a**: finite distribution $\eta_E(c)$
- 2. Delay for **a**: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

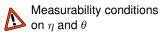
Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$

Expectation of **cost**

$$\mathbb{E}_{c}^{\eta,\theta}(\mathbf{cost}) = \sum_{\substack{\pi \\ \pi \models \diamond \textcircled{\odot}}} \mathbb{E}_{c}^{\eta,\theta}(\pi) \qquad |\mathbb{E}_{c}^{\eta,\theta}(\pi)|$$

Restrictions on strategies for Min

For all
$$\theta$$
, $\mathbb{P}^{\eta,\theta}_{c}(\diamond \odot) = 1$



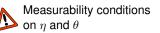
?

$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge **a**: finite distribution $\eta_E(c)$
- 2. Delay for **a**: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$



Expectation of **cost**

$$\mathbb{E}_{c}^{\eta,\theta}(\text{cost}) = \sum_{\substack{\pi \\ \pi \models \diamond \bigcirc}} \mathbb{E}_{c}^{\eta,\theta}(\pi)$$
Convergence ?
 $|\mathbb{E}_{c}^{\eta,\theta}(\pi)| \leq k|\pi| \ \alpha^{-|\pi|}$

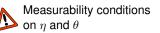
For all
$$\theta$$
, $\mathbb{P}^{\eta,\theta}_{c}(\diamond \odot) = 1$

$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \stackrel{t_1, a_1}{\longrightarrow} \dots \stackrel{t_n, e_n}{\longrightarrow} \}$$



For all
$$\theta$$
, $\mathbb{P}^{\eta,\theta}_{c}(\diamond \odot) = 1$

$\eta, \theta: C^*C \to \Delta(C)$

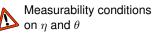
Distribution over possible choices

1. Edge *a*: finite distribution $\eta_E(c)$

.

2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$



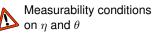
For all
$$\theta$$
, $\mathbb{P}^{\eta,\theta}_{c}(\diamond \odot) = 1$

$\eta, \theta: C^*C \to \Delta(C)$

Distribution over possible choices

- 1. Edge *a*: finite distribution $\eta_E(c)$
- 2. Delay for *a*: infinite distribution: $\eta_{\mathbb{R}^+}(c, a)$

Path
$$\pi = (c, a_1 \dots a_n) = \{t_1, \dots, t_n \mid c \xrightarrow{t_1, a_1} \dots \xrightarrow{t_n, e_n}\}$$



Restrictions on strategies for Min

For all
$$\theta$$
, $\mathbb{P}^{\eta,\theta}_{c}(\diamond \odot) = 1$

© must be reached quickly enough

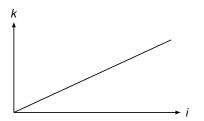
Computation of the expectation $\mathbb{E}_{c}^{\eta_{p,\tau}}(\mathbf{cost})$

$$\mathbb{E}^{\eta
ho, au}_{\mathsf{c}}(\mathsf{cost}) = \sum_{\substack{
ho \
ho \models \diamond \textcircled{\odot}}} \mathsf{cost}(
ho) \, \mathbb{P}(
ho)$$

 $\eta_{p} = \boldsymbol{p} \times \boldsymbol{\sigma}_{1} + (1 - \boldsymbol{p}) \times \boldsymbol{\sigma}_{2}$

$$\mathbb{E}^{\eta
ho, au}_{c}(\operatorname{cost}) = \sum_{\substack{
ho \
ho \in \odot}} \operatorname{cost}(
ho) \mathbb{P}(
ho) = + +$$

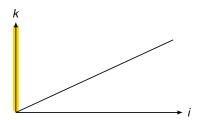
 $\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$



$$\mathbb{E}^{\eta
ho, au}_{c}(\operatorname{cost}) = \sum_{\substack{
ho \
ho \in \diamond \textcircled{\odot}}} \operatorname{cost}(
ho) \, \mathbb{P}(
ho) = \, \mathbb{E} \, + \, + \,$$

$$\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$

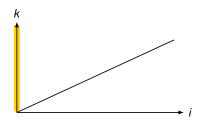
Yellow zone All plays conforming to σ_1



$$\mathbb{E}^{\eta
ho, au}_{c}(ext{cost}) = \sum_{\substack{
ho \
ho \oplus \diamond \textcircled{\odot}}} ext{cost}(
ho) \, \mathbb{P}(
ho) = \, \mathbb{E} \, + \, + \, +$$

$$\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$

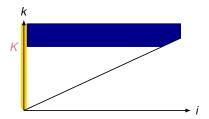
Yellow zone All plays conforming to σ_1 $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$



$$\mathbb{E}^{\eta
ho, au}_{c}(\mathsf{cost}) = \sum_{\substack{
ho \
ho \in \diamondsuit \mathfrak{S}}} \mathsf{cost}(
ho) \, \mathbb{P}(
ho) = \mathbb{E} \, + \, \mathbb{E} \, +$$

$$\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$

Yellow zone All plays conforming to σ_1 $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$

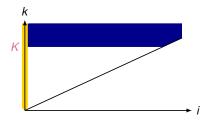


Blue zone Plays with many negative cycles

$$\mathbb{E}^{\eta
ho, au}_{c}(\mathsf{cost}) = \sum_{\substack{
ho \
ho \in \diamondsuit \mathfrak{S}}} \mathsf{cost}(
ho) \, \mathbb{P}(
ho) = \mathbb{E} \, + \, \mathbb{E} \, +$$

$$\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$

Yellow zone All plays conforming to σ_1 $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, \kappa \rangle}(c)$

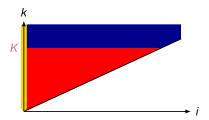


Blue zone Plays with many negative cycles $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$

$$\mathbb{E}_{c}^{\eta
ho, au}(\mathsf{cost}) = \sum_{\substack{
ho \
ho \models \diamond \textcircled{\odot}}} \mathsf{cost}(
ho) \, \mathbb{P}(
ho) = \mathbb{E} \, + \, \mathbb{E} \, + \, \mathbb{E}$$

$$\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$

Yellow zone All plays conforming to σ_1 $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, \kappa \rangle}(c)$



Blue zone Plays with many negative cycles $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$

k size of play reaching the target *i* number of choices given by σ_2

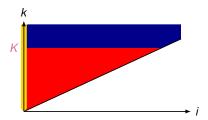
Red zone

Rest of plays

$$\mathbb{E}_{c}^{\eta
ho, au}(\mathsf{cost}) = \sum_{\substack{
ho \
ho \models \diamond \textcircled{\odot}}} \mathsf{cost}(
ho) \, \mathbb{P}(
ho) = \, \mathbb{E} \, + \, \mathbb{E} \, + \, \mathbb{E}$$

$$\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$

Yellow zone All plays conforming to σ_1 $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, \kappa \rangle}(c)$



Blue zone Plays with many negative cycles $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$

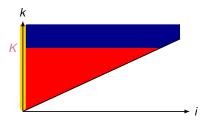
k size of play reaching the target *i* number of choices given by σ_2

Red zone Rest of plays

$$\mathbb{E} \underset{\substack{p \to 1 \\ p < 1}}{\longrightarrow} 0$$

$$\mathbb{E}_{c}^{\eta
ho, au}(\mathsf{cost}) = \sum_{\substack{
ho \
ho \models \diamond \textcircled{\odot}}} \mathsf{cost}(
ho) \, \mathbb{P}(
ho) = \, \mathbb{E} \, + \, \mathbb{E} \, + \, \mathbb{E}$$

$$\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$



k size of play reaching the target *i* number of choices given by σ_2 Yellow zone All plays conforming to σ_1 $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$

Blue zone Plays with many negative cycles $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$

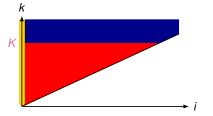
$$\lim_{\substack{p \to 1 \\ p < 1}} \mathbb{E} + \mathbb{E} \leq \mathsf{dVal}^{\langle \sigma_1, \sigma_2 \mathcal{K} \rangle}(c)$$

Red zone Rest of plays

$$\mathbb{E} \underset{\substack{p \to 1 \\ p < 1}}{\longrightarrow} 0$$

$$\mathbb{E}_{c}^{\eta\rho,\tau}(\mathsf{cost}) = \sum_{\substack{\rho \\ \rho \models \diamond \textcircled{\odot}}} \mathsf{cost}(\rho) \, \mathbb{P}(\rho) = \mathbb{E} + \mathbb{E} + \mathbb{E} \Rightarrow \lim_{\substack{\rho \to 1 \\ p < 1}} \mathbb{E}_{c}^{\eta\rho,\tau}(\mathsf{cost}) \leqslant \mathsf{dVal}^{\langle \sigma_{1},\sigma_{2},\mathsf{K} \rangle}(c)$$

$$\eta_{p} = p \times \sigma_{1} + (1-p) \times \sigma_{2}$$



Yellow zone All plays conforming to σ_1 $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$

Blue zone Plays with many negative cycles $cost(\rho) \leq dVal^{\langle \sigma_1, \sigma_2, K \rangle}(c)$

$$\lim_{\substack{p \to 1 \\ p < 1}} \mathbb{E} + \mathbb{E} \leq \mathsf{dVal}^{\langle \sigma_1, \sigma_2 \mathcal{K} \rangle}(c)$$

k size of play reaching the target *i* number of choices given by σ_2

Red zone Rest of plays

$$\frac{\mathbb{E}}{\underset{p<1}{\longrightarrow}} \underset{p<1}{\longrightarrow} 0$$

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

hardness

Probabilistic Robust Timed Game, Y. Oualhadj, PA. Reynier, and O. Sankur, 2014, CONCUR

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

- hardness
- easiness:

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

- hardness
- easiness: encoding the fixed- δ semantics into excess one

Excessive semantics

Check the guard before the perturbation:

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

- hardness
- easiness: encoding the fixed- δ semantics into excess one

Excessive semantics

Check the guard before the perturbation: $\nu + t$ satisfies the guard

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

- hardness
- easiness: encoding the fixed- δ semantics into excess one

Excessive semantics

Check the guard before the perturbation: $\nu + t$ satisfies the guard Robust reachability under the excessive semantics is EXPTIME-complete

Robust Controller Synthesis in Timed Automata, O. Sankur, P. Bouyer, N.s Markey, and PA. Reynier, 2013, CONCUR Robust Reachability in Timed Automata: Game-Based Approach, P. Bouyer, N. Markey, and O. Sankur, 2015, TCS

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

- hardness
- easiness: encoding the fixed- δ semantics into excess one

Excessive semantics

Check the guard before the perturbation: $\nu + t$ satisfies the guard Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed- δ semantics into the excess one

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

- hardness
- easiness: encoding the fixed- δ semantics into excess one

Excessive semantics

Check the guard before the perturbation: $\nu + t$ satisfies the guard Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed- δ semantics into the excess one

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

- hardness
- easiness: encoding the fixed- δ semantics into excess one

Excessive semantics

Check the guard before the perturbation: $\nu + t$ satisfies the guard Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed- δ semantics into the excess one

Max controls a posteriori the delay chosen by Min

$$\bigcirc \xrightarrow{g,Y} \diamondsuit$$

Deciding if exists $\delta > 0$ such that Min reaches \odot when Max perturbs with $[0, \delta]$?

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete

- hardness
- easiness: encoding the fixed- δ semantics into excess one

Excessive semantics

Check the guard before the perturbation: $\nu + t$ satisfies the guard Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed- δ semantics into the excess one

Max controls a posteriori the delay chosen by Min

