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PSPACE lower bound
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PSPACE-hard for 1-clock WTG

Theorem (CONCUR’22): the problem is decidable for 1-clock WTG
c 7→ Val(c) is computable in exponential time

▶ Back-time algorithm: compute c 7→ Val(c) from x = 1 to 0
▶ Value iteration algorithm: deterministic value is a fixed point of a given operator
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A combination of two existing methods
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Appendix

Value Iteration does not converge in finite time in 1-clock WTG

Computation of deterministic value for 1-clock WTG

Existence of the expectation

Partition to compute stochastic values

Robust reachability
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Value Iteration for 1-clock WTG

2/6

Min Max

F(X)(ℓ, ν) =


0 if ℓ = ,;

inf
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Min;

sup
(ℓ,ν)

a,t−−→(ℓ′,ν′)

(
wt(a) + t wt(ℓ) + X(ℓ′, ν′)

)
if ℓ belongs to Max.
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t1,a1−→ . . .

tn,en−→}

Expectation of cost

Eη,θ
c (cost) =

∑
π

π|=⋄,

Eη,θ
c (π)

Convergence ?
|Eη,θ

c (π)| ⩽ k |π|︸︷︷︸
|cost(π)|

α−|π|︸ ︷︷ ︸
Pη,θ

c (π)

Restrictions on strategies for Min

▶ For all θ, Pη,θ
c (⋄,) = 1

▶ , must be reached quickly enough



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ)

=

E

+

E

+

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) =

E

+

E

+

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E +

E

+

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1

cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E +

E

+

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E +

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles

cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E +

E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E + E

⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Red zone
Rest of plays

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E + E

⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Red zone
Rest of plays

E −→
p→1
p<1

0

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E + E

⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Red zone
Rest of plays

E −→
p→1
p<1

0

lim
p→1
p<1

E+ E ⩽ dVal⟨σ1,σ2K⟩(c)

ηp = p × σ1 + (1−p)× σ2



Computation of the expectation Eηp,τ
c (cost)

5/6

Eηp,τ
c (cost) =

∑
ρ

ρ|=⋄,

cost(ρ)P(ρ) = E + E + E ⇒ lim
p→1
p<1

Eηp,τ
c (cost) ⩽ dVal⟨σ1,σ2,K⟩(c)

k size of play reaching the target

i number of choices given by σ2

i

k

K

Yellow zone
All plays conforming to σ1
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Blue zone
Plays with many negative cycles
cost(ρ) ⩽ dVal⟨σ1,σ2,K⟩(c)

Red zone
Rest of plays

E −→
p→1
p<1

0

lim
p→1
p<1

E+ E ⩽ dVal⟨σ1,σ2K⟩(c)

ηp = p × σ1 + (1−p)× σ2



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

Probabilistic Robust Timed Game, Y. Oualhadj, PA. Reynier, and O. Sankur, 2014, CONCUR

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness:



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation:

Robust reachability under the excessive semantics is EXPTIME-complete



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard

Robust reachability under the excessive semantics is EXPTIME-complete



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

Robust Controller Synthesis in Timed Automata, O. Sankur, P. Bouyer, N.s Markey, and PA. Reynier, 2013, CONCUR

Robust Reachability in Timed Automata: Game-Based Approach, P. Bouyer, N. Markey, and O. Sankur, 2015, TCS

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed-δ semantics into the excess one



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed-δ semantics into the excess one

g,Y
u

/

g,Y

¬g



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed-δ semantics into the excess one
Max controls a posteriori the delay chosen by Min

g,Y
u

/

g,Y

¬g



Robust reachability
Deciding if exists δ > 0 such that Min reaches , when Max perturbs with [0, δ]?

6/6

Theorem (SUBMITTED): Robust reachability problem is EXPTIME-complete
▶ hardness
▶ easiness: encoding the fixed-δ semantics into excess one

Excessive semantics
Check the guard before the perturbation: ν + t satisfies the guard
Robust reachability under the excessive semantics is EXPTIME-complete

Encoding fixed-δ semantics into the excess one
Max controls a posteriori the delay chosen by Min

g,Y
u

/

g,Y

¬g


	Appendix
	Value Iteration does not converge in finite time in 1-clock WTG
	Computation of deterministic value for 1-clock WTG
	Existence of the expectation
	Partition to compute stochastic values
	Robust reachability


