

Introduction to toric geometry

Kylian Prigent

January 3, 2026

Affine toric varieties

Definition : Torus

A torus T is an affine variety isomorphic to $(\mathbb{C}^*)^n$ endowed with a group structure inherited from the isomorphism.

Affine toric varieties

Definition : Torus

A torus T is an affine variety isomorphic to $(\mathbb{C}^*)^n$ endowed with a group structure inherited from the isomorphism.

Definition : Affine toric variety

An affine toric variety is an irreducible affine variety V containing a torus T_N which is a Zariski open subset and such that the action of T_N on itself extends to an action $T_N \times V \rightarrow V$ on V given by a morphism.

$\mathbf{V}(x^3 - y^2) \subseteq \mathbb{C}^2$ is an affine toric variety with torus:

$$\{(t^2, t^3) \mid t \in \mathbb{C}^*\} \simeq \mathbb{C}^*$$

Equivalent definition : Affine semigroups

Definition : Affine semigroup

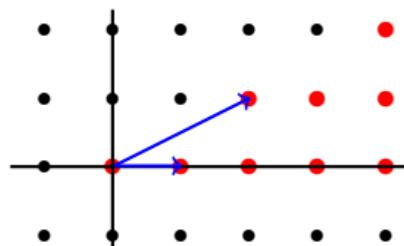
An S affine semigroup is a semigroup such that the operation is commutative, S is finitely generated and S can be embedded into a lattice.

Equivalent definition : Affine semigroups

Definition : Affine semigroup

An S affine semigroup is a semigroup such that the operation is commutative, S is finitely generated and S can be embedded into a lattice.

Let $\mathcal{A} = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \subset \mathbb{R}^2$ then $\mathbb{N}\mathcal{A}$ is the affine semigroup composed of the red dots.

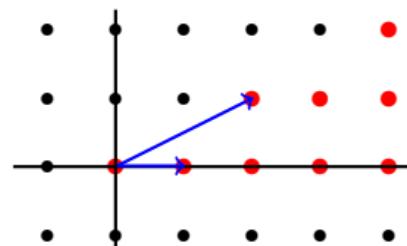


Equivalent definition : Affine semigroups

Definition : Affine semigroup

An S affine semigroup is a semigroup such that the operation is commutative, S is finitely generated and S can be embedded into a lattice.

Let $\mathcal{A} = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \subset \mathbb{R}^2$ then $\mathbb{N}\mathcal{A}$ is the affine semigroup composed of the red dots.



Theorem :

Let V be an affine variety. The following are equivalent:

- ① V is an affine toric variety
- ② $V = \text{Spec}(\mathbb{C}[S])$ for an affine semigroup S

Convex polyhedral cones

Fix M and N two dual vector spaces.

Definition : Convex polyhedral cone

$$\sigma = \text{Cone}(S) = \left\{ \sum_{u \in S} \lambda_u u \mid \lambda_u \geq 0 \right\} \subseteq N$$

where $S \subseteq N$ is a finite set.

Convex polyhedral cones

Fix M and N two dual vector spaces.

Definition : Convex polyhedral cone

$$\sigma = \text{Cone}(S) = \left\{ \sum_{u \in S} \lambda_u u \mid \lambda_u \geq 0 \right\} \subseteq N$$

where $S \subseteq N$ is a finite set.

Definition : Dual cone

The dual cone of convex polyhedral cone σ is:

$$\sigma^\vee = \{m \in M \mid \langle m, u \rangle \geq 0, \forall u \in \sigma\} \subseteq M.$$

$$\dim(\sigma) := \dim(\text{Span}(\sigma))$$

Example : $\sigma = \text{Cone}(2e_1 + e_2, e_2 - e_1, 2e_2 + e_3, -e_1 + e_2 - 2e_3)$

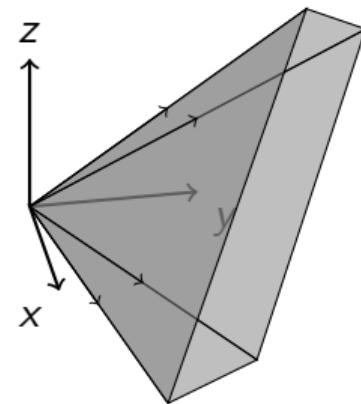
- $\dim(\sigma) = 3$
- the facets are the shaded areas;
- the facet normals are:

$$e_1 - 2e_2 + 4e_3$$

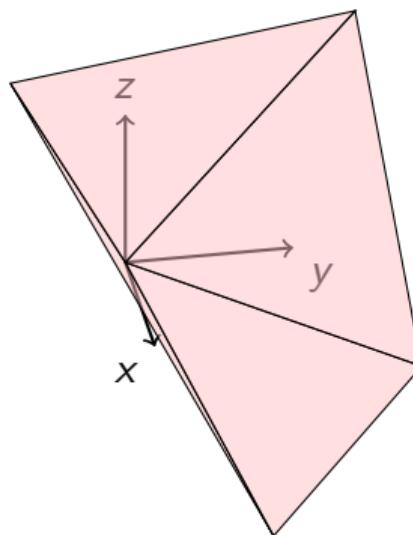
$$e_1 + e_2 - 2e_3$$

$$e_1 + e_2$$

$$-2e_1 + 4e_2 + 3e_3$$



Thus $\sigma^\vee = \text{Cone}(e_1 - 2e_2 + 4e_3, e_1 + e_2 - 2e_3, e_1 + e_2, -2e_1 + 4e_2 + 3e_3)$.



Link with affine toric varieties

Let N and M be dual lattices and fix $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$ and $M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$.

A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is rational if $\sigma = \text{Cone}(S)$ for some finite set $S \subseteq N$.

Link with affine toric varieties

Let N and M be dual lattices and fix $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$ and $M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$.

A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is rational if $\sigma = \text{Cone}(S)$ for some finite set $S \subseteq N$.

Proposition : Gordan's Lemma

$S_{\sigma} = \sigma^{\vee} \cap M$ is finitely generated and hence is an affine semigroup.

Link with affine toric varieties

Let N and M be dual lattices and fix $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$ and $M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$.

A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is rational if $\sigma = \text{Cone}(S)$ for some finite set $S \subseteq N$.

Proposition : Gordan's Lemma

$S_{\sigma} = \sigma^{\vee} \cap M$ is finitely generated and hence is an affine semigroup.

Theorem :

Let $\sigma \subseteq N_{\mathbb{R}} \simeq \mathbb{R}^n$ be a rational polyhedral cone with semigroup $S_{\sigma} = \sigma^{\vee} \cap M$. Then

$$U_{\sigma} = \text{Spec}(\mathbb{C}[S_{\sigma}]) = \text{Spec}(\mathbb{C}[\sigma^{\vee} \cap M])$$

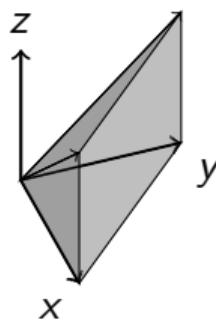
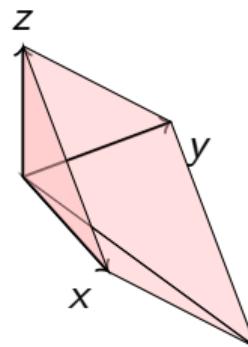
is an affine toric variety. Furthermore,

$\dim U_{\sigma} = n \iff$ the torus of U_{σ} is $T_N = N \otimes_{\mathbb{Z}} \mathbb{C}^*$ \iff σ is strongly convex.

Example

$$\sigma = \text{Cone}(e_1, e_2, e_1 + e_3, e_2 + e_3) \subseteq N_{\mathbb{R}}$$

$$\sigma^\vee = \text{Cone}(e_1, e_2, e_3, e_1 + e_2 - e_3) \subseteq M_{\mathbb{R}}$$



$V = \mathbf{V}(xy - zw) \subset \mathbb{C}^4$ is an affine toric variety with torus $(\mathbb{C}^*)^3$

$S = \mathbb{N}\{e_1, e_2, e_3, e_1 + e_2 - e_3\}$ is an affine semigroup which generates the character lattice of the torus of V .

$$U_\sigma = \mathbf{V}(xy - zw)$$