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Introduction

This seminary is an introduction to affine toric varieties which form a large family of examples one often
studies first to test algebraic geometry theorems. In this seminary we first introduce tori and affine toric
varieties. After giving the definitions we show different point of views on affine toric varieties and then
link them all so that we can have four characterizations of affine toric varieties. In the second part we
introduce polyhedral cones and use duality and convexity to finally show that we can think of affine toric
varieties as coming from cones.

I have studied this seminary with the book [1] and in the second part I have also used [2].

Je remercie Carl Tipler pour sa disponibilité et le temps qu’il m’a accordé pour me proposer ce sujet de

séminaire.

I Introduction to affine toric varieties

I.A  Tori

A torus T is an affine variety isomorphic to (C*)™ endowed with a group stucture inherited from
the isomorphism.

A torus is thus irreducible.

Character and one-parameter subgroups We remind you that a character of a group T is a group
homomorphism x : T — C*.
The characters of (C*)™ are given by:

for m=(a1,...,an) €Z™ define X" (t1,...,tn) =17 ...t

Thus they form a group isomorphic to Z™ and the following remark stands.

For a torus T, its characters form a free abelian group M of rank equal to the dimension of T’

We also remind one-parameter subgroup of a torus 7" is a group homomorphism A : C* — T.
The one-parameter subgroups of (C*)" are given by:

for w=(b1,...,bn) €Z"™ define A“(t) = (¢",... t").

Thus they form a group isomorphic to Z™ and the following remark stands.

For a torus T, its one-parameter subgroups form a free abelian group N of rank equal to the
dimension of T’

x N
u

)

One can then define a bilinear pairing ( -, - ) : { ]\Tr{ : % where Y™, A" — (Xm oYt tk)

If T=(C*)" and m = (a1,...,a,) € Z" and u = (by,...,b,) € Z™ then ( m,u ) =Y | a;b;.

Moreover one obtains a canonical isomorphism N @7 C* ~T ; u®t = A\*“(¢). Hence in the litterature
we often refer to a torus by T.
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Let Ty and T» be two tori and let f : T3 — T be a group homomorphism. Then the image f(77)
is a torus and is closed in T5.

Proof. We can suppose f : (C*)" — (C*)°. Thus component wise f; : (C*)" — C* is a group homomor-
phism (a character) so is of the form f;(t1,...,t,) =t7*...t% and its image is either {1} or C*. So the
image of f is ((C*)d for some d < s and thus is a torus. |

I.B Affine toric variety: definition

We can now define the object we want to study.

An affine toric variety is an irreducible affine variety V' containing a torus T which is a Zariski
open subset and such that the action of Ty on itself extends to an action Ty x V' — V on V given
by a morphism.

Example 8:

Let C be the curve C = V(2® — y?) C C?. This is an affine toric variety with torus:

o0} =Cn(C)’={%t) | teC}~C*

I.C Equivalent points of view

Construction of affine toric varieties Let Ty be a torus and let M be its character group. Let
A={my,...,ms} C M be a finite subset. Consider the map

. TN _> CS
o {0 e, e

It can be regarded as a map between tori (with value in (C*)*), hence its image T' = ¢ 4(T) is a torus
by the preceeding lemma and is closed in (C*)®.

Define Y4 the Zariski closure of the image. Then Y 4 is an affine toric variety whose torus has character
lattice Z.A (where lattice means free abelian group of finite rank: for example N and M are lattices of a
torus T ).

It is thus clear T C Y4 N (C*)®. The converse is true since (C*)® is an affine variety.

Thus T = Y4 N (C*)°. But since (C*)® is open in C* with the usual topology, it is still open with the
Zariski topology and so T' is Zariski open in Y 4. Since T is a torus, it is irreducible. So is Y4.

Consider now the action of T. The action of t € T on C*® sends varieties to varieties and then
T =1t-T Ct-Yy is a variety containing T. Hence Y4 C t - Y4 by definition of Zariski closure.
The same is true with t=! so the inclusion is an equality and finally Y4 is an affine toric variety.

Since T' = ¢ 4(T), the map factorizes through T:
pa=Ty - T — (C)°.

It induces a factorisation on characters lattices (where M’ is the character lattice of T'):

(bA:ZS—»M/‘—)M.

defined by @(ei) = m; where (e1,...,es) is the standard basis of Z*%; and its image is thus ZA. So
factorization gives M’ = Z.A.
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Toric ideals The previous map @ provides an exact sequence:
0—-L—>7Z°— M.

where L is the kernel of 5;:

L:{f:(éh...,és) / Zfzmz:()}
i=1
Let £ € L then ¢ = ¢, — ¢_ where

EJF = Z &-ei and _=— Z A&@Z

;>0 £;<0

Consequently to the exact sequence, the map:

e ztt — s = H zh — H z b

£;>0 ;<0

vanishes on the image of ¢4 and thus on Y4.

The ideal of the affine toric variety Y4 is:

I(Ya)=(2 -2~ |/ tel)y=(@*-2" | a-Bel, aBeN).

In the proof of this proposition, we will use monomial orders on mutlivariate polynomials so let’s
give two usual examples of orders on multivariate polynomials. Let z{*...z% and xlil ...xb% be two
monomials in Clzy,...,x,] (thus (a1,...,as,b1,...bs) € N?%); here are classical orders one can find in
the litterature, for example when studying Grébner basis:

o Lezicographic order <jey: 7' ... 2% <jey .’L’l;l ... x’;s if there exists j € [1, s] such that
a; = bl,. s Qi1 = bj_l and a; < bj.
For example in C[zy, ¥a, 23] we have 2% <jep 3% <0 71 and z1297% <jer 17323;

o Graded lexicographic order <gries: T1* ... TL* <gries xlil . a:f if, denoting a = Z‘;l a; and
B =3I, b, we have that & < S or a = 8 and 2" ... 2% <y bl

For example in C[z1, xg, 3] we have ©1 <grier T4 <grier T30 and z12092% < grier T12523;

Proof. Let Iy, denote this ideal (we assume the second equality). It is immediate that I, C I(Y4). For

the converse pick a monomial order > on Clzy,...,z,]. We assume Ty ~ (C*)"and M = Z".
Suppose the inequality is strict, then take f € I(Y,)\ I, with minimal leading monomial z* = [;_, z}".
Since (t1,...,tn) > f(t™,...,t™*) is identically zero, there exists a monomial z* = [[;_, ab < a
such that
S S

H(tmi )ai _ H(tmi )bi ]

i=1 i=1
Meaning

S S
E a;ym; = E bim;,
i1 i=1

so that a— B = "7 | (a; —b;)e; belongs to L. Then z® —z” € I;. Hence f—z%+2” also lies in I(Yey )\ 11,
but since f minimizes, it must be 0 and thus f = 2® — 2” belongs to Ir: this is ABSURD. |

Let L C Z*® be a sublattice. We call the ideal I, = (z* —2® |/ a—B€ L, a,B € N*) a lattice
ideal.
Moreover if it prime, it is called a toric ideal.
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Example 11:

Since toric varieties are irreducible, the ideals of the previous proposition are toric ideals

| '

Example 12:

(z3 —y?) C C[z,y] is a toric ideal.

\.

It follows from the definition that a toric ideal is prime and generated by binomials (where we call the
maps = + % — z” binomials).

Let’s show that the converse is also true.
Let I be prime and generated by binomials 2% — . Then observe that V() N (C*)* is nonempty (it
contains (1, ...,1)) and is a subgroup of (C*)® (easy to check). Since V(I) C C? is irreducible, it follows
that V(I) N (C*)* is an irreducible subvariety of (C*)*® that is also a subgroup. By Proposition 1.1.1, we
see that T ="V (I) N (C*)® is a torus.

Projecting on the i‘" coordinate of (C*)* gives a character T — (C*)® — C*, which by our usual
convention we write as x™ : T — C* for m; € M. Tt follows easily that V(I) = Y4 for A = {m4,...,ms},
and since I is prime, we have I = I(Yy4) by the Nullstellensatz. Then T is toric by previous proposition.

Affine semigroups Let S be a semigroup, we say S is an affine semigroup if in addition the operation
is commutative (hence it will be denoted by + at of now), S is finitely generated and S can be embedded
into a latice.

The definition of NA is thus clear for A a finite subset of a semigroup S. Moreover we assume there that
all the semigroups are of this form and notice a semigroup can therefore be embedded in a lattice.
Define then the semigroup algebra:

Cls] = { Z emX™ | em € C, ey =0 for all but finitely many m}
meS

m’ m-‘rm’

=X

endowed with the multiplication x™* - x

C[N"] = C[x*,...,x°"] where (ey,...,e,) is the canonical basis of Z".

If S is an affine semigroup then Spec(C[S]) is an affine toric variety whose torus has character
lattice ZS.
Moreover if S = NA for a finite set A then Spec(C[S]) = Y.

Proof. Since S is an affine semigroup there exists a finite set A = {mq,...,ms} such that S =NAC M
where M is a lattice. It follows that C[S] C C[M] moreover, since A = {my,...,ms} then C[S] =
C[x™,...,x™]. Tt is thus finitely generated. And since C[M] can be seen as the coordinate ring of a
torus it is an integral domain. So is C[S].

The universal property of C-algebras gives a morphism of C-algebras:

CX1,....X,] — C[M]

T X, Y

Using the link between affine varieties and their coordinate ring, one can remark 7 corresponds to ¢4 :
Tn — C? defined earlier. In addition, it can be proved that ker(7) = I(Y4). And hence, since im(7) =
C[9] it follows that:

ClYA ¥ Xy, ..., X,]/I(Y4) ~ C[X1,...,X,]/ker(r) = C[S].

Thus Spec(C[S]) = Y4 and since NA = S, the torus has character lattice Z.A. [ ]
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Equivalence First we require a lemma conserning the action of the tous.

Let T be a torus and let’s study its action on the semigroup algebra C[M]:
T'n acts on itself by multiplication;
this induces an action on C[M] defined by:

v x CM] — C[M]
t , f — t-f

Lemma 15: Decomposition lemma

Proof. Let A" := @, s C-X™.
e It is thus clear that A’ C A;

o Take f € A\ {0} C C[M]. Then write f = _pcnX™, for a finite set B C M. Then f lie in

BN A, where B = Span(x™ / m € B) C C[M]. This equation stands a priori in C[M], but we
will prove it also stands in A.
Since x is a group homomorphism and the action on Ty is given by the multiplication gives
t-x™ = x"(t")x™ € B. It follows that B is stable under the action. Since both A and B are
stable under the action, so is AN B. A standard result on tori gives that since A N B is finite-
dimensional, it is spanned by simultaneous eigenvectors of T; which are characters. So AN B is
spanned by characters. Then the above expression for f € BN A which stood in C[M] implies that
x™ € A for m € B so stands in A and therefore f € A’.

Remind the aim of this first part was to give different point of view on the affines toric varieties.
Then is a theorem linking general affine toric variety, the "particular" case Y4, toric ideals and affine
semigroups.

Let V' be an affine variety. The following are equivalent:
1. V is an afline toric variety
2. V =Y for a finite set A in a lattice

3. V is an affine variety defined by a toric ideal

[N

. V = Spec(CJ[S]) for an affine semigroup S

Proof. Suppose 2. then 4. stands for S = NA by proposition 14. Conversly suppose 4. since S is a
semigroup, it is of the form NA for some A and then by theorem 14. Thus 2. <= 4.

Since the ideal of Y4 is a toric ideal, it is prime and thus V(I(Y4)) = Y4 so 2. = 3.. The converse
holds considering the lattice. So 2. < 3.

It has been proved that 2. = 1.

We prove now that 1. = 4.
Let V' be an affine toric variety containing the torus Ty with character lattice M. Since the coordinate
ring of Tl is the semigroup algebra C[M], the inclusion Ty C V induces an injective map C[V] — C[M].
of coordinate rings, where injectivity comes from T being Zariski dense in V' and leading to see C[V] as
a subalgebra of C[M].
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Remind the action of T on V is given by a morphism Ty x V' — V. Hence for ¢t € Ty and f € C[V],
we have that ¢ - f is a morphism on V and consequently C[V] C C[M] is stable under the action of Ty.
By preceeding lemma, we get

cvl= @ c-x™

x™EC[V]

And we have C[V] = C[S] where S is the semigroup S:={me M | x™ e C[V]}.

Finally, since C[V] is finitely generated, we can find fi,..., fs € C[V] such that C[V] = C[f1,..., fs]-
And we can write each f; as a linear combinaison of characters as in the proof of the preceeding lemma
which leads to a finite generating set of S. Finally S is an affine semigroup. ]

IT Cones

II.A Definitions and first properties

Cones and dual cones Let M and N be two real vector spaces dual to each other.

A convex polyhedral cone in N is a set of the form
o = Cone(S) = {Z Ayt [/ Ay > O}
u€esS
where S C N is a finite set and is said to generate o.
Moreover P = Conv(S) C N is a polytope, it is called the convex hull of S.
A convex polyhedral cone convex and is a cone. From now on we refer to o simply as a polyhedral

cone. Note that the term polyhedral comes from the finiteness of S which makes P = Conv(S) a polytope.

Example 18:

The polyhedral cone generated by the vectors:

2e1 +ey, ea—e€1, 2e5+e3, —e; + ey — 2e3

in R3 is represented by the shaded area on the
right.

Let P C N be a polytope, then C(P) ={\-(u,1) e N xR / we€ P, A\ > 0} is a polyhedral cone
in N x R. Tt is thus conspicuous that if P = Conv(S), then C(P) = Cone(S x {1}).

Example 19:

If

S = {e1,ez,—e1 +e3,—e1,—e3} C N ~R?

then
P = Conv(S)
is represented by the shaded area and the cone

C(P) C N x R ~ R? is delimited by the lines
joining P x {1} C R? to 0. z
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If o is a polyhedral cone, then we define dimo as the dimension of the smallest subspace W =
span(c) of N containing o.

Since we've fixed M and N dual to each other, we can define dual cones:

Let 0 C N be a polyhedral cone. The dual cone of ¢ is

oV={meM | (m,u)>0,Vuco}.

If o is a polyhedral cone in N, we can check easily that ¢ is a polyhedral cone in M and (¢V)V = 0.
Since we have introduced duality, what seems natural to do now is to deal with objects associated to dual
ones: hyperplans.

Hyperplanes / Half-spaces Form € M\{0} (alinear form on V) define the corresponding hyperplane
by

Hyp ©ker(m)={ueN | (m,u)=0}CN.

and define the closed half-space by
Hf={ueN / (m,u)>0}CN.

If 0 C N is a polyhedral cone, and o C H,!, then H,, is said to be a supporting hyperplane.
The followings are equivalent:

e H,, is a supporting hyperplane of o
e meo’\{0}

Indeed, if m € ¢¥\{0} then Yu € o, (m,u) > 0 by definition. So H,, is a supporting hyperplane.
Conversely, if H,, is a supporting hyperplane, then H,Y ={u e N / (m,u) > 0} D o so in particular
for all u € o, (m,u) > 0 which leads to m € ¢¥. Thus in particular o = H,}, N---NH .

It follows that if oV is generated by mq,...,m,.

A face of a cone of the polyhedral cone o is 7 = H,, N o for some m € o".
If 7 is a face such that 7 # o then 7 is said to be a proper faces, written 7 < o.

Remark if ¢ is a polyhedral cone then since 0 € oV we have that o is a face of itself and more
genereally, a face is a polyhedral cone.
Remark also that the intersection of two faces is still a face since ¢V is a cone. In particular, if 7 is a
face of ¢ then each face v of 7 is a face of o because T = H,,, N o for some m € ¢" and v = H, N7 for
some k € 7V. If m = 0 then the previous remarks make it trivial so suppose m # 0. Suppose there exists
u € o such that for any positive p we have:

\

(pm + k,u) = p(m,u) + (k,u) <0

Since m € ¢V and u € o we have that (m,u) > 0. So the previous is equivalent to (m,u) = 0 and

(k,u) < 0. But since k € 7V then u € o\7. Thus u € o and u ¢ H,, so (m,u) > 0 and then for large
positive p we have (pm+k, u) = p{m,u)+ (k,u) > 0. So there is no such v € o and then for large positive
p we have pm + k € oV.

Let 7 be a face of a polyhedral cone o. If v,w € ¢ and v+ w € 7, then v,w € 7.
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Proof. Since T is a face, we get m € ¢ such that 7 = H,, No. So since v,w € o we have (m,v) > 0 and
so for w, and since v + w € 7 we have (m,v) + (m,w) = (v + w, m) = 0. Hence using non-negativity we
have proved the lemma. [ |

A facet 7 of o is a face of codimension 1 in the sens that dim7 = dimo — 1. An edge of ¢ is a face of
dimension 1.

If o C Ng is a polyhedral cone such that o = Hf, N---N H}, where m; € 0" for 1 < i < s,

then o¥ = Cone(my,...,ms). Besides if dimo = n(< s), then we can assume that the facets of o are
7; = Hy,, N o and a proper face is the intersection of the facets which cointain it.
Since we are working there in R™, we can identify a space to its dual and then the vectors mq,...,mg in

the previous formula of ¢ are "facet normal" (i.e. perpendicular to their corresponding facet).

Example 24:

Refering to the example 18: Thus ¢V = Cone(e; — 2es + 4de3 , e1 + €3 —
2e3 , e1 + ey, —2e; + 4des + 3e3). And it is

he f he sh ; .
e ) BRI U R e A represented by the pink shaded area.

e the edges are the rays determined by the
generating vectors;

e the facet normals are

@&l = 262 + 463
e1 + e — 2e3
e1 + es x

= 261 + 462 + 363 T

Rational Polyhedral Cones Let N and M be dual lattices with associated vector spaces Ng = N®zR
and MR =M X7, R.

A polyhedral cone o C Ny is rational if o = Cone(S) for some finite set S C N.

In the example 18 if we take the lattice N = Z3, then the cone is rational. We can remark that a face
of this cone is also rational. More generally if ¢ is a rational polyhedral cone then so are its faces.

If we suppose {0} is a face of rational cone o (we o o e o o o o o o
say o is strongly convex), then o has a canonical
generating set constructed as follows:

Let p be an edge of o then p is a ray (from 0). Since o o o o o o o o
p is rational p N N is a semigroup generated by a
unique element u, € pN N called the ray generator
of p. Here is an exemple with N = Z2. The dots
are the lattice N = Z? and the red ones are p N N. e o e o o © o o o

And it follows o is generated by the ray genera-
tors of its edges.

The example 18 is a strongly convex polyhedral cone and the given generators are the ray generators.
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II.B Link with affine toric varieties

Semigroup of lattice points Let 0 C N be a rational polyhedral cone, the lattice points
S,=c"NMCM

form a semigroup.

Notice that since N and M are lattices dual to each other, there exists n such that N ~ Z™ and
M ~7Z".

S, = 0V N M is finitely generated and hence is an affine semigroup.

Proof. Since M and N are dual to each other, oV can be proved to be a rational polyhedral cone. Thus
there exists a finite set 7' C M such that 0¥ = Cone(T"). Then

K:{Zémm / 0<5m<1}CJV

meT

is a bounded area of Mg, so since M is discrete K N M is finite. So that T'U (K N M) C S, is finite.
Let’s prove T'U (K N M) generates S, as a semigroup.
So let v € S,. Write v = > Amm where A\, > 0. Then \,, = [A\y,]| + 0, with [A,,] € N and

0 <§,, <1, so that
0= Y s X
meT meT

The first sum is in M since T' C M. So since v € M we have that

MB’U—ZI_/\me: ZémmeK.

meT meT

meT

Thus the second sum is in K N M, denote it u, it follows that

v= Z [Am M + u.

meT

is a nonnegative integer combination of elements of T'U (K N M). |

Affine toric varieties associated to rational polyhedral cones Since affine semigroups give affine
toric varieties, we get the following.

Let 0 C Ng ~ R"™ be a rational polyhedral cone with semigroup S, = ¢¥V N M. Then
U, = Spec(C[S,]) = Spec(Cla¥ N M])
is an affine toric variety. Furthermore,

dimU, =n <= the torus of U, is Ty = N ®z C* <= o is strongly convex.

Remark that the first equivalence stands since the dimension of an affine toric variety is the dimension
of its torus, which is the rank of its character lattice as we discussed in the first part. Consequently, what
is left to prove is dimU, = n <= o is strongly convex.

Proof. By Gordan’s Lemma and proposition 14, U, is an affine toric variety whose torus has character
lattice ZS, C M.

Let’s prove that M/ZS, is torsion free so that ZS, = M <= rank(ZS,) = n. But since ZS, is
the character lattice of U, and denoting T its torus then the link between the group of one-parameter
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subgroups and the torus gives ZS, = M <= the torus of U, is Ty.

Suppose there exist £k > 1 and m € M such that km € ZS,. Then write km = m; — my for
mi,me € Sy =¥ N M. Since ¢V is convex, we have

1 1 v
m—|—m2=%m1—|— 1—% mo €0,

It follows that M 3 m = (m+mgy) —msg € 0¥ — S, and thus m € ZS,, so that M/ZS, is torsion-free.
Hence, as we said earlier:

the torus of U, is Ty <— ZS, = M <= rank ZS, = n.
Since one can remark o is strongly convex if and only if dim oV = n, what is left to prove is:
dimU, =n <= rank ZS, =n <= dimo’ =n. (1)
But, since from Gordan’s lemma S, is finitely generated, considering a finite generating set of S,, one

can remark that rank(ZS,) = dim(Span(S,)).

On the other hand, it follows from the proof of the Gordan’s lemma that a finite generating set of
S, is also a finite generating set of ¢, but since S, C ¢V, we finally have that ¢ = Cone(S,) and by
definition of Span(S,) and definition 20 we get dim(Cone(S,)) = dim(c") = dim(Span(S,)).

And thus is proved (1). |

Example 28:

Let o = Cone(ey, e2,e1 + €3, 63 +e3) C Ng with N = Z3. This is the cone pictured in grey below.
Its dual cone is 0¥ = Cone(eq, €2, €3, €1 + €3 + e3) C Mg pictured in pink below.

z

The lattice points S, consists in the N-linear combinations of e, es, e3,e1 + ea — e3.

However if we consider the variety V = V(zy — zw) C C*, then we have seen that it is an
affine toric variety. Besides its torus is (C*)? via the map (t1,ts,t3) (tl,tg,tg,tltgtgl). Thus
the affine semigroup S generated by ej,eq,e3,e1 + ea — e3 gives the character lattice ZS of the
torus. So from proposition 14 and theorem 16, we have that S determines the affine toric variety V.

Tt follows from the previous theorem that U, is the affine toric variety V(zy — zw).
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