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Introduction

This seminary is an introduction to affine toric varieties which form a large family of examples one often
studies first to test algebraic geometry theorems. In this seminary we first introduce tori and affine toric
varieties. After giving the definitions we show different point of views on affine toric varieties and then
link them all so that we can have four characterizations of affine toric varieties. In the second part we
introduce polyhedral cones and use duality and convexity to finally show that we can think of affine toric
varieties as coming from cones.
I have studied this seminary with the book [1] and in the second part I have also used [2].

Je remercie Carl Tipler pour sa disponibilité et le temps qu’il m’a accordé pour me proposer ce sujet de
séminaire.

I Introduction to affine toric varieties

I.A Tori

Definition 1:

A torus T is an affine variety isomorphic to (C∗)n endowed with a group stucture inherited from
the isomorphism.

Remark 2:

A torus is thus irreducible.

Character and one-parameter subgroups We remind you that a character of a group T is a group
homomorphism χ : T → C∗.
The characters of (C∗)n are given by:

for m = (a1, . . . , an) ∈ Zn define χm(t1, . . . , tn) = ta1
1 . . . tan

n .

Thus they form a group isomorphic to Zn and the following remark stands.

Remark 3:

For a torus T , its characters form a free abelian group M of rank equal to the dimension of T

We also remind one-parameter subgroup of a torus T is a group homomorphism λ : C∗ → T .
The one-parameter subgroups of (C∗)n are given by:

for u = (b1, . . . , bn) ∈ Zn define λu(t) =
(
tb1 , . . . , tbn

)
.

Thus they form a group isomorphic to Zn and the following remark stands.

Remark 4:

For a torus T , its one-parameter subgroups form a free abelian group N of rank equal to the
dimension of T

One can then define a bilinear pairing ⟨ ·, · ⟩ :
ß

M × N → Z
m , u 7→ k

where χm, λu 7→
(
χm ◦ λu : t 7→ tk

)
Example 5:

If T = (C∗)n and m = (a1, . . . , an) ∈ Zn and u = (b1, . . . , bn) ∈ Zn then ⟨ m,u ⟩ =
∑n

i=1 aibi.

Moreover one obtains a canonical isomorphism N ⊗Z C∗ ≃ T ; u⊗ t = λu(t). Hence in the litterature
we often refer to a torus by TN .
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Lemma 6:

Let T1 and T2 be two tori and let f : T1 → T2 be a group homomorphism. Then the image f(T1)
is a torus and is closed in T2.

Proof. We can suppose f : (C∗)
n → (C∗)

s. Thus component wise fi : (C∗)
n → C∗ is a group homomor-

phism (a character) so is of the form fi(t1, . . . , tn) = ta1
1 . . . tan

n and its image is either {1} or C∗. So the
image of f is (C∗)

d for some d ≤ s and thus is a torus. ■

I.B Affine toric variety: definition
We can now define the object we want to study.

Definition 7:

An affine toric variety is an irreducible affine variety V containing a torus TN which is a Zariski
open subset and such that the action of TN on itself extends to an action TN ×V → V on V given
by a morphism.

Example 8:

Let C be the curve C = V(x3 − y2) ⊆ C2. This is an affine toric variety with torus:

C\{0} = C ∩ (C∗)
2
= {(t2, t3) / t ∈ C∗} ≃ C∗

I.C Equivalent points of view
Construction of affine toric varieties Let TN be a torus and let M be its character group. Let
A = {m1, . . . ,ms} ⊂ M be a finite subset. Consider the map

ϕA :

ß
TN → Cs

t 7→ (χm1(t), . . . , χms(t))

It can be regarded as a map between tori (with value in (C∗)
s), hence its image T = ϕA(TN ) is a torus

by the preceeding lemma and is closed in (C∗)s.

Define YA the Zariski closure of the image. Then YA is an affine toric variety whose torus has character
lattice ZA (where lattice means free abelian group of finite rank: for example N and M are lattices of a
torus TN ).

It is thus clear T ⊆ YA ∩ (C∗)
s. The converse is true since (C∗)

s is an affine variety.
Thus T = YA ∩ (C∗)

s. But since (C∗)
s is open in Cs with the usual topology, it is still open with the

Zariski topology and so T is Zariski open in YA. Since T is a torus, it is irreducible. So is YA.
Consider now the action of T . The action of t ∈ T on Cs sends varieties to varieties and then
T = t · T ⊆ t · YA is a variety containing T . Hence YA ⊆ t · YA by definition of Zariski closure.
The same is true with t−1 so the inclusion is an equality and finally YA is an affine toric variety.

Since T = ϕA(TN ), the map factorizes through T:

ϕA = TN ↠ T ↪−→ (C∗)
s
.

It induces a factorisation on characters lattices (where M ′ is the character lattice of T ):”ϕA = Zs ↠ M ′ ↪−→ M.

defined by ”ϕA(ei) = mi where (e1, . . . , es) is the standard basis of Zs; and its image is thus ZA. So
factorization gives M ′ = ZA.
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Toric ideals The previous map ”ϕA provides an exact sequence:

0 → L → Zs → M.

where L is the kernel of ”ϕA:

L =

{
ℓ = (ℓ1, . . . , ℓs) /

s∑
i=1

ℓimi = 0

}
.

Let ℓ ∈ L then ℓ = ℓ+ − ℓ− where

ℓ+ =
∑
ℓi>0

ℓiei and ℓ− = −
∑
ℓi<0

ℓiei.

Consequently to the exact sequence, the map:

x 7→ xℓ+ − xℓ− =
∏
ℓi>0

xℓi −
∏
ℓi<0

x−ℓi

vanishes on the image of ϕA and thus on YA.

Proposition 9:

The ideal of the affine toric variety YA is:

I(YA) = ⟨ xℓ+ − xℓ− / ℓ ∈ L⟩ = ⟨xα − xβ / α− β ∈ L , α, β ∈ Ns⟩.

In the proof of this proposition, we will use monomial orders on mutlivariate polynomials so let’s
give two usual examples of orders on multivariate polynomials. Let xa1

1 . . . xas
s and xb1

1 . . . xbs
s be two

monomials in C[x1, . . . , xs] (thus (a1, . . . , as, b1, . . . bs) ∈ N2s); here are classical orders one can find in
the litterature, for example when studying Gröbner basis:

• Lexicographic order ≺lex: xa1
1 . . . xas

s ≺lex xb1
1 . . . xbs

s if there exists j ∈ J1, sK such that
a1 = b1, . . . , aj−1 = bj−1 and aj < bj .
For example in C[x1, x2, x3] we have x7

3 ≺lex x100
2 ≺lex x1 and x1x2x

4
3 ≺lex x1x

2
2x

3
3;

• Graded lexicographic order ≺grlex: xa1
1 . . . xas

s ≺grlex xb1
1 . . . xbs

s if, denoting α =
∑s

i=1 ai and
β =

∑s
i=1 bi, we have that α < β or α = β and xa1

1 . . . xas
s ≺lex xb1

1 . . . xbs
s .

For example in C[x1, x2, x3] we have x1 ≺grlex x7
3 ≺grlex x100

2 and x1x2x
4
3 ≺grlex x1x

2
2x

3
3;

Proof. Let IL denote this ideal (we assume the second equality). It is immediate that IL ⊆ I(YA). For
the converse pick a monomial order > on C[x1, . . . , xs]. We assume TN ≃ (C∗)nand M = Zn.
Suppose the inequality is strict, then take f ∈ I(YA )\ IL with minimal leading monomial xα =

∏s
i=1 x

ai
i .

Since (t1, . . . , tn) 7→ f(tm1 , . . . , tms) is identically zero, there exists a monomial xβ =
∏s

i=1 x
bi
i < xα

such that
s∏

i=1

(tmi)ai =

s∏
i=1

(tmi)bi .

Meaning
s∑

i=1

aimi =

s∑
i=1

bimi,

so that α−β =
∑s

i=1(ai−bi)ei belongs to L. Then xα−xβ ∈ IL. Hence f−xα+xβ also lies in I(YA )\IL
but since f minimizes, it must be 0 and thus f = xα − xβ belongs to IL: this is ABSURD. ■

Definition 10:

Let L ⊆ Zs be a sublattice. We call the ideal IL = ⟨xα − xβ / α− β ∈ L , α, β ∈ Ns⟩ a lattice
ideal.
Moreover if it prime, it is called a toric ideal.
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Example 11:

Since toric varieties are irreducible, the ideals of the previous proposition are toric ideals

Example 12:

⟨x3 − y2⟩ ⊂ C[x, y] is a toric ideal.

It follows from the definition that a toric ideal is prime and generated by binomials (where we call the
maps x 7→ xα − xβ binomials).

Let’s show that the converse is also true.
Let I be prime and generated by binomials xαi − xβi . Then observe that V(I) ∩ (C∗)s is nonempty (it
contains (1, ..., 1)) and is a subgroup of (C∗)s (easy to check). Since V(I) ⊆ Cs is irreducible, it follows
that V(I) ∩ (C∗)s is an irreducible subvariety of (C∗)s that is also a subgroup. By Proposition 1.1.1, we
see that T = V(I) ∩ (C∗)s is a torus.

Projecting on the ith coordinate of (C∗)s gives a character T ↪−→ (C∗)s → C∗, which by our usual
convention we write as χmi : T → C∗ for mi ∈ M . It follows easily that V(I) = YA for A = {m1, . . . ,ms},
and since I is prime, we have I = I(YA) by the Nullstellensatz. Then I is toric by previous proposition.

Affine semigroups Let S be a semigroup, we say S is an affine semigroup if in addition the operation
is commutative (hence it will be denoted by + at of now), S is finitely generated and S can be embedded
into a latice.
The definition of NA is thus clear for A a finite subset of a semigroup S. Moreover we assume there that
all the semigroups are of this form and notice a semigroup can therefore be embedded in a lattice.
Define then the semigroup algebra:

C[S] =

{∑
m∈S

cmχm / cm ∈ C, cm = 0 for all but finitely many m

}

endowed with the multiplication χm · χm′
= χm+m′

.

Example 13:

C[Nn] = C[χe1 , . . . , χen ] where (e1, . . . , en) is the canonical basis of Zn.

Proposition 14:

If S is an affine semigroup then Spec(C[S]) is an affine toric variety whose torus has character
lattice ZS.
Moreover if S = NA for a finite set A then Spec(C[S]) = YA.

Proof. Since S is an affine semigroup there exists a finite set A = {m1, . . . ,ms} such that S = NA ⊆ M
where M is a lattice. It follows that C[S] ⊆ C[M ] moreover, since A = {m1, . . . ,ms} then C[S] =
C[χm1 , . . . , χms ]. It is thus finitely generated. And since C[M ] can be seen as the coordinate ring of a
torus it is an integral domain. So is C[S].
The universal property of C-algebras gives a morphism of C-algebras:

π :
C[X1, . . . , Xs] → C[M ]

Xi 7→ χmi
.

Using the link between affine varieties and their coordinate ring, one can remark π corresponds to ϕA :
TN → Cs defined earlier. In addition, it can be proved that ker(π) = I(YA). And hence, since im(π) =
C[S] it follows that:

C[YA]
def
= C[X1, . . . , Xs]/I(YA) ≃ C[X1, . . . , Xs]/ ker(π) = C[S].

Thus Spec(C[S]) = YA and since NA = S, the torus has character lattice ZA. ■
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Equivalence First we require a lemma conserning the action of the tous.

Let TN be a torus and let’s study its action on the semigroup algebra C[M ]:
TN acts on itself by multiplication;
this induces an action on C[M ] defined by:

TN × C[M ] −→ C[M ]

t , f 7−→ t · f :
TN → C
p 7→ f(t−1 · p)

Lemma 15: Decomposition lemma

Let A ⊆ C[M ] be a subspace stable under the action of TN . Then

A =
⊕

χm∈A

C · χm.

Proof. Let A′ :=
⊕

χm∈A C · χm.

• It is thus clear that A′ ⊆ A;

• Take f ∈ A \ {0} ⊆ C[M ]. Then write f =
∑

m∈B cmχm, for a finite set B ⊆ M . Then f lie in
B ∩ A, where B = Span(χm / m ∈ B) ⊆ C[M ]. This equation stands a priori in C[M ], but we
will prove it also stands in A.

Since χm is a group homomorphism and the action on TN is given by the multiplication gives
t · χm = χm(t−1)χm ∈ B. It follows that B is stable under the action. Since both A and B are
stable under the action, so is A ∩ B. A standard result on tori gives that since A ∩ B is finite-
dimensional, it is spanned by simultaneous eigenvectors of TN ; which are characters. So A ∩ B is
spanned by characters. Then the above expression for f ∈ B ∩A which stood in C[M ] implies that
χm ∈ A for m ∈ B so stands in A and therefore f ∈ A′.

■

Remind the aim of this first part was to give different point of view on the affines toric varieties.
Then is a theorem linking general affine toric variety, the "particular" case YA, toric ideals and affine
semigroups.

Theorem 16:

Let V be an affine variety. The following are equivalent:

1. V is an affine toric variety

2. V = YA for a finite set A in a lattice

3. V is an affine variety defined by a toric ideal

4. V = Spec(C[S]) for an affine semigroup S

Proof. Suppose 2. then 4. stands for S = NA by proposition 14. Conversly suppose 4. since S is a
semigroup, it is of the form NA for some A and then by theorem 14. Thus 2. ⇐⇒ 4.
Since the ideal of YA is a toric ideal, it is prime and thus V(I(YA)) = YA so 2. =⇒ 3.. The converse
holds considering the lattice. So 2. ⇐⇒ 3.
It has been proved that 2. =⇒ 1.

We prove now that 1. =⇒ 4.
Let V be an affine toric variety containing the torus TN with character lattice M . Since the coordinate
ring of TN is the semigroup algebra C[M ], the inclusion TN ⊆ V induces an injective map C[V ] ↪→ C[M ].
of coordinate rings, where injectivity comes from TN being Zariski dense in V and leading to see C[V ] as
a subalgebra of C[M ].
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Remind the action of TN on V is given by a morphism TN ×V → V . Hence for t ∈ TN and f ∈ C[V ],
we have that t · f is a morphism on V and consequently C[V ] ⊆ C[M ] is stable under the action of TN .
By preceeding lemma, we get

C[V ] =
⊕

χm∈C[V ]

C · χm.

And we have C[V ] = C[S] where S is the semigroup S := {m ∈ M / χm ∈ C[V ]}.
Finally, since C[V ] is finitely generated, we can find f1, . . . , fs ∈ C[V ] such that C[V ] = C[f1, . . . , fs].

And we can write each fi as a linear combinaison of characters as in the proof of the preceeding lemma
which leads to a finite generating set of S. Finally S is an affine semigroup. ■

II Cones

II.A Definitions and first properties
Cones and dual cones Let M and N be two real vector spaces dual to each other.

Definition 17:

A convex polyhedral cone in N is a set of the form

σ = Cone(S) =

{∑
u∈S

λuu / λu ≥ 0

}

where S ⊆ N is a finite set and is said to generate σ.
Moreover P = Conv(S) ⊆ N is a polytope, it is called the convex hull of S.

A convex polyhedral cone convex and is a cone. From now on we refer to σ simply as a polyhedral
cone. Note that the term polyhedral comes from the finiteness of S which makes P = Conv(S) a polytope.

Example 18:

The polyhedral cone generated by the vectors:

2e1 + e2 , e2 − e1 , 2e2 + e3 , −e1 + e2 − 2e3

in R3 is represented by the shaded area on the
right.

x

y

z

Let P ⊆ N be a polytope, then C(P ) = {λ · (u, 1) ∈ N × R / u ∈ P, λ ≥ 0} is a polyhedral cone
in N × R. It is thus conspicuous that if P = Conv(S), then C(P ) = Cone(S × {1}).

Example 19:

If

S = {e1, e2,−e1 + e2,−e1,−e2} ⊂ N ≃ R2

then

P = Conv(S)

is represented by the shaded area and the cone
C(P ) ⊂ N × R ≃ R3 is delimited by the lines
joining P × {1} ⊂ R3 to 0. x

y

z

Kylian Prigent December 27, 2025 7/ 11



Definition 20:

If σ is a polyhedral cone, then we define dimσ as the dimension of the smallest subspace W =
span(σ) of N containing σ.

Since we’ve fixed M and N dual to each other, we can define dual cones:

Definition 21:

Let σ ⊆ N be a polyhedral cone. The dual cone of σ is

σ∨ = {m ∈ M / ⟨m,u⟩ ≥ 0, ∀u ∈ σ}.

If σ is a polyhedral cone in N , we can check easily that σ∨ is a polyhedral cone in M and (σ∨)∨ = σ.
Since we have introduced duality, what seems natural to do now is to deal with objects associated to dual
ones: hyperplans.

Hyperplanes / Half-spaces For m ∈ M\{0} (a linear form on N) define the corresponding hyperplane
by

Hm
def
= ker(m) = {u ∈ N / ⟨m,u⟩ = 0} ⊂ N.

and define the closed half-space by

H+
m = {u ∈ N / ⟨m,u⟩ ≥ 0} ⊆ N.

If σ ⊆ N is a polyhedral cone, and σ ⊂ H+
m, then Hm is said to be a supporting hyperplane.

The followings are equivalent:

• Hm is a supporting hyperplane of σ

• m ∈ σ∨\{0}

Indeed, if m ∈ σ∨\{0} then ∀u ∈ σ, ⟨m,u⟩ ≥ 0 by definition. So Hm is a supporting hyperplane.
Conversely, if Hm is a supporting hyperplane, then H+

m = {u ∈ N / ⟨m,u⟩ ≥ 0} ⊃ σ so in particular
for all u ∈ σ, ⟨m,u⟩ ≥ 0 which leads to m ∈ σ∨. Thus in particular σ = H+

m1
∩ · · · ∩H+

ms
.

It follows that if σ∨ is generated by m1, . . . ,ms.

Definition 22:

A face of a cone of the polyhedral cone σ is τ = Hm ∩ σ for some m ∈ σ∨.
If τ is a face such that τ ̸= σ then τ is said to be a proper faces, written τ ≺ σ.

Remark if σ is a polyhedral cone then since 0 ∈ σ∨ we have that σ is a face of itself and more
genereally, a face is a polyhedral cone.
Remark also that the intersection of two faces is still a face since σ∨ is a cone. In particular, if τ is a
face of σ then each face γ of τ is a face of σ because τ = Hm ∩ σ for some m ∈ σ∨ and γ = Hk ∩ τ for
some k ∈ τ∨. If m = 0 then the previous remarks make it trivial so suppose m ̸= 0. Suppose there exists
u ∈ σ such that for any positive p we have:

⟨pm+ k, u⟩ = p⟨m,u⟩+ ⟨k, u⟩ < 0

Since m ∈ σ∨ and u ∈ σ we have that ⟨m,u⟩ ≥ 0. So the previous is equivalent to ⟨m,u⟩ = 0 and
⟨k, u⟩ < 0. But since k ∈ τ∨ then u ∈ σ\τ . Thus u ∈ σ and u /∈ Hm so ⟨m,u⟩ > 0 and then for large
positive p we have ⟨pm+k, u⟩ = p⟨m,u⟩+⟨k, u⟩ ≥ 0. So there is no such u ∈ σ and then for large positive
p we have pm+ k ∈ σ∨.

Lemma 23:

Let τ be a face of a polyhedral cone σ. If v, w ∈ σ and v + w ∈ τ , then v, w ∈ τ .
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Proof. Since τ is a face, we get m ∈ σ∨ such that τ = Hm ∩ σ. So since v, w ∈ σ we have ⟨m, v⟩ ≥ 0 and
so for w, and since v + w ∈ τ we have ⟨m, v⟩+ ⟨m,w⟩ = ⟨v + w,m⟩ = 0. Hence using non-negativity we
have proved the lemma. ■

A facet τ of σ is a face of codimension 1 in the sens that dim τ = dimσ− 1. An edge of σ is a face of
dimension 1.

If σ ⊆ NR is a polyhedral cone such that σ = H+
m1

∩ · · · ∩ H+
ms

where mi ∈ σ∨ for 1 ≤ i ≤ s,
then σ∨ = Cone(m1, . . . ,ms). Besides if dimσ = n(≤ s), then we can assume that the facets of σ are
τi = Hmi

∩ σ and a proper face is the intersection of the facets which cointain it.
Since we are working there in Rn, we can identify a space to its dual and then the vectors m1, . . . ,ms in
the previous formula of σ are "facet normal" (i.e. perpendicular to their corresponding facet).

Example 24:

Refering to the example 18:

• the facets are the shaded areas;

• the edges are the rays determined by the
generating vectors;

• the facet normals are

e1 − 2e2 + 4e3

e1 + e2 − 2e3

e1 + e2

− 2e1 + 4e2 + 3e3 x

y

z

Thus σ∨ = Cone(e1 − 2e2 + 4e3 , e1 + e2 −
2e3 , e1 + e2 , −2e1 + 4e2 + 3e3). And it is
represented by the pink shaded area.

x

y

z

Rational Polyhedral Cones Let N and M be dual lattices with associated vector spaces NR = N⊗ZR
and MR = M ⊗Z R.

Definition 25:

A polyhedral cone σ ⊆ NR is rational if σ = Cone(S) for some finite set S ⊆ N .

In the example 18 if we take the lattice N = Z3, then the cone is rational. We can remark that a face
of this cone is also rational. More generally if σ is a rational polyhedral cone then so are its faces.

If we suppose {0} is a face of rational cone σ (we
say σ is strongly convex), then σ has a canonical
generating set constructed as follows:
Let ρ be an edge of σ then ρ is a ray (from 0). Since
ρ is rational ρ ∩ N is a semigroup generated by a
unique element uρ ∈ ρ∩N called the ray generator
of ρ. Here is an exemple with N = Z2. The dots
are the lattice N = Z2 and the red ones are ρ ∩N .

And it follows σ is generated by the ray genera-
tors of its edges.

ρ

uρ

The example 18 is a strongly convex polyhedral cone and the given generators are the ray generators.
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II.B Link with affine toric varieties
Semigroup of lattice points Let σ ⊆ NR be a rational polyhedral cone, the lattice points

Sσ = σ∨ ∩M ⊆ M

form a semigroup.

Notice that since N and M are lattices dual to each other, there exists n such that N ≃ Zn and
M ≃ Zn.

Proposition 26: Gordan’s Lemma

Sσ = σ∨ ∩M is finitely generated and hence is an affine semigroup.

Proof. Since M and N are dual to each other, σ∨ can be proved to be a rational polyhedral cone. Thus
there exists a finite set T ⊆ M such that σ∨ = Cone(T ). Then

K =

{∑
m∈T

δmm / 0 ≤ δm < 1

}
⊂ σ∨

is a bounded area of MR, so since M is discrete K ∩M is finite. So that T ∪ (K ∩M) ⊆ Sσ is finite.
Let’s prove T ∪ (K ∩M) generates Sσ as a semigroup.

So let v ∈ Sσ. Write v =
∑

m∈T λmm where λm ≥ 0. Then λm = ⌊λm⌋ + δm with ⌊λm⌋ ∈ N and
0 ≤ δm < 1, so that

v =
∑
m∈T

⌊λm⌋m+
∑
m∈T

δmm.

The first sum is in M since T ⊂ M . So since v ∈ M we have that

M ∋ v −
∑
m∈T

⌊λm⌋m =
∑
m∈T

δmm ∈ K.

Thus the second sum is in K ∩M , denote it u, it follows that

v =
∑
m∈T

⌊λm⌋m+ u.

is a nonnegative integer combination of elements of T ∪ (K ∩M). ■

Affine toric varieties associated to rational polyhedral cones Since affine semigroups give affine
toric varieties, we get the following.

Theorem 27:

Let σ ⊆ NR ≃ Rn be a rational polyhedral cone with semigroup Sσ = σ∨ ∩M . Then

Uσ = Spec(C[Sσ]) = Spec(C[σ∨ ∩M ])

is an affine toric variety. Furthermore,

dimUσ = n ⇐⇒ the torus of Uσ is TN = N ⊗Z C∗ ⇐⇒ σ is strongly convex.

Remark that the first equivalence stands since the dimension of an affine toric variety is the dimension
of its torus, which is the rank of its character lattice as we discussed in the first part. Consequently, what
is left to prove is dimUσ = n ⇐⇒ σ is strongly convex.

Proof. By Gordan’s Lemma and proposition 14, Uσ is an affine toric variety whose torus has character
lattice ZSσ ⊆ M .

Let’s prove that M/ZSσ is torsion free so that ZSσ = M ⇐⇒ rank(ZSσ) = n. But since ZSσ is
the character lattice of Uσ and denoting T its torus then the link between the group of one-parameter
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subgroups and the torus gives ZSσ = M ⇐⇒ the torus of Uσ is TN .

Suppose there exist k > 1 and m ∈ M such that km ∈ ZSσ. Then write km = m1 − m2 for
m1,m2 ∈ Sσ = σ∨ ∩M . Since σ∨ is convex, we have

m+m2 =
1

k
m1 +

Å
1− 1

k

ã
m2 ∈ σ∨.

It follows that M ∋ m = (m+m2)−m2 ∈ σ∨−Sσ and thus m ∈ ZSσ, so that M/ZSσ is torsion-free.
Hence, as we said earlier:

the torus of Uσ is TN ⇐⇒ ZSσ = M ⇐⇒ rank ZSσ = n.

Since one can remark σ is strongly convex if and only if dimσ∨ = n, what is left to prove is:

dimUσ = n ⇐⇒ rank ZSσ = n ⇐⇒ dimσ∨ = n. (1)

But, since from Gordan’s lemma Sσ is finitely generated, considering a finite generating set of Sσ, one
can remark that rank(ZSσ) = dim(Span(Sσ)).

On the other hand, it follows from the proof of the Gordan’s lemma that a finite generating set of
Sσ is also a finite generating set of σ∨, but since Sσ ⊂ σ∨, we finally have that σ∨ = Cone(Sσ) and by
definition of Span(Sσ) and definition 20 we get dim(Cone(Sσ)) = dim(σ∨) = dim(Span(Sσ)).

And thus is proved (1). ■

Example 28:

Let σ = Cone(e1, e2, e1 + e3, e2 + e3) ⊆ NR with N = Z3. This is the cone pictured in grey below.
Its dual cone is σ∨ = Cone(e1, e2, e3, e1 + e2 + e3) ⊆ MR pictured in pink below.

x

y

z

x

y

z

The lattice points Sσ consists in the N-linear combinations of e1, e2, e3, e1 + e2 − e3.

However if we consider the variety V = V(xy − zw) ⊂ C4, then we have seen that it is an
affine toric variety. Besides its torus is (C∗)3 via the map (t1, t2, t3) 7→ (t1, t2, t3, t1t2t

−1
3 ). Thus

the affine semigroup S generated by e1, e2, e3, e1 + e2 − e3 gives the character lattice ZS of the
torus. So from proposition 14 and theorem 16, we have that S determines the affine toric variety V .

It follows from the previous theorem that Uσ is the affine toric variety V(xy − zw).
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