Questions et Exercices sur la leçon 243 : Séries entières, propriétés de la somme. Exemples et applications.

Laurent Montaigu

Ce document vise a regrouper quelques questions qui peuvent être posées par le jury pour la leçon 243 Séries entières, propriétés de la somme. Exemples et applications. Il y a aussi des exercices, le niveau de difficulté donné (de 1 à 5 étoiles) est subjectif.

Contents

1	Questions	3
2	Exercices	4
3	Solutions	6

1 Questions

Voici une liste de questions auxquels il faudrait être capable de répondre (relativement) rapidement :

- Donner les développements en séries entières (exp, \cos , \sin , $\log(1+x)$,...) usuels ainsi que leurs rayon de convergence.
- Donner l'exemple d'une série entière de rayon 1 qui converge en tout point du cercle unité.
- Donner l'exemple d'une série entière de rayon 1 qui diverge en tout point du cercle unité.
- Donner l'exemple d'une série entière de rayon 1 qui diverge en 1 et converge en tout autre point du cercle unité.
- Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0. Y a-t-il convergence normale sur D(0,R)? Et convergence uniforme?
- Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ la somme d'une série entière de rayon R > 0, que vaut a_n en fonction des dérivées de f?
- Donner un exemple d'une fonction $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^{∞} qui n'est pas développable en série entière en 0.
- Enoncer et démontrer la formule de CAUCHY pour $f(z) = \sum_{n=0}^{\infty} a_n z^n$ la somme d'une série entière de rayon R > 0.
- Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ la somme d'une série entière de rayon 1. On suppose que $\lim_{z\to 1^-} f(z)$ existe, est-ce que $\sum_{n\geq 0} a_n$ converge et vaut f(1)? (Bonus : Connaissez-vous une condition suffisante pour que cela soit le cas ?)

et un VRAI/FAUX:

- Si $\sum_{n\geq 0} a_n z^n$ est une série entière de rayon 1, alors $(a_n)_n$ est bornée.
- Si R et R' sont les rayons de convergences des séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$, alors le rayon de convergence de $\sum_{n\geq 0} (a_n + b_n) z^n$ est $\min(R, R')$.
- Une fonction $f: \mathbb{R} \to \mathbb{R}$ périodique n'est pas développable en série entière.
- Si le rayon de convergence de $\sum_{n\geq 0} a_n z^n$ est $R\geq 0$, alors le rayon de convergence de $\sum_{n\geq 0} a_n z^{2n}$ est \sqrt{R} .

2 Exercices

Exercice 1 ★☆☆☆ (Solution)

Déterminer le rayon de convergence des séries entières $\sum_{n\geq 0} a_n z^n$ suivantes, où :

1.
$$a_n = n^{\ln(n)}$$
, 2. $a_n = e^{\sqrt{n}}$, 3. $a_n = \tau(n) \ (n \ge 1)$, 4. $a_n = \binom{kn}{n}$ pour $k \ge 2$.

Exercice 2 * AAAAAA (Solution)

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0. Déterminer le rayon de convergence des séries entières suivantes :

1.
$$\sum_{n>0} a_n^2 z^n$$
, 2. $\sum_{n>0} \frac{a_n}{n!} z^n$, 3. $\sum_{n>0} \frac{n! a_n}{n^n} z^n$.

Exercice 3 ************************(Solution)

Déterminer le rayon de convergence de la série entière suivante : $\sum_{n>1} n! z^{n^2}$.

Exercice 4 ***********************(Solution)

Soit R le rayon de convergence de la série entière $\sum_{n\geq 1}\sin\left(\frac{1}{\sqrt{n}}\right)x^n$ et f sa somme sur] -R,R[.

- 1. Déterminer R et étudier la convergence pour $x = \pm R$.
- 2. Déterminer $\lim_{x\to R^-} f(x)$.

Exercice 5 ★★☆☆☆ (Solution)

Calculer
$$\int_0^1 \frac{\ln(t) \ln(1-t)}{t} dt$$
.

Exercice 6 Résolution d'une équation différentielle par séries entières ★★☆☆☆ (Solution)

Résoudre sur \mathbb{R} l'équation :

$$(1+x^2)y'' + 4xy' + 2y = 0. (E)$$

Université de Bordeaux

En cherchant des solutions développables en séries entières.

Exercice 7 ★★★☆☆ (Solution)

Soit f une fonction développable en série entière en 0 de rayon de convergence 1. Montrer que f est développable en série entière en $\frac{1}{2}$ et déterminer le rayon de convergence.

Exercice 8 Identité de Wald ★★★☆☆ (Solution)

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. Soit N une variable aléatoire définie sur Ω à valeurs dans \mathbb{N} et $(X_i)_{i\geq 1}$ un suite de variables aléatoires définies sur Ω à valeurs dans \mathbb{N} , qui sont de même loi, indépendantes, et indépendantes de N. On pose $S = \sum_{i=1}^{N} X_i$ (on convient que S = 0 si N = 0).

- 1. Montrer que S est une variable aléatoire.
- 2. Déterminer sa fonction génératrice G_S en fonction des fonctions génératrices de N et X_1 .
- 3. On suppose N et X_1 d'espérances finies, montrer que S est d'espérance finie et l'exprimer en fonction de $\mathbb{E}(N)$ et $\mathbb{E}(X_1)$.

Exercice 9 Points singulier d'une série entière ★★★☆☆ (Solution)

Soit $f(z) = \sum_{n=0}^{\infty} a_n z^n$ la somme d'une série entière de rayon 1. Un point $z_0 \in \mathbb{C}$ de module 1 est dit point régulier s'il existe un prolongement holomorphe à f au disque $D(z_0, \varepsilon) := \{z \in \mathbb{C} \mid |z - z_0| < \varepsilon\}$ pour un $\varepsilon > 0$. Un point est dit singulier s'il n'est pas régulier. Montrer qu'il existe toujours un point singulier. On pourra raisonner par l'absurde et utiliser un argument de compacité.

Exercice 10 ★★★☆☆ (Solution)

Soit $(a_n)_n$ une suite de complexes et $(b_n)_n$ une suite strictement positive. On suppose que le rayon de convergence de $\sum_{n\geq 0} b_n z^n$ vaut 1 et que $\sum_{n\geq 0} b_n$ diverge. On suppose de plus que $a_n \sim b_n$. Montrer que :

$$\sum_{n=0}^{\infty} a_n x^n \underset{x \to 1^-}{\sim} \sum_{n=0}^{\infty} b_n x^n.$$

Exercice 11 ★★★☆☆ (Solution)

Calculer
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n+1}.$$

Exercice 12 ★★★☆☆ (Solution)

Soit $f(x) = \sum_{n=1}^{\infty} e^{-n+in^2x}$. Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} mais n'est pas développable en série entière en 0.

Exercice 13 Nombre d'involutions de \mathfrak{S}_n

Soit I_n le nombre d'involutions de \mathfrak{S}_n , c'est à dire le nombre de $\sigma \in \mathfrak{S}_n$ qui vérifient $\sigma^2 = \mathrm{Id}_{\llbracket 1;n \rrbracket}$, on convient que $I_0 = 1$. On note R le rayon de convergence de la série entière $\sum_{n \geq 0} \frac{I_n}{n!}$ et f la somme de cette série entière.

- 1. Montrer que $R \geq 1$.
- 2. Montrer que pour $n \ge 0$, $I_{n+2} = (n+1)I_n + I_{n+1}$.
- 3. En déduire que pour tout $z \in \mathbb{C}$ avec |z| < R, $f(z) = \exp\left(z + \frac{z^2}{2}\right)$. En déduire que $R = +\infty$.
- 4. En déduire une expression de I_n sous la forme d'une somme.
- 5. *\delta \delta \del

Exercice 14 ★★★☆ (Solution)

Montrer que:

$$\sum_{n=1}^{\infty} x^{n^2} \underset{x \to 1^-}{\sim} \frac{\sqrt{\pi}}{2\sqrt{1-x}}.$$

On pourra faire une comparaison série/intégrale.

Exercice 15 ★★★☆ (Solution)

Soit f une fonction entière, on suppose que pour tout $z \in \mathbb{C}$, il existe $n \geq 0$ tel que $f^{(n)}(z) = 0$. Montrer que f est un polynôme. On pourra appliquer le théorème de BAIRE $aux\ F_n = \{n \geq 0 \mid f^{(n)}(z) = 0\}$.

Exercice 16 **** (Solution)

(Les questions 2 et 3 de cet exercice nécessitent des connaissances sur la fonction de MÖBIUS). On note φ l'indicatrice d'EULER et μ la fonction de MÖBIUS.

Université de Bordeaux

- 1. Déterminer le rayon de convergence de $\sum_{n\geq 1} \varphi(n) x^n$.
- 2. Montrer que $\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$.
- 3. En déduire que $\sum_{k=1}^{n} \varphi(k) \underset{n \to +\infty}{\sim} \frac{3}{\pi^2} n^2$.
- 4. En déduire un équivalent de $\sum_{n=1}^{\infty} \varphi(n) x^n$ en 1⁻, on utilisera l'exercice 10.

Exercice 17 **** (Solution)

Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction entière et injective, montrer que f' ne s'annule pas. On pourra utiliser le théorème de ROUCHÉ.

3 Solutions

Solution 1. (Enoncé)

1. Par la règle de Cauchy-Hadamard :

$$R = \frac{1}{\limsup \sqrt[n]{n \ln(n)}} = \frac{1}{\limsup n^{\frac{\ln(n)}{n}}} = \frac{1}{1} = 1.$$

2. Par la règle de CAUCHY-HADAMARD:

$$R = \frac{1}{\limsup \sqrt[n]{e^{\sqrt{n}}}} = \frac{1}{\limsup e^{\frac{1}{\sqrt{n}}}} = \frac{1}{1} = 1.$$

- 3. De l'inégalité $1 \le \tau(n) \le n$, on en déduit que le rayon de convergence recherché vaut 1.
- 4. On utilise la formule de STIRLING pour obtenir un équivalent de a_n :

$$a_{n} = \frac{(kn)!}{n!(n(k-1))!}$$

$$\sim \frac{\sqrt{2\pi nk}n^{kn}k^{kn}e^{-kn}}{\sqrt{2\pi nn^{n}e^{-n}\sqrt{2\pi n(k-1)}(k-1)n^{n(k-1)}n^{n(k-1)}e^{-n(k-1)}}}$$

$$\sim \frac{\sqrt{k}}{\sqrt{2\pi(k-1)}} \left(\frac{k^{k}}{(k-1)^{k-1}}\right)^{n} \frac{1}{\sqrt{n}}$$

Donc le rayon de convergence vaut $\frac{(k-1)^{k-1}}{k^k}$. On pouvait aussi utiliser la règle de d'Alembert ou Cauchy-Hadamard après avoir vérifié que $((kn)!)^{\frac{1}{n}} \sim n^k k^k e^{-k}$.

Solution 2. (Enoncé)

1. On utilise par exemple la formule de CAUCHY-HADAMARD :

$$R_1 = \frac{1}{\limsup \sqrt[n]{|a_n^2|}} = \left(\frac{1}{\limsup \sqrt[n]{|a_n|}}\right)^2 = R^2.$$

2. On peut aussi utiliser la formule de Cauchy-Hadamard, ou alors faire autrement. Soit $z \in \mathbb{C}$ montrons que $\left(\frac{a_n}{n!}z^n\right)_{n\geq 0}$ est bornée, on sait que la suite $(a_n\left(\frac{R}{2}\right)^n)_{n\geq 0}$ est bornée. De plus :

$$\frac{a_n}{n!}z^n = a_n \left(\frac{R}{2}\right)^n \frac{\left(\frac{2z}{R}\right)^n}{n!},$$

donc comme la suite $(\frac{\left(\frac{2z}{R}\right)^n}{n!})_{n\geq 0}$ est bornée (elle tend vers 0 par croissances comparées), la suite $(\frac{a_nz^n}{n!})_{n\geq 0}$ est bornée et ce pour tout $z\in\mathbb{C}$ et donc $R_2=+\infty$.

3. On a l'équivalent suivant, par la formule de STIRLING :

$$\frac{n!a_n}{n^n} \underset{n \to +\infty}{\sim} \frac{a_n \sqrt{2\pi n} e^{-n} n^n}{n^n} \underset{n \to +\infty}{\sim} \sqrt{2\pi n} a_n e^{-n}$$

et donc $R_3 = eR$.

Solution 3. (Enoncé)

Notons R le rayon de convergence recherché. On peut procéder de plusieurs façons. Si z=1, alors $n!z^{n^2}\underset{n\to+\infty}{\longrightarrow} +\infty$ donc $R\leq 1$. Enfin, si 0<|z|<1, alors :

$$|n!z^{n^2}| \le |n^n z^{n^2}| = e^{n \ln(n) + \ln(|z|)n^2} \underset{n \to +\infty}{\longrightarrow} 0$$

et donc R=1. On peut aussi utiliser la formule de Cauchy-Hadamard. On écrit $\sum_{n\geq 1} n! z^{n^2} = \sum_{n\leq 1} a_n z^n$ avec :

$$a_n = \begin{cases} (\sqrt{n})! & \text{si } n \text{ carr\'e parfait} \\ 0 & \text{sinon.} \end{cases}$$

D'où,

$$\frac{1}{R} = \limsup \sqrt[n]{|a_n|} = \limsup \sqrt[n^2]{n!} = 1$$

car $\frac{1}{n^2}\ln(n!) \le \frac{\ln(n)}{n} \xrightarrow[n \to +\infty]{} 0$ d'où le résultat en prenant l'exponentielle.

Solution 4. (Enoncé)

- 1. On a l'équivalent suivant : $\sin\left(\frac{1}{\sqrt{n}}\right) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}$, or la série entière $\sum_{n \geq 1} \frac{x^n}{\sqrt{n}}$ est de rayon 1 (par exemple par le règle de d'Alembert ou de Cauchy-Hadamard) donc R = 1.
- 2. Pour x = 1, $\sin\left(\frac{1}{\sqrt{n}}\right) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}$ et $\sum_{n \geq 1} \frac{1}{\sqrt{n}}$ diverge, donc la série diverge en 1.

Pour x = -1, on a $\sin\left(\frac{1}{\sqrt{n}}\right)x^n = (-1)^n\sin\left(\frac{1}{\sqrt{n}}\right)$. Or pour tout $n \ge 1$, $\frac{1}{\sqrt{n}} \in [0, \frac{\pi}{2}]$ et sin est positive croissante sur cet intervalle, donc la suite $\sin\left(\frac{1}{\sqrt{n}}\right)$ est positive est décroissante et donc $\sum_{n\ge 1} (-1)^n \sin\left(\frac{1}{\sqrt{n}}\right)$ converge par le critère spécial des séries alternées.

3. Pour avoir une idée de la limite, on peut faire le raisonnement heuristique suivant :

$$\lim_{x \to 1^{-}} f(x) = \sum_{n=1}^{\infty} \lim_{x \to 1^{-}} x^{n} \sin\left(\frac{1}{\sqrt{n}}\right) = \sum_{n=1}^{\infty} \sin\left(\frac{1}{\sqrt{n}}\right) = +\infty.$$

Montrons le maintenant de manière rigoureuse. Par positivité de $nx^{n-1}\sin\left(\frac{1}{\sqrt{n}}\right)$ pour $x \geq 0$, la fonction f est croissante sur [0,1] donc admet, quand x tend vers 1^- , une limite l dans $\mathbb{R}^+ \cup \{+\infty\}$. Soit $N \geq 1$ et x > 0, alors :

$$f(x) = \sum_{n=1}^{\infty} x^n \sin\left(\frac{1}{\sqrt{n}}\right) \ge \sum_{n=1}^{N} x^n \sin\left(\frac{1}{\sqrt{n}}\right)$$

en passant à la limite $x \to 1^-$ dans l'inégalité précédente il vient :

$$\forall N \ge 1, \quad l \ge \sum_{n=1}^{N} \sin\left(\frac{1}{\sqrt{n}}\right).$$

Donc en passant à la limite $N \to +\infty$, il vient finalement :

$$l \ge \sum_{n=1}^{\infty} \sin\left(\frac{1}{\sqrt{n}}\right) = +\infty.$$

Donc $l = +\infty$ et cela conclut.

Solution 5. (Enoncé)

Montrons que l'intégrale est bien convergente, notons $f: t \mapsto \frac{\ln(t) \ln(1-t)}{t}$ définie sur]0,1[. Alors f est continue sur]0,1[et se prolonge par continuité en 1 en posant f(1)=0 car :

$$f(t) \underset{t \to 1^{-}}{\sim} \ln(t) \ln(1-t) \underset{t \to 1^{-}}{\sim} (t-1) \ln(1-t) \underset{t \to 1^{-}}{\longrightarrow} 0.$$

De plus,

$$f(t) \underset{t\to 0^+}{\sim} -\ln(t),$$

et comme $\int_0^{\frac{1}{2}} \ln(t) dt$ converge, $\int_0^{\frac{1}{2}} f(t) dt$ converge et finalement $\int_0^1 f(t) dt$ converge. On sait que pour $t \in [0, 1[$,

$$\ln(1-t) = -\sum_{n=1}^{\infty} \frac{t^n}{n}.$$

D'où

$$\int_0^1 \frac{\ln(t) \ln(1-t)}{t} dt = -\int_0^1 \sum_{n=1}^\infty \frac{\ln(t) t^{n-1}}{n} dt.$$

Or, par intégration par parties

$$\int_0^1 t^{n-1} \ln(t) dt = \left[\frac{t^n}{n} \ln(t) \right]_0^1 - \int_0^1 \frac{t^{n-1}}{n} dt = -\frac{1}{n^2}.$$

Comme,

$$\sum_{n=1}^{\infty} \int_{0}^{1} \left| \frac{\ln(t)t^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{2}} < +\infty.$$

on peut donc intervertir série et intégrale et cela donne :

$$\int_0^1 \frac{\ln(t)\ln(1-t)}{t} dt = -\sum_{n=1}^\infty \frac{\ln(t)t^{n-1}}{n} dt = \sum_{n=1}^\infty \frac{1}{n^3} = \zeta(3).$$

Solution 6. (Enoncé)

On cherche R > 0 et des coefficients $(a_n)_{n \geq 0}$ telle que la fonction $y : x \mapsto \sum_{n=0}^{\infty} a_n x^n$ soit de rayon de convergence R et solution de (E) sur] - R, R[. On a pour $x \in] - R, R[$,

$$y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}$$
 et $y''(x) = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2}$

donc pour $x \in]-R, R[,$

$$(1+x^2)y''(x) + 4xy'(x) + 2y(x) = \sum_{n=0}^{\infty} (n+2)(n+1)(a_{n+2} + a_n)x^n$$

donc y est solution de (E) si et seulement si :

$$\forall n \ge 0, \quad a_{n+2} = -a_n,$$

ce qui donne :

$$\forall n > 0, \quad a_{2n} = (-1)^n a_0 \text{ et } a_{2n+1} = (-1)^n a_1.$$

Donc $R \ge 1 > 0$ et y est de la forme :

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$= \sum_{n=0}^{\infty} a_{2n} x^{2n} + \sum_{n=0}^{\infty} a_{2n+1} x^{2n+1}$$

$$= a_0 \sum_{n=0}^{\infty} (-1)^n x^{2n} + a_1 x \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

$$= \frac{a_0 + a_1 x}{1 + x^2}.$$

On obtient donc un système fondamental de solution sur]-1,1[, mais un calcul immédiat montre que les solutions sont aussi valables sur \mathbb{R} . Or l'équation (E) est une équation homogène de second degré donc l'espace des solutions est de dimension 2. On en déduit alors que les solutions de (E) sur \mathbb{R} sont :

$$\left\{ x \mapsto \frac{a_0 + a_1 x}{1 + x^2} \mid (a_0, a_1) \in \mathbb{R}^2 \right\}.$$

Solution 7. (Enoncé)

Posons $g(z) = f(z + \frac{1}{2})$, il s'agit de déterminer si g est développable en série entière en 0. La fonction $f = \sum_{n=0}^{\infty} a_n z^n$ est développable en série entière en 0 de rayon de convergence 1, donc f est holomorphe sur $D(0,1) := \{z \in \mathbb{C} \mid |z| < 1\}$. Donc la fonction g est holomorphe sur $D(0,\frac{1}{2})$ donc g0 est développable en série entière avec un rayon de convergence g1 supérieur ou égal à g2.

entière avec un rayon de convergence R supérieur ou égal à $\frac{1}{2}$. Si on avait $R > \frac{1}{2}$, alors la série entière $\sum_{n=0} a_n (z+\frac{1}{2})^n$ serait absolument convergente en $z=\frac{1}{2}+\varepsilon$ pour un $\varepsilon > 0$ et donc la série entière $\sum_{n\geq 0} a_n z^n$ convergerait pour un $z=1+\varepsilon > 1$ ce qui contredit qu'elle soit de rayon de convergence 1, d'où $R=\frac{1}{2}$.

Solution 8. (Enoncé)

1. La variable aléatoire S est à valeurs dans N, de plus pour $n \in \mathbb{N}$,

$$(S=n) = \bigcup_{k=0}^{\infty} (N=k) \bigcap \left(\sum_{i=1}^{k} X_i = n\right) \in \mathcal{F}$$

donc S est bien une variable aléatoire discrète.

2. Soit $t \in]-1,1[$, alors les fonctions génératrices sont bien définies. On a $G_S(t) = \sum_{n=0}^{\infty} \mathbb{P}(X=n)t^n$. Soit $n \geq 0$, alors en utilisant l'égalité de la question précédente et la σ -additivité de \mathbb{P} :

$$\mathbb{P}(S=n) = \sum_{k=0}^{\infty} \mathbb{P}\left(N=k, \sum_{i=1}^{k} X_i = n\right)$$

ce qui par indépendance donne :

$$\mathbb{P}(S=n) = \sum_{k=0}^{\infty} \mathbb{P}(N=k) \mathbb{P}\left(\sum_{i=1}^{k} X_i = n\right).$$

Donc,

$$G_{S}(t) = \sum_{n=0}^{\infty} \mathbb{P}(S=n)t^{n}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \mathbb{P}(N=k)\mathbb{P}\left(\sum_{i=1}^{k} X_{i} = n\right)t^{n}$$

$$= \sum_{k=0}^{\infty} \mathbb{P}(N=k)\left(\sum_{n=0}^{\infty} \mathbb{P}\left(\sum_{i=1}^{k} X_{i} = n\right)t^{n}\right)$$

$$= \sum_{k=0}^{\infty} \mathbb{P}(N=k)G_{\sum_{i=1}^{k} X_{i}}(t)$$

$$= \sum_{k=0}^{\infty} \mathbb{P}(N=k)(G_{X_{1}}(t))^{k}$$

$$= G_{N}(G_{X_{1}}(t))$$

l'interversion des symboles sommes (ligne 2) est justifiée car :

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left| \mathbb{P}(N=k) \mathbb{P}\left(\sum_{i=1}^{k} X_i = n\right) t^n \right| \le \sum_{k=0}^{\infty} \mathbb{P}(N=k) \sum_{n=0}^{\infty} |t|^n \le \frac{1}{1-t} < +\infty$$

et l'égalité $G_{\sum_{i=1}^k X_i} = G_{X_1}^k$ vient de l'indépendance des $(X_i)_{i\geq 0}$ et le fait qu'ils suivent la même loi. 3. Si X_1 et N sont d'espérances finies, alors G_{X_1} et G_N sont dérivables en 1^- , donc G_S aussi par composition, donc S est d'espérance finie et :

$$\mathbb{E}(S) = G'_S(1) = G'_{X_1}(1)G'_N(G_{X_1}(1)) = \mathbb{E}(X_1)\mathbb{E}(N),$$

car
$$G_{X_1}(1) = \sum_{n=0}^{\infty} \mathbb{P}(X_1 = n) = 1.$$

Solution 9. (Enoncé)

Supposons par l'absurde que tous les points soient réguliers. Alors pour tout $z \in \mathbb{S} = \{z \in \mathbb{C} \mid |z| = 1\}$, il existe $\varepsilon_z > 0$ et une fonction holomorphe f_z sur $D(z, \varepsilon)$ qui prolonge f. Comme $\mathbb{S} \subset \bigcup_{z \in \mathbb{S}} D(z, \varepsilon_z)$, par compacité de S, on peut écrire :

$$\mathbb{S} \subset \bigcup_{i=1}^n D(z_i, \varepsilon_{z_i})$$

avec $z_i \in \mathbb{S}$. Soit alors $\varepsilon := \min_{i=1}^n \varepsilon_{z_i} > 0$, la fonction f est prolongeable en une fonction holomorphe sur l'ensemble:

$$D(0,1)\cup\subset\cup_{i=1}^n D(z_i,\varepsilon_{z_i}).$$

Mais cet ensemble contient le disque $D(0, 1 + \varepsilon)$, en notant g le prolongement de f, g est holomorphe sur $D(0,1+\varepsilon)$ donc y est développable en série entière. En écrivant $g(z)=\sum_{n=0}^{\infty}b_nz^n$ avec un rayon de convergence $R \ge 1 + \varepsilon > 1$, l'unicité du développement en série entière donne $a_n = b_n$ pour tout n, ce qui contredit le fait que le rayon de convergence de $\sum_{n>0} a_n z^n$ soit 1.

Solution 10. (Enoncé)

Montrons d'abord que $\sum_{n=0}^{\infty} b_n x^n \xrightarrow[x \to 1^{-}]{} +\infty$. En effet, comme $(b_n)_n$ est strictement positive, la quantité de gauche admet une limite S (éventuellement infinie) en 1 $^-$. On a pour tout $N \in \mathbb{N}$,

$$\sum_{n=0}^{\infty} b_n x^n \ge \sum_{n=0}^{N} b_n x^n.$$

Donc en passant à la limite en x, on a pour tout $N \in \mathbb{N}$, $S \ge \sum_{n=0}^{N} b_n$ et donc $S = +\infty$.

Soit maintenant $\epsilon > 0$ et $x \in]0,1[$. Il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, |a_n - b_n| < \epsilon b_n$. On a donc pour $n \geq n_0$:

$$\left| \frac{\sum_{n=0}^{\infty} a_n x^n}{\sum_{n=0}^{\infty} b_n x^n} - 1 \right| \le \frac{\sum_{n=0}^{n_0} |a_n - b_n| x^n}{\sum_{n=0}^{\infty} b_n x^n} + \frac{\sum_{n=n_0+1}^{\infty} |a_n - b_n| x^n}{\sum_{n=0}^{\infty} b_n x^n}$$

$$\le \frac{\sum_{n=0}^{n_0} |a_n - b_n| x^n}{\sum_{n=0}^{\infty} b_n x^n} + \epsilon$$

$$\le \frac{\sum_{n=0}^{n_0} |a_n - b_n|}{\sum_{n=0}^{\infty} b_n x^n} + \epsilon$$

Le premier terme est plus petit que ϵ pour x assez proche de 1 et cela conclut.

Solution 11. (Enoncé)

Solution 11. (Enoncé) Soit $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{3n+1} x^{3n+1}$. La fonction f est la somme d'une série entière de rayon de convergence 1, donc est définie sur]-1,1[. De plus, $\sum_{n\geq 1} \frac{(-1)^n}{3n+1}$ converge par le critère spécial des séries alternées donc f(1) est bien défini. Soit $x\in]0,1[$, alors la suite $\frac{x^{3n+1}}{3n+1}$ est décroissante de limite nulle donc par le critère spécial des séries alternées :

$$\left| \sum_{k=n}^{\infty} \frac{(-1)^n}{3n+1} x^{3n+1} \right| \le \frac{x^{3n+1}}{3n+1} \le \frac{1}{3n+1}.$$

Donc $\sum_{n\geq 1} \frac{(-1)^n}{3n+1} x^{3n+1}$ converge uniformément sur [0,1] donc f est continue sur [0,1]. Il suffit alors de calculer f(x) pour $x \in]-1,1[$ et de prendre la limite quand $x \to 1^-$ pour avoir le résultat. La fonction f est de classe C^{∞} sur]-1,1[et pour $x \in]-1,1[$,

$$f'(x) = \sum_{n=1}^{\infty} (-1)^n x^{3n} = \frac{-x^3}{1+x^3} = \frac{1}{1+x^3} - 1.$$

La décomposition en élément simple de $\frac{1}{X^3+1}$ dans $\mathbb{R}[X]$ est de la forme :

$$\frac{1}{X^3+1} = \frac{a}{X+1} + \frac{bX+c}{X^2-X+1}$$

en multipliant par X+1 et en évaluant en -1 il vient : $a=\frac{1}{3}$. En multipliant par X et en regardant en $+\infty$ il vient $b=-a=-\frac{1}{3}$. Enfin, en évaluant en X=0 il vient $c=1-a=\frac{2}{3}$. Donc pour $x\in]-1,1[$,

$$\begin{split} f(x) &= f(0) + \int_0^x f'(t) \, \mathrm{d}t \\ &= -x + \int_0^1 \frac{\mathrm{d}t}{3(t+1)} + \frac{1}{3} \int_0^x \frac{-t+2}{t^2-t+1} \, \mathrm{d}t \\ &= -x + \frac{1}{3} \ln(x+1) - \frac{1}{6} \left(\int_0^1 \frac{2t-1}{t^2-t+1} \, \mathrm{d}t - 3 \int_0^1 \frac{\mathrm{d}t}{t^2-t+1} \right) \\ &= -x + \frac{1}{3} \ln(x+1) - \frac{1}{6} \ln(x^2-x+1) + \frac{1}{2} \int_0^1 \frac{\mathrm{d}t}{(t-\frac{1}{2})^2 + \frac{3}{4}} \\ &= -x + \frac{1}{3} \ln(x+1) - \frac{1}{6} \ln(x^2-x+1) + \frac{1}{2} \frac{2}{\sqrt{3}} \left(\arctan\left(\frac{2(x-\frac{1}{2})}{\sqrt{3}} \right) - \arctan\left(\frac{2(0-\frac{1}{2})}{\sqrt{3}} \right) \right) \\ &= -x + \frac{1}{3} \ln(x+1) - \frac{1}{6} \ln(x^2-x+1) + \frac{1}{\sqrt{3}} \left(\arctan\left(\frac{2(x-\frac{1}{2})}{\sqrt{3}} \right) + \frac{\pi}{6} \right). \end{split}$$

Donc en prenant la limite quand $x \to 1^-$, il vient :

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n+1} = f(1) = \lim_{x \to 1^-} f(x) = -1 + \frac{1}{3}\ln(2) + \frac{1}{\sqrt{3}} \left(\frac{\pi}{6} + \frac{\pi}{6}\right) = -1 + \frac{1}{3}\ln(2) + \frac{\pi}{3\sqrt{3}}.$$

Solution 12. (Enoncé)

On va montrer que $f = \sum_{n=1}^{\infty} f_n$ est de classe C^k sur \mathbb{R} pour tout $k \geq 1$. Chaque f_n est de classe C^k sur \mathbb{R} et $\sum_{n\geq 1} f_n$ converge simplement sur \mathbb{R} . De plus, pour $k\geq 1$, $n\geq 1$ et $x\in \mathbb{R}$,

$$|f_n^{(k)}(x)| = |e^{-n}(in^2)^k e^{in^2 x}| = n^{2k} e^{-n},$$

donc $\sum_{n\geq 1} f_n^{(k)}$ converge normalement sur \mathbb{R} (donc uniformément car \mathbb{R} est de dimension finie en tant que \mathbb{R} -espace vectoriel) et le théorème de dérivation termes à termes des séries de fonctions permet de conclure que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Soit $k \geq 0$, alors :

$$f^{(k)}(0) = \sum_{n=1}^{\infty} n^{2k} e^{-n} \ge k^{2k} e^{-k}.$$

Donc si f était développable en série entière en 0, alors la série $\sum_{k\geq 1} \frac{f^{(k)}(0)}{k!} x^k$ aurait un rayon de convergence non nul. Or pour tout x > 0,

$$\frac{f^{(k)}(0)}{k!}x^k \geq \frac{k^{2k}e^{-k}}{k!}x^k \underset{k \to +\infty}{\sim} \frac{k^{2k}x^ke^{-k}}{\sqrt{2\pi k}k^ke^{-k}} \underset{k \to +\infty}{\sim} \frac{k^ke^{-2k}x^k}{\sqrt{2\pi k}} \underset{k \to +\infty}{\longrightarrow} +\infty$$

et donc la série $\sum_{k>0} \frac{f^{(k)}(0)}{k!}$ diverge et f n'est pas développable en série entière en 0.

Remarque: On aurait pu aussi utiliser la règle de CAUCHY-HADAMARD et montrer que:

$$\lim \sup \left| \frac{f^{(k)}(0)}{k!} \right| = +\infty$$

Remarque : On peut montrer que f n'est développable en série entière en aucun point de \mathbb{R} .

Solution 13. (Enoncé)

- 1. Comme \mathfrak{S}_n est de cardinal n!, il est clair que $I_n \leq n!$ et donc $\frac{I_n}{n!} \leq 1$ et donc $R \geq 1$.
- 2. Soit σ une involution de \mathfrak{S}_{n+2} . Si $\sigma(n+2)=n+2$, alors σ restreinte à [1;n+1] est une involution et il y a I_{n+1} choix pour σ . Si $\sigma(n+2) \neq n+2$, alors il y a (n+1) choix pour $\sigma(n+2)$ (tous les entiers de [1; n+1]). Si $\sigma(n+1)=k$, alors nécessairement $\sigma(k)=n+1$ car σ est une involution. Il reste alors a choisir les n autres valeurs de σ , ce qui revient à choisir une involution d'un ensemble à n éléments : il y en a I_n . Finalement on a bien la formule attendue.
- 3. D'après la question précédente, pour tout $n \geq 0$ et $z \in D(0, R)$:

$$\frac{I_{n+2}}{(n+1)!}z^{n+1} = \frac{I_n}{n!}z^{n+1} + \frac{I_{n+1}}{(n+1)!}z^{n+1}$$

ce qui en sommant de n=0 à $+\infty$ donne :

$$f'(z) - 1 = zf(z) + (f(z) - 1)$$

i.e.

$$f'(z) = (1+z)f(z).$$

En résolvant cette équation différentielle sur]-R,R[, il vient :

$$\forall x \in]-R, R[, \quad f(x) = \exp\left(x + \frac{x^2}{2}\right)$$

car f(0) = 1. Or les fonctions $z \mapsto \exp(z + \frac{z^2}{2})$ et $z \mapsto f(z)$ sont holomorphes sur D(0,R) et coïncident sur] – R, R[donc sont égales sur D(0,R) par le principe des zéros isolés. Mais $z\mapsto \exp(z+\frac{z^2}{2})$ est entière donc développable en série entière sur $\mathbb C$, par unicité du développement en série entière, le rayon de convergence de $\sum_{n\geq 0} \frac{I_n}{n!} z^n$ est $+\infty$. 4. Soit $z\in\mathbb{C}$, alors :

$$\exp\left(z + \frac{z^2}{2}\right) = \exp(z) \exp\left(\frac{z^2}{2}\right)$$

$$= \sum_{n=0}^{\infty} \frac{z^n}{n!} \sum_{k=0}^{\infty} \frac{z^{2k}}{2^k k!}$$

$$= \sum_{n,k=0}^{\infty} \frac{z^{n+2k}}{n!k!2^k}$$

$$= \sum_{p=0}^{\infty} \sum_{n+2k=p} \frac{z^{n+2k}}{n!k!2^k}$$

$$= \sum_{p=0}^{\infty} \left(\sum_{n+2k=p} \frac{1}{n!k!2^k}\right) z^p$$

donc par unicité du développement en série entière :

$$\forall p \ge 0, \quad I_p = p! \sum_{n+2k=p} \frac{1}{n!k!2^k}.$$

5. La formule de CAUCHY donne pour r > 0 et $n \ge 1$:

$$I_n = \frac{n!}{2\pi r^n} \int_{-\pi}^{\pi} \exp\left(re^{it} + \frac{r^2}{2}e^{2it}\right) e^{-int} dt.$$

Soit $n \ge 0$, alors il existe un unique $r_n \ge 0$ tel que $r_n + r_n^2 = n$, en effet en résolvant l'équation du second degré en r_n on a $r_n = \frac{\sqrt{4n+1}-1}{2}$. On applique la formule de CAUCHY à $r = r_n$, alors :

$$\begin{split} I_n &= |I_n| \\ &\leq \frac{n!}{2\pi r_n^n} \int_{-\pi}^{\pi} \left| \exp\left(r_n e^{int} + \frac{r_n^2}{2} e^{2int}\right) e^{-int} \right| \, \mathrm{d}t \\ &\leq \frac{n!}{r_n^n} \exp\left(r_n + \frac{r_n^2}{2}\right) \end{split}$$

Or, en utilisant le développement asymptotique $r_n = \sqrt{n} - \frac{1}{2} + \frac{1}{8\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$:

$$r_n^n = \exp(n\log(r_n))$$

$$= \exp\left(n\ln\left(\sqrt{n} - \frac{1}{2} + \frac{1}{8\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right)\right)$$

$$= \exp\left(n\ln(\sqrt{n}) - \frac{\sqrt{n}}{2} + o(1)\right)$$

$$\underset{n \to +\infty}{\sim} n^{\frac{n}{2}} \exp(-\frac{\sqrt{n}}{2})$$

et:

$$\exp(r_n + \frac{r_n^2}{2}) = \exp\left(\frac{n}{2} + \frac{r_n}{2}\right)$$
$$= \exp\left(\frac{n}{2} + \frac{\sqrt{n}}{2} - \frac{1}{4} + o(1)\right)$$
$$\underset{n \to +\infty}{\sim} \exp\left(\frac{n}{2} + \frac{\sqrt{n}}{2} - \frac{1}{4}\right)$$

ce qui donne bien :

$$I_n = O\left(\frac{n!}{r_n^n} \exp\left(r_n + \frac{r_n^2}{2}\right)\right) = O\left(n^{\frac{n+1}{2}} \exp\left(-\frac{n}{2} + \sqrt{n}\right)\right)$$

Remarque: On pourrait se demander pourquoi ne pas choisir que $r_n + r_n^2 = n$, choix a priori plus simple, avec un tel choix de r_n , la borne obtenue sur I_n est moins bonne.

Remarque : On peut montrer l'équivalent suivant :

$$I_n \underset{n \to +\infty}{\sim} \frac{e^{-\frac{1}{4}}}{\sqrt{2}} n^{\frac{n}{2}} \exp\left(-\frac{n}{2} + \sqrt{n}\right),$$

avec par exemple la méthode du col, c'est aussi fait dans *Topologie et analyse fonctionnelle - Thèmes d'analyse* pour l'agrégation de Stephane GONNORD et Nicolas TOSEL avec une analyse qualitative d'équations différentielles mais dans les deux cas, c'est très largement hors-programme pour l'agrégation.

Solution 14. (Enoncé)

Soit 0 < x < 1 fixé. La fonction $t \mapsto x^{t^2}$ est décroissante donc pour tout $n \in \mathbb{N}^*$,

$$\int_{n}^{n+1} x^{t^{2}} dt \le x^{n^{2}} \le \int_{n-1}^{n} x^{t^{2}} dt.$$

Soit en sommant:

$$\int_{1}^{\infty} x^{t^2} dt \le f(x) \le \int_{0}^{\infty} x^{t^2} dt$$

Or $\int_1^\infty x^{t^2} dt \sim \int_0^\infty x^{t^2} dt$ donc $f(x) \sim \int_0^\infty x^{t^2} dt$. Il reste donc à évaluer cette dernière intégrale, on fait pour cela le changement de variable $u = \sqrt{-\log(x)}t$:

$$\int_0^\infty x^{t^2} dt = \frac{1}{\sqrt{-\log(x)}} \int_0^\infty e^{-u^2} du$$
$$= \frac{1}{\sqrt{-\log(x)}} \int_0^\infty e^{-u^2} du$$
$$\underset{x \to 1^-}{\sim} \frac{\sqrt{\pi}}{2\sqrt{1-x}}.$$

où l'on a utilisé la valeur de l'intégrale de Gauss : $\int_0^\infty e^{-u^2} \mathrm{d} u = \frac{\sqrt{\pi}}{2}.$

Remarque: On peut procéder autrement. En notant $\theta(t) = \sum_{n=1}^{\infty} e^{-\pi n^2 t}$, alors $\sum_{n=1}^{\infty} x^{n^2} = \theta\left(-\frac{\ln(x)}{\pi}\right)$. La formule sommatoire de Poisson donne $\theta(t) = \frac{1}{2\sqrt{t}} \left(2\theta\left(\frac{1}{t}\right) + 1\right) - \frac{1}{2}$. Donc:

$$\sum_{n=1}^{\infty} x^{n^2} = \theta\left(-\frac{\ln(x)}{\pi}\right) = \frac{\sqrt{\pi}}{2\sqrt{-\ln(x)}} \left(2\theta\left(\frac{\pi}{-\ln(x)}\right) + 1\right) - \frac{1}{2} \underset{x \to 1^-}{\sim} \frac{\sqrt{\pi}}{2\sqrt{1-x}}.$$

Solution 15. (Enoncé)

On note pour $n \geq 0$ un entier, $F_n = \{z \in \mathbb{C} \mid f^{(n)}(z) = 0\}$. Les ensembles F_n sont des fermés de \mathbb{C} par image réciproque d'un fermé par une application continue, par hypothèse leur réunion vaut \mathbb{C} . Donc par le théorème de BAIRE il existe un $n \geq 0$ tel que F_n soit d'intérieur non vide, la fonction holomorphe $f^{(n)}$ s'annule donc en un ensemble avec un point d'accumulation, donc est nulle par le principe des zéros isolés, et f est bien un polynôme.

Solution 16. (Enoncé)

- 1. De l'inégalité $1 \le \varphi(n) \le n$, on en déduit que le rayon de convergence recherché vaut 1.
- 2. On peut utiliser l'inversion de Möbius et l'égalité $n = \sum_{d|n} \varphi(d)$. On peut aussi faire un calcul direct, si n=1 le résultat est immédiat. Si $n\geq 2$, on écrit $n=\prod_{i=1}^k p_i^{\alpha_i}$ sa décomposition en facteurs premiers. Les diviseurs d de n sont de la forme $d=\prod_{i=1}^k p_i^{\beta_i}$ avec $\beta_i\leq \alpha_i$ pour tout $1\leq i\leq k$. De plus, $\mu(d)=0$ s'il existe $i\in [1;k]$ tel que $\beta_i>1$. On peut alors écrire :

$$\sum_{d|n} \mu(d) \frac{n}{d} = \sum_{\beta_1=0}^{1} \cdots \sum_{\beta_k=0}^{1} \mu(p_1^{\beta_1}) p_1^{\alpha_1-\beta_1} \dots p_k^{\alpha_k-\beta_k}$$

$$= \left(\sum_{\beta_1=0}^{1} \mu(p_1^{\beta_1}) p_1^{\alpha_1-\beta_1} \right) \dots \left(\sum_{\beta_k=0}^{1} \mu(p_k^{\beta_k}) p_k^{\alpha_k-\beta_k} \right)$$

$$= \left(p_1^{\alpha_1} - p_1^{\alpha_1-1} \right) \dots \left(p_k^{\alpha_k} - p_k^{\alpha_k-1} \right)$$

$$= \varphi(n).$$

3. On utilise la question précédente et on intervertit les sommes :

$$\sum_{k=1}^{n} \varphi(k) = \sum_{k=1}^{n} \sum_{d \mid k} \mu(d) \frac{k}{d} = \sum_{d=1}^{n} \sum_{d \mid k} \mu(d) \frac{k}{d} = \sum_{d=1}^{n} \mu(d) \sum_{l=1}^{\lfloor \frac{n}{d} \rfloor} l = \sum_{d=1}^{n} \frac{\mu(d)}{2} \left(\left\lfloor \frac{n}{d} \right\rfloor \left(\left\lfloor \frac{n}{d} \right\rfloor + 1 \right) \right)$$

En écrivant $\left\lfloor \frac{n}{d} \right\rfloor = \frac{n}{d} + O(1)$ il vient :

$$\sum_{k=1}^{n} \varphi(k) = \sum_{d=1}^{n} \frac{\mu(d)}{2} \left(\frac{n}{d} + O(1) \right)^{2} = \frac{n^{2}}{2} \sum_{d=1}^{n} \frac{\mu(d)}{d^{2}} + nO\left(\sum_{d=1}^{n} \frac{\mu(d)}{d} \right) = \frac{3}{\pi^{2}} n^{2} + O\left(n \ln(n) \right) \underset{n \to +\infty}{\sim} \frac{3}{\pi^{2}} n^{2}$$

4. Soit 0 < x < 1, alors

$$\frac{x}{1-x}f(x) = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n-1} \varphi(k)\right) x^n.$$

Donc en utilisant l'exercice 10 (pour les deux premiers équivalents), il vient :

$$\frac{x}{1-x}f(x) \underset{x \to 1^{-}}{\sim} \sum_{n=1}^{\infty} \frac{3}{\pi^{2}} n^{2} x^{n} \underset{x \to 1^{-}}{\sim} \frac{3}{\pi^{2}} \sum_{n=1}^{\infty} n(n-1) x^{n} \underset{x \to 1^{-}}{\sim} \frac{3}{\pi^{2}} \frac{2x^{2}}{(1-x)^{3}}$$

et donc,

$$f(x) \underset{x \to 1^{-}}{\sim} \frac{6}{\pi^2} \frac{1}{(1-x)^2}.$$

Solution 17. (Enoncé)

Comme f est entière sur \mathbb{C} , on peut écrire $f(z) = \sum_{n=0}^{\infty} a_n z^n$ où la série entière est de rayon de convergence infini. Supposons que f' s'annule en $z_0 \in \mathbb{C}$, quitte à considérer $z \mapsto f(z+z_0) - f(z_0)$ qui vérifie les mêmes hypothèses que f, on peut supposer $z_0 = 0$ et f(0) = 0, on a donc $f(z) = \sum_{n=2}^{\infty} a_n z^n$. Montrons que f ne peut être injective, on utilise pour cela le théorème de ROUCHÉ. Soit $k = \min\{n \in \mathbb{N} \mid a_n \neq 0\} \geq 2$, alors :

$$f(z) = a_k z^k + \sum_{n=k+1}^{\infty} a_n z^n = a_k z^k + g(z)$$

avec $g(z) = \sum_{n=k+1}^{\infty} a_n z^n$ qui est une fonction entière. Comme f n'est pas constante, les zéros de f' sont isolés : il existe donc r > 0 tel que $f'(z) \neq 0$ pour $z \in D(0,r) \setminus \{0\}$. Soit $w \in \mathbb{C}^*$ un complexe dont on précisera certaines conditions sur lui plus tard. On écrit :

$$f(z) - f(w) = F(z) + g(z)$$

avec $F(z) = a_k z^k - f(w)$. Il existe $r_1 \in]0, r[$ indépendant de w tel que pour tout $z \in D(0, r_1)$,

On choisit maintenant w assez petit pour avoir $0 < |f(w)| < |a_k||r|^k$ (possible par continuité de f) et $|w| \in]0, r_1[$. Donc par le théorème de ROUCHÉ, les fonctions F + g et F ont autant de zéros dans $D(0, r_1)$, or F a k zéros dans $D(0, r_1)$ (car $f(w) < |a_k||r|^k$), donc $z \mapsto F(z) + g(z) = f(z) - f(w)$ a $k \ge 2$ zéros dans $D(0, r_1)$, mais comme $f'(z) \ne 0$ pour $z \in D(0, r_1) \setminus \{0\}$, ces zéros sont forcément distincts, ce qui contredit l'injectivité de f, donc f' ne s'annule pas.