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Abstract. In this article we first give a short introduction to the Bochner Lapla-
cian on a Riemannian manifold, and explain why it acts locally as a magnetic
Laplacian. We survey recent results on the semiclassical properties of semi-excited
spectrum with inhomogeneous magnetic field, including Weyl estimates and eigen-
value asymptotics. These results show under specific assumptions that the spec-
trum is well described by a familly of operators whose symbols are space-dependent
Landau levels. Finally we discuss the strength and limitations of these Theorems,
in terms of possible crossings between Landau levels.

1 – Introduction
1.1 – Motivations and context

The spectral theory of the magnetic Laplacian, and Bochner Laplacian, has given
rise to many interesting questions. First motivated by the Ginzburg-Landau theory,
bound states of the magnetic Laplacian (ihd+A)∗(ihd+A) on a Riemannian man-
ifold in the semiclassical limit h → 0 were studied in many works (see the books
[7, 23]), and appeared to have very various behaviours according to the variations
of the magnetic field B = dA. If we are given a magnetic field B which is closed
but not exact, there is no potential A and we cannot define the magnetic Laplacian
in the same way. However, the Bochner Laplacian 1

p2
∆Lp appears to be the suitable

generalization in this case, since it acts locally as a magnetic Laplacian. In this con-
text the semiclassical parameter is p = h−1. The structure of its spectrum appears
to be deeply related to holomorphic structures, Kodaira Laplacians (or renormal-
ized Bochner Laplacians more generaly) and geometric quantization, as explained
for instance in [8, 2] or more recently [3, 15, 16, 18, 19].

Even though homogeneous fields already raise interesting questions (see for in-
stance in [20, 5, 3, 17, 15]) we focus here on the non-homogeneous case. The first
main technique to study the semiclassical spectrum of magnetic Laplacians consisted
in the construction of approximated eigenfunctions (see for instance the works of
Helffer-Mohamed [13] and Helffer-Kordyukov [9, 10, 11]). More recently, an other
approach was developed, which consists in an approximation of the operator itself,
using semiclassical tools such as microlocalisation estimates and Birkhoff normal
forms. Raymond-Vũ Ngo.c [24] used these techniques to describe the semi-excited
spectrum of magnetic Laplacians on the Euclidean R2 with non-degenerate mag-
netic field, and to relate semiclassical spectrum with the classical dynamics. This
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work was generalized to arbitrary manifolds in [21], where metric and higher di-
mensions create new problems. Few results are known in the case of degenerate
magnetic fields, however it is a natural question since this is always the case in odd
dimensions. In [12] (on R3) and [22] (on arbitrary manifolds) it is shown in the case
of magnetic wells, that the degeneracy of the field induces a new classical motion
and significantly modify the behaviour of the spectrum in the semiclassical limit.
In section 3 below, we give a survey of these eigenvalue asymptotics and show how
to apply them to the Bochner Laplacian. In any case, higher dimensions creates
specific problems which we describe in section 4 and give limitations to apply these
techniques outside magnetic wells, even with non-degenerate fields. This issue is
somehow related to the one appearing in the work of Charles [4] where he proves
local Weyl laws for Bochner Laplacians. We give a survey of these results in section
2, explain their strength and limitations and the link with the above mentionned
works in section 4.

1.2 – The Bochner Laplacian on a line bundle
Let (M, g) be a compact oriented manifold of dimension d > 1. We consider

a complex line bundle L → M over M , endowed with a Hermitian metric h. In
other words, we associate to each x ∈ M a 1-dimensional complex vector space Lx,
and a Hermitian product hx on Lx. L is a d + 1-dimensional manifold such that
L =

⋃
x∈M Lx. A smooth section of L (or L-valued function) is a smooth function

s : M → L such that s(x) ∈ Lx. It is the generalisation of the notion of function
f : M → C, but here the target space can vary with x ∈ M . Similarly, L-valued
k-forms are sections of ∧kT ∗M ⊗ L. We denote by C∞(M,L) the set of smooth
sections of L, and Ωk(M,L) the set of smooth L-valued k-forms.

We take ∇L a Hermitian connection on (L, h). It is the generalisation of the
exterior derivative d. The underlying idea is that the "derivative" of a L-valued
function should be L-valued too. ∇L : Ωk(M,L) → Ωk+1(M,L) satisfies:

(1.1) ∇L(sα) = ∇Ls ∧ α + sdα, ∀s ∈ C∞(M,L), α ∈ Ωk(M,C),

(1.2) dh(s1, s2) = h(∇Ls1, s2) + h(s1,∇Ls2), ∀s1, s2 ∈ C∞(M,L).

One can prove that (∇L)2 : Ω0(M,L) → Ω2(M,L) acts as a multiplication. There
exists a real closed 2-form B on M such that:

(1.3) (∇L)2s = iBs, ∀s ∈ C∞(M,L).

Example : The trivial line bundle. The line bundle L = M × C, such that
Lx = {x} × C is called the trivial line bundle. We identify sections s ∈ C∞(M,L)
with functions f ∈ C∞(M) by s(x) = (x, f(x)). Similarly, L-valued k-forms are
identified with C-valued k-forms, and we recover the usual differential objects on
M . If L is endowed with the Hermitian product hx((x, z1), (x, z2)) = z1z2, we call
(L, h) the trivial Hermitian line bundle. We write h(z1, z2) for short. Hermitian
connections on the trivial line bundle are given by ∇α = d+ iα where α ∈ Ω1(M,R)
and d is the exterior derivative. The curvature of ∇α is ∇2

α = idα, as shown by the
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easy but enlightening calculation:

(1.4) ∇2
αf = (d + iα)(df + ifα) = d2f + iα ∧ df + id(fα) + ifα ∧ α

= iα ∧ df + idf ∧ α + ifdα = ifdα.

Let us describe now the Bochner Laplacian ∆L associated to a Hermitian con-
nection ∇L on a Hermitian complex line bundle (L, h). First note that the spaces
C∞(M,L) = Ω0(M,L) and Ω1(M,L) are endowed with L2-norms. The norm of a
section s ∈ C∞(M,L) is:

(1.5) ∥s∥2 =
∫
M

hx(s(x), s(x))dνg(x),

where dνg denotes the volume form of the oriented Riemannian manifold (M, g). We
denote by L2(M,L) the completion of C∞(M,L) for this norm. The definition of the
norm of a L-valued 1-form α is a little more involved. First, using a partition of unity,
it is enough to define it for α ∈ Ω1(U,L) where U is a small open subset of M . If U is
small enough, there exists a section e ∈ C∞(U,L) such that hx(e(x), e(x)) = 1. Then
for any α ∈ Ω1(U,L), there exists a unique X ∈ TM such that αx(•) = gx(Xx, •)ex
(we identify 1-forms with tangent vectors using the metric g). We define:

(1.6) ∥α∥2 =
∫
M

gx(Xx, Xx)dνg(x).

The completion of Ω1(M,L) for this norm is denoted by L2Ω1(M,L): it is the space
of square-integrable L-valued 1-forms. These norms are associated with scalar prod-
ucts, denoted by brackets ⟨., .⟩.

The formal adjoint of ∇L : Ω0(M,L) → Ω1(M,L) for these scalar products is
denoted by (∇L)∗ : Ω1(M,L) → Ω0(M,L). The Bochner Laplacian ∆L is the self-
adjoint extension of (∇L)∗∇L. It is the operator associated with the quadratic form:

(1.7) Q(s1, s2) = ⟨∇Ls1,∇Ls2⟩.

We denote by Dom(∆L) its domain. C∞(M,L) is a dense subspace of Dom(∆L) and:

(1.8) ⟨∆Ls1, s2⟩ = ⟨∇Ls1,∇Ls2⟩, ∀s1, s2 ∈ Dom(∆L).

Since M is compact, one can prove that ∆L has compact resolvent, and we denote
by

(1.9) λ1(∆
L) ≤ λ2(∆

L) ≤ ...

the non-decreasing sequence of its eigenvalues. We will use the following notation
for the Weyl counting function:

N(∆L, λ) := ♯{j;λj(∆L) ≤ λ}.

In this paper, we are interested in the semiclassical limit, i.e. the high curvature
limit "B → +∞". We can increase the curvature B using tensor products of L.
For any p ∈ N, we denote by Lp = L ⊗ ... ⊗ L the p-th tensor power of L. Lp is
still a complex line bundle over M , with Lp

x = Lx ⊗ ...⊗ Lx. It is endowed with the
Hermitian product hpx(s1⊗ ...⊗ sp, s1⊗ ...⊗ sp) = Πp

i=1hx(si, si). The connection ∇L

induces a Hermitian connection ∇Lp on Lp by the Leibniz rule:

∇Lp

(s1 ⊗ ...⊗ sp) = (∇Ls1)⊗ ...⊗ sp + ...+ s1 ⊗ ...⊗ (∇Lsp).
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The curvature of ∇Lp is

(1.10) (∇Lp

)2 = ipB.

Hence, the high curvature limit is p → +∞. We want to investigate the behaviour
of λj(∆Lp

) and the corresponding eigensections in the limit p→ +∞.

1.3 – The Bochner Laplacian is locally a magnetic Laplacian
If U is any open subset of M such that there exists a non-vanishing section e ∈

C∞(U,L), then any s ∈ C∞(U,L) can be written s = ue for some u ∈ C∞(M).
Hence,

∇s = (∇e)u+ e(du) = e[(d + iA)u],

with ∇e = eiA. Moreover,

∇2s = ∇e ∧ [(d + iA)u] + ed[(d + iA)u]
= e(iA ∧ du) + e(iA ∧ iA)u+ ed2u+ ieudA+ edu ∧ iA
= ieudA = (idA)s,

and thus B = dA. Hence ∇ acts locally as d+iA, and ∆L as the magnetic Laplacian
(d + iA)∗(d + iA).

1.4 – Remarks on the quantization of a magnetic field
If we are given a closed 2-form B (the magnetic field), the quantization question

constist in finding a quantum operator associated to B. If B is exact, this question is
answered by the semiclassical magnetic Laplacian (ℏd+iA)∗(ℏd+iA), with B = dA.
Here, ℏ > 0 is the semiclassical parameter (Planck’s constant) and the semiclassical
limit is ℏ → 0.

If B is not exact, but if there exists an Hermitian line bundle with Hermitian
connection such that ∇2 = iB, then the Bochner Laplacian ∇∗∇ acts locally as the
magnetic Laplacian and hence it is a good candidate. Moreover, we have locally

∆Lp

= (d + ipA)∗(d + ipA) = p2(
1

p
d + iA)∗(

1

p
d + iA),

so that the semiclassical parameter is now ℏ = 1
p

(Also notice the p2 factor which
is important for the eigenvalue asymptotics). The limit ℏ → 0 is equivalent to
p→ +∞ exept that the semiclassical parameter becomes discrete (p ∈ N).

A new question arises : When does such an Hermitian line bundle exist ? Weil’s
Theorem states that it exists if and only if B satisfies the prequantization condition:

(1.11) [B] ∈ 2πZ,

where [B] denotes the cohomology class of B. This condition also enlightens the
discreteness of the semiclassical parameter. Indeed, if one wants to quantize the
magnetic field 1

ℏB, then one must have
[
1
ℏB
]
∈ 2πZ, and thus 1

p
∈ Z, unless [B] = 0

which means that B is exact (and thus we can use the magnetic Laplacian).
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1.5 – Local data
For every fixed x ∈ M , Bx is a skew-symmetric bilinear form on TxM . One can

use the scalar product gx to define the associated endomorphism Bx which satisfies

(1.12) gx(BxU, V ) = Bx(U, V ), ∀U, V ∈ TxM.

This endomorphism is gx-skewsymmetric, and we denote by β1(x) ≥ · · · ≥ βs(x) > 0
the absolute values of its non-zero eigenvalues counted with multiplicities. Actually
s depends on x and the rank of Bx is 2s ≤ d.

One can measure the "intensity" of the magnetic field using the function b :M →
R+ defined by:

(1.13) b(x) =

s(x)∑
j=1

βj(x).

This function is continuous on M , but not smooth in general. However, note that
it is smooth on a neighborhood of any point x0 where the (βj(x0))1≤j≤s are simple
(if s is locally constant near x0).

2 – Weyl Laws
A global Weyl law for the Bochner Laplacian was proven by Demailly with no

further assumptions on B. The magnetic field has a very different effect on this
Weyl law than an electric potential. This law states that the spectrum of p−1∆Lp is
an agregate of the spectra of Landau Hamiltonians □y. For y ∈M , □y is a magnetic
Laplacian with constant field By on the tangent space TyM . Its spectrum is

(2.1) Σy = sp(□y) =

{
s∑

j=1

(2nj + 1)βj(y); n ∈ Ns

}
.

In the following we denote by bn(y) =
∑s

j=1(2nj + 1)βj(y) its eigenvalues.

Theorem 1 (Demailly [6]). There is a countable set D ⊂ R such that for λ ∈ R\D,

N(p−1∆Lp

, λ) ∼ 2s−nπ−n/2pn/2

Γ(n
2
− s+ 1)

∫
M

β1(x) · · · βs(x)
∑
n∈Ns

(λ− bn(x))
n
2
−s

+ dνg(x) ,

in the limit p→ +∞.

The main idea of the proof is to locally approximate the magnetic field and the
metric by constants. Note that the remainder in this estimate is only o(pn/2). One
could also consider the Schrödinger operator p−1∆Lp

+ V (x), in which case V (x)
should be added to bn(x) in the asymptotic formula.

Recently Charles [4] proved a refinement of this result in the case of non-degenerate
magnetic fields. His work shows that the spectrum of p−1∆p has clusters, and that
the number of eigenvalues in each cluster is given by a geometric quantity, the
Riemann-Roch number RR(Y ) of some vector bundle Y over M . The clusters are
the connected components of Σ =

⋃
n∈Ns bn(M).
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Theorem 2 (Charles [4]). Assume that B is non-degenerate i.e. d = 2s and let
a, b ∈ R \ Σ with a < b. Then when p is sufficiently large,

♯sp(p−1∆Lp

) ∩ [a, b] =

{
RR(Lp ⊗ F ) if [a, b] ∩ Σ ̸= ∅
0 otherwise,

where F is the vector bundle with fibers

Fy = Ran 1[a,b](□y) , y ∈M .

Remark 3. This result is consistent with Theorem 1 because the Riemann-Roch
number depends polynomialy on p with leading term

RR(Lp ⊗ F ) = rankF
( p
2π

)s ∫
M

Bs

s!
+O(ps−1) .

Remark 4. Related results also appear in [16] (Theorem 1.4).

Remark 5. This result has the following limitations. Firstly, it could be that R \ Σ
is a half-line, in which case Theorem 2 gives nothing. Secondly, one would like
to understand the contribution of each bn(M) in the spectrum, but here they are
gathered according to the connected components of Σ.

Charles also proved the following pointwise Weyl law. Denote by (ψj,p)j≥1 a
normalized eigenbasis of ∆Lp such that ∆Lp

ψj,p = λjψj,p. For any y ∈ M and a < b
define

N(y, a, b, p) =
∑

j : p−1λj∈[a,b]

|ψj,p(y)|2 .

Theorem 6 (Charles [4]). Assume that B is non degenerate. For any Λ ∈ R \ Σ,
y ∈M and a, b ∈ ]−∞,Λ] \Σy such that a < b, the following holds. If [a, b] ∩Σy is
empty then N(y, a, b, p) = O(p−∞). Otherwise, we have an asymptotic expansion:

N(y, a, b, p) =

(
k

2π

)s ∑
λ∈Σy∩[a,b]

∞∑
ℓ=0

mℓ,λp
−ℓ +O(p−∞) ,

where the coefficients mℓ,λ do not depend on a, b, p. m0,λ is the multiplicity of the
eigenvalue λ of □y.

Charles uses a specific Toeplitz quantization to see p−1∆Lp as an operator with
symbol □y. Since the spectrum of □y is Σy, we recover the idea of [21]. However,
on needs symbols like 1[a,b](□y) to depend smoothly on y, and this is where the
assumption Λ ∈ R \ Σ appear.

3 – Eigenvalue asymptotics in magnetic wells
3.1 – Reduction to local models

One can prove that the eigensections of the Bochner Laplacian are localized near
the minimum points of b and deduce that the lower part of its spectrum is given
by magnetic Laplacians on neighborhoods of the minimal points of b. We can use
this to get asymptotic expansions of the eigenvalues of ∆Lp , under the following
assumptions.
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Assumptions. (A1) b ∈ C∞(M), and the minimal value of b is only reached at non
degenerate points x1, · · · , xN ∈M . We denote by b0 = b(xj) = minx∈M b.

(A2) The rank of B is constant on small neighborhoods U1, · · · , UN of x1, · · · , xN .
We denote by 2sj the rank of Bxj

.

(A3) We assume b0 > 0, which is equivalent to say that sj > 0 for any j.

As noticed in several papers, one can prove using Agmon-like estimates that the
eigensections of ∆Lp associated to low-lying eigenvalues are exponentially localized
near {x ∈ M, b(x) = b0}, in the limit p → +∞. Now let us present the local
model operators on Uj.

Recall that the 2-form B is closed: dB = 0. Hence, if the open sets Uj are small
enough, B is exact on Uj: there exists Aj ∈ Ω1(Uj) such that B = dAj on Uj. We
denote by L(j)

p the Dirichlet realization of (d+ ipAj)
∗(d+ ipAj) on L2(Uj). It is the

self-adjoint operator associated to the following sesquilinear form on C∞
0 (Uj):

(3.1) Qj(u, v) =

∫
M

(du+ ipAju)(dv + ipAjv)dνg.

We prove the following Theorem in Appendix A.

Theorem 7. Let α ∈ (0, 1
2
). Under assumptions (A1) and (A3), if η, ε > 0 are small

enough, then:

(3.2) λk(∆
Lp

) = λk
(
L(1)

p ⊕ ...⊕ L(N)
p

)
+O(exp(−εpα)),

uniformly with respect to k ∈ [1, Kp], where

Kp = min
(
N(∆Lp

, (b0 + η)p), N(L(1)
p ⊕ ...⊕ L(N)

p , (b0 + η)p)
)
,

and N(A, λ) denotes the number of eigenvalues of an operator A below λ, counted
with multiplicities.

As a corollary, we can deduce spectral asymptotics for ∆Lp from already-known
results for L(j)

p . Let us recall some of these results here.

3.2 – The full-rank case
Under the assumptions (A1) − (A2) − (A3), we fix a j ∈ {1, · · · , N}, and we

denote by Bj = dAj. Hence, Bj is just the restriction of B to the small open set
Uj, where it admits a primitive Aj. L(j)

h is the magnetic Laplacian with Dirichlet
boundary conditions on Uj, with magnetic field Bj. We first focus on the full-rank
case, when the rank of Bj is maximal: 2sj = d. We define rj ∈ N by the condition

(3.3) ∀n ∈ Zsj , 0 <

sj∑
ℓ=1

|nℓ| < rj ⇒
sj∑
ℓ=1

nℓβℓ(xj) ̸= 0.

Note that, if the βℓ(xj) are pairwise distinct, we can choose rj ≥ 3. Moreover, if the
open set Uj is small enough we have, for all x ∈ Uj and n ∈ Zsj ,

(3.4) 0 <

sj∑
ℓ=1

|nℓ| < rj =⇒
sj∑
ℓ=1

nℓβℓ(x) ̸= 0.
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The following Theorem is proved in [21].

Theorem 8. We assume (A1) − (A2) − (A3) with 2sj = d and r ≥ 3 in (3.3). Let
η, ε > 0 small enough. Then there exists a symplectomorphism ψ : Uj → T ∗Rd/2

such that:

(3.5)
1

p2
λk(L(j)

p ) = λk

(⊕
n∈Nd

N [j,n]
p

)
+O(p−rj/2+ε),

uniformly with respect to k ∈ [1, K̃p], where N [j,n]
p is a pseudo-differential operator

with principal symbol:

σ(N [j,n]
p ) =

1

p

sj∑
ℓ=1

(2nℓ + 1)βℓ ◦ ψ−1(x, ξ),

and
K̃p = min

(
N(L(j)

p , (b0 + η)p), N(⊕nN [j,n]
p , (b0 + η)p−1)

)
.

Hence, we have a description of the semi-excited states of L(j)
p . We this result one

can recover a Weyl law, and deduce asymptotic expansions of the first eigenvalues.

Corollary 9. Assume (A1)− (A2)− (A3), and for any j ∈ {1, · · ·N} that sj = d/2,
that (βℓ(xj))1≤ℓ≤N are pairwise distinct, and r := minj rj ≥ 5. Then, for any k ∈ N
and ε > 0,

λk(∆
Lp

) = b0p+
r−5∑
i=0

αi,kp
−i/2 +O(p2−r/2+ε),

for some coefficients αi,k ∈ R.

This result follows from the asymptotic expansions in [21]. Kordyukov proved
similar expansions in [14] using a different method.

Remark. We also have geometric interpretations of the coefficients. First, the full
expansion comes from the effective operator N [j,0]

p , which is the reduction of L(j)
p

to the lowest energy of the Harmonic oscillator describing the classical cyclotron
motion. Moreover, α0,k is given by an eigenvalue of an other Harmonic oscillator
whose symbol is the Hessian of b at xj (for some 1 ≤ j ≤ N): it describes a slow drift
of the classical particle arround xj. If the eigenvalues of this oscillator are simple,
then a Birkhoff normal form can be used to show that αi,k = 0 if i is odd.

3.3 – The constant-rank case
In the non-full-rank case, the kernel of B (which corresponds to the directions of

the field lines), has a great influence on the spectrum of ∆Lp . Fix 1 ≤ j ≤ N . If the
rank of Bj is constant, equal to 2sj, then its kernel as dimension kj = d− 2sj. The
partial Hessian of b at xj, in the directions of the Kernel of Bj, is non-degenerate.
we denote by

(3.6) ν2j,1, · · · , ν2j,kj
its eigenvalues. For simplicity, we will make the following non-resonance assumptions
(however, we can deal with resonances using a resonance order r as in the full-rank
case).
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Assumptions. (A4) For every j, (βℓ(xj))1≤ℓ≤sj are non-resonnant:

∀n ∈ Zsj , n ̸= 0 =⇒
sj∑
ℓ=1

nℓβℓ(xj) ̸= 0.

(A5) For every j such that kj > 0, (νj,ℓ)1≤ℓ≤kj are non resonnant:

∀n ∈ Zkj , n ̸= 0 =⇒
kj∑
ℓ=1

nℓνj,ℓ ̸= 0.

Applying the results of [22] to get spectral asymptotics for L(j)
h , we deduce from

Theorem 7 the following corollary. As far as we know, [22] and its 3-dimensional
Euclidean version [12] are the only works proving eigenvalue expansions of magnetic
Laplacians with degenerate inhomogeneous fields. Note that in odd dimensions a
magnetic field is always degenerate.

Corollary 10. Assume (A1) − (A2) − (A3) − (A4) − (A5), and let n ∈ N. Then
λn(∆

Lp
) admits a full asymptotic expansion in powers of p−1/2:

λn(∆
Lp

) = b0p+ κp1/2 +
∑
i≥0

αi,np
−i/2 +O(p−∞).

Moreover:
• If there is at least one j such that kj = 0, then κ = 0.

• If ∀j ∈ {1, · · · , N}, kj > 0, then κ = minj=1,··· ,N
∑kj

ℓ=1 νj,ℓ.

4 – About Landau levels crossings
The results described above show the influence of Landau levels

bn(x) =
s∑

j=1

(2nj + 1)βj(x) ,

on the distribution of Bochner Laplacians’ eigenvalues. Let us first assume that B is
non-degenerate, i.e. d = 2s. One would like to say that the spectrum is an agregate
of the spectra of operators N [n] with symbol pbn(x). Indeed, this is the meaning of
Theorem 8 under the assumptions of magnetic wells and non-resonances, and The-
orems 2 under a global gap assumption. However it would be interesting to discuss
to what extend one could generalize this informal statement.

The main problem is due to crossings between Landau levels. Imagine first that
there exist n ̸= n′ and x such that bn(x) = bn′(x). This is equivalent to say that
there is some resonance relation:

s∑
j=1

(nj − n′
j)βj(x) = 0 ,

thus limiting Theorem 8, at least if x is close to a magnetic well : We are restricted
by local Landau levels crossings.

If instead we make the much weaker assumption that there exists x, y ∈ M and
n ̸= n′ such that bn(x) = bn′(y), it means that bn(M) and bn′(M) overlap each other.
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a

Λ

y = bn(x)

M

y = bn(x)

M

y = bn(x)

M

Figure 1. First drawing : The second and third Landau levels are
isolated from the others, but cross each other. We can apply Theorem
2 to count the eigenvalues generated by both levels, but not indepen-
dently. If a magnetic well is close to the crossing point, we cannot use
Theorem 8 for this well. Second drawing : All the Landau levels are
crossing, there is no threshold Λ, we cannot apply Theorem 2. Third
drawing : The second and third Landau levels have global overlaping,
but no local crossing. We can apply Theorem 8 but not Theorem 2 to
isolate the influence of the second level.

Thus you cannot isolate bn(M) from the other Landau levels to apply Theorem 2
and count the eigenvalues created by this level : This theorem is restricted by globlal
Landau levels crossings, but does not require any magnetic well assumption. More
importantly, one always need a global gap Λ which separates the Landau levels into
two groups in order to apply this theorem, and this could not be possible in many
situations. However it seems achievable to adapt the proof in [4] to allow the gap Λ
to depend on x ∈M thus reducing the problem to local Landau level crossings.

On Figure 4, Landau levels are drawn with various behaviours, to see which The-
orem can be applied in which case. Note that this is a very schematic drawing since
the Landau levels should have the dimension of M , and we could imagine any kind
of crossing between such surfaces.

This is a motivation for further research, to understand how two crossing Landau
levels or more can interact and influence the spectrum of a Bochner Laplacian, and
compare to the case when they do not cross.

Another problem is raised by (1, 1)-resonances, i.e when βi(x0) = βj(x0) for some
x0 ∈ M and i ̸= j. Indeed, further then the creation of many crossings, this
could imply that the function βi is no longer smooth arround x0, but only Hölder
continuous and the whole methods in [4, 22] break down. More importantly, it is
not clear how strong it would be to assume that such resonances never happen on
M .
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A – Proof of Theorem 7
A.1 – Agmon-like estimates

In this section we recall some results on the exponential decay of eigensections of
∆Lp , away from the set {x1, · · ·xN}. We need the following result.

Proposition 11. There exist p0 > 0 and C0 > 0 such that, for p ≥ p0 and s ∈
C∞(M,L),

∥∇Lp

s∥2 ≥ p

∫
M

(b(x)− C0

p
)|s(x)|2dx.

Remark. This result was proven by Guillemin-Uribe [8] in the case of full rank
B, by Borthwick-Uribe [2] in the constant rank case, and by Ma-Marinescu [18] in a
more general setting. A weaker version was also given in [13], with a simpler proof
relying on a local approximation of the magnetic field and the metric by constants.
This last version would be enough here.

From Proposition 11 follow Agmon-like decay estimates. The proof given here is
taken from [23] and follows the ideas of [1].

Proposition 12. Let α ∈ (0, 1/2), η > 0, and Kη = {b(x) ≤ b0 + 2η}. There exist
C > 0 and p0 > 0 such that, for all p ≥ p0 and all eigenpair (λ, ψ) of ∆Lp with
λ ≤ (b0 + η)p, ∫

M

|ed(x,Kη)pαψ|2dx ≤ C∥ψ∥2.

Proof. Let Φ :M → R be a Lipschitz function. The Agmon formula is:

(A.1) ⟨∆Lp

eΦψ, eΦψ⟩ = λ∥eΦψ∥2 + ∥dΦeΦψ∥2.

Using Lemma 11, we deduce that:∫
(pb(x)− C0 − λ− |dΦ|2)|eΦψ|2dx ≤ 0.

We split this integral into two parts.∫
Kc

η

(pb(x)− C0 − λ− |dΦ|2)|eΦψ|2dx

≤
∫
Kη

(−pb(x) + C0 + λ+ |dΦ|2)|eΦψ|2dx

We choose Φ:
Φm(x) = χm(d(x,Kη))p

α, for m > 0,

where χm(t) = t for t < m, χm(t) = 0 for t > 2m, and χ′
m uniformly bounded with

respect to m. Since Φm = 0 on Kη and pb(x)− C0 > 0 for p large enough, we have:∫
Kc

η

(pb(x)− C0 − λ− |dΦm|2)|eΦmψ|2dx ≤ (b0 + η)p

∫
Kη

|ψ|2dx ≤ Cp∥ψ∥2.
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Moreover, since λ ≤ (b0 + η)p and |dΦm|2 ≤ Cp2α,∫
Kc

η

(pb(x)− C0 − (b0 + η)p− Cp2α)|eΦmψ|2dx ≤ Cp∥ψ∥2

p

∫
Kc

η

(b(x)− (b0 + η)− C0p
−1 − Cp2α−1)|eΦmψ|2dx ≤ Cp∥ψ∥2,

for p large enough. But b(x) > b0 + 2η on Kc
η, so there is a δ > 0 and p0 > 0 such

that, for p ≥ p0:

δ

∫
Kc

|eΦmψ|2dq ≤ C∥ψ∥2.

Since Φm = 0 on K, we get a new C > 0 such that:

∥eΦmψ∥2 ≤ C∥ψ∥2,
and we can use Fatou’s lemma in the limitm→ +∞ to get the desired inequality. □

Corollary 13. Let ε > 0 and χ :M → [0, 1] be a smooth cutoff function, being 1 on
a small neighborhood of

Kη + ε = {x; d(x,Kη) < ε}.
Then, for any eigenpair (λ, ψ) of ∆Lp, with λ ≤ (b0 + η)p we have:

ψ = χψ +O(e−εpα)∥ψ∥,
and

∇Lp

(χψ) = ∇Lp

ψ +O(p1/2e−εpα)∥ψ∥,
uniformly with respect to (λ, ψ).

Proof. By Theorem 12, we have:

(A.2) ∥(1− χ)ψ∥2 ≤
∫
(Kη+ε)c

|ψ|2dq ≤
∫
M

e−2εpα|ed(x,Kη)pαψ|2dx ≤ Ce−2εpα∥ψ∥2,

which gives the first estimates. Moreover, we have with Φ(x) = d(x,Kη),

∥eΦpα∇Lp

ψ∥ ≤ ∥∇Lp

(eΦpαψ)∥+ pα∥dΦeΦpαψ∥,
and using Agmon’s formula A.1 and Theorem 12:

∥∇Lp

(eΦpαψ)∥2 = λ∥eΦpαψ∥2 + p2α∥dΦeΦpαψ∥2 ≤ C2p∥ψ∥2.
Thus,

(A.3) ∥eΦpα∇Lp

ψ∥ ≤ Cp1/2∥ψ∥2.
We can use these Agmon estimates on ∇Lp

ψ to get our second result.

(A.4) ∥∇Lp

((1− χ)ψ)∥ ≤ ∥(∇Lp

χ)ψ∥+ ∥(1− χ)∇Lp

ψ∥
The first term is dominated by

(A.5) ∥(∇Lp

χ)ψ∥ ≤ C∥(1− χ)ψ∥
where χ is a cutoff function such that χ = 1 on Kη + ε and χ = 0 on supp(1 − χ).
We can apply (A.2) to χ to get:

(A.6) ∥(∇Lp

χ)ψ ≤ Ce−εpα∥ψ∥.
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The second term of (A.4) is dominated as in (A.2), using (A.3):

(A.7) ∥(1− χ)∇Lp

ψ∥ ≤ Cp1/2e−εpα∥ψ∥.
Finally, (A.4) with (A.6) and (A.7) yields

∥∇Lp

((1− χ)ψ)∥ ≤ Cp1/2e−εpα∥ψ∥.
□

A.2 – Comparison of the spectrum of ∆Lp and L(j)
p

Here we prove Theorem 7. Recall that the minimum b0 of b is reached at x1, · · · , xN
in a non-degenerate way. For η > 0 small enough, the compact set Kη = {b(x) ≤
b0 + η} has N disjoint connected components K(j)

η such that xj ∈ K
(j)
η . We fix the

value of η, and we take Uj a neighborhood of K(j)
η . For ε > 0 sufficiently small,

K
(j)
η + 2ε ⊂ Uj.

We denote by Bj the restriction of B to Uj. L(j)
p is the Dirichlet realisation of

(d+ ipAj)
∗(d+ ipAj), with Aj ∈ Ω1(Uj, L) such that Bj = dAj. It is the self adjoint

operator associated to the quadratic form:

(A.8) Qj(u, v) =

∫
Uj

(d + ipAj)u(d + ipAj)vdx, ∀u, v ∈ H1
0(Uj).

Let us denote by

(A.9) Kp = min

[
N(∆Lp

, (b0 + η)p);N

(
N⊕
j=1

L(j)
p , (0, b0 + η)p

)]
.

We split the proof of Theorem 7 into two Lemmas.

Lemma 14. Let α ∈ (0, 1/2). We have:

λk(
N⊕
j=1

L(j)
p ) ≤ λk(∆

Lp

) +O(exp(−εpα)),

uniformly with respect to k ∈ [1, Kp].

Proof. We prove this using the min-max principle. For k ∈ [1, Jp], let ψk be the
normalized eigenfunction associated to λk(∆Lp

). We will define the quasimode uj,k ∈
C∞
0 (Uj) using a local trivialisation of Lp on Uj. Let ej ∈ C∞(Uj, L) be the non-

vanishing local section of L such that, for any u ∈ C∞(Uj),

(A.10) ∇Lp

(uej) = [(d + ipAj)u] ej.

Let χj ∈ C∞
0 (Uj) be a smooth cutoff function, such that χj = 1 on K

(j)
η + ε. We

define uj,k ∈ C∞
0 (Uj) by χjψk = uj,kej, and

uk = u1,k ⊕ ...⊕ uN,k.

Then

⟨
⊕
j

L(j)
p uk, uk⟩ =

N∑
j=1

⟨L(j)
p uj,k, uj,k⟩ =

N∑
j=1

∥(d + ipAj)uj,k∥2.
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Moreover, by (A.10),

∥(d + ipAj)uj,k∥2 =
∫
Uj

|(d + ipAj)uj,k|2dx =

∫
Uj

|∇Lp

(χjψk)|2dx.

Now, χ =
∑N

j=1 χj satisfies the assumptions of Corollary 13 (with 2ε instead of ε).
Thus,

⟨
⊕
j

L(j)
p uk, uk⟩ =

∫
M

|∇Lp

(χψk)|2dx = ∥∇Lp

ψk∥2 +O(p1/2e−2εpα)∥ψk∥,

uniformly with respect to k. ψk being the eigensection associated to λk(∆
Lp
), it

remains:
⟨
⊕
j

L(j)
p uk, uk⟩ =

(
λk(∆

Lp

) +O(p1/2e−2εpα)
)
∥ψk∥.

This is true for every k ∈ [1, Kp]. Hence, for 1 ≤ i ≤ k ≤ Kp we have

⟨
⊕
j

L(j)
p ui, ui⟩ ≤

(
λk(∆

Lp

) +O(p1/2e−2εpα)
)
∥ψk∥,

and the Lemma follows from the min-max principle, because the vector space ranged
by (ui)1≤i≤k is k-dimensional (and p1/2e−2εpα = O(e−εpα)). □

The reverse inequality is proven similarly.

Lemma 15. Let α ∈ (0, 1/2). We have:

λk(∆
Lp

) ≤ λk(
N⊕
j=1

L(j)
p ) +O(exp(−εpα)),

uniformly with respect to k ∈ [1, Kp].

Proof. The k-th eigenvalue of
⊕N

j=1 L
(j)
p is given by an eigenpair (µk, uk) of L(jk)

p

for some jk ∈ {1, · · · , N}. Let χk ∈ C∞
0 (Ujk) be a cutoff function equal to 1 on

K
(jk)
η + 2ε. Then, Agmon estimates (Theorem 12) for L(j)

p imply that

(d + ipA)uk = (d + ipA)(χkuk) +O(e−εpα)∥uk∥

uniformly with respect to k. We define sk = χkukejk , where ejk satisfies (A.10), and
we extend sk by 0 outside Ujk . Then,

⟨∆Lp
sk, sk⟩ =

∫
Ujk

|(d + ipA)χkuk|2dx
=
∫
Ujk

|(d + ipA)uk|2dx+O(e−εpα)

= µk∥uk∥2 +O(e−εpα).

Hence the min-max principle implies

λk(∆
Lp

) ≤ µk +O(e−εpα),

which is the desired inequality. □
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