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Abstract

We de�ne and study FLC Delone sets in locally compact second countable (lcsc) groups. They generalize discrete
and relatively dense subgroups. We study them espacially through their hulls and the continuous functions on
their hulls. To do that, it will be convenient to consider a hull as an inverse limit of some approximants. Finally,
we introduce the notion of periodization complexity and establish the periodization compexity of some FLC
Delone sets in R.
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1 Introduction

Tiling is a popular subject in geometry, giving fascinating and beautiful pictures. There exist periodic tilings
(for instance the kitchen or bathroom tilings, or in the crystal structure) but also aperiodic ones, such as the
Penrose tilings. Since the discovery of quasicrystals, aperiodic tilings have attracted more and more interest.

In this report we will almost not speak about tilings but only about point sets. Let us think about a tiling of
R, we can describe it as well by its tiles as by the boundaries of its tiles, namely as a point set whose points are
not too close nor far from one another. We will not look further at the link between tilings and point sets, but
the spaces we study here can be relevant to answer physical and chemical questions (See [14]).

2 Point sets

We introduce a few notions about point sets:

De�nition 1 (Delone set). Let X be a metric space. Let Λ Ă X be a subset. Λ is said to be:

(i) discrete if every subset of Λ is open in Λ with respect to the subset topology;

(ii) locally discrete if it is discrete and closed, or equivalently if its intersection with every pre-compact subset
of X is �nite;

(iii) r-uniformly discrete for some r ą 0 if for every distinct points x, y P Λ, dpx, yq ą r;

(iv) R-relatively dense for some R ą 0 if X “
Ť

xPΛ

Bpx,Rq;

(v) pr,Rq-Delone set if it is both r-uniformly discrete and R-relatively dense.

Remark 1: Note that being uniformly discrete or relatively dense depends on the metric on X and not just on
the topology.

Remark 2: The notion of Delone sets in R3 would well describe a gas. Each atom cannot be too near from the
other ones (so the point set is uniformly discrete) and the atoms use all the space they have with a minimum
pressure (so the point set is relatively dense).

This de�nition is really generic, we will restrict ourselves to cases where X is a group, and to �x ideas, we will
mostly think of the special case where X “ R. Before going further and establish some properties, we give some
examples.

Example 1.

•
!

1
n`1 | n P N

)

is a discrete set of R with the Euclidean metric, but it is non locally �nite.

• NY
!

n` 1
n`1 | n P N

)

is a locally �nite set of R with the Euclidean metric, but it is non uniformly discrete

(nor relatively dense).

• Z is a pr,Rq-Delone set for any 0 ă r ă 1 ă R.

• If we put the discrete topology on R, which is metrizable with δpx, yq “

"

0 if x “ y
1 else

, then every subset

of R is a pr,Rq-Delone set for any 0 ă r ă 1 ă R.

More precisely, we will consider a locally compact1 and second countable2 (lcsc) group G. In particular, G is a
topological group, namely the group law and the inverse are continuous. The following theorem, due to Struble,
establishes the existence of nice metrics on such a group.

Theorem 1 (Struble). Let G be a locally compact group. Then G is second countable if and only if there
exists a left-invariant proper compatible metric on G.

We recall that a metric d is said to be left-invariant whenever:

for all x, y and g in G, dpg.x, g.yq “ dpx, yq.

1Each point has a basis of compact neighbourhoods.
2There exists a countable basis of open sets.
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It is said to be proper if the balls are pre-compact.
It is said to be compatible if it leads to the same topology on G.

There is another equivalent property, but we will not use it here. The equivalence between the three properties
is proved in [8].

Example 2. Since Rd is an lcsc group (with the addition and the canonical topology), there exists a left-
invariant proper compactible metric on Rd. Actually, there exist many such metrics. For instance, the Euclidean
metric (corresponding to the norm L2) and more generally the distances corresponding to the norms L1, L8

and Lp are left-invariant proper compatible metrics on Rd.

Moreover, as established in [5], any proper, continuous, left-invariant metric leads to the same set of Delone
sets:

Proposition 1. Let G be an lcsc group, Λ Ă G be a subset and d be a proper left-invariant compatible
metric on G. Then the following hold:

(i) Λ is uniformly discrete in G if and only if the identity e P G is not an accumulation point of
Λ´1Λ “

 

x´1y | x, y P Λ
(

.

(ii) Λ is relatively dense in G if and only if there exists a compact subset K Ă G such that G “ ΛK.

In particular, the property of being a Delone set in G is independent of the choice of d.

Proof. (i) If Λ is not uniformly discrete, then there exist elements xn ‰ yn in Λ such that dpxn, ynq ă 1{n.
Hence, zn :“ y´1

n xn P Λ´1Λ is such that dpzn, eq “ dpxn, ynq ă 1{n, which means that pznq converges to e, so e
is an accumulation point of Λ´1Λ.
Conversely, if e is an accumulation point of Λ´1Λ, then there exists a sequence of zn “ y´1

n xn P Λ´1Λ, where
zn ‰ e, which converges to e, hence dpxn, ynq “ dpzn, eq Ñ 0 and Λ is not uniformly discrete.

(ii) Assume that Γ is R-relatively dense and let K “ Bpe,Rq Ă G.
Let g P G. There exists γ P Γ such that dpg, γq ă R. Since d is left-invariant, dpγ´1g, eq “ dpg, γq ă R, hence
g “ γ.γ´1g P Γ.K. So G “ Γ.K, and K is compact.
Conversely, if G “ Γ.K with K compact, then every g P G can be written as g “ γ.k with γ P Γ and k P K,
and then dpg, γq “ dpk, eq ď max

kPK
dpk, eq “: R which is �nite because d is continuous and K compact. Since R

does not depend on g, Γ is R-relatively dense in G.

˝

De�nition 2 (Finite local complexity). A subset Λ of an lcsc group G is said to have �nite local complexity
(FLC) if Λ´1Λ is locally �nite.

Remark 3: Any FLC set is uniformly discrete but the converse is false:

S “ 2NY
"

2n´ 1`
1

n` 1

ˇ

ˇ

ˇ

ˇ

n P N˚
*

“

"

0, 1`
1

2
, 2, 3`

1

3
, 4, 5`

1

4
, 6, 7`

1

5
, 8, ...

*

is r-uniformly discrete for any r ă 0.5 but has not FLC because 1 is an accumulation point of the set of the
distances between two successive points.

Remark 4: When a set Λ Ă R is locally �nite, we can describe it with a sequence3 pdnqnPZ (or, if Λ is not relatively
dense, pdnq0ďn or pdnqnď0 or a �nite sequence) and a base point x0 P Λ through the 1-to-1 correspondence:

Q : Rˆ pR˚`qZ Ñ LF pRq
px0, pdnqnPZq ÞÑ pxnqnPZ

such that:

#

xn “ x0 `
řn´1
k“0 dk if n ě 0

xn “ x0 ´
ř´n
k“1 d´k if n ă 0

where LF pRq denotes the set of locally �nite point sets in R.

De�nition 3 (Symbolic coding of a locally �nite point set in R). Let Λ be a locally �nite point set in R. We
call symbolic coding of Λ every sequence pdnqnPZ such that Λ “ tQpx0, pdnqqu for some x0.

Note that if Λ ‰ αZ, then Λ has many (possibly in�nitely many) di�erent symbolic codings: indeed if pdnqnPZ
is a symbolic coding of Λ, then for all k P Z, pdn`kqnPZ is also a symbolic coding of Λ. Λ is determined up to
translation by (one of) its symbolic coding (which can be �xed with the base point information).
A symbolic coding is very useful to describe one locally �nite point set in R. Particularly because of the following
properties:

3This is because R is totally ordered.
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Proposition 2. Let Λ be a locally �nite set in R. Let us note d a symbolic coding of Λ.

(i) Λ is uniformly discrete if and only if d has a non-zero in�mum.

(ii) Λ is relatively dense if and only if d is a bi-in�nite sequence which has a supremum.

(iii) Λ is an FLC Delone set if and only if d is a bi-in�nite sequence which takes a �nite number of values
(and they are all non-zero).

Proof. (i) By de�nition, Λ is r-uniformly discrete in G if and only if every point of Λ is at distance at least r
of any other point of Λ. In R, this is equivalent to saying that every two successive points are at distance at
least r, which means that every value of d is greater than r ą 0.

(ii) By de�nition, Λ is R-relatively dense in G if and only if every point of G is at distance at most R of a
point of Λ. In R, this is equivalent to saying that Λ is not bounded and that every two successive points are at
distance at most D ă 2R, which means that d is bi-in�nite and its values are all less than 2R.

(iii) If Λ is an FLC Delone set, it is uniformly discrete and relatively dense so d is a bi-in�nite bounded sequence
with non-zero in�mum. If d had an in�nite number of values, then one of them would be an accumulation point
and Λ´ Λ “ tx´ y | x, y P Λu would not be discrete, so Λ would not have FLC.
Conversely, if d is a bi-in�nite sequence which takes a �nite number of values and which are all non-zero then
Λ is uniformly discrete and relatively dense, hence a Delone set. Moreover if Λ´ Λ had an accumulation point
z “ x´ y, then there exists zn “ xn ´ yn Ñ z, which means that sums of values of d can be as near to z (but
not equal to) as one wants, but this is not possible because d takes a �nite number of values.

˝

Example 3.

• N Y

!

n` 1
n`1

ˇ

ˇ

ˇ
n P N

)

“
 

0, 1, 3
2 , 2,

7
3 , 3,

13
4 , 4,

21
5 , 5, ...

(

is described by the symbolic coding

p1, 1
2 ,

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

4
5 , ...q and the base point 0.

• Z is described by the symbolic coding p..., 1, 1, 1, ...q and the base point 0 (or any other integer).

• Zz t0u is described by the symbolic coding p..., 1, 2, 1, ...q and the base point ´1 (if 2 “ d0).

• ´2NYN is described by the bi-in�nite word p..., 2, 2, 1, 1, ...q and the base point 0 (if d´1 “ 2 an d0 “ 1).

Remark 5: One can also see point sets in R as tilings of R (i.e. sets of closed intervals pInqnPZ with non empty

interior such that R “
Ť

nPZ
In and the p

˝

Inq are disjoint) through the 1-to-1 correspondence:

T : I Ñ T pRq
pxnqnPZ ÞÑ tIn “ rxn, xn`1s | n P Zu

where T pRq denotes the set of tilings of R and I Ă pRqZ denotes the set of strictly increasing bi-in�nite sequences.

3 Groups and lattices

Let us �rst study the case where Λ is a uniform lattice of X “ G, a topological lcsc group. To �x ideas, one
can think of G as R and Λ as αZ). G acts over itself through the left multiplication (in R, it is through the
addition).

De�nition 4 (Uniform lattice). Let G be an lcsc group and Γ a discrete subgroup of G.
We call Γ a uniform lattice whenever G{Γ is compact.

We emphasize that Γ is not assumed to be a normal subgroup, so G{Γ is a set quotient, but not necessarily a
group.

Proposition 3. Let G be an lcsc group and Γ a subgroup of G. Then:

(i) G{Γ is a topological space on which G acts continuously.
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(ii) Γ has FLC (so Γ is also uniformly discrete) if and only if Γ is discrete.

(iii) G{Γ is compact if and only if Γ is relatively dense.

Proof. (i) G{Γ, with the quotient topology inherited from the toplogy of G, is a topological space. G is a
topological group, which means that the multiplication by an element of G is continuous. So the action of G
over itself is continuous, so the action of G over G{Γ is also continuous.

(ii) If Γ has FLC, then it is uniformly discrete, and hence discrete.
Conversely, if Γ is discrete then the identity element e P G is not an accumulation point of Γ. But Γ “ Γ´1Γ
since Γ is a group. Since e P G is not an accumulation point of Γ´1Γ, Γ is uniformly discrete (Proposition 1).
Then Γ´1Γ “ Γ is uniformly discrete, hence discrete, which is the de�nition of Γ having FLC.

(iii) If Γ is relatively dense, we know that G “ Γ.K where K is a compact space (Proposition 1). So we have:

G{Γ “ tΓ.g | g P Gu Ă tΓ.γ.k | γ P Γ, k P Ku “ tΓ.k | k P Ku

G{Γ is closed in the compact set tΓ.k | k P Ku so G{Γ is compact.
Conversely, if G{Γ is compact, then G “ Γ.G{Γ and Γ is relatively dense.

˝

Corollary 1. Let G be an lcsc group and Γ a subgroup of G. The following statements are equivalent:

(i) Γ is a Delone set.

(ii) Γ is an FLC Delone set.

(iii) Γ is a uniform lattice.

Proof. By de�nition, we have piiq ñ piq. By Proposition 2, we have piq ñ piiq and piq ñ piiiq. It remains to
prove piiiq ñ piq. If Γ is a uniform lattice, then by de�nition, it is discrete and G{Γ is compact. So Γ has FLC
and is relatively dense (Proposition 2). Γ is uniformly discrete and relatively dense, hence a Delone set.

˝

4 Hull

We want to generalize the dynamical system G ñ G{Γ when we do not consider an FLC Delone subgroup Γ
anymore, but only an FLC Delone set Λ. In other words, we are looking for a compact space, giving some
information of Λ, and on which G acts continuously. Throughout this section, G denotes an lcsc group.

4.1 Topologies and de�nition of the hull

The �rst space one could think of is the set of all translates of Λ, namely the orbit of Λ under the action of G.
But in most cases, this will only be a copy of G, which does not give us any information on Λ. For example, if
G “ R and Λ “ Zz t0u , then there is a 1-to-1 correspondence between the set of translates of Λ, denoted TΛ,
and R:

Λ` x P TΛ ÐÑ x P R
This will happen whenever Λ is such that there is no t ą 0 verifying: for all x in Λ, x` t and x´ t are also in Λ.
To �x this problem, we will consider not only the orbit of Λ but also its closure (that of the orbit of Λ) for a
certain topology on closed sets. We �rst de�ne two topologies on closed sets.

De�nition 5 (Local topology). The local topology is the unique topology on LF(G), the set of locally �nite
point sets in G, such that for any closed point set Λ in G, a neighbourhood basis of Λ is given by the sets:

UK,V pΛq “ tL P LF pGq | Dτ P V : τ.ΛXK “ LXKu

where K is a compact subset of G and V an identity neighbourhood of G.

With regard to the local topology, the following sequence of sets:

F2n “

"

´1`
1

n
, 1

*

and F2n`1 “

"

´1, 1´
1

n

*
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does not converge for the local topology, though one could want to say that it converges to F8 “ t´1, 1u.
Moreover this example shows that LF pRq is not compact with regard to the local topology.
We will consider another topology, in which the sequence pFnqnPN does converge to F8.

De�nition 6 (Chabauty-Fell topology). A sequence pPnq of closed subsets of G is said to converge to P with
respect to the Chabauty-Fell topology whenever the following two properties hold:

(i) If pnkq is an unbounded sequence of natural numbers and pnk
P Pnk

such that ppnk
q converges to p P G,

then p P P .

(ii) For every p P P there exist elements pn P Pn such that ppnq converges to p.

Remark 6: Local topology and Chabauty-Fell here are well-de�ned, see [6] for details.
The Chabauty-Fell topology is metrizable, see [8].

De�nition 7 (Hull). We denote by ΩΛ (resp. Ω
plocq
Λ ) the hull of Λ (resp. local hull of Λ), namely the topological

space of the closure of all the translates of Λ ( i.e. the closure of the orbit TΛ of Λ under the action of G) with
regard to the Chabauty-Fell topology (resp. local topology).

In order to give a more explicit description of the elements of the hull, we de�ne the notion of local translates.

De�nition 8 (Local translates). L is said to be a local translate of Λ whenever:

@K Ă G compact, Dg P G, pg.Λq XK “ LXK.

Any translate L of Λ is also a local translate of Λ. Indeed it exists g P G such that L “ g.Λ, so for all compact
subset K of G, pg.Λq XK “ LXK (always with the same g).

Proposition 4. Let Λ be a locally �nite point set in G. Then T P Ω
plocq
Λ if and only if T is a local translate

of Λ.

The proof of this statement is in [11].
We know that the Chabauty-Fell and local topologies are not equivalent since one is compact and not the other.

So, generally, ΩΛ ‰ Ω
plocq
Λ but we will restrict our study to subsets which are FLC Delone sets, and for them

ΩΛ “ Ω
plocq
Λ , as the following theorem establishes.

Theorem 2. Let G be an lcsc group. If Λ is an FLC Delone set, then the hull and the local hull are the
same as sets and the Chabauty-Fell and local topologies are the same on them. Moreover, ΩΛ “ Ω

plocq
Λ is

compact (with regard to these topologies).

For a proof of this theorem, see [6]. Since we restrict ourselves to lcsc groups and FLC Delone subsets, the
Chabauty-Fell and local topologies will lead to the same topology. We can then use both of them, chosing the
most convenient for us, but we will only use the notation ΩΛ.

The following statement shows that ΩΛ is a good candidate for the space we were looking for to replace G{Λ
when Λ is not a discrete subgroup anymore but only an FLC Delone set.

Proposition 5. G acts continuously over ΩΛ with regard to the Chabauty-Fell topology.

Proof. Since G and ΩΛ are metric spaces we can prove continuity with sequences. Let pgnq and pxnq be
sequences of points of G and ΩΛ respectively, such that pgnq converges to g P G and pxnq converges to x P ΩΛ

(with regard to the Chabauty-Fell topology).

Let us show that gn.xn
C´F
Ñ g.x.

(i) If pnkq is an unbounded sequence of natural numbers and pnk
P gnk

.xnk
such that ppnk

q converges to p P G,
then g´1

nk
.pnk

P xnk
and pg´1

nk
.pnk

q converges to g´1.p (because the multiplication in G is continuous). But

xnk

C´F
Ñ x, so g´1.p must be in x.
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(ii) If p P g.x, then g´1.p P x and (since xn
C´F
Ñ x) there exist elements yn P xn such that pynq converges to

g´1.p. Then, gn.yn Ñ g.g´1.p “ p where gn.yn P xn.

We conclude that gn.xn
C´F
Ñ g.x: the action is continuous.

˝

We will study this space ΩΛ. First we give some examples in order to picture a bit more what a hull is and then
we give another description of the hull of point sets in R, which will be more convenient to use in some cases.

4.2 First Examples

Here are some examples of hulls which can be easily pictured.

• The hull ΩZ of Z is the closure of all translates of Z:

ΩZ “ tZ` x | x P Ru “ tZ` x | x P r0, 1su{Z`0„Z`1 .

But tZ` x | x P Ru is a closed set with regard to the Chabauty-Fell topology, so the hull ΩZ of Z is exactly
the set of all the translates of Z. It's a circle. More generally, when Λ is a subgroup of G, then ΩΛ “ G{Λ.

• The hull ΩZzt0u of Zz t0u is the closure of all translates of Zz t0u :

ΩZzt0u “ tZz t0u ` x | x P Ru .

But this time tZz t0u ` x | x P Ru is not a closed set. Indeed, we have for example

Zz tnu “ Zz t0u ` n C´F
Ñ Z.

More generally: @x P R, Zz t0u ` n` x C´F
Ñ Z` x.

And conversely, if L P ΩZzt0u, then L is either Zz t0u ` x or Z ` x for some x P R. Indeed, L P ΩZzt0u

means that there exist elements Ln P tZz t0u ` x | x P Ru such that Ln
C´F
Ñ L. Say Ln “ Zz t0u ` xn,

with xn “ kn ` yn where kn P Z and yn P r0, 1s. We can assume without loss of generality that
yn Ñ y P r0, 1s. If |kn| Ñ `8, then L “ Z` y, else pknq must converge to k P Z (because pLnq converges)
and L “ Zz t0u ` k ` y.
Topologically, it's a slinky whose two extremities accumulate on a same circle. On �gure 1, we see the
hull �rst as a "straight" slinky with two circles, but which are the same, and then as a slinky whose two
extremities accumulates this time really on the same circle.

• The hull ΩΛ of Λ “ ´2NY N is the closure of all translates of Λ:

ΩΛ “ t´2NY N` x | x P Ru .

Once again, t´2NY N` x | x P Ru is not a closed set. Indeed, we have for example

´2NY N` 2n
C´F
Ñ 2Z.

More generally:

#

@x P R, ´2NY N` 2n` x
C´F
Ñ 2Z` x

@x P R, ´2NY N´ n` x C´F
Ñ Z` x

.

And conversely, if L P ΩZzt0u, then L is either ´2N Y N ` x or Z ` x or 2Z ` x for some x P R.
Indeed, L P ΩΛ means that there exist elements Ln P t´2NY N` x | x P Ru such that Ln

C´F
Ñ L. Say

Ln “ ´2N Y N ` xn, with xn “ kn ` yn where kn P 2Z and yn P r0, 2s. We can assume without loss of
generality that yn Ñ y P r0, 2s. If kn Ñ `8, then L “ 2Z` y, else if kn Ñ ´8, then L “ Z` y, else pknq
must converge to k P Z (because pLnq converges) and L “ ´2NY N` y.
Topologically, it's a slinky whose "left" extremity accumulates on a circle of radius 1 and "right" extremity
accumulates on a circle of radius 2.

The next subsection introduces the notion of lexicon, which is actually a more convenient way to describe the
hull of an FLC Delone set in R.
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Figure 1: ΩZzt0u

Figure 2: Ω´2NYN
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4.3 Hull and lexicon

De�nition 9 (Words and subwords). We call word a �nite or in�nite sequence of letters from a �xed alphabet.
We say that v is a subword of a word w if v is a word and if there exists other words u1, u2 possibly �nite,
in�nite or even empty, such that w “ u1vu2.

De�nition 10 (Lexicon). Let w be a word. We call the set of all �nite subwords of w the lexicon of w, and we
denote it by Lw.

Remark 7: A word w is �nite if and only if its lexicon Lw is also �nite.

Proposition 6. Let Λ be an FLC Delone set in R. Let v and w be two symbolic codings of Λ. Then
Lv “ Lw.

Proof. If v “ pvnqnPZ and w “ pwnqnPZ are two symbolic codings of Λ, then there exists k P Z such that for all
n P N, vn “ wn`k. Thus v and w have the same set of subwords.

˝

We may then refer to them as lexicon of Λ, denoted by LΛ. Note that we can speak about lexicon of a point
set Λ if and only if Λ is a subset of R, since we need Λ to have a symbolic coding.

Proposition 7. Let Λ and L be two FLC Delone sets in R. Then LL Ă LΛ if and only if L is a local
translate of Λ.

Proof. If L is a local translate of Λ, every "pattern" seen in L and be seen in Λ. In terms of symbolic codings
this means that every subword of a symbolic coding of L is a subword of any symbolic coding of Λ.

˝

Proposition 8. Let Λ1 and Λ2 be two FLC Delone sets, and let us denote L1, L2, Ω1 and Ω2 their lexicons
and their hulls respectively. Then:

L1 “ L2 if and only if Ω1 “ Ω2.

Proof. This is a corollary of the previous proposition and the fact that the local hull, hence the hull since Λ is
an FLC Delone set, is the set of local translates.

˝

4.4 Fibonacci hull

Fibonacci word

De�nition 11 (Substitution maps). We will call substitution map a map from a �nite set Σ, called alphabet,
to Σ˚, the set of the �nite words over the alphabet Σ.

We can extend a substitution map σ de�ned on an alphabet Σ to a unique morphism on �nite words on Σ. We
can extend it the same way to in�nite words on the alphabet Σ. We will note as well σ its extension to �nite
and in�nite words.

Example 4. The following substitution can be used to de�ne the Fibonacci word.

σ : t1, φu Ñ t1, φu
˚

1 ÞÑ φ
φ ÞÑ 1φ

We de�ne the in�nite Fibonacci word wF as follows4:

v1 “ 1
vn`1 “ σpvnq
wF “ lim vn where the limit means that for all n P N, @k P v0, nw, pwF qk “ pvnqk5.

4There are other ways to de�ne the Fibonacci word.

10



One can consider wF as a symbolic coding6 of a point set ΛF in R with letter 1 standing for length 1 and letter

φ standing for length ϕ “ 1`
?

5
2 (a uniformly discrete but not relatively dense point set). Actually, one could

de�ne wF through this point set ΛF . Let us de�ne ΛF :

L0 “ t0, 1u

Ln`1 “ ϕ.Ln
Ť

xPLn | x`ϕPLn

tϕ.x` ϕu where ϕ “ 1`
?

5
2 is the golden ratio

ΛF “
Ť

nPN˚
Ln which is well de�ned because @n P N˚Ln Ă Ln`1.

L0

L1

L2

L3

L4

L5

L6

1

φ

φ1

φ1φ

φ1φφ1

φ1φφ1φ1φ

φ1φφ1φ1φφ1φφ1

v1

v2

v3

v4

v5

v6

v7

Black points in Ln`1 are those that are also in ϕLn and blue points are the others.

Figure 3: Construction of the Fibonacci word wF

Proposition 9. The Fibonacci word wF is a �xpoint of the substitution map σ:

σpwF q “ wF .

This can be proved by induction.

Remark 8: The Fibonacci word wF could be de�ned as a �xpoint of the substitution map σ.

The Fibonacci word wF is a famous word in combinatorics on words, with lots of useful properties, such as the
fact that every subword of wF appears in�nitely many times in wF (which can be proved by induction).

Fibonacci hull

We want to construct an FLC Delone point set coming from the Fibonacci word wF . But if we consider a point
set Λ whose (one of its) symbolic coding is wF , then Λ is not relatively dense because wF is not a bi-in�nite
word. We have to �nd another way to de�ne Λ, still linked with wF . But what exactly do we want Λ to be? We
want it to be such that each of its local patterns is also a local pattern of wF . More formally, if s is a symbolic
coding of Λ, then we want Λ to be such that s is a bi-in�nite word and Ls “ LwF

.

Remark 9: If s is an in�nite word such that Ls Ă LwF
then Ls “ LwF

. This is because for all n P N, there
exists an Nn ą n such that every subword of wF of length n is also a subword of each subword of length Nn.

One way to de�ne a such Λ is to construct step by step a sympbolic coding for Λ: �rst we chose a letter
s0 P t1, φu Ă LwF

, then we chose two letters s´1, s1 P t1, φu such that the �nite word s´1s0s1 is in LwF
, then

again we chose s´2, s2 P t1, φu such that s´2s´1s0s1s2 P LwF
, etc.

Remark 10: Since wF is a �xpoint for the substitution σ (see proposition 3), u P LwF
if and only if σpuq P LwF

.
Another really important property of wF is that any �nite subword u P LwF

of the Fibonacci word does appear

5Actually, this is an inverse limit. We de�ne this notion in subsection 5.1.
6We have here identi�ed words and sequences, which is natural since words are sequences of letters.
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in�nitely many times in wF . This ensures that any �nite subword s´n...s0...sn P LwF
can always be extended

into s´n´1s´n...s0...snsn`1 P LwF
.

De�nition 12 (Fibonacci point set).We will call Fibonacci point set any FLC Delone set which can be obtained
as described above.

Of course, this construction requires in�nitely many choices, which means that there are in�nitely many Fi-
bonacci point sets. But they will all have the same hull.

Proposition 10. If Λ1 and Λ2 are txo Fibonacci point set, then ΩΛ1
“ ΩΛ2

.

Proof. This results from proposition 7: Since two Fibonacci words have the same lexicons, their hulls are also
the same.

˝

Remark 11: We could de�ne more generally substitution point sets the same way as Fibonacci point sets but
with another substitution map. A trivial other example would be Λ “ Z obtained with the word w “ 1111....,
which is a �xpoint of the substitution map σ : 1 ÞÑ 11.

The hull of a Fibonacci point set Λ is the set of all local translates of Λ, but as we have seen when constructing
Λ, there are in�nitely many choices to do, which means that there are in�nitely many "types" of local translates
(on the contrary, for Zz t0u, there were only two types of local translates: either Zz t0u ` x or Z ` x). If we
want to understand the hull of a Fibonacci point set, we have no choice but to look at approximants of the hull.

5 Approximants

In order to understand the hull of a point set, we will study sequences of spaces which approximate the hull,
namely that converge in a certain way to the hull. We �rst need to explain what this certain way is.

5.1 Inverse limit

De�nition 13 (Inverse limit). Let pXnqnPN be a sequence of spaces with continuous maps fn : Xn`1 Ñ Xn:

. . .
fn`1

// Xn`1
fn // Xn

// . . . . . . // X1
f0 // X0

A space X is called an inverse limit of ppXnq, pfnqqnPN, if there exists a collection of functions ϕn : X Ñ Xn

compatible with fn, namely such that fn ˝ ϕn`1 “ ϕn, and such that for each other space Z with a collection of
compatible functions ψn : Z Ñ Xn, there is a unique map χ : Z Ñ X so the following diagram commutes.

X

ϕn`1

--

ϕn

((

ϕ1

&&

ϕ0

""

. . .
fn`1

// Xn`1
fn

// Xn
// . . . . . . // X1

f0

// X0

Z

χ

__

ψn`1

88

ψn

??

ψ1

::

ψ0

>>

Remark 12: X does depend on the maps fn (not only on the Xn).

Theorem 3. If there is an inverse limit X of the pXnq, then it is unique up to unique isomorphism
making the whole diagram commute, and a model for X is a subset of the product Y “

ś

iPN
Xi with consistant

information. We will note this model lim
Ð
Xn: lim

Ð
Xn “ tpxiqiPN | @n P N, fnpxn`1q “ xnu.
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For a proof of this theorem, see [10].
So we can think of X as the set of all sequences pxnqnPN such that for all n P N, xn P Xn and fnpxn`1q “ xn.
We may refer to it later on as the inverse limit of pXnqnPN.

Proposition 11. If for all n P N, Xn is a compact space, then X “ lim
Ð
Xn is also a compact space.

Proof. This a corollary of the previous theorem and the Tychono� theorem.

˝

5.2 Approximants of the hull

In all the constructions described in the following subsections, we approximate the hull by approximating
its points (which are FLC Delone sets) with �nite point sets. Anderson and Putnam ([14]) introduced such
approximants for the �rst time in 1998. In 2002, Gähler ([14]) gave another construction. They were actually
speaking of tilings, but we will here only speak of point sets. Karasik ([11]) has also introduced another
contruction, motivated by the previous ones. In the mean time, lots of other matematicians worked on the
subject ([14]) but we will not present their constructions here.

Geometric approximants

All the following notions and statements come from [11].

De�nition 14 (Geometric approximation of the hull). Given an FLC Delone point set Λ of an lcsc group G
and an open pre-compact subset K of G, we de�ne the geometric approximation, associated with the compact
K, of the hull ΩΛ of Λ as

GK
Λ “ tg.ΛXK | g P Gu .

There exists a canonical map from the hull ΩΛ of Λ to each geometrical approximant:

π
K

: ΩΛ Ñ GK
Λ

M ÞÑ M XK

Indeed, if M P ΩΛ is a translate of Λ then M X K is in GK
Λ , else M is a local translate of Λ and there is a

sequence pMn “ gn.Λq of translates of Λ, which converges to M with regard to the local topology: for every
identity neighbourhood V of G, there exists an N P N such that for all n ď N , Mn P UK,V pMq. In other words,
there exists a sequence penq in V such that pgn.Λq XK “Mn XK “ pen.Mq XK, so M XK “ pe´1

n gn.Λq XK
is in GK

Λ .
We will study geometrical approximants GK

Λ with regard to the quotient topology associated with π
K
.

Let us re-write this in the case of R. Let pBnqnPN be a sequence of open balls in R, such that Bn “ Bp0, rnq
with rn ă rn`1 for all n P N and rn ÝÑ

nÑ`8
`8. We will denote

G n
Λ “ tpΛ` xq XBn | x P Ru .

So, G n
Λ corresponds to all the patterns of size |Bn | one can see in Λ. We will consider the inverse limit of the

pG n
Λ q associated with the forgetful maps fn:

fG,n : G n`1
Λ Ñ G n

Λ

p ÞÑ pXBn

which are well de�ned and continuous with regard to the quotient topology.

Theorem 4. The hull ΩΛ “ Ω
plocq
Λ of Λ is homeomorphic to the inverse limit lim

Ð
G n

Λ through the following
map:

ΩΛ ÝÑ lim
Ð

G n
Λ

p Ñ ppXBnqnPN
Ť

nPN
pn Ð ppnqnPN

13



For a proof of this theorem, see [11].

Theorem 5. Let Λ be an FLC Delone set. Then GB
Λ is homeomorphic to a �nite graph.

We give the main ideas of the proof:

1. Every point in GB
Λ is either a regular point, meaning that it has a neighbourhood in GB

Λ homeomorphic
to an interval of R, or a special point, meaning that it has a neighbourhood in GB

Λ homeomorphic to a
branch of intervals of R glued together (like a star whose center is the singular point).

2. There is a �nite number of singular points.

For a complete proof, see [11].

Example 5. Let Bn “ Bp0, nq be open balls in R. In �gures 6 and 5, we show pictures of the geometric
approximants of the hull ΩΛ of Λ “ Zz t0u and Λ “ ´2NY N respectively associated with the sequence pBnq.

G 1
Zzt0u

G 2
Zzt0u

G 3
Zzt0u

{0.5}

{0}

H

{-0.5}

{-0.5,0.5}

{0,1}

{-1,0,1}

{-1,1}

{-1,0}

{-1.5,-0.5,0.5,1.5}
{-2,-1,0,1,2}

{-2,-1,1,2}

{-2,0,1,2}

{-1,0,1,2}

{-2,-1,0,2}

{-2,-1,0,1}

{-2.5,-1.5,-0.5,0.5,1.5,2.5}

Figure 4: Three �rst geometric approximants of ΩZzt0u
The upper circles correspond to the local patterns of Zz t0u where we see the "gap" present
in Zz t0u. In mathematical language, the upper circles correspond to the set of point sets
pZz t0u ` xq X Bp0, nq with x Ps ´ n,´nr.
The lower little circles correspond to the local patterns where we do not see the "gap" present in Zz t0u, namely
in which all points are at distance exactly 1 from the previous and the next ones.

The blue arrows show the orientation inhereted through the action of R over Λ (from the orientation of R).
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G 1
´2NYN

G 2
´2NYN

G 3
´2NYN

G 4
´2NYN

G n
´2NYN

{0}H {-0.5,0.5}

{-1.5,-0.5,0.5,1.5}

{-1,0,1}

{-1,0}

{-1,1}
{0}

{-2.5,-1.5,-0.5,0.5,1.5,2.5}

{-2,-1,0,1,2}

{-2,-1,0,2}

{-2,-1,1}

{-2,0,2}
{-1,1}

{-3.5,-2.5,-1.5,-0.5,0.5,1.5,2.5,3.5}

{-3,-2,-1,0,1,2,3}

{-3,-2,-1,0,2}

{-3,-2,-1,1,3}

{-3,-2,0,2}

{-3,-1,0,1,3}

{-4,-2,0,2,4}

{-n+0.5,-n+1.5,...,n-0.5}

{-n+1,-n+2,...,n-1}

{-n+1,-n+2,-n+4,...,n-1}

{-n+1,-n+3,...,n-1}

{-n+2,-n+4,...,n-2}

Figure 5: Four �rst geometric approximants of Ω´2NYN
The right circles correspond to the local patterns of ´2NY N where we only see the part ´2N of ´2NY N, in
mathematical language, the right circles correspond to the set of the �nite point sets p´2NY N` xq X Bp0, nq
with x ě n.

The left circles correspond to the local patterns where we only see the part N of ´2N Y

N, in mathematical language, the left circles correspond to the set of the point sets
p´2NY N` xq X Bp0, nq with x ď ´n.
The line between them corresponds to the local patternss where we see the "switchover" from ´2N to N, namely
to the point sets of the form p´2NY N` xq X Bp0, nq with ´n ă x ă n.

The blue arrows show the orientation inhereted through the action of R over Λ (from the orientation of R).
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So the approximants are just �nite graphs, spaces which are much easier to understand than most of the hulls
of FLC Delone sets (see for example the slinkies obtained for Λ “ Zz t0u or Λ “ ´2NY N in section 4.2). This
is a reason why the approximants are convenient.

Gähler's construction

In the previous construction (geometric approximation of the hull Ω
plocq
Λ ), a point in GN

Λ gives us information
about how to put tiles on a centered ball Bn. It can be convenient to consider approximants which give
information about how to put a �xed number of points, no matter how much space they take.
We recall that one can see a point set in R as a tiling, two successive points then correspond to a tile, or more
precisely to the boundary of a tile. The �rst approximant corresponds to instructions as to how to put one tile
around the origin, that is to say which tile should be taken and where exactly around the origin it should be
put. In the second approximation, we add the information of the two neighbours of the �rst tile. In the third
one, we add the information of another ring of neighbours, etc.
This construction comes from [14], where it is done from a tiling point of view.

De�nition 15 (Gähler approximation in R). Let Λ be a Delone set in R. Let pxnqnPZ be an increasing enumer-
ation of Λ and ∆ “ txi`1 ´ xi | i P Zu the set of all distances between two consecutive points of Λ. We denote
by

N n
Λ “

"

s “ px´n, ..., x0, ..., xn`1q P R2n`2

ˇ

ˇ

ˇ

ˇ

x´n ă ... ă x0 ă x1 ă ... ă xn`1 and x0 ď 0 ď x1

Dx P R, DK Ă R compact, such that pΛ`xq XK “ s

*

L

„

where
px´n, ..., x0 “ 0, ..., xn`1q „ px

1
´n, ..., x

1
0, ..., x

1
n`1q if and only if @k, x1k “ xk ´ x1

the n-th Gähler approximation of Ω
plocq
Λ .

In other words, N n
Λ tells how to put 2n` 1 consecutive tiles around the origin. We ask that this pattern could

be seen somewhere in Λ, that is to say that this arrangement of tiles can be extended to a local translate of
Λ. We also ask that the middle tile (i.e. the pn ` 1q-th) contains the origin, that is to say that the tiling we
construct through the approximants does not grow only on the positive (or the negative) part of R.
Remark 13: The Gähler approximation can also be de�ned for Delone sets in Rd, which is explained in [14].

The Gähler approximants can be seen as quotients of the geometrical approximants. Indeed, let r “ min d and
R “ max d be the in�mum and supremum of a symbolic coding d of Λ. We recall that this is equivalent to
saying that Λ is an pr,Rq-Delone set, or in other words that for all k P v´n, nw and px´n, ..., x0, ..., xn`1q P N n

Λ ,

r ă xk`1 ´ xk ă R. Then there exists a canonical map from G
Bp0,pn`1qRq
Λ to N n

Λ and from N n
Λ to G

Bp0,nrq
Λ :

G
Bp0,pn`1qRq
Λ ÝÑ N n

Λ ÝÑ G
Bp0,nrq
Λ

px´p, ..., xqq ÞÑ M “ px´n, ..., x0, ..., xn`1q ÞÑ M X Bp0, nrq

where p ě n and q ě n` 1 because of the choice of R and x´n ď ´nr and xn`1 ě nr because of the choice of
r.
In particular, N n

Λ is a quotient of G
Bp0,pn`1qRq
Λ .

Proposition 12. With regard to the quotient topology, the forgetful maps

fN ,n : N n`1
Λ ÝÑ N n

Λ

px´n´1, ..., x0, ..., xn`2q ÞÝÑ px´n, ..., x0, ..., xn`1q

are continuous for all n P N.

Proof. The following diagram commutes, and we know that the upper arrow, the right and the left ones are
continuous. It follows that fN ,n is also continuous.

G
Bp0,pn`2qRq
Λ

fG,n
//

��

G
Bp0,pn`1qRq
Λ

��

N n`1
Λ

fN ,n
// N n

Λ

˝
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Proposition 13. Associated with the forgetful maps, lim
Ð

N n
Λ is homeomorphic to ΩΛ.

Proof. Since we have continuous maps

N N
Λ ÝÑ G

Bp0,pn`1qRq
Λ ÝÑ N n

Λ ÝÑ G
Bp0,nrq
Λ pwhere Nr ě pn` 1qRq

which are compatible with the forgetful maps

G
Bp0,pn`1qRq
Λ ÝÑ G

Bp0,nrq
Λ and N N

Λ ÝÑ N n
Λ

.

We know, by universal property, that lim
Ð

N n
Λ is homeomorphic to lim

Ð
G n

Λ , namely homeomorphic to the hull

ΩΛ of Λ.

˝

Example 6. We represent Gähler approximants for Zz t0u.

N 1
Zzt0u

{-1,0,1,2}

{-2,0,1,2}

{-2,-1,1,2}

{-2,0,1,2}

{-2,-1,1,2}

{-1,0,2,3}

{-1.5,-0.5,0.5,1.5}

Figure 6: First Gähler approximant of ΩZzt0u

Remark 14: Like the geometrical approximants, the Gähler approximants are homeomorphic to �nite graphs.

We note that the maps for the Fibonacci example are getting more and more complicated between each ap-
proximant. The Anderson-Putnam construction allows to avoid this inconvenient.

Aderson-Putnam's construction

This construction comes from [14], where it is done with a tiling point of view. We de�ne it only for a Fibonacci
point set Λ but this could be generalized to any substitution point set in R, namely a point set whose lexicon
is equal to the lexicon of a word being a �xpoint of a substitution map.

De�nition 16. Let Λ be a Fibonacci point set. We de�ne

S 1
Λ “

"

px´1, x0, x1, x2q P R4

ˇ

ˇ

ˇ

ˇ

x´1 ă x0 ď 0 ă x1 ă x2

Dx P R, DK Ă R compact, such that pΛ`xq XK “ s

*

“ N 1
Λ

and
θn : S n

Λ ÝÑ θnpS n
Λ q with S n`1

Λ “ θnpS n
Λ q

txku ÞÝÑ tϕ.xku
Ť

xk such that
xk`1 “ xk ` ϕ

tϕ.xk ` ϕu

for all n ě 1.

Remark 15: Note that every point in S n
Λ does not contain information about the same number of tiles, neither

about the same length, but they contain information about at least a certain number of tiles, at least a certain
length, and at most another certain number of tiles and certain length.
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The Anderson-Putnam approximants can be seen as quotients of the geometrical approximants. Indeed there

exists a canonical map from G
Bp0,2ϕn

q

Λ to S n
Λ and from S n

Λ to G
Bp0,ϕn´1

q

Λ :

G
Bp0,2ϕn

q

Λ ÝÑ S n
Λ ÝÑ G

Bp0,ϕn´1
q

Λ

px´p, ..., xqq ÞÑ M “ px´ln , ..., x0, ..., xrnq ÞÑ M X Bp0, ϕn´1q

These maps are well de�ned because:

. If px´1, x0, x1, x2q P S 1
Λ , then ´2ϕ ă x1 ď ´1 and 1 ă x1 ď 2ϕ.

. If all s “ px´ln , ..., x0, ..., xrnq P S n
Λ are such that ´b ă x´ln ď ´a and a ă xrn ď b, then all t “

px´ln`1
, ..., x0, ..., xrn`1

q P S n`1
Λ are such that ´bϕ ă x´ln ď ´aϕ and aϕ ă xrn ď bϕ.

. By induction, we conclude that for all n P N, for all s “ px´ln , ..., x0, ..., xrnq P S n
Λ , we have ´2ϕn ă x´ln ď

ϕn´1 and ϕn´1 ă xrn ď 2ϕn.

In particular, S n
Λ is a quotient of G

Bp0,2ϕn
q

Λ .

Proposition 14. With regard to the quotient topology, the forgetful maps

wn : S n`1
Λ ÝÑ S n

Λ

txku ÞÝÑ

!

1
ϕ .xk

)

z

¨

˚

˚

˝

Ť

xk such that
xk ` 1 “ xk`1

!

1
ϕ .xk

)

˛

‹

‹

‚

are continuous for all n P N.

Proof. The following diagram commutes, and we know that the upper arrow, the right and the left ones are
continuous. It follows that wn is also continuous.

G
Bp0,2ϕn`2

q

Λ

fG,n
//

��

G
Bp0,2ϕn`1

q

Λ

��

S n`1
Λ

wn // S n
Λ

˝

Proposition 15. Associated with the forgetful maps, lim
Ð

S n
Λ is homeomorphic to ΩΛ.

Proof. Since we have continuous maps

S n`3
Λ ÝÑ G

Bp0,2ϕn
q

Λ ÝÑ S n
Λ ÝÑ G

Bp0,ϕn´1
q

Λ

which are compatible with the forgetful maps

G
Bp0,2ϕn

q

Λ ÝÑ G
Bp0,ϕn´1

q

Λ and S n`3
Λ ÝÑ S n

Λ
.

We know, by universal property, that lim
Ð

S n
Λ is homeomorphic to lim

Ð
G n

Λ , namely homeomorphic to the hull

ΩΛ of Λ.

˝

Example 7. We reprensent Anderson-Putnam approximants for n “ 1, 2, and 3. We write only the symbolic
condings associated with the �nite point sets.

We note that once more, the approximants are homeomorphic to �nite graphs. The advantage of the Anderson-
Putnam approximants over geometrical or the Gähler approximants is that the forgetful maps are all similar.
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Figure 7: S 1
Λ , S 2

Λ and S 3
Λ

6 Functions on an inverse limit

We want to study functions on the hull in order to better understand the hull itself. We will denote by CpXq
the set of continuous functions on X, and CcpXq the set of continuous functions with compact support on X.

6.1 A �rst spanning set

We �rst recall the de�nition of pullbacks and the Stone-Weierstraÿ theorem:

De�nition 17 (Pullback). Let X and Y be two topological spaces, and σ : X Ñ Y a continuous function.

σ˚ : CpY q Ñ CpXq
f ÞÑ f ˝ σ

is called pullback of σ.

Theorem 6 (Stone-Weierstraÿ). Let X be a compact space. Let CpXq be the algebra of the continuous
real-valued functions on X.
If A is a subalgebra of CpXq which separates points7, then either it exists x0 such that for all f P A,
fpx0q “ 0 and A is dense in tf P CpXq | fpx0q “ 0u, or A is dense in CpXq.

For a proof of this theorem, see [9].

Proposition 16. Let pXnqnPN be compact spaces, with continuous functions fn : Xn`1 Ñ Xn. Let
X “ lim

Ð
Xn be an inverse limit of pXnqnPN and let us denote by πn : X Ñ Xn the collection of projections.

The continuous real-valued functions on X are spanned by the pullbacks of the continuous real-valued func-
tions on the spaces Xn:

CpXq “
ď

nPN˚
π˚npCpXnqq

}.}8

Proof. For all n P N, π˚npCpXnqq Ă π˚n`1pCpXn`1qq, so
Ť

nPN
π˚npCpXnqq is a subalgebra of CpXq. All we need

to prove is that it separates points and contains, for all x0 P X, a function fx0
which is non-zero on x0. We can

then conclude with the Stone-Weierstraÿ theorem.
So, let x and y be distinct points in X. It exists N P N such that πN pxq ‰ πN pyq otherwise x and y would be
the same point in the inverse limit.
But using Urysohn's lemma, we know that CpXN q separates points since XN is a compact space. So, there exists
a function f such that fpπN pxqq ‰ fpπN pyqq, namely
π˚N pfq P

Ť

nPN
π˚npCpXnqq is such that π˚N pfqpxq ‰ π˚N pfqpyq. Hence,

Ť

nPN
π˚npCpXnqq separates points.

7This means that @x, y P X, rx ‰ y ñ Df P A, fpxq ‰ fpyqs.
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Moreover, π˚1 p1X1q “ 1X P
Ť

nPN
π˚npCpXnqq so for all x0 P X, π

˚
1 p1X1qpx0q ‰ 0, namely there is no point x0 P X

such that all functions in
Ť

nPN
π˚npCpXnqq is zero on x0.

We conclude that
Ť

nPN
π˚npCpXnqq is dense in CpXq.

˝

This proposition allows us to study only functions on approximants, instead of all functions on the hull. This is a
reason why the approximants are really convenient! In the following section, we de�ne functions on approximants
coming from functions on G.

6.2 Periodization

De�nition 18 (Periodization). Let G be an lcsc group and Λ an FLC Delone set.
The periodization map of Λ is de�ned as:

P : CcpGq ÝÑ CpΩΛq

f ÞÝÑ Ppfq : ΩΛ Ñ R
M ÞÑ

ř

xPM

fpxq

This map is well-de�ned because on the one hand for every M P ΩΛ and f P CcpRq, the sum de�ning PpfqpMq
is �nite so PpfqpMq is well-de�ned and on the other hand Ppfq is continuous, as established in Proposition 5.1
in [5].

Remark 16: This map is called periodization map because if Λ is a discrete subgroup of R, let us say Λ “ αZ
then:

@M “ Λ` τ P ΩΛ, @λ “ nα P Λ, PpfqpM ` λq “
ÿ

x PM`nα

fpxq “
ÿ

m PM

fpm` nαq

“
ÿ

k PZ
fpkα` τ ` nαq

“
ÿ

k PZ
fpkα` τq “

ÿ

m PαZ`τ
fpmq

“ PpfqpMq

We will denote by A the algebra of functions on ΩΛ spanned by periodizations of continuous functions with
compact supports on G: A “ă PpCcpGqq ą, where ă S ą denotes the algebra spanned by the set S.

Proposition 17. Let Λ be an FLC Delone set and ΩΛ be its hull.
Then A is dense in CpΩΛq.

Proof. To prove this, we will prove that A separates points in ΩΛ and that for every ω P ΩΛ, there exists a
function ψ P A such that ψpωq ‰ 0. The Stone-Weierstraÿtheorem then implies that A is dense in CpΩΛq.

We know that the hull ΩΛ of Λ is the set of all local translates of Λ. This implies that ΩΛ is a set of FLC Delone
sets, in particular, H R ΩΛ. If ω P ΩΛ, then there exists x P ω and r ą 0 such that sx ´ r, x ` rrXω “ txu
(because Λ is discrete).
Let h P CcpRq be a continuous real-valued function on R such that hpxq “ 1 and suppphq Ăsx´ r, x` rr. Then
Pphqpωq “ 1 and Pphq P A by de�nition of A.

If ω1 P ΩΛ, distinct from ω, then there exists x P ωzω1 or x P ω1zω, say x P ωzω1. The point sets ωzω1 and ω1

are closed and disjoined, so dpωzω1, ω1q “ ε ą 0.
Let h P CcpRq be a continuous real-valued function on R such that hpxq “ 1 and suppphq Ăsx ´ ε, x ` εr and
h “ 1 on sx´ ε

2 , x`
ε
2 r. Then Pphqpωq ą 0 but Pphqpω1q “ 0. So A separates points.

We conclude that A is dense in CcpΩΛq.

˝
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Now, we want to de�ne local periodizations Pn, namely periodizations on the approximants pXnqnPN of the hull
ΩΛ (geometric, Gähler or Anderson�Putnam approximants). The goal is to have a commutative diagram:

CpΩΛq

. . . CpXnq
f˚n

oo

π˚n
55

. . . . . .
f˚n´1

oo CpX2q
f˚2

oo

π˚2

ii

CpX1q
f˚1

oo

π˚1
ll

CpX0q
f˚0

oo

π˚0pp

. . . Cn?
_oo

Pn

OO

� p

**

. . . . . .? _oo C2
? _oo
N n

tt

P2

OO

C1
? _oo
L l

oo

P1

OO

C0
? _oo
K k

mm

P0

OO

CcpGq

P

OO

where the pCnqnPN are subsets of CcpGq.

De�nition 19 (Local periodizations). The local periodization maps of an FLC Delone set Λ are de�ned as:

Pn : Cn ÝÑ CpXnq

f ÞÝÑ Pnpfq : Xn Ñ R
M ÞÑ

ř

xPM

fpxq

If we want this diagram to commute, then the pCnqnPN must not contain too many functions.
For instance, we give a counterexample in R, with Λ “ Zz t0u, Cn “ CcpRq, Xn “ G n

Λ associated with
Bn “ Bp0, nq.
Let us consider h P CcpRq such that suppphq Ă r´n0 ´

3
4 , n0 `

3
4 s and h “ 1 on r´n0 ´

1
2 , n0 `

1
2 s, and

M “
 

´n0 ´
1
2 ,´n0 `

1
2 , ..., n0 `

1
2

(

P Xn0`1 and N “Mz
 

n0 `
1
2

(

P Xn0`1

We have Pn0`1phqpMq “ |M | ‰ |N | “ Pn0`1phqpNq but Pn0
phqpMq ‰ Pn0

phqpNq so f˚n0
pPn0

phqq ‰ Pn0`1phq
which means that the diagram does not commute.

We will denote by An the algebra of functions on CpXnq spanned by periodizations of functions in Cn.

We also want pCnqnPN to be such that A “
Ť

nPN
π˚npAnq

}.}8
. To ensure this condition, pCnqnPN must contain

enough functions. Indeed, taking Cn “ C0 “ CcpBp0, 1qq for all n P N would make the diagram commute but

we would have A Ń
Ť

nPN
π˚npAnq

}.}8
. For instance, if h P CcpBp0, 1qq, then Pphq cannot distinguish M P ΩΛ from

N P ΩΛ (i.e. PhpMq ‰ PhpNq) whenever M X Bp0, 1q “ N X Bp0, 1q.

We will study this local periodizations for G “ R, with Xn “ G n
Λ and Xn “ S n

Λ and give examples of pCnqnPN

so that the diagram commute and A “
Ť

nPN
π˚npAnq

}.}8
.

6.3 Local periodization in geometric approximants

Fix a sequence of open balls pBnq in G, say Bn “ Bp0, Rnq, with increasing radii Rn ă Rn`1. Consider the
geometric approximants associated with the sequence of balls pBnq.

De�nition 20 (Geometric local periodization). The geometric local periodization map of an FLC Delone set
Λ is de�ned as:

PG,n : CcpBp0, Rnqq ÝÑ CpG n
Λ q

h ÞÝÑ PG,nphq : G n
Λ Ñ R
M ÞÑ

ř

xPM

hpxq

With the notations of the previous subsection, we are chosing Cn “ CcpBnq and Xn “ G n
Λ where the geometrical

21



approximants are associated with the sequence of balls pBnq. Then the diagram commutes because

@h P CcpBnq Ă CcpBn`1q, @p P G n`1
Λ ,

f˚n ˝ rPG,nphqsppq “ rPG,nphqsppXBnq

“
ÿ

xPpXBn

hpxq

“
ÿ

xPp

hpxq because h P CcpBnq

“ rPG,nphqsppq.

In this sense a periodization is a kind of periodic function.

Example of Λ “ ´2NY N Ă G “ R

We represent the geometric local periodization of a function.

h

1

1

0

G 3
´2NYN

{-2.5,-1.5,-0.5,0.5,1.5,2.5}

{-2,-1,0,1,2}

{-2,-1,0,2}

{-2,-1,1}

{-2,0,2}
{-1,1}

PG,nphq

Figure 8: A function h and its periodization on G 3
´2NYN

We note that the shape of h appear each time that a point p of G n
Λ contain x P pX suppphq.

6.4 Local periodization in Anderson-Putnam's construction

Let Λ be a Fibonacci point set.
Each point of the n-th Anderson-Putnam approximant covers a same ball Bp0, Rnq with Rn depending on
the growth's rate of the substitution map σ. In other words, if px´ln , ..., xrnq P S n

Λ , then x´ln ď ´Rn and
xrn ě Rn. For the Fibonacci case, Rn “ ϕn´1. We de�ne periodization like before, on these balls Bp0, Rnq.

De�nition 21 (Anderson-Putnam Periodization). The Anderson-Putnam periodization map of a Fibonacci
point set Λ is de�ned as:

PS,n : CcpBp0, ϕn´1qq ÝÑ CpS n
Λ q

f ÞÝÑ PS,npfq : S n
Λ Ñ R
M ÞÑ

ř

xPM

fpxq
.

Remark 17: It might be that two points of S n
Λ could not be distinguished with periodized functions, in other

words it can exist α, β P S n
Λ such that α ‰ β but @f P CcpBp0, Rnqq, PS,npfqpαq “ PS,npfqpβq. However, it

exists an N P N such that σN pαq and σN pβq are distinguishable with functions on S n`N
Λ .

Remark 18: We could de�ne those periodizations more generally for substitution point sets.

From now on, we assume that the pCnq are chosen such that the whole diagram commutes andA “
Ť

nPN
π˚npAnq

}.}8
.
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7 Periodization complexity

Let us denote by Apkqn the vector space in CpXnq spanned by products of at most k periodizations of functions
in Cn, and by Apkq the vector space in CpXq spanned by products of at most k periodizations of functions in
CcpRq.

De�nition 22 (Periodization complexity). Let Λ be an FLC Delone point set.
We will say that Λ has periodization complexity at most N if

CpΩΛq “ ApNq
}.}8

and has periodization complexity N if it has periodization complexity at most N but has not periodization
complexity at most N ´ 1.

To be of periodization complexity N basically means that one can construct every function on the hull with
sums of products of at most N periodizations (possibly by approximating it with a sequence of such sums).

Remark 19: Periodization complexity is not a notion from the literature but was introduced for my internship.

7.1 Su�cient conditions

To show that Λ is of periodization complexity at most K, one can prove that for all n P N, every continuous
function on the (geometric, Gähler or Anderson-Putnam) approximant Xn of the hull ΩΛ of Λ can be written
as a sum of products of at most K periodizations of continuous functions on R. But this will not always be
the case (actually, very rarely). Though, there are other properties, more common, also implying that Λ is of
periodization complexity at most K.

Proposition 18 (Su�cient conditions for periodization complexity at most K).
We have the following chain of implications:

@n P N, An Ă ApKqn p1.q

ñ @n P N, An Ă ApKqn

}.}8

p2.q

ñ @n P N, DNn P N, f˚Nn´1 ˝ ¨ ¨ ¨ ˝ f
˚
n pAnq Ă A

pKq
Nn

}.}8

p3.q

ñ Dn0, @n ě n0, DNn P N, f˚Nn´1 ˝ ¨ ¨ ¨ ˝ f
˚
n pAnq Ă A

pKq
Nn

}.}8

p4.q

ñ Λ is of periodization complexity at most K. p5.q

Those properties mean respectively that:

1. For all n P N, every continuous function on the (geometric, Gähler or Anderson-Putnam) approximant Xn

of the hull ΩΛ of Λ can be written as a sum of products of at most K periodizations on Xn of continuous
functions on R.

2. For all n P N, every continuous function on Xn can be approximated by elements phnq which can each be
written as a sum of products of at most K periodizations on Xn of continuous functions on R.

3. For all n P N, every continuous function h on Xn is such that its pullback f˚Nn´1 ˝ ¨ ¨ ¨ ˝f
˚
n phq (a continuous

function on XNn
) can be approximated by elements phnq which can each be written as a sum of products

of at most K periodizations on XNn of continuous functions on R.

4. For all natural number n big enough, every continuous function h on Xn is such that its pullback f˚Nn´1 ˝

¨ ¨ ¨ ˝ f˚n phq (a continuous function on XNn
) can be approximated by elements phnq which can each be

written as a sum of products of at most K periodizations on XNn
of continuous functions on R.

Proof. The implication p1.q ñ p2.q is clear, p2.q ñ p3.q comes from the fact that

. . . CpXNnq
f˚Nnoo . . . . . .

f˚Nn´1
oo CpXn`1q

f˚n`1
oo CpXnq

f˚noo . . .
f˚n´1
oo

. . . CNn
? _oo

PNn

OO

. . . . . .? _oo Cn`1
? _oo

Pn`1

OO

Cn?
_oo

Pn

OO

. . .? _oo
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commutes. So a function on CpXnq can also be seen as a function on CpXn`1q or more generally on CpXN q

with N ě n.
The implication p3.q ñ p4.q is true because periodization complexity is a property about functions on the hull,
which we see as an inverse limit of approximants, hence only approximants from a certain rank onwards are
meaningful.
It remains to show p4.q ñ p5.q. Let h P CpΩΛq be a continuous function on the hull of Λ. Thanks to the choice

of pCnq, A “
Ť

nPN
π˚npAnq

}.}8
, which means that h can be approximated by pullbacks pπ˚nphnqq where for all

n P N, hn P An. But for n big enough, hn is approximated by elements in ApKqNn
Ă ApKq. And since the pullback

of the sum of products is the sum of products of pullbacks, we conclude that h P ApKq
}.}8

. In other words, Λ
is of periodization complexity at most K.

˝

7.2 Case of uniform lattices

Theorem 7. Z is of periodization complexity 1.

Proof. Let ψ P CpΩΛq a continuous function on the hull. We construct a continuous function h with compact
support in R such that Pphq “ ψ.
We know that the hull of Λ is ΩΛ “ tpZ` xq | x P Ru “ tpZ` xq | x P r0, 1su. Let us denote ωx “ pZ` xq for
all x P r0, 1s (then ω0 “ ω1).
Moreover, A “ tpZ` xq | x P r0, 0.4rYs0.6, 1s u and B “ tpZ` xq | x Ps0.3, 0.7r u are two open subsets such that
ΩΛ “ AYB. Thanks to partitions of unity, we can write ψ “ ψA ` ψB with ψA P CcpAq and ψB P CcpBq.
We de�ne hA P Ccps ´ 0.4, 0.4rq by:

@x P R, hBpxq “

$

&

%

ψApωxq if x P r0, 0.4r
ψApωx`1q if x Ps ´ 0.4, 0s
0 else

and hB P Ccps0.3, 0.7rq by:

@x P R, hBpxq “
"

ψBpωxq if x Ps0.3, 0.7r
0 else

Then, h “ hA ` hB P CcpRq is such that Pphq “ ψ.

˝

Remark 20: This statement remains true for αZ, which can be proved the same way.

Actually this is a particular case of a general statement due to A. Selberg:

Theorem 8. Let G be an lcsc group, and Λ a uniform lattice of G.
Λ is of periodization complexity 1.

For a proof a this theorem, see [13] (lemma 1.1 of chapter 1, explained with a slightly di�erent vocabulary).

7.3 A useful function

We de�ne here a function which will be useful to prove theorems about periodization complexity.
Given a function f on R, whose support is in ra, bs with b´ a ă 1, we de�ne a function f̃ by :

@x P R, f̃pxq “ fpxq ´ fpx´ 1q (See Figure 9 and 10).

The function f̃ is useful because its periodization is non zero onM P ΩΛ only if there exist two successive points
in M not being at distance exactly 1 from each other.

Lemma 1 (Behaviour of f̃). Let Λ an FLC Delone set and ω P ΩΛ a local translate of Λ. Let f be a
continuous non-negative function with compact support on ra, bs with b´ a ă 1. Then we have:

Ppf̃qpωq ą 0 if and only if

"

sa, br X ω ‰ H
sa` 1, b` 1r X ω “ H
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1

´1

1

0

f

Figure 9: f

1 2

´1

1

0

f̃

Figure 10: f̃

and

Ppf̃qpωq ă 0 if and only if

"

sa, br X ω “ H
sa` 1, b` 1r X ω ‰ H.

In particular, if Z P ΩΛ (for instance if Z “ Zz t0u), then:

@τ P R, Ppf̃x0qpZ` τq “ 0.

Proof. By de�nition of periodization, rPphqspωq ‰ 0 only if there is x P ω such that hpxq ‰ 0. In particular, for
h “ f̃ , which is non negative on sa, br, negative on sa` 1, b` 1r and zero everywhere else, we obtain the result
stated above.

˝

Remark 21: We can say the same about ω P G n
Λ and f with ra, bs Ă r´n, n´ 1s.

7.4 Examples of periodization complexity 2

The following results about examples of periodization complexity are new results that I proved during my
internship.

Theorem 9. Let F be a �nite non empty set. ZzF is of periodization complexity at most 2.

Before proving the theorem, let us de�ne some notations.
Fix F “ ty1, .., ymu Ă Z a �nite and non empty subset of Z (with y1 ă ... ă ym). Let us denote

tz1, ..., zpu “ ZzF X vy1 ´ 1, ym ` 1w “ vy1 ´ 1, ym ` 1w zF

with z1 ă ... ă zp and
di “ zi`1 ´ zi.

Fix n P N such that n ą ym ´ y1 ` 1 and let Bn “ Bp0, nq be an open ball.
The geometric approximation G n

ZzF of ZzF associated with Bn is like the one of Zz t0u. Indeed they are made
of two parts:

Xn “ t pZzF ` xqXs ´ n, nr | ´n´ ym ď x ď n´ y1 u

and

Yn “ t pZzF ` xqXs ´ n, nr | x ď ´n´ ym or x ě n´ y1 u

“ t pZ` xqXs ´ n, nr | x P R u
“ t pZ` xqXs ´ n, nr | x P r0, 1s u .

Let us denote
@x P r´n´ ym, n´ y1s, α

pnq
x “ pZzF ` xqXs ´ n, nr
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Bp0, nq

0

´n` 1 n´ 1

F ` x
y1 ` x ym ` x

pZzF ` xq X Bp0, nq
z1 zp

d1 d2 dp´1

Figure 11: F ` x and pZzF ` xq X Bp0, nq for a certain x P R

and
@x P r0, 1s, βpnqx “ pZ` xqXs ´ n, nr

and
spnq “ ZXBn.

We note that
α
pnq
´n´fk

“ α
pnq
n´f1

“ β
pnq
0 “ β

pnq
1 “ spnq

and
Xn X Yn “

!

spnq
)

and G n
ZzF “ Xn Y Yn.

It will also be convenient to de�ne:

Xp1qn “

!

αpnqx | ´n ă x` y1 ´ 1 and x` ym ` 1 ă n
)

“

!

αpnqx | ´n´ y1 ` 1 ă x ă n´ ym ´ 1
)

and
Xp2qn “

!

αpnqx | ´n´ ym ď x ď ´n´ y1 ` 1 or n´ ym ´ 1 ď x ď n´ y1

)

“ XnzX
p1q
n .

G n
ZzF

X
p1q
n

X
p2q
n

Yn

spnq “ t´n` 1, ..., n´ 1u

The shapes of X
p1q
n and X

p2q
n depend on Λ, but X

p2q
n is always a neighbourhood of spnq.

The points α
pnq
x P X

p1q
n are such that y1 ` x ´ 1 P α

pnq
x and ym ` x ` 1 P α

pnq
x , with words: we can see all the

"gaps made by F" in any point of X
p1q
n , like in �gure 8.

We de�ne a collection of open subset of Xn:

@k P v´n, n´ 1w, Uk “ tαx | k ă x ă k ` 1u
@k P v´n, n´ 2w, Vk “

 

αx | k `
1
2 ă x ă k ` 3

2

(

Vn´1 “
 

αx | x P r´n,´n`
1
2 rYsn´

1
2 , ns

(

Then Xn “
Ť

kPv´n,n´1w

Uk Y Vk.

And �nally we chose N P N such that:

@x Ps ´ n´ ym, n´ y1r,

"

x` y1 ´ 1 ą ´N
x` ym ` 1 ă N

, namely

"

´N ď ´n´ ym ` y1 ´ 1
N ě n´ y1 ` ym ` 1

.
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In other words, we take N ě n` ym ´ y1 ` 1.

We have all the notations we need to prove that ZzF is of periodization complexity at most 2. We will need
the following lemma:

Lemma 2. With the �xed n and N and the introduced notations, we have:

@αpnqx P Xn, D!α
pNq
x1 such that α

pNq
x1 XBn “ αpnqx .

Moreover, this αpNqx1 is actually αpNqx and is in Xp1qN .

Proof. By de�ntion, α
pnq
x “ pZzF ` xq XBn where ´n´ ym ď x ď n´ y1, hence ´N ´ ym ď x ď N ´ y1.

So α
pNq
x is well-de�ned and α

pNq
x “ pZzF ` xq XBN , in particular α

pNq
x XBn “ α

pnq
x .

Then, α
pNq
x is in X

p1q
N if and only if ´N ă x ` y1 ´ 1 and x ` ym ` 1 ă N , which exactly the conditions on

which we chose N .
It remains to show that for x1 ‰ x, we have α

pNq
x1 XBn ‰ α

pnq
x .

If α
pnq
x P X

p1q
n , then we see all gaps made by F in α

pnq
x so there is only one x such that α

pnq
x “ ZzF ` x. Else,

α
pnq
x P X

p2q
n , which means that y1 ` x ď ´n ă ym ` x or y1 ` x ă n ď ym ` x. With words: there is at lest one

gap in α
pnq
x , but not all the gaps that F make. But with our choice of n ą ym´y1`1, this leads to ym`x ă ´1

or 1 ă y1 ` x. So there are at least n consecutive points in α
pnq
x which are at distance 1 from each others. This

allow us to identify from which translate of ZzF α
pnq
x is a part.

˝

Now, we prove that ZzF is of periodization at most 2.
Proof. Let ψ P CpG n

Λ q a continuous function on the hull. We can assume without loss of generality that ψ is
non-negative (else we write ψ “ ψ` ` ψ´).

Let us show that ψ P Ap2qN for a certain N .
First step: Construct h P CcpBnq such that Pnphq “ ψ on Yn. Yn “ tpZ` xq | x P r0, 1su so we can construct h
as we did for the proof of Z being of complexity 1. But Pnphq is not necessarily equal to ψ on Xn. We need to
do the second step, with ψ ´ Pnphq.

Second step: Construct h P CcpBnq such that Pphq “ ψ on Yn, when ψ “ 0 on Yn.
Thanks to partitions of unity, we can write ψ as ψ “

ř

kPv´n,n´1w

ψUk
`ψVk

where ψUk
P CcpUkq and ψVk

P CcpVkq

are non-negative.
Since ψpspnqq “ 0, we can assume that ψVn´1

pspnqq “ ψUn´1
pspnqq “ 0.

From now, we assume, without loss of generality because periodizations are linear, that supppψq Ă Uk or
supppψq Ă Vk. Say that supppψq Ă Uk0 .

(i) We �rst assume that supppψq Ă X
p1q
n .

We de�ne h, g P CcpRq by, for all x P R:

hpxq “

# b

ψpα
pnq
x`1´y1

q if ´ n ď x ď n´ 1

0 else

gpxq “

# b

ψpα
pnq
x´ymq if ´ n` 1 ď x ď n

0 else
.

In particular, for x P r´n´ ym, n´ y1s we have:

hpy1 ´ 1` xq “

b

ψpα
pnq
x q

gpym ` xq “

b

ψpα
pnq
x q.

and h and g are actually with support of length at most 1 because ψ has its support in a Uk0 . More precisely,
the previous equations tell us that suppphq Ă ry1 ´ 1` k0, y1 ` k0s and supppgq Ă rym ` k0, ym ` k0 ` 1s. More
precisely, gpx` ym ´ y1 ` 1q “ hpxq.
Let us verify that PG,nph̃qPG,np´g̃q “ ψ.

From lemma 1 about the "useful function", we know that rPG,nph̃qspβ
pnq
x q “ 0 “ rPG,npg̃qspβ

pnq
x q for every

x P r0, 1s. So PG,nph̃qPG,np´g̃q “ ψ on Yn.
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For α
pnq
x P Xn, we have:

PG,nph̃qPG,np´g̃qpα
pnq
x q “

¨

˝

ÿ

i Pα
pnq
x

hpiq ´ hpi´ 1q

˛

‚

¨

˝

ÿ

i Pα
pnq
x

´ gpiq ` gpi´ 1q

˛

‚

“

¨

˝

ÿ

i P pZzF`xqXBn

hpiq ´ hpi´ 1q

˛

‚

¨

˝

ÿ

i P pZzF`xqXBn

´ gpiq ` gpi´ 1q

˛

‚

“

¨

˚

˚

˝

n´txu
ÿ

i“´n´txu
iRF

hpi` xq ´ hpi` x´ 1q

˛

‹

‹

‚

¨

˚

˚

˝

n´txu
ÿ

i“´n´txu
iRF

´gpi` xq ` gpi` x´ 1q

˛

‹

‹

‚

“

¨

˚

˚

˝

y1`k`1´txu
ÿ

i“y1´1`k´txu
iRF

hpi` xq ´ hpi` x´ 1q

˛

‹

‹

‚

¨

˚

˚

˝

ym`k`1´txu
ÿ

i“ym`k´txu
iRF

´gpi` xq ` gpi` x´ 1q

˛

‹

‹

‚

But we have:
¨

˚

˚

˝

y1`k`1´txu
ÿ

i“y1´1`k´txu
iRF

hpi` xq ´ hpi` x´ 1q

˛

‹

‹

‚

“
ÿ

i such that iRF and iPF

hpi` xq ´
ÿ

i such that iPF and iRF

hpi` xq

and there is at most one term in these sums which can be non zero because suppphq is of length 1. We can

write a similar thing for the sum of PG,np´g̃q. If x Psk0, k0 ` 1r, namely if α
pnq
x P Uk0 and:

ÿ

i such that iRF and iPF

hpi` xq ´
ÿ

i such that iPF and iRF

hpi` xq “ hpy1 ´ 1` xq

“

b

ψpα
pnq
x q.

For the sum of PG,np´g̃q, we obtain:

¨

˚

˚

˝

ym`k`1´txu
ÿ

i“ym`k´txu
iRF

´gpi` xq ` gpi` x´ 1q

˛

‹

‹

‚

“ gpym ` xq

“

b

ψpα
pnq
x q.

So we have, for α
pnq
x P Uk0 , we have

rPG,nph̃qPG,np´g̃qspα
pnq
x q “ ψpαpnqx q.

Conversely, if rPG,nph̃qPG,np´g̃qspα
pnq
x q ‰ 0, then there must be i P N such that i ´ 1 ` x P α

pnq
x , i ` x R α

pnq
x ,

i` ym ´ y1 ` 1` x P α
pnq
x and i` ym ´ y1 ` x R α

pnq
x , which is possible only if α

pnq
x P X

p1q
n .

In this case, we have

rPG,nph̃qPG,np´g̃qspα
pnq
x q “ hpi´ 1` xqgpi` ym ´ y1 ` xq

which is non-zero only if i` x Psk0, k0 ` 1r, namely only if α
pnq
x P Uk0 .

So, for α
pnq
x P XnzUk0 , we have:

rPG,nph̃qPG,np´g̃qspα
pnq
x q “ 0 “ ψpαpnqx q.

Then
PG,nph̃qPG,np´g̃q “ ψ

so ψ P Ap2qn .
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(ii) If supppψq XXp2qn ‰ H, we pullback ψ in GN
Λ

But because of lemma 2, the pullback f˚N ˝ ... ˝ f
˚
n pψq has its support in X

p1q
n and we can apply (i) to it.

We obtain h, g P Ccps ´N,N rq such that:

PN ph̃qPN p´g̃q “ f˚N ˝ ... ˝ f
˚
n pψq.

So f˚N ˝ ... ˝ f
˚
n pψq P A

p2q
N

We have shown the property (5.) of proposition 17, we can conlude that ZzF is of periodization complexity at
most 2.

˝

We can use the same ideas as for ZzF to prove that:

Theorem 10. The FLC Delone set ´2NY N is of periodization complexity at most 2.

Remark 22: This statement remains true for ´kαNY αN (k P N˚ and α ‰ 0).

8 Conclusion

The hull is a space related to point sets. Studying the hull and its properties gives information about the point
set itself, though we did not establish anything of the form "if the hull of Λ has such property X, then Λ has
some property Y ". What we did establish though are properties about the hull or its approximants given a
�xed point set Λ. This is a �rst step to understand the links between point sets and their hulls.

Periodization complexity could be a relevant tool, telling how "complicated" continuous functions on the hull
are, hence how "complicated" the hull is, hence how "complicated" a point set is. I just had time to begin
to study this notion and lots of questions remain. I would say as a conjecture that a Fibonacci point set is
of periodization complexity at most 3, which is in some sense striking, because a Fibonacci point set requires
much more technics to be de�ned than Zz t0u does but it still has a �nite periodization complexity. We can
ask ourselves whether, given an n P N, it is possible to construct point sets of periodization complexity exactly
n. Does there exist a point set with no �nite periodization complexity? Is it more common to have �nte
periodization complexity or not to ?

Finally, having a �nite periodization complexity also has consequences for measures on the hull, namely in
ergodic theory.
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