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Abstract

We define and study FLC Delone sets in locally compact second countable (lcsc) groups. They generalize discrete
and relatively dense subgroups. We study them espacially through their hulls and the continuous functions on
their hulls. To do that, it will be convenient to consider a hull as an inverse limit of some approximants. Finally,
we introduce the notion of periodization complexity and establish the periodization compexity of some FLC
Delone sets in R.
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1 Introduction

Tiling is a popular subject in geometry, giving fascinating and beautiful pictures. There exist periodic tilings
(for instance the kitchen or bathroom tilings, or in the crystal structure) but also aperiodic ones, such as the
Penrose tilings. Since the discovery of quasicrystals, aperiodic tilings have attracted more and more interest.

In this report we will almost not speak about tilings but only about point sets. Let us think about a tiling of
R, we can describe it as well by its tiles as by the boundaries of its tiles, namely as a point set whose points are
not too close nor far from one another. We will not look further at the link between tilings and point sets, but
the spaces we study here can be relevant to answer physical and chemical questions (See [14]).

2 Point sets

We introduce a few notions about point sets:

Definition 1 (Delone set). Let X be a metric space. Let A < X be a subset. A is said to be:
(i) discrete if every subset of A is open in A with respect to the subset topology;

(ii) locally discrete if it is discrete and closed, or equivalently if its intersection with every pre-compact subset
of X 1is finite;

(#%i) r-uniformly discrete for some r > 0 if for every distinct points x,y € A, d(z,y) > r;

(iv) R-relatively dense for some R >0 if X = |J B(z, R);

zeA

(v) (r, R)-Delone set if it is both r-uniformly discrete and R-relatively dense.

Remark 1: Note that being uniformly discrete or relatively dense depends on the metric on X and not just on
the topology.

Remark 2: The notion of Delone sets in R? would well describe a gas. Each atom cannot be too near from the
other ones (so the point set is uniformly discrete) and the atoms use all the space they have with a minimum
pressure (so the point set is relatively dense).

This definition is really generic, we will restrict ourselves to cases where X is a group, and to fix ideas, we will
mostly think of the special case where X = R. Before going further and establish some properties, we give some
examples.

Example 1.
. {n%rl |neN } is a discrete set of R with the Euclidean metric, but it is non locally finite.

e Nujn+ 45 [neN } is a locally finite set of R with the Euclidean metric, but it is non uniformly discrete

(nor relatively dense).
e Zis a (r, R)-Delone set for any 0 <r <1 < R.

0 ifz=y

1 else , then every subset

e If we put the discrete topology on R, which is metrizable with 6(z,y) = {
of R is a (r, R)-Delone set for any 0 <r <1< R.

More precisely, we will consider a locally compact! and second countable? (lcsc) group G. In particular, G is a
topological group, namely the group law and the inverse are continuous. The following theorem, due to Struble,
establishes the existence of nice metrics on such a group.

THEOREM 1 (Struble). Let G be a locally compact group. Then G is second countable if and only if there
exists a left-invariant proper compatible metric on G.

We recall that a metric d is said to be left-invariant whenever:

for all ,y and ¢ in G, d(g.2, g.y) = d(z,y).

!Fach point has a basis of compact neighbourhoods.
2There exists a countable basis of open sets.



It is said to be proper if the balls are pre-compact.
It is said to be compatible if it leads to the same topology on G.

There is another equivalent property, but we will not use it here. The equivalence between the three properties
is proved in [8].

Example 2. Since R? is an lcsc group (with the addition and the canonical topology), there exists a left-
invariant proper compactible metric on R?. Actually, there exist many such metrics. For instance, the Euclidean
metric (corresponding to the norm L?) and more generally the distances corresponding to the norms L', L*
and L? are left-invariant proper compatible metrics on R?.

Moreover, as established in [5], any proper, continuous, left-invariant metric leads to the same set of Delone
sets:

Proposition 1. Let G be an lcsc group, A = G be a subset and d be a proper left-invariant compatible
metric on G. Then the following hold:

(i) A is uniformly discrete in G if and only if the identity e € G is not an accumulation point of
ATA ={z7y | z,y e A}

(i) A is relatively dense in G if and only if there exists a compact subset K = G such that G = AK.

In particular, the property of being a Delone set in G is independent of the choice of d.

Proof. (i) If A is not uniformly discrete, then there exist elements z, # y, in A such that d(z,,y,) < 1/n.
Hence, z, := y, 'z, € A=A is such that d(z,,e) = d(x,,y,) < 1/n, which means that (z,) converges to e, so e
is an accumulation point of A=A,

Conversely, if e is an accumulation point of A=A, then there exists a sequence of z, = y, 'z, € A=A, where
zn # e, which converges to e, hence d(x,,,yn) = d(zn,€) — 0 and A is not uniformly discrete.

(#) Assume that I" is R-relatively dense and let K = B(e, R) < G.

Let g € G. There exists v € I' such that d(g,v) < R. Since d is left-invariant, d(y~'g,e) = d(g,7) < R, hence
g=77"'gel.K. So G =T.K, and K is compact.

Conversely, if G = I'.K with K compact, then every g € G can be written as g = 7.k with v € I" and k € K,
and then d(g,7) = d(k,e) < max d(k,e) =: R which is finite because d is continuous and K compact. Since R
does not depend on g, I' is R-relatively dense in G.

m]

Definition 2 (Finite local complexity). A subset A of an lcsc group G is said to have finite local complexity
(FLC) if A=1A is locally finite.

Remark 3: Any FLC set is uniformly discrete but the converse is false:

1
S—2Nu{2n—1+
n+1

1 1 1 1
e N*} = 14+=,2 -4 6,7+ -,8, ...
n } {0, +27 ,3+37 ,5—1—4,6, +5,87 }
is r-uniformly discrete for any r < 0.5 but has not FLC because 1 is an accumulation point of the set of the
distances between two successive points.

Remark 4: When a set A = R is locally finite, we can describe it with a sequence® (d,,)nez (or, if A is not relatively
dense, (dn)o<n Or (dy)n<o Or a finite sequence) and a base point zg € A through the 1-to-1 correspondence:

Q: Rx(R*)? — LF(R) Tp =20+ Yp_ody ifn=0

(w0, (dn)nez) =  (Tn)nez such that:{

Tp=20— 2y 1dg ifn<0
where LF(R) denotes the set of locally finite point sets in R.

Definition 3 (Symbolic coding of a locally finite point set in R). Let A be a locally finite point set in R. We
call symbolic coding of A every sequence (d,)nez such that A = {Q(zo, (d,))} for some xg.

Note that if A # aZ, then A has many (possibly infinitely many) different symbolic codings: indeed if (d,,)nez
is a symbolic coding of A, then for all k € Z, (d,+1)nez is also a symbolic coding of A. A is determined up to
translation by (one of) its symbolic coding (which can be fixed with the base point information).

A symbolic coding is very useful to describe one locally finite point set in R. Particularly because of the following
properties:

3This is because R is totally ordered.



Proposition 2. Let A be a locally finite set in R. Let us note d a symbolic coding of A.
(i) A is uniformly discrete if and only if d has a non-zero infimum.
(i) A is relatively dense if and only if d is a bi-infinite sequence which has a supremum.

(i13) A is an FLC Delone set if and only if d is a bi-infinite sequence which takes a finite number of values
(and they are all non-zero).

Proof. (i) By definition, A is r-uniformly discrete in G if and only if every point of A is at distance at least r
of any other point of A. In R, this is equivalent to saying that every two successive points are at distance at
least r, which means that every value of d is greater than r > 0.

(i) By definition, A is R-relatively dense in G if and only if every point of G is at distance at most R of a
point of A. In R, this is equivalent to saying that A is not bounded and that every two successive points are at
distance at most D < 2R, which means that d is bi-infinite and its values are all less than 2R.

(#i) If A is an FLC Delone set, it is uniformly discrete and relatively dense so d is a bi-infinite bounded sequence
with non-zero infimum. If d had an infinite number of values, then one of them would be an accumulation point
and A — A ={z—y|z, ye A} would not be discrete, so A would not have FLC.

Conversely, if d is a bi-infinite sequence which takes a finite number of values and which are all non-zero then
A is uniformly discrete and relatively dense, hence a Delone set. Moreover if A — A had an accumulation point
z = x — y, then there exists z, = x,, — y, — 2z, which means that sums of values of d can be as near to z (but
not equal to) as one wants, but this is not possible because d takes a finite number of values.

Example 3.

e N U {n—l—%ﬂ‘neN} = {0,1,23,2,1,3,13.4,21 )5 ..} is described by the symbolic coding

(1,1, 3, %, %, 1.3, %7 %7 ...) and the base point 0.
e 7 is described by the symbolic coding (..., 1,1,1,...) and the base point 0 (or any other integer).

e 7\ {0} is described by the symbolic coding (...,1,2,1,...) and the base point —1 (if 2 = dp).

e —2N U N is described by the bi-infinite word (...,2,2,1,1,...) and the base point 0 (if d_; = 2 an dy = 1).

Remark 5: One can also see point sets in R as tilings of R (i.e. sets of closed intervals (I,;)nez with non empty
o

interior such that R = |J I,, and the (I,,) are disjoint) through the 1-to-1 correspondence:

nez

T: J - T(R)
(xn>n€Z = {]n = [xnaanrl] | ne Z}

where 7' (R) denotes the set of tilings of R and J = (R)? denotes the set of strictly increasing bi-infinite sequences.

3 Groups and lattices

Let us first study the case where A is a uniform lattice of X = G, a topological lcsc group. To fix ideas, one
can think of G as R and A as aZ). G acts over itself through the left multiplication (in R, it is through the
addition).

Definition 4 (Uniform lattice). Let G be an lcsc group and T a discrete subgroup of G.
We call T' a uniform lattice whenever G/T" is compact.

We emphasize that I' is not assumed to be a normal subgroup, so G/T" is a set quotient, but not necessarily a
group.

Proposition 3. Let G be an lcsc group and T’ a subgroup of G. Then:

(i) G/T is a topological space on which G acts continuously.



(i) T has FLC (so T is also uniformly discrete) if and only if T is discrete.

(i1i) G/T is compact if and only if T is relatively dense.

Proof. (i) G/T, with the quotient topology inherited from the toplogy of G, is a topological space. G is a
topological group, which means that the multiplication by an element of G is continuous. So the action of G
over itself is continuous, so the action of G over G/I is also continuous.

(i) If T has F'LC, then it is uniformly discrete, and hence discrete.

Conversely, if T is discrete then the identity element e € G is not an accumulation point of I'. But I' = I'"'T
since I is a group. Since e € G is not an accumulation point of I ~!T, T is uniformly discrete (Proposition 1).
Then I'"'T" = T is uniformly discrete, hence discrete, which is the definition of I' having FLC.

(iii) If T is relatively dense, we know that G = I".K where K is a compact space (Proposition 1). So we have:
Gl ={Tg|lgeGtc{Tnk|vel, ke K} ={Tk | ke K}

G/T is closed in the compact set {I'.k | k € K} so G/T" is compact.
Conversely, if G/T is compact, then G = I".G/T and T is relatively dense.

Corollary 1. Let G be an lcsc group and T a subgroup of G. The following statements are equivalent:
(i) T is a Delone set.
(i) T is an FLC Delone set.

(i13) T is a uniform lattice.

Proof. By definition, we have (ii) = (i). By Proposition 2, we have (i) = (i) and (i) = (¢4¢). It remains to
prove (iii) = (4). If T is a uniform lattice, then by definition, it is discrete and G/T" is compact. So I' has FLC
and is relatively dense (Proposition 2). I is uniformly discrete and relatively dense, hence a Delone set.

4 Hull

We want to generalize the dynamical system G —~ G/T" when we do not consider an FLC Delone subgroup T’
anymore, but only an FLC Delone set A. In other words, we are looking for a compact space, giving some
information of A, and on which G acts continuously. Throughout this section, G denotes an Icsc group.

4.1 Topologies and definition of the hull

The first space one could think of is the set of all translates of A, namely the orbit of A under the action of G.
But in most cases, this will only be a copy of GG, which does not give us any information on A. For example, if
G =R and A = Z\ {0} , then there is a 1-to-1 correspondence between the set of translates of A, denoted J,,
and R:

Adxe Iy +«——zelR

This will happen whenever A is such that there is no ¢t > 0 verifying: for all z in A, x +¢ and x —t are also in A.
To fix this problem, we will consider not only the orbit of A but also its closure (that of the orbit of A) for a
certain topology on closed sets. We first define two topologies on closed sets.

Definition 5 (Local topology). The local topology is the unique topology on LF(G), the set of locally finite
point sets in G, such that for any closed point set A in G, a neighbourhood basis of A is given by the sets:

Ukv(A)={LeLF(G)|3reV:TAnK=Ln K}
where K is a compact subset of G and V' an identity neighbourhood of G.
With regard to the local topology, the following sequence of sets:

1 1
FQnZ {1+71} and F2n+1 = {1,1}
n n



does not converge for the local topology, though one could want to say that it converges to F,, = {—1,1}.
Moreover this example shows that LF(R) is not compact with regard to the local topology.
We will consider another topology, in which the sequence (F),)nen does converge to Fy,.

Definition 6 (Chabauty-Fell topology). A sequence (P,) of closed subsets of G is said to converge to P with
respect to the Chabauty-Fell topology whenever the following two properties hold:

(i) If (ng) is an unbounded sequence of natural numbers and p,, € P,, such that (py,) converges to p € G,
then p € P.

(ii) For every p € P there exist elements p,, € P, such that (p,) converges to p.

Remark 6: Local topology and Chabauty-Fell here are well-defined, see [6] for details.
The Chabauty-Fell topology is metrizable, see [8].

Definition 7 (Hull). We denote by Qp (resp. QXOC)) the hull of A (resp. local hull of A), namely the topological
space of the closure of all the translates of A (i.e. the closure of the orbit T of A under the action of G) with
regard to the Chabauty-Fell topology (resp. local topology).

In order to give a more explicit description of the elements of the hull, we define the notion of local translates.

Definition 8 (Local translates). L is said to be a local translate of A whenever:

VK < G compact, 3ge G, (9 A)n K =L n K.

Any translate L of A is also a local translate of A. Indeed it exists g € G such that L = g.A, so for all compact
subset K of G, (9.A) n K = L n K (always with the same g).

Proposition 4. Let A be a locally finite point set in G. Then T € QXOC) if and only if T is a local translate

of A.

The proof of this statement is in [11].
We know that the Chabauty-Fell and local topologies are not equivalent since one is compact and not the other.

So, generally, Qp # QXOC) but we will restrict our study to subsets which are FLC Delone sets, and for them

Q) = QXOC), as the following theorem establishes.

THEOREM 2. Let G be an lesc group. If A is an FLC Delone set, then the hull and the local hull are the
same as sets and the Chabauty-Fell and local topologies are the same on them. Moreover, Qp = QXOC) s

compact (with regard to these topologies).

For a proof of this theorem, see [6]. Since we restrict ourselves to lcsc groups and FLC Delone subsets, the
Chabauty-Fell and local topologies will lead to the same topology. We can then use both of them, chosing the
most convenient for us, but we will only use the notation 4.

The following statement shows that 2, is a good candidate for the space we were looking for to replace G/A
when A is not a discrete subgroup anymore but only an FLC Delone set.

I Proposition 5. G acts continuously over Qx with regard to the Chabauty-Fell topology.

Proof. Since G and {5 are metric spaces we can prove continuity with sequences. Let (g,) and (x,) be
sequences of points of G and 4 respectively, such that (g,) converges to g € G and (z,,) converges to = € Qp
(with regard to the Chabauty-Fell topology).

Let us show that g,,.xz,, o=F g.x.
(i) If (ng) is an unbounded sequence of natural numbers and py, € gn, .Tn, such that (p,,) converges top € G,
then g, !.pn, € Zn, and (g, '.py,) converges to g~'p (because the multiplication in G is continuous). But

C-F _ .
Tp, — T,80 g 'p must be in x.



(i) If p € g.w, then g~ !p € z and (since x, - x) there exist elements y,, € x, such that (y,) converges to
g 'p. Then, ¢n.yn — ¢g.g"p = p where g,.yn € Tp.

We conclude that g,,.x, oF g.x: the action is continuous.
a

We will study this space 25. First we give some examples in order to picture a bit more what a hull is and then
we give another description of the hull of point sets in R, which will be more convenient to use in some cases.

4.2 First Examples

Here are some examples of hulls which can be easily pictured.

e The hull Qg of Z is the closure of all translates of Z:

Q={Z+z|zeR}={Z+z|ze[0,1]} z 0z41-

But {Z + = | = € R} is a closed set with regard to the Chabauty-Fell topology, so the hull Q of Z is exactly
the set of all the translates of Z. It’s a circle. More generally, when A is a subgroup of G, then Q) = G/A.

e The hull Qg (0 of Z\ {0} is the closure of all translates of Z\ {0} :

QZ\{O} = {Z\ {0} +x | x € R}
But this time {Z\ {0} + = | € R} is not a closed set. Indeed, we have for example

7\ {n} = 7\ {0} + n 5" Z.

More generally: VeeR, Z\{0} +n+xz " Z + .

And conversely, if L € Qg (o, then L is either Z\ {0} + 2 or Z + z for some z € R. Indeed, L € Qyz (o
means that there exist elements L, € {Z\ {0} + = | z € R} such that L, “S" L. Say L, = Z\{0} + xp,
with z, = k, + y, where k, € Z and y, € [0,1]. We can assume without loss of generality that

yn — y €[0,1]. If |k,,| — +o0, then L = Z + y, else (k,,) must converge to k € Z (because (L,,) converges)
and L = Z\ {0} + k + .

Topologically, it’s a slinky whose two extremities accumulate on a same circle. On figure 1, we see the
hull first as a "straight" slinky with two circles, but which are the same, and then as a slinky whose two
extremities accumulates this time really on the same circle.

e The hull Q4 of A = —2N U N is the closure of all translates of A:

QA ={-2NUN+z|zeR}.
Once again, {—2N U N + z | € R} is not a closed set. Indeed, we have for example

_ONUN +2n %S 27,

VreR, ONUN+2n+25 27+ 2
Vr e R, ONUN-n+2"2+2
And conversely, if L € Qz g}, then L is either —2N U N + 2 or Z + x or 2Z + z for some = € R.

Indeed, L € Q5 means that there exist elements L, € {—2N U N+ z | € R} such that L, ) Say
L, = —2NUN + z,, with z,, = k,, + y, where k, € 2Z and y,, € [0,2]. We can assume without loss of
generality that y,, — y € [0,2]. If k,, > +00, then L = 2Z +y, else if k,, — —o0, then L = Z + y, else (k,,)
must converge to k € Z (because (L) converges) and L = —2N U N + y.

More generally: {

Topologically, it’s a slinky whose "left" extremity accumulates on a circle of radius 1 and "right" extremity
accumulates on a circle of radius 2.

The next subsection introduces the notion of lexicon, which is actually a more convenient way to describe the
hull of an FLC Delone set in R.
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4.3 Hull and lexicon

Definition 9 (Words and subwords). We call word a finite or infinite sequence of letters from a fized alphabet.
We say that v is a subword of a word w if v is a word and if there exists other words uy, us possibly finite,
infinite or even empty, such that w = ujvus.

Definition 10 (Lexicon). Let w be a word. We call the set of all finite subwords of w the lexicon of w, and we
denote it by L.

Remark 7: A word w is finite if and only if its lexicon L£,, is also finite.

Proposition 6. Let A be an FLC Delone set in R. Let v and w be two symbolic codings of A. Then
Ly = Lay

Proof. If v = (vy)nez and w = (wy, )nez are two symbolic codings of A, then there exists k € Z such that for all
n €N, v, = wy1k. Thus v and w have the same set of subwords.

O

We may then refer to them as lexicon of A, denoted by L. Note that we can speak about lexicon of a point
set A if and only if A is a subset of R, since we need A to have a symbolic coding.

Proposition 7. Let A and L be two FLC Delone sets in R. Then L < L if and only if L is a local
translate of A.

Proof. If L is a local translate of A, every "pattern" seen in L and be seen in A. In terms of symbolic codings
this means that every subword of a symbolic coding of L is a subword of any symbolic coding of A.

Proposition 8. Let A1 and Ay be two FLC Delone sets, and let us denote L1, Lo, Q1 and Qs their lexicons
and their hulls respectively. Then:

L1 = Ly if and only if Q1 = Qs.

Proof. This is a corollary of the previous proposition and the fact that the local hull, hence the hull since A is
an FLC Delone set, is the set of local translates.

4.4 Fibonacci hull

Fibonacci word

Definition 11 (Substitution maps). We will call substitution map a map from a finite set X2, called alphabet,
to X2*, the set of the finite words over the alphabet 3.

We can extend a substitution map o defined on an alphabet % to a unique morphism on finite words on . We
can extend it the same way to infinite words on the alphabet 3. We will note as well ¢ its extension to finite
and infinite words.

Example 4. The following substitution can be used to define the Fibonacci word.
o {Lg} — {L¢}"
1 — ¢
¢ - 1o

We define the infinite Fibonacci word wy as follows®:

v = 1
Un41 = 0(vy,)
wp = limv,  where the limit means that for all n € N, Vk € [0,n], (wr)r = (vn)r°.

4There are other ways to define the Fibonacci word.

10



One can consider wr as a symbolic coding® of a point set Ap in R with letter 1 standing for length 1 and letter
¢ standing for length ¢ = “’T‘/g (a uniformly discrete but not relatively dense point set). Actually, one could

define wg through this point set Ap. Let us define Ag:

Lo = {Ov 1}
Ly =L, U {p.x + ¢} where ¢ = 12—‘/5 is the golden ratio
x€L,, | z+peL,

Ap = U*Ln which is well defined because Vn € N*L,, < L, 1.
neN
v 1 Lo o—
v2 ¢ Li o—o
vz ¢l Ly o—o—
vy Plo Ly e—o—o—0
U5 Pplopl Ly o—o—o—o—o—
Vs Pploglole Ly oo
vr ploplolopledl Lg o—o—o—o o oo oo oo —

Black points in L, ;1 are those that are also in ¢L,, and blue points are the others.

Figure 3: Construction of the Fibonacci word wg

Proposition 9. The Fibonacci word wg is a fixpoint of the substitution map o:

o(wp) = wp.

This can be proved by induction.
Remark 8: The Fibonacci word wg could be defined as a fixpoint of the substitution map o.

The Fibonacci word wg is a famous word in combinatorics on words, with lots of useful properties, such as the
fact that every subword of wp appears infinitely many times in wp (which can be proved by induction).

Fibonacci hull

We want to construct an FLC Delone point set coming from the Fibonacci word wg. But if we consider a point
set A whose (one of its) symbolic coding is wg, then A is not relatively dense because wg is not a bi-infinite
word. We have to find another way to define A, still linked with wg. But what exactly do we want A to be? We
want it to be such that each of its local patterns is also a local pattern of wgr. More formally, if s is a symbolic
coding of A, then we want A to be such that s is a bi-infinite word and L = L,

Remark 9: If s is an infinite word such that £; < £, then £, = £,,,. This is because for all n € N, there
exists an IV, > n such that every subword of wp of length n is also a subword of each subword of length N,,.

One way to define a such A is to construct step by step a sympbolic coding for A: first we chose a letter
s0 € {1,¢} < Ly, then we chose two letters s_1, s1 € {1, ¢} such that the finite word s_1s¢s; is in L,,,, then
again we chose s_g, s2 € {1, ¢} such that s_35 1508182 € Ly, etc.

Remark 10: Since wp is a fixpoint for the substitution o (see proposition 3), u € L,,,. if and only if o(u) € L.
Another really important property of wp is that any finite subword u € £,,,. of the Fibonacci word does appear

5 Actually, this is an inverse limit. We define this notion in subsection 5.1.
6We have here identified words and sequences, which is natural since words are sequences of letters.
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infinitely many times in wp. This ensures that any finite subword s_...sg...$n € L4, can always be extended
into $_p—15_-n---50---SnSn+1 € L.

Definition 12 (Fibonacci point set). We will call Fibonacci point set any FLC Delone set which can be obtained
as described above.

Of course, this construction requires infinitely many choices, which means that there are infinitely many Fi-
bonacci point sets. But they will all have the same hull.

I Proposition 10. If A, and As are txo Fibonacci point set, then Qp, = Qp, .

Proof. This results from proposition 7: Since two Fibonacci words have the same lexicons, their hulls are also
the same.

]

Remark 11: We could define more generally substitution point sets the same way as Fibonacci point sets but
with another substitution map. A trivial other example would be A = Z obtained with the word w = 1111....,
which is a fixpoint of the substitution map o : 1 +— 11.

The hull of a Fibonacci point set A is the set of all local translates of A, but as we have seen when constructing
A, there are infinitely many choices to do, which means that there are infinitely many "types" of local translates
(on the contrary, for Z\ {0}, there were only two types of local translates: either Z\ {0} + = or Z + z). If we
want to understand the hull of a Fibonacci point set, we have no choice but to look at approzimants of the hull.

5 Approximants

In order to understand the hull of a point set, we will study sequences of spaces which approzimate the hull,
namely that converge in a certain way to the hull. We first need to explain what this certain way is.

5.1 Inverse limit

Definition 13 (Inverse limit). Let (X,,)nen be a sequence of spaces with continuous maps fn, : X1 — X

T X s X, —— —x L x,

A space X is called an inverse limit of ((X,.), (fn))nen, of there exists a collection of functions ¢, : X — X,
compatible with f,, namely such that f, 0 Yni1 = Yn, and such that for each other space Z with a collection of
compatible functions v, : Z — X,,, there is a unique map x : Z — X so the following diagram commutes.

$o

Y1

Pn

%o

Remark 12: X does depend on the maps f,, (not only on the X,,).

THEOREM 3. If there is an inverse limit X of the (X,,), then it is unique up to unique isomorphism

making the whole diagram commute, and a model for X is a subset of the product Y = [[X; with consistant
ieN
information. We will note this model lim X,,: im X, = {(z;)ien | VR €N, fr(Tnt1) = zpn}-

12



For a proof of this theorem, see [10].
So we can think of X as the set of all sequences (z,,)nen such that for all n € N,z, € X, and f,(2n41) = @n.
We may refer to it later on as the inverse limit of (X, )nen-

I Proposition 11. If for all n € N, X,, is a compact space, then X = 1imX,, is also a compact space.

Proof. This a corollary of the previous theorem and the Tychonoff theorem.

5.2 Approximants of the hull

In all the constructions described in the following subsections, we approximate the hull by approximating
its points (which are FLC Delone sets) with finite point sets. Anderson and Putnam ([14]) introduced such
approximants for the first time in 1998. In 2002, Géhler ([14]) gave another construction. They were actually
speaking of tilings, but we will here only speak of point sets. Karasik ([11]) has also introduced another
contruction, motivated by the previous ones. In the mean time, lots of other matematicians worked on the
subject ([14]) but we will not present their constructions here.

Geometric approximants
All the following notions and statements come from [11].

Definition 14 (Geometric approximation of the hull). Given an FLC Delone point set A of an lcsc group G
and an open pre-compact subset K of G, we define the geometric approximation, associated with the compact
K, of the hull Qx of A as

GE ={gA~K|geG}.

There exists a canonical map from the hull 2, of A to each geometrical approximant:

L Oy — 9K
M - MnK

™

Indeed, if M € Q is a translate of A then M n K is in 95, else M is a local translate of A and there is a
sequence (M, = g,.A) of translates of A, which converges to M with regard to the local topology: for every
identity neighbourhood V of G, there exists an N € N such that for all n < N, M,, € Ux v (M). In other words,
there exists a sequence (e,) in V such that (g, A) " K = M, n K = (e, M) n K,s0 M n K = (e;'g,.A) n K
is in 95,

We will study geometrical approximants 4 with regard to the quotient topology associated with .

Let us re-write this in the case of R. Let (B, )nen be a sequence of open balls in R, such that B,, = B(0,r,,)

with r, < rpyq for all n € N and 7, —+> +00. We will denote
n——+0o0

4 ={(A+2)n B, |zeR}.

So, ¢x corresponds to all the patterns of size | B, | one can see in A. We will consider the inverse limit of the
(97) associated with the forgetful maps f,:

fom: gX-H - EZS
p — pn B,

which are well defined and continuous with regard to the quotient topology.

THEOREM 4. The hull Q) = QXOC) of A is homeomorphic to the inverse limit lim ¥ through the following
map:

p - (p N Bn)neN
U 2 (pn)neN

neN

13



For a proof of this theorem, see [11].
I THEOREM 5. Let A be an FLC Delone set. Then 4P is homeomorphic to a finite graph.

We give the main ideas of the proof:

1. Every point in 4P is either a regular point, meaning that it has a neighbourhood in 42 homeomorphic
to an interval of R, or a special point, meaning that it has a neighbourhood in ¥ homeomorphic to a
branch of intervals of R glued together (like a star whose center is the singular point).

2. There is a finite number of singular points.

For a complete proof, see [11].

Example 5. Let B, = B(0,n) be open balls in R. In figures 6 and 5, we show pictures of the geometric
approximants of the hull Q of A = Z\ {0} and A = —2N U N respectively associated with the sequence (B,,).

@3 {-2,-1,1,2}
a0
1 -2,-1,0, -2,0,1,2}
ey o o oonn
{-0.5} {o.5}  {-1,0} {0,1}
. {-1,0,1,2}
{-0.5,0.5} {-1,0,1}

{-2,-1,0,1,2}
{-1.5,-0.5,0.5,1.5}

{-2.5,-1.5,-0.5,0.5,1.5,2.5}

Figure 4: Three first geometric approximants of {2z, (o,
The wupper circles correspond to the local patterns of Z\{0} where we see the "gap" present
in Z\{0}. In mathematical language, the upper circles correspond to the set of point sets
(Z\{0} + z) n B(0,n) with z €] —n, —n|[.
The lower little circles correspond to the local patterns where we do not see the "gap" present in Z\ {0}, namely
in which all points are at distance exactly 1 from the previous and the next ones.

n n

The blue arrows show the orientation inhereted through the action of R over A (from the orientation of R).
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1
gf2NuN

3
(%) ‘ {-0.5,0.5} g—2NuN {-2,1,0,1,2}
: {-2,-1,0,2} {-2,0,2}

g2
—2NUN {-2.5,-1.5,-0.5,0.5,1.5,2.5}

"—l 0'1
1TUHYs

{0}
Q—LOJ} {11}

{-1.5,-0.5,0.5,1.5}

g4
—2NUN  {-3,-2,-1,0,1,2,3} {-3,-1,0,1,3}

? {-3,-2,-1,1,3}
{-3.5,-2.5,-1.5,-0.5,0.5,1.5,2.5,3.5} @
{°3,-2,-1,0,2} {-3,-2,0,2}
{-4,-2,0,2,4}
n
gg—QNuN {-n+1,-n+3,...,n-1}
@ {-n+1,-n+2,...,n-1} :
{-n+1,-n+2,-n+4,...,n-1}
{—n+0.5,—‘n+l.5,.“,rL—O‘E} {—7L+27—7L+4“.A,n—‘2}

Figure 5: Four first geometric approximants of Q_onon
The right circles correspond to the local patterns of —2N U N where we only see the part —2N of —2N U N, in
mathematical language, the right circles correspond to the set of the finite point sets (—2N U N + z) n B(0,n)
with « > n.
The left circles correspond to the local patterns where we only see the part N of —2N u
N, in mathematical language, the left circles correspond to the set of the point sets
(=2N U N + z) n B(0,n) with < —n.
The line between them corresponds to the local patternss where we see the "switchover" from —2N to N, namely
to the point sets of the form (—2N U N + z) n B(0,n) with —n <z < n.
The blue arrows show the orientation inhereted through the action of R over A (from the orientation of R).
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So the approximants are just finite graphs, spaces which are much easier to understand than most of the hulls
of FLC Delone sets (see for example the slinkies obtained for A = Z\ {0} or A = —2N U N in section 4.2). This
is a reason why the approximants are convenient.

Gaihler’s construction

In the previous construction (geometric approximation of the hull QE\ZOC)), a point in ¢}V gives us information
about how to put tiles on a centered ball B,,. It can be convenient to consider approximants which give
information about how to put a fized number of points, no matter how much space they take.

We recall that one can see a point set in R as a tiling, two successive points then correspond to a tile, or more
precisely to the boundary of a tile. The first approximant corresponds to instructions as to how to put one tile
around the origin, that is to say which tile should be taken and where exactly around the origin it should be
put. In the second approximation, we add the information of the two neighbours of the first tile. In the third
one, we add the information of another ring of neighbours, etc.

This construction comes from [14], where it is done from a tiling point of view.

Definition 15 (Géhler approximation in R). Let A be a Delone set in R. Let (x,)nez be an increasing enumer-
ation of A and A = {x;11 —x; | i € Z} the set of all distances between two consecutive points of A. We denote

by

n 2n+2
e/‘//\ = {S = (Z‘,n,...,l‘o, ...,$n+1) eR

Top <..<xp<T1 <..<Tpyiand xp <0<
Jz e R, 3K cR compact such that (A+z) N K =s ]y

where
/ / / . . ’
(@—py oy = 0,0y pq1) ~ (22, ..y 2o, oy @, ) if and only if VE, z), = 25, — 2

the n-th Gahler approximation of Q(loc

In other words, .4, tells how to put 2n + 1 consecutive tiles around the origin. We ask that this pattern could
be seen somewhere in A, that is to say that this arrangement of tiles can be extended to a local translate of
A. We also ask that the middle tile (éie. the (n + 1)-th) contains the origin, that is to say that the tiling we
construct through the approximants does not grow only on the positive (or the negative) part of R.

Remark 13: The Giihler approximation can also be defined for Delone sets in R, which is explained in [14].
The Géhler approximants can be seen as quotients of the geometrical approximants. Indeed, let » = mind and

R = maxd be the infimum and supremum of a symbolic coding d of A. We recall that this is equivalent to
saying that A is an (r, R)-Delone set, or in other words that for all k € [-n,n] and (z_p, ..., Zo, .., Tny1) € AW,

r < k41 — Tx < R. Then there exists a canonical map from gf(o’(nﬂ)m to A" and from A" to gf(o,m«):
gAB(O,(n—Fl)R) N JVAn N gf(Oﬂ’LT)
(@—pyoyzq) +— M= (r_pn,...,20,..,Tns1) — M nB(0,nr)

where p > n and ¢ = n + 1 because of the choice of R and x_,, < —nr and x, .1 = nr because of the choice of
.

In particular, 4" is a quotient of gB(O (n+1)R)

Proposition 12. With regard to the quotient topology, the forgetful maps
fN,n . JVA"’JFI _ %n

(Tope1y ooy Oy ooy Tpg2) > (Tpy ooy TOy vevy Tyt1)

are continuous for all n € N.

Proof. The following diagram commutes, and we know that the upper arrow, the right and the left ones are
continuous. It follows that far . is also continuous.

gf(o,mwm) fo.n gABw,(nH)R)

| |

n+1 fnn n
Ay N
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I Proposition 13. Associated with the forgetful maps, lim A)" is homeomorphic to Q.

Proof. Since we have continuous maps
NN gPOOTIR g8 (where N7 > (n + 1)R)
which are compatible with the forgetful maps
gf(O,(nH)R) . gf(O»nr) and AN — .

We know, by universal property, that lim .#}* is homeomorphic to lim ¥}', namely homeomorphic to the hull
Qp of A.

Example 6. We represent Géhler approximants for Z\ {0}.

{-2,0,1,2}

45Uy L2

1
N0}

{-2-1,1,2}

{-2,0,1,2}

{-1,0,1,2}

{-1.5,-0.5,0.5,1.5}
Figure 6: First Géhler approximant of )z (o}

Remark 14: Like the geometrical approximants, the G&hler approximants are homeomorphic to finite graphs.

We note that the maps for the Fibonacci example are getting more and more complicated between each ap-
proximant. The Anderson-Putnam construction allows to avoid this inconvenient.

Aderson-Putnam’s construction

This construction comes from [14], where it is done with a tiling point of view. We define it only for a Fibonacci
point set A but this could be generalized to any substitution point set in R, namely a point set whose lexicon
is equal to the lexicon of a word being a fixpoint of a substitution map.

Definition 16. Let A be a Fibonacci point set. We define

1 4| To1 <o <0< 21 <29 . 1
Ia = {($—1,$0,I1,I2) eRY 3 e R, 3K < R compact, such that (A+z) n K = s } =
and
0,: S — 0, () with S = 0,,(S7)
{ee} — {pan} U {e-zk + 0}

xp such that
Tp41 =Tk + @

foralln > 1.

Remark 15: Note that every point in .{" does not contain information about the same number of tiles, neither
about the same length, but they contain information about at least a certain number of tiles, at least a certain
length, and at most another certain number of tiles and certain length.
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The Anderson-Putnam approximants can be seen as quotients of the geometrical approximants. Indeed there
n n—1
exists a canonical map from ¥ "*?") to .71 and from .77 to gL

SN yj’{i N g{{g(oﬂpnil)

(@—pyyzg) — M=(x_y,,....%0,.., Tp,) +> M n B(0,p" 1)

gBO2¢")

These maps are well defined because:
I (o1, w0, 21, m2) € S, then —2p < 21 < —1 and 1 < z1 < 2.

JIfall s = (g, ..., %0, ...y xp,) € X are such that —b < z_;, < —a and @ < x,, < b, then all t =
Tl 1 yeney LOy ey Ty e "1 are such that —bp < z_; < —ap and ap < z,, < by.
n+1 n+1 A n n

. By induction, we conclude that for all n € N, for all s = (z_,
n—1

" Land "t <z, < 20"

ey TOy eey Ty, ) € LR, we have —2¢" <z <

nl"*

In particular, .} is a quotient of gf(o,zg,n).

Proposition 14. With regard to the quotient topology, the forgetful maps

wy: ST — R

(zs) — {i.xk}\ U {é.xk}
x such that
T +1=2Tpy1

are continuous for all n € N.

Proof. The following diagram commutes, and we know that the upper arrow, the right and the left ones are
continuous. It follows that w,, is also continuous.

2pn 2 fo.n 2,1
gf(oa ©"7) gf(o» ©")

| |

n+1 Wn
R L S—

I Proposition 15. Associated with the forgetful maps, lim #{* is homeomorphic to Q.

Proof. Since we have continuous maps

y;\HB . gf(OaQWn) — I — gf(oawn_l)

which are compatible with the forgetful maps

B(0,2¢™) B0, 1) n+3 n
N — and 0T g7

We know, by universal property, that lim .#}’ is homeomorphic to lim ¢\, namely homeomorphic to the hull
Qp of A.

]

Example 7. We reprensent Anderson-Putnam approximants for n = 1,2, and 3. We write only the symbolic
condings associated with the finite point sets.

We note that once more, the approximants are homeomorphic to finite graphs. The advantage of the Anderson-
Putnam approximants over geometrical or the Gahler approximants is that the forgetful maps are all similar.
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Figure 7: .}, S} and ./}

6 Functions on an inverse limit

We want to study functions on the hull in order to better understand the hull itself. We will denote by C(X)
the set of continuous functions on X, and C.(X) the set of continuous functions with compact support on X.

6.1 A first spanning set
We first recall the definition of pullbacks and the Stone-Weierstrafs theorem:
Definition 17 (Pullback). Let X and Y be two topological spaces, and o : X — Y a continuous function.
o*: CY) —» CX)
f — foo
is called pullback of o.

THEOREM 6 (Stone-Weierstraf). Let X be a compact space. Let C(X) be the algebra of the continuous
real-valued functions on X.

If A is a subalgebra of C(X) which separates points’, then either it ewists xo such that for all f € A,
f(zo) =0 and A is dense in {f € C(X) | f(xo) = 0}, or A is dense in C(X).

For a proof of this theorem, see [9].

Proposition 16. Let (X,,)nen be compact spaces, with continuous functions f, : X,11 — X,. Let
X = limX,, be an inverse limit of (X,,)nen and let us denote by m, : X — X,, the collection of projections.

The continuous real-valued functions on X are spanned by the pullbacks of the continuous real-valued func-
tions on the spaces X,,:

o) = | mex))

neN*

Proof. For all n e N, 7}(C(X,)) c 7,1 (C(Xns1)), s0 U m5(C(X,)) is a subalgebra of C'(X). All we need

to prove is that it separates points and contains, for all xg e X a function f;, which is non-zero on zy. We can
then conclude with the Stone-Weierstrafs theorem

So, let x and y be distinct points in X. It exists N € N such that 7 (z) # 7y (y) otherwise x and y would be
the same point in the inverse limit.

But using Urysohn’s lemma, we know that C'(X ) separates points since X y is a compact space. So, there exists

a function f such that f(rn(z)) # flrn(y)), namely
mn(f) e UmE(C(Xy)) is such that 7% (f)(x) # 7% (f)(y). Hence, |J n*(C(X,,)) separates points.
neN neN

"This means that Vo,y € X, [z # y = 3f € A4, f(z) £ f(v)].
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Moreover, 75 (1x,) = 1x € |J#n¥(C(X,)) so for all xg € X, n§(Lx,)(x0) # 0, namely there is no point o € X
neN
such that all functions in | J 7*(C(X,,)) is zero on xg.
neN

We conclude that | J 7*(C(X,,)) is dense in C(X).

neN
a

This proposition allows us to study only functions on approximants, instead of all functions on the hull. This is a
reason why the approximants are really convenient! In the following section, we define functions on approximants
coming from functions on G.

6.2 Periodization

Definition 18 (Periodization). Let G be an lcsc group and A an FLC Delone set.
The periodization map of A is defined as:

P: C(G) — C()
! — P(f): Q — R
M = 3 f(z)

zeM

This map is well-defined because on the one hand for every M € Q4 and f € C.(R), the sum defining P(f)(M)
is finite so P(f)(M) is well-defined and on the other hand P(f) is continuous, as established in Proposition 5.1
in [5].
Remark 16: This map is called periodization map because if A is a discrete subgroup of R, let us say A = aZ
then:

VM =A+7eQr, VA=naecA P(/)(M+ )= Z fx) = Z f(m + na)

rzeM+na meM

= Z flka+ T+ na)
keZ

= flha+r)=" > f(m)
keZ me al+T

= P(f)(M)

We will denote by A the algebra of functions on 2, spanned by periodizations of continuous functions with
compact supports on G: A =< P(C.(G)) >, where < S > denotes the algebra spanned by the set S.

Proposition 17. Let A be an FLC Delone set and 25 be its hull.
Then A is dense in C(Qy).

Proof. To prove this, we will prove that A separates points in 4 and that for every w € ,, there exists a
function 9 € A such that ¢ (w) # 0. The Stone-Weierstraftheorem then implies that A is dense in C'(24).

We know that the hull Q4 of A is the set of all local translates of A. This implies that {2, is a set of FLLC Delone
sets, in particular, ¢ ¢ Qa. If w € Qy, then there exists x € w and r > 0 such that |z — r,x + r[rw = {x}
(because A is discrete).

Let h € C.(R) be a continuous real-valued function on R such that h(z) = 1 and supp(h) <]z —r,x + r[. Then
P(h)(w) =1 and P(h) € A by definition of A.

If W' € Qy, distinct from w, then there exists x € w\w’ or x € w'\w, say = € w\w'. The point sets w\w’ and w’
are closed and disjoined, so d(w\w’,w’) =€ > 0.

Let h € C.(R) be a continuous real-valued function on R such that h(xz) = 1 and supp(h) c]z — e,z + €[ and
h=1on ]z — 5,2+ 5[. Then P(h)(w) > 0 but P(h)(w') = 0. So A separates points.

We conclude that A is dense in C.(2y).
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Now, we want to define local periodizations P, namely periodizations on the approximants (X, )nen of the hull
Qa (geometric, Gahler or Anderson—Putnam approximants). The goal is to have a commutative diagram:

Tr*
- C(a) ik -
/ 7T§k
——COC(Xp)+— ..., —(CX (X C(X
= (Xn) e e (X2) = (X1) I (Xo)
PW P P P Po

Ce(G)
where the (€, )nen are subsets of C.(G).
Definition 19 (Local periodizations). The local periodization maps of an FLC Delone set A are defined as:

Put € — C(X,)
fo— Pulf): X» - R
M - f(x)

zeM

If we want this diagram to commute, then the (%,),en must not contain too many functions.

For instance, we give a counterexample in R, with A = Z\ {0}, €, = C.(R), X,, = ¥ associated with
B, = B(0,n).

Let us consider h € C.(R) such that supp(h) < [-ng — 2,n9 + 3] and h = 1 on [-ng — 3,n0 + 3], and
M = {—’no — %,—no + %, .o + %} € Xn0+1 and N = M\ ng + %} € Xn0+1

We have Ppys1(h)(M) = [M] # [N| = Pays1 (B)(N) bt Prag(h)(M) # Py (D)(N) 50 £, (Puy(h)) # Pag1(h)
which means that the diagram does not commute.

We will denote by A,, the algebra of functions on C'(X,,) spanned by periodizations of functions in %,,.

We also want (%,,)nen to be such that A = | w*(An)”'Hw. To ensure this condition, (%},),en must contain

n
neN

enough functions. Indeed, taking &, = €, = C.(B(0,1)) for all n € N would make the diagram commute but
we would have A 2 [ W;FL(An)H' = For instance, if h € C.(B(0,1)), then P(h) cannot distinguish M € Q, from

ne

N
N e Qp (ie. Ph(M) # Ph(N)) whenever M n B(0,1) = N n B(0,1).

We will study this local periodizations for G = R, with X,, = 4{ and X, = .7 and give examples of (@) nen
so that the diagram commute and A = WH'H"O_

neN

6.3 Local periodization in geometric approximants

Fix a sequence of open balls (B,,) in G, say B,, = B(0, R,,), with increasing radii R, < R,+1. Consider the
geometric approximants associated with the sequence of balls (B,,).

Definition 20 (Geometric local periodization). The geometric local periodization map of an FLC Delone set
A is defined as:
Pg n Ce(B(0,R,)) — C(gﬁ)
h —> Pgn(h): 97 — R
M = 2 h(x)
zeM

With the notations of the previous subsection, we are chosing 4,, = C.(B,,) and X,, = 4} where the geometrical
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approximants are associated with the sequence of balls (B,,). Then the diagram commutes because

Vh e CC(Bn) c Cc(Bn+1); Vp € gf\ﬁ_la
fa o [Pgn(h)](p) = [Pgn(h)](p 0 Br)

> ()

zeEPN By,

Z h(x) because h € C.(B,,)

= [Pg.n(W)](p)-

In this sense a periodization is a kind of periodic function.

Example of A = 2NuNc G =R

We represent the geometric local periodization of a function.

3
g—?NuN

, ' : { {-1,1}
{-2,-1,0,2} {-2,0,2}

{-2,-1,0,1,2} {-2,-1,1}

{-2.5,-1.5,-0.5,0.5,1.5,2.5}

Figure 8: A function h and its periodization on 42,y

We note that the shape of h appear each time that a point p of ¥ contain x € p N supp(h).

6.4 Local periodization in Anderson-Putnam’s construction

Let A be a Fibonacci point set.

Each point of the n-th Anderson-Putnam approximant covers a same ball B(0, R,) with R, depending on
the growth’s rate of the substitution map o. In other words, if (z_;,,...,z,,) € %, then z_;, < —R, and
¥, > R,. For the Fibonacci case, R,, = ¢"~!. We define periodization like before, on these balls B(0, R,,).

Definition 21 (Anderson-Putnam Periodization). The Anderson-Putnam periodization map of a Fibonacci
point set A is defined as:

Psn: Co(BO,9" 1) —  CO(F})
f — PS,n(f) : yf\l — R
M - 3 f(z)

zeM

Remark 17: It might be that two points of .”{' could not be distinguished with periodized functions, in other
words it can exist «, 8 € .} such that o # 8 but Vf € C.(B(0,R;,)), Psn(f)(a) = Psn(f)(8). However, it
exists an N € N such that oV (a) and oV(B) are distinguishable with functions on .7 *¥.

Remark 18: We could define those periodizations more generally for substitution point sets.

From now on, we assume that the (%,,) are chosen such that the whole diagram commutes and A = |J 7} (A,) MOO.
neN
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7 Periodization complexity

Let us denote by A%k) the vector space in C'(X,,) spanned by products of at most & periodizations of functions
in €,, and by A®) the vector space in C(X) spanned by products of at most k periodizations of functions in
C.(R).

Definition 22 (Periodization complexity). Let A be an FLC Delone point set.
We will say that A has periodization complexity at most N if

C(Qn) = WH‘HO@

and has periodization complexity N if it has periodization complezxity at most N but has not periodization
complexity at most N — 1.

To be of periodization complexity N basically means that one can construct every function on the hull with
sums of products of at most N periodizations (possibly by approximating it with a sequence of such sums).
Remark 19: Periodization complexity is not a notion from the literature but was introduced for my internship.

7.1 Sufficient conditions

To show that A is of periodization complexity at most K, one can prove that for all n € N, every continuous
function on the (geometric, Gahler or Anderson-Putnam) approximant X,, of the hull Q5 of A can be written
as a sum of products of at most K periodizations of continuous functions on R. But this will not always be
the case (actually, very rarely). Though, there are other properties, more common, also implying that A is of
periodization complexity at most K.

Proposition 18 (Sufficient conditions for periodization complexity at most K).
We have the following chain of implications:

VneN, A, c AL (1.)
=VneN, A, c @\le (2.)

S VneN, AN, €N, f oo f (A, C K’?Mm 3.)

= Ino, Y > ng, Ny €N, f 100 fF(A,) < K’?H‘”w (4.)

= A is of periodization complezity at most K. (5.)

Those properties mean respectively that:

1. For all n € N, every continuous function on the (geometric, Géhler or Anderson-Putnam) approximant X,
of the hull Q2 of A can be written as a sum of products of at most K periodizations on X,, of continuous
functions on R.

2. For all n € N, every continuous function on X,, can be approximated by elements (h,) which can each be
written as a sum of products of at most K periodizations on X,, of continuous functions on R.

3. For all n € N, every continuous function s on X, is such that its pullback f% _ o---o f¥(h) (a continuous
function on Xy, ) can be approximated by elements (h,,) which can each be written as a sum of products
of at most K periodizations on Xy, of continuous functions on R.

4. For all natural number n big enough, every continuous function h on X, is such that its pullback f3 ;o
<o f¥(h) (a continuous function on Xy, ) can be approximated by elements (h,) which can each be
written as a sum of products of at most K periodizations on Xy, of continuous functions on R.

Proof. The implication (1.) = (2.) is clear, (2.) = (3.) comes from the fact that

X PR Fia X fia
C P ox ) I X)) < o)
Py Pr1 Pn
> G, > > % > %, >
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commutes. So a function on C(X,,) can also be seen as a function on C(X,+1) or more generally on C(Xxy)
with N = n.
The implication (3.) = (4.) is true because periodization complexity is a property about functions on the hull,
which we see as an inverse limit of approximants, hence only approximants from a certain rank onwards are
meaningful.
It remains to show (4.) = (5.). Let h € C(Q4) be a continuous function on the hull of A. Thanks to the choice

of (¢,), A= | W*(An)H'”x, which means that h can be approximated by pullbacks (7*(h,)) where for all

n n
neN

n €N, h, € A,. But for n big enough, h,, is approximated by elements in Ag\i) c AT And since the pullback

ll-lloo

of the sum of products is the sum of products of pullbacks, we conclude that h € A(K)""", In other words, A
is of periodization complexity at most K.

7.2 Case of uniform lattices
I THEOREM 7. Z is of periodization complezity 1.

Proof. Let 1 € C(25) a continuous function on the hull. We construct a continuous function h with compact
support in R such that P(h) = .

We know that the hull of Ais Qy = {(Z +z) | x € R} = {(Z + x) | z € [0,1]}. Let us denote w, = (Z + x) for
all z € [0,1] (then wy = wy).

Moreover, A = {(Z + ) | z € [0,0.4[U]0.6,1] } and B = {(Z + x) | x €]0.3,0.7[ } are two open subsets such that
Qa = A U B. Thanks to partitions of unity, we can write ¢ = ¥4 + ¥p with ¥4 € C.(A) and 5 € C.(B).

We define hy € C(] — 0.4,0.4]) by:

Ya(wy) if x € [0,0.4]
Ve eR, hp(z) =< va(wer1) if z€]—0.4,0]
0 else
and hp € C.(]0.3,0.7]) by:
[ ¢Yp(wy) if 2 €]0.3,0.7]
Ve eR, hp(x) = { 0 olse

Then, h = ha + hp € C.(R) is such that P(h) = 1.

Remark 20: This statement remains true for aZ, which can be proved the same way.

Actually this is a particular case of a general statement due to A. Selberg;:

THEOREM 8. Let G be an lcsc group, and A a uniform lattice of G.
A is of periodization complexity 1.

For a proof a this theorem, see [13] (lemma 1.1 of chapter 1, explained with a slightly different vocabulary).

7.3 A useful function

We define here a function which will be useful to prove theorems about periodization complexity.
Given a function f on R, whose support is in [a,b] with b — a < 1, we define a function f by :

Ve eR, f(z) = f(z) — f(z—1) (See Figure 9 and 10).

The function f is useful because its periodization is non zero on M € 2, only if there exist two successive points
in M not being at distance exactly 1 from each other.

Lemma 1 (Behaviour of f) Let A an FLC Delone set and w € Qu a local translate of A. Let f be a
continuous non-negative function with compact support on [a,b] with b —a < 1. Then we have:

P(f)(w) > 0 if and only if { %Zvi[lﬁbw—‘_ﬁa o
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\

—14+ —14+

Figure 9: f Figure 10: f

and
z : o Jab[nw=g
P(f)(w) <0 if and only if { Ja+1,b+1[nw £ 3.
In particular, if 7Z € Qu (for instance if Z = Z\ {0} ), then:

V7 € R, P(fu,)(Z +7) = 0.

Proof. By definition of periodization, [P(h)](w) # 0 only if there is x € w such that h(x) # 0. In particular, for
h = f, which is non negative on ]a, b[, negative on Ja + 1,b + 1| and zero everywhere else, we obtain the result
stated above.

Remark 21: We can say the same about w € ¢} and f with [a,b] < [-n,n —1].

7.4 Examples of periodization complexity 2

The following results about examples of periodization complexity are new results that I proved during my
internship.

I THEOREM 9. Let F' be a finite non empty set. Z\F is of periodization complexity at most 2.

Before proving the theorem, let us define some notations.
Fix F = {y1,..,Ym} € Z a finite and non empty subset of Z (with y; < ... < y,,,). Let us denote

{21’ "'vzp} = Z\F N [[yl =1L, Ym + 1] = [Z/l =1L ym + IH\F

with z; < ... < 2, and
di = ziy1 — Zi.

Fix n € N such that n > y,, —y1 + 1 and let B,, = B(0,n) be an open ball.
The geometric approximation %7 . of Z\F associated with B, is like the one of Z\ {0}. Indeed they are made
of two parts:

Xpn={(Z\F+2x)n]—n,n[ | -n—ym <z <n-—y }

and

Y,

{ (Z\F+z)n]—n,n[ | 1< —n—ym or z=2n—y }
{(Z+z)n]—n,n[ | zeR}
{(Z+2z)n]—n,n[ | x€][0,1] }.

I

Let us denote
V€ [—n — ym,n —y1], o\ = (Z\F + 2)n] — n,n[

T
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\

F+zx

| | | | | | | | | | | | | | | | | | | | |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-n+1 n—1

(Z\F + z) n B(0,n)

21 Zp

Figure 11: F + z and (Z\F + z) n B(0,n) for a certain z € R

and
Ve e [0,1], B = (Z + 2)n] —n,n[
and
s =7~ B,.
We note that . - . -
Oéfn’ﬂffk = a’n”ifl = /Bon = 1n = S(n)

and
Xp 0 Yo = {s™} and 9, = X, U Yo,

It will also be convenient to define:

XT(Ll):{ai") | —n<z+y —1 and Z‘+ym+1<”}
={o¢;") | _n_y1+1<x<n—ym—1}

and
Xff):{a;") | n—yn<z<-n—y1+1 or n—ym—lgmén—yl}:Xn\X,(ll).

%Z"\ F

The shapes of Xf,l) and X,(f) depend on A, but XT(LZ) is always a neighbourhood of s(™).

(n) (n)

(n

The points ay ’ € X,(ll) are such that y1 +x — 1€ oy ) and Ym + T+ 1€ ay’, with words: we can see all the

"gaps made by F" in any point of X,(LU, like in figure 8.
We define a collection of open subset of X,,:
Veke[-n,n—1], Uy ={a, | k<z<k+1}
Vi e [-n,n—2], Vi = {a, | k+%<x<kz+%1}

Vi1 ={as | z€[-n,—n+ 3[uln—1,n]}

Then Xn = U Uk U Vk.
ke[—n,n—1]

And finally we chose N € N such that;:

r+y—1>-—-N
T+Ym +1 <N

N < gty - 1

,  namely {N>n—y1+ym+1

Ve €]l —n— ym,n —y1], {
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In other words, we take N = n + y., — y1 + 1.

We have all the notations we need to prove that Z\F is of periodization complexity at most 2. We will need
the following lemma:

Lemma 2. With the fited n and N and the introduced notations, we have:
Vol e X,,, E!!a;],v) such that a:(f,v) N B, = o™,

Moreover, this ozi],v) is actually am and 18 in X( )

Proof. By defintion, o™ = (Z\F + ) n B,, where —n — y,, <z <n —y;, hence —N —y,, <z < N —y.

So o™ is well-defined and o) = (Z\F + z) n By, in part1cu1ar a; )~ B, = o™,

Then, o™ is in X](\}) ifandonlyif —-N <z +y; —land z+ vy, +1 < N, which exactly the conditions on
which we chose V.

It remalns to show that for 2’ # x, we have a o m B, #«a

If a ) e X(l) then we see all gaps made by F in ag(,; ") $o there is only one x such that a(") Z\F + x. Else,

().

(") € Xff), which means that y; + ¢ < —n <y, +z or y; + z < n <y, + 2. With words: there is at lest one
gap in ozz i , but not all the gaps that F' make. But with our choice of n > y,,, —y; + 1, this leads to y,, + < —1

(n)

or 1 <y; + . So there are at least n consecutive points in ay ’~ which are at distance 1 from each others. This

allow us to identify from which translate of Z\F a;(E " i a part.

Now, we prove that Z\F is of periodization at most 2.

Proof. Let ¢ € C(47) a continuous function on the hull. We can assume without loss of generality that 1) is
non-negative (else we write 1 = ¥, +_).

Let us show that v € AE\Q,) for a certain N.

First step: Construct h € C.(B,,) such that P,(h) =y onY,. Y, = {(Z + z) | z € [0,1]} so we can construct h
as we did for the proof of Z being of complexity 1. But P, (h) is not necessarily equal to ¢ on X,,. We need to
do the second step, with ¢ — P, (h).

Second step: Construct h € C.(By,) such that P(h) =1 on Y,,, when ¢» = 0 on Y,,.

Thanks to partitions of unity, we can write ¥ as @) = > Wy, + ¢y, where ¢y, € C.(Uy) and ¢y, € C.(Vy)
ke[—n,n—1]

are non-negative.

Since (s(™) = 0, we can assume that ¥y, (s() =y (s() = 0.

From now, we assume, without loss of generality because periodizations are linear, that supp(¢)) < Uy or

supp(y) < V. Say that supp(¢) < Ug,.

(i) We first assume that supp(¢v)) xW.
We define h, g € C.(R) by, for all z € R:

In particular, for x € [-n — Y, n — y1] we have:

h(y; — 14 2) w(a;n)

ym -l-.’E 1#(% )

and h and g are actually with support of length at most 1 because v has its support in a Ug,. More precisely,

the previous equations tell us that supp(h) < [y1 — 1+ ko, y1 + ko] and supp(g) < [ym + ko, Ym + ko + 1]. More

precisely, (= + ym —y1 + 1) = h(x).

Let us verify that Pg ,(h)Pg n(—g) = .

From lemma 1 about the "useful function", we know that [Pgn(ﬁ)](ﬁg(cn)) =0 = [Pgm(g)](ﬂé")) for every
€ [0,1]. So Pg,n(h)Pg,n(—§) =1 on Yy,.
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)

For aé” € X,,, we have:

Pgn(h)Pgn(=g)(af™) = | X5 h(@d)—h(i-=1) || > —g(@)+g(i—1)
ieagc") ieag”)
= D1 h(i)—h(i-1) D =gl +g(i-1)
i€ (Z\F+z)nB, i€ (Z\F+z)nB,
n—|x| n—|x|
= Z h(i+z)—h(i+z—1) Z —g(i+z)+gli+ax—1)
i=fn7[zj i=fn7[asj
i¢F i¢F
y1+k+1—|z] Ym+Ek+1—|z]
= Z h(i +x) —h(i +z —1) Z —gli+z)+gi+ax—1)
i=y171+k7lajj i=ym+k7[wJ
i¢F i¢F
But we have:
y1+k+1—|z]
h(i+z)—h(i+z—-1) | = Z h(i +z) — Z h(i + x)
i=y1—1+k—|z| i such that i¢F and i€eF i such that i€F and i¢F
i¢F

and there is at most one term in these sums which can be non zero because supp(h) is of length 1. We can

write a similar thing for the sum of Pg ., (—g). If z €]ko, ko + 1[, namely if ol e Uk, and:

h(i+z) — > hii+x) = h(y — 1+ 2)
i such that i¢F and i€F i such that i€F and i¢F

= o).

For the sum of Pg ,,(—g), we obtain:

ym+k+1—|_-LJ
D —glita)+gli+a—1)|= glym +2)
= Vo)

So we have, for aé”) € Uy, , we have

[Pg.n () Pg,n(=9)](al?) = v(al™).

Conversely, if [Pg..(h)Pg.n(—3)](eS) # 0, then there must be i € N such that i — 1 + 2z € al”, i + 2 ¢ o,
T+ Ym—y1+1+x€ aén) and i+ Yy, —y1 + T ¢ ozén), which is possible only if a;n) € Xr(Ll).
In this case, we have

[P (h)Pgn (=) (@) = h(i = 1 + 2)g(i + ym — 1 + )

which is non-zero only if i + x €]ko, ko + 1[, namely only if ol e Uko-
So, for ol e X, \Uk,, we have:

[Pg.n(h)Pg.n(—)] (@) = 0 = p(al™).

Then B
Pg,n(h>7)0,n(_g) =

S0 1) € Aﬁf).
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(it) If supp(¥) N x® £ &, we pullback ¢ in G

But because of lemma 2, the pullback f7 o...o f*(¢) has its support in X" and we can apply (7) to it.
We obtain h, g € C.(] — N, N[) such that:

Pn(M)Pn(=g) = fN 0.0 fr(¥).
So fEo..ofit)e AP

We have shown the property (5.) of proposition 17, we can conlude that Z\F is of periodization complexity at
most 2.

We can use the same ideas as for Z\F to prove that:

I THEOREM 10. The FLC Delone set —2N u N is of periodization complezity at most 2.

Remark 22: This statement remains true for —kaN u aN (k € N* and « # 0).

8 Conclusion

The hull is a space related to point sets. Studying the hull and its properties gives information about the point
set itself, though we did not establish anything of the form "if the hull of A has such property X, then A has
some property Y". What we did establish though are properties about the hull or its approximants given a
fixed point set A. This is a first step to understand the links between point sets and their hulls.

Periodization complexity could be a relevant tool, telling how "complicated" continuous functions on the hull
are, hence how "complicated" the hull is, hence how "complicated" a point set is. I just had time to begin
to study this notion and lots of questions remain. I would say as a conjecture that a Fibonacci point set is
of periodization complexity at most 3, which is in some sense striking, because a Fibonacci point set requires
much more technics to be defined than Z\ {0} does but it still has a finite periodization complexity. We can
ask ourselves whether, given an n € N, it is possible to construct point sets of periodization complexity exactly
n. Does there exist a point set with no finite periodization complexity? Is it more common to have finte
periodization complexity or not to ?

Finally, having a finite periodization complexity also has consequences for measures on the hull, namely in
ergodic theory.
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