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Abstract

We study the group of all interval exchange transformations. We first prove a result of Dahmani, Fujiwara and
Guirardel ([DFG13]): the group generated by a generic pair of elements of IET([0;1]) is not free (assuming a
suitable irreducibility condition on the underlying permutation). Then we extend this result to a more general
meaning of "generic pairs".

Additionally, we discuss some possible generalisations of IET([0;1]). We give an example of a two-generated
subgroup of the group of all affine interval exchange transformations that contains an isomorphic copy of every
finite group.
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1 Introduction

During this internship I have worked on a question of Katok: Is there a rank 2 free subgroup in the group of
interval exchange transformations ?

If so, then the group would not be amenable. If not, we cannot conclude about amenability. The von Neumann’s
conjecture (a group is amenable if and only if it does not contain a rank 2 free subgroup) was indeed disproved
in 1980 by Alexender Ol’shanskii. Nicolas Monod gave a simple counterexample in [Mon13]. On the other hand
we still do not know whether the first potential counterexample, the Thompsoon group F' ([CF11]), is amenable
or not. Both interval exchange transformations and elements of the Thompson group F are piecewise affine
maps and generalise circle diffeomorphisms. Interval exchange transformations (IETs) are continuous but at
finitely many points and are local isometries whereas elements of the Thompson group F are piecewise linear
homeomorphisms.

These groups have been studed first by Keane and then more widely since 1980. They have given first examples
of minimal and non uniquely ergodic maps. They arise in many areas of mathematics such as dynamical systems,
polygonal billiards, geometry and flows over flat surfaces.

I will first introduce some notations and basic results about IETs and then present the proof of ([DFG13]) of
the fact that "lots" of couples of IETs do not generate a rank 2 free group in section 3.

THEOREM 1 (Dahmani-Fujiwara-Guirardel). There exists a dense open set
Qc IET([Oa 1[) X IETir'red([O; 1[)

such that for every (S,T) € Q, {S,T) is not free of rank 2.
I will then extend the result to wider sets of IETs in section 4.

THEOREM 2. Let S be any IET on [0; 1[. There exists a dense open set Qirrea(S) € IET;rea([0;1]) such
that for every T € Qirrea(S), {S,T) is not free of rank 2.

Finally, we discuss some generalisations of the group of IETs. The generalisation into orientable flipped interval
exchange transformations turns out to be an interval exchange transformations group (all its elements could
be seen as IETs). However the generalisation into affine interval exchange transformations (AIETS) leads to
other behaviours such as the existence wandering intervals ([BHM10]). Like the group of IETs (Theorem 8.1 of
[DFG13]), the group of AIETSs has a two-generated subgroup that contains an isomorphic copy of every finite

group.

THEOREM 5. There is a subgroup F' < AIET([0;1]) generated by two elements that contains an isomor-
phic copy of all finite groups and a free semigroup.

2 Interval exchange transformations
2.1 Definition

Definition 1 (IET). An interval exchange transformation (IET) on [0;1[ is a bijection from [0; 1] onto itself
which is everywhere continuous on the right, continuous except on a finite number of points and differentiable
where it is continuous with differential equal to 1.

One denotes by A(T) the set of discontinuities of T'.

One defines analogously an IET on another interval, a circle or a union of intervals and circles.
Roughly speaking, an IET on [0; 1] cuts the interval [0; 1] into finitely many intervals and shuffles them. Let
us introduce some examples.

Example 1. Let 0 € ]0; 1] and define R by:

r+1—-60 f0o<z<b

VSL’E[O,].[, R(x)_{x—a 1f9<.13<1

Then R is an IET. One can think of it as the rotation of angle 1 — 6 on the circle R/Z. See Figure 1.
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Figure 2: The IET R seen as a first recurrence map on the torus

We can also see it as the first recurrence map of the flow of angle 119 on the torus. See Figure 2.

Example 2. Let T defined by:

Vo e [0;1], T(x) =

One easily checks that T is an IET, and A, B, C and D are its intervals of continuity. Figure 3 illustrates T and
the composition of T with the rotation R.
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Figure 3: Composition of IETs



I Proposition 1. The set of IETs on a domain D, endowed with the law of composition, is a group.

Proof.
* The identity on D is an IET.

x If T'is an IET, then 7! is well defined, everywhere continuous on the right, continuous except on a finite
number of points and differentiable where it is continuous with differential equal to 1.

*x The composition of two interval exchange transformations S and T is a bijection, which is everywhere
continuous on the right. Moreover, if T is continuous at € D (and so differentiable at z) and if S
is continuous at T'(z) (and so differentiable at T'(x)), then S o T is continuous and differentiable at x,
with differential equal to 1. If S o T is continuous at x € A(T) u T~Y(A(S)), then it is continuous on
a neighbourhood of x (by discreteness of A(T) u T~!(A(S))) and differentiable on this neighbourhood,
with differential 1, so is SoT at . Hence SoT is an IET.

2.2 Description of an IET

We use the formalism introduced by Marmi, Moussa and Yoccoz ([MMYO05]) to describe IETs. Let T be an
IET on [0;1]. Let A be a finite alphabet (of cardinal n) and [0;1[= [J I, be a partition of [0;1[ such that T'
A

a€
is continuous on each interval I,. For every a € A, let A\, = |I,| be the length of I,,. Let o : A — {1,...,n} be
the one-to-one map sending a to ¢ if and only if a is the letter of the i-th interval (from the left to the right) of
[0; 1] with regard to the partition [0;1[= |J I,. Let m : A — {1,...,n} be the one-to-one map sending a to ¢

ae A
if and only if a is the letter of the i-th interval (from the left to the right) of [0; 1] with regard to the partition
[0;1[= U T(I.)- Then m = 7, oy * € &,, describes the action of T on the set (I,)ac A-
ae A

(1) @) e ()
Remark 1: Given a permutation 7, there are many pairs (7, 7r1) such that 7 = 7, 07r0_1, each one corresponding
to a different labelling of the intervals. In most examples in this report, we take the latin alphabet for A and
7o such that mo(A4) =1, mo(B) =2, m(C) =3 ...

—1 —1 —1
We represent m by the table ( T (1) m () To (n) >

Remark 2: If there exists ¢ € {1,...,n} such that 7(i + 1) = «(¢) + 1, then T is continuous on the union
Iﬂ_o—l(i) V) Iﬂ_o—l(i+1) of the i-th and the (i 4+ 1)-th intervals. The converse also holds. In other words, the intervals
(Ia)ae 4 are exactly the intervals of continuity of 7' if and only if Vi € [1;n[, 7(i + 1) # 7(¢) + 1. In this case
we call 7 the underlying permutation of T.

Proposition 2. An IET T is defined by the set \(T) of the lengths of its intervals of continuity, and the
underlying permutation w(T).

Example 3. For the IET T of the previous example, we have A\(T') = ()\A = 12—0,)\3 = 1—10, Ao = 1—30, Ap = 1%)
A B C D )

and the underlying permutation is 7 (7T") = ( D C B A

Remark 3: Given \N(T) = (Ao(T))ae 4 and ©(T) = m o7, ', one easily computes A(T~') = \(T) and 7(T~!) =
T om; *. In our example, it gives 7(T~1) = Z g g é ) See Figure 4.

If S is another IET, the data A(SoT) and 7(S o T) are less straightforward to compute. See Figure 5.

There are other ways to describe T: one can replace the data of the lengths of the intervals of continuity by
the data of the points of discontinuity, or replace the data of the underlying permutation by the data of the
translation lengths. Let us introduce some maps to navigate from one of these points of view to the other.
First we define four maps from the set of IETs that give respectively the lengths of the intervals of continuity,
the points of discontinuity, the underlying permutation and the translation lengths. Here, the labelling of the
intervals with letters does not appear. By convention [; (resp. t;) denotes the length of (resp. translation length
on) the i-th interval of continuity, and b; the i-th point of discontinuity.
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Figure 5: Composition of two IETs

A: IET([0;1]) — {(a1,...an) | neN,Vie{l,...,n}, a; e R¥ 3" a; =1}
T = MNT) = (lh, -y ln)
B: IET([0;1]) — {(a1,..,an-1)|meN,0<a; <...<ap_1 <1}
T —  B(T) = (b1,...,bpn_1)
m: IET([0;1]) — &,
T —  7(T)
T: IET([0;1]) — {(a1,...,an) | neN, Vi,a; €] —1;1[}
T > 7(T) = (t1, s tn)

There is an obvious relation between (Iy, ...

1) = N(T) and (by, ..., bo_1) = B(T):

Vi e {17 ...,n}, li = bZ — bi—l

with the natural convention by = 0 and b,, = 1. Equivalently:

Vie{l,..,n—1}, b =



The relation between 7(T") and (7 (T"), A(T)) is almost as straightforward as the relation between A(T") and 3(T).
We denote by ® the corresponding map:

B, (11, oy 1)) = (t1, s tn)

where
m(i)—1

i—1
Vie{l,..n}, ti=— DL+ D L),
j=1 j=i
Given a permutation o € &,,, we will denote by &, the map

D, : R™ — R™
(lh, .y ln) = Plo,(l1,...,1n)) = (L1, .y ty)

In this report, we will use (I3, s, ..., 1,,) for the set of lengths of intervals of continuity of an IET (I; denotes the
length of the leftmost interval in the partition of [0; 1] and ,, the length of the rightmost interval), (by, ..., bn—1)
for the set of discontinuities (always supposed in the increasing order, with by = 0 and b,, = 1 when needed),
and (1, ..., t,) for the translation lengths. So if T'is an IET with 5(T) = (b1, ...,b,) and 7(T") = (¢4, ..., t,) then
T is such that:

Vie {1, ...,TL}, Vo e [bifl;bi[, T(Q?) =z + ;.

Definition 2 (irreducible permutation). A permutation o € &,, is said to be irreducible if for all k < n, the
set {1,...,k} is not o-invariant.

If the underlying permutation 7 of an IET T is reducible, say {1, ..., k} is m-invariant, then T preserves I1 u...U I}
(hence Ixiq U ... U I, too). We can study the dynamics of both restrictions instead of studying the dynamics
of T.

But if we want to study the group spanned by two interval exchange transformations, assuming they have
irreducible underlying permutation is a loss of generality. See example in Figure 5 of S and T where S has a
reducible underlying permutation.

2.3 Topology
One equips IET([0; 1[) with the following distance:

d: IET([0;1]) x IET([0;1]) — R4
(S,T) . {M(S)—A(T)Ill if 7(S) = 7(T)

0 otherwise

Definition 3. Let 7 € 6&,,. We denote by IET, the set of interval exchange transformations with underlying
permutation T.

Note that TET} is not a group. We can picture it as a simplex of dimension n — 1, because once the underlying
permutation is fixed, the IET is determined by the lengths of its intervals of continuity (or by its points of
discontinuity). Since we are working with normalized IETs (defined over [0;1[) the lengths of the first n — 1
intervals of continuity are sufficient to determine an IET with n intervals of continuity.

A3

~

Figure 6: The simplex representing IET, and T = (7, A\(T')) from examples 2 and 3



Proposition 3. IfT and T’ are at distance § from each other, then for all i:
L=l < §;
2. |bi— bl < 3;
3. |t; —ti| < 20.

Proof. If T and T’ are at distance 0 < o0, then they have the same underlying permutation, call it 7 € &,,.

1. We prove thls by contrapositive. First note that |2j¢l ; Zj# Li| = |l = U] (because Zj l;- = Zj l; =1).
If |I; = )] > &, then
AT T) = || XT) ~ ATy = i~ +| Y- D
J#i J#i
> |l = U] + [l — 1]
> 0.

n

2. By contraposition, if |b; — b;| > %, then i # n (because b, = b/, = 1) and
DRI

Zl - Z l
j=i+1 j=i+1

/|bi—b§\+|—b¢+b;|
> 4.

d(T,T') = [|MT) = MT) [l =

3. One has

7(i)—1 i—1 w(i)—

|t¢7t;| = 211 + le— 1(5) + Zl' Z M =1(5)

j=i

~.
<.
Il

—

i—1 7(i)—

< Z 7lj +l; Z lﬂ-*l(]) I =1()
j=1

<[ =Vih +[1=0 |\1 = 2d(T,T")

< 26.

3 Katok’s question

Katok asked whether there is a free subgroup of rank 2 in IET([0;1[). If we had some relation(s) between any
two IETs S and T, then we could answer Katok’s question (by no). We do not know so many relations but we
can still build a relation between two IETs taken in a dense subset. We produce such relations following the
ideas of [DFG13]:

1. (Basic relation). Pick two obvious relations between Sy and Ty, both of finite order, with discontinuities
on some rationals with the same denominator ¢q. Say 71 (So, Tp) = id and ro(So, To) = id.

2. (Small pertubation). Pick S and T close to Sy and Tp. Then r1(S,T) and r9(S,T) induce translations
with small translation length on every interval of continuity which are not too close to %N.

3. (An IET with small support). The commutator U = [r1(S,T),2(S,T)] has a small support, located in a
neighbourhood of ¢N.

4. (Drifting the support). With an additional condition on Ty, some power k of T' can drift the support of
U such that T% (supp(U)) n supp(U) = .

5. (Relation). Then U commutes with T*UT ", which gives the relation [U, T*UT*] = id.

In the following we explain each step with more details. We first introduce some notations.



3.1 (g-rationality and obvious relations

Definition 4 (q-rationality). Let g€ N. An IET is called g-rational if all its discontinuity points are in %N.

Proposition 4. If T is g-rational, then its interval lengths (I;)1<i<n = ANT), and translation lengths
(ti)1<i<n = 7(T) are all in %N.

Proof. It comes directly from the relations between discontinuity points, interval lengths and translation
lengths:

Vi, l; = b; — b1
o(i)—1

i—1
=i+ D) Lo
j=1 j=1

where o is the underlying permutation of 7T'.

I Proposition 5. If T is g-rational, then it is of finite order dividing q!.

Proof. Let o € &, be such that for all k < ¢, I}, = [k k“ [ is sent to I, by 7.

We underline that o is not necessarily the underlymg permutatlon of T. It is the case if and only if 7" has ¢
intervals of continuity, namely if the set A(T') of points at which T is discontinuous is equal to (and not only
included in) %N N [0;1].

For all n € N, T™ sends Ij, to I,n (). Hence T has same order than o: a finite order dividing #&, = ¢!. o

In particular one has T? = id whenever T is g-rational.

3.2 Steps 2 and 3: Building an IET with a small support

Definition 5 (¢ — neighbourhood). Let € >0 and X < R. We denote by
Ne(X) ={ye[0;1[ | Jz e X, |z —y[ < €}

the set of points at distance stricly less than € from X, and we call it the e-neighbourhood of X.

Lemma 1. For all ¢ > 0, m,q € N, there exists n > 0 such that if S and T are n-close to g-rational
IETs Sy and Ty respectively and if w is a word of length at most m over the letters st tT1 such that

w(So, To) = id then w(S,T) acts on each connected component of [0; 1]\ N, (q ) with tmnslatwn lengths
strictly smaller than e.

Proof. Let € >0, m,qe N.

Let n > 0 to be fixed later on. Let S, T n-close to Sy, Ty two g-rational IETs.
We show by induction that for all i < m, for all word w; of length i, for all p < ¢, the image of |2 E+2mn; p+
by w;(S,T) is included in ]%/ +2(m —i)n; = +1 —2(m — i)n[, where p’ = w;(So, Tp)(p).

p+1

L —2mn|[

Base case: The property is true for 4 = 0, since the identity sends ] + 2mn; — 2mn| to itself.

Inductive step: Let i < m and assume that the property is true for ¢ — 1. Let us show it for .

Let p < ¢ and w; a word of length i, and w;_; its suffix of length i — 1.

Then either w;(S,T) = Sw;—1(S,T) or w;(S,T) = Tw;—1(S,T).

By hypothesis w;—1(S5,T) sends |£ + 2mu; p+1 —2mmn| to I :]%/ +2(m — i+ 1)n; % —2(m — i+ 1)n[, where
P = w;—1(S0, To)(p)-

The interval I is included in ]%/ +Z; A2 2, on which S (resp. T') is continuous (Proposition 3). Moreover S

q 2
(resp. T') has translation lengths differing by at most 27 (Proposition 3) from the ones of Sy (resp. Tp). So the

image of I by S (resp. T) is included in some ]%ﬂ +2(m— i)y 2L +1 —2(m—1)n[, where p” = S(p") = w;(S,T)(p)
(vesp. p” =T(p") = w;(S,T)(p)). Hence the property is true for i.



We conclude that for every word w of length m such that w(Sy,Tp) = id, w(S,T) sends every interval of type
12+ 2ma; p“ — 2mn[ within ]2; p+1[ In other words w(S,T') acts on [0; 1[\N2mn( N) with translation lengths
smaller than 2mn.

Choosing 1 < 5=~ gives the lemma. o

Lemma 2. For all e > 0, g € N, there exists n > 0 such that if S and T are n-close to q-rational IETs Sy
and Ty respectively, then [S?, TS?T~] induces the identity on each interval of [0; 1[\/\@(%1\1)

Proof. Apply the previous lemma for § to the words s? and ts?t~'. Whenever S and T are closer than ﬁ
E

to Sy and Ty, the IETs S and T'S?T~! induce translations of translation lengths strictly smaller than & on
each connected component of [0; 1[\ N ( N).

Let z € [0; 1[\N(q N).
Denote by I the connected component of x in [0; 1[\ N (%N) and by t7,t} € [-§; 5] the translation lengths of
I by S? and TS?T~" respectively.
On the one hand:
S o TS'T Y (x) = S¥(x 4+ 1)) =z + 1) + 11
because z + ¢} € I since d(:c+t'1,%N) > d(z, 1N) — |t} >e—5=%.
On the other hand:

TSIT 1089 (x) = TSI'T Yo +t;) =2+ t; + 1]
because x + t7 € I since d(ertI,lN) d(x %N)f|t1\ >e—§5=5.
Hence S and T'S9T~' commute on [0; 1[\ N, (% ). We conclude that [S%, TS?T '] induces the identity on
each interval of [0; 1[\N(2N). o

In other words the IET U = [S? TS?T~!] has a small support included in A/;(%N). We have reached the
goal of the first three steps. In the following section we conjugate U by a well chosen IET to get an IET that
commutes with U.

3.3 Step 4: Drifting the support

Recall that &, is the map that sends lengths of the intervals of continuity to the corresponding translation
lengths (see definition page 7).

Definition 6 (Driftable permutation). A permutation o € &,, is said to be driftable if there exists a vector
dl = (dly, ...,dl,) € R™ with Y, dl; = 0 such that the vector dr = ®,(dl) € R™ has only positive coordinates.
We call dl a drifting direction and dr a drifting vector.

We denote by drpy, = min dr; > 0 and drp,., = maz dr; the mazimal and minimal drift of dr.
1<ig<n 1<igsn

I Proposition 6. A permutation is driftable if and only if it is irreducible.
See Proposition 5.12 of [DFG13] for a proof of this fact.
I Proposition 7. The set of drifting directions or drifting vectors are cones.

Proof. Let o € &, be a driftable permutation. For every i € {1,...,n}, denote by H;r the vectorial half-space
Hf =R xR¥ x R"™
and by
L} =, (H))

its preimages by ®,, which is also a vectorial half-space because ®,, is linear.
The set of drifting vectors (resp. directions) is the intersection of all the vectorial half-spaces H. (resp. L),
hence is a cone. o

Definition 7. Let Ty be an IET and o = w(T) € &,, be its underlying permutation. Let dl € R™. We define
Ty € IET, by A(Tp) = A\(Tp) + 0dl, where 6 is small enough to ensure that all the lengths of the intervals of
continuity 1;(Ty) are positive.

10



Lemma 3. Let o € G, be a driftable permutation, and dl and dr be associated the drifting direction and
drifting vector. Let ¢ € N and Ty € IET,([0;1[) be g-rational. Let 0 be such that 0 < 0dr, < % and
small enough so that Ty is well defined.

Then all the translation lengths of Ty are in [0drmin; 0drmaz] mod %.

And if T is p-close to Ty, where 2pu < 0dr . and 2 < % — Odrpmaz, then all the translation lengths of T
are in [0dr.in — 245 0dr pmag + 21] mod %.

Proof. One computes the translation lengths of Ty using the linear map &, :
T(Tg) = ‘I)O—()\<T9)) = q)g()\(TQ) + 9dl) = ‘I)O—()\<T0)) + Hq)(,(dl) = T(To) + Odr

which reduces to: )
7(Tp) = 6dr mod -
q

because Ty is g-rational. Since 0 < Odrpin < 0drpax < %, one can conclude that all the coordinates of 7(Ty)

(i-e. all the translation lengths of Tp) are in [0drmin; Odrmax| mod %.
To prove the second point, one writes:
MT) = MNTp) + 0dl + ¢

where € = (€;)1<i<n € R™ is such that ||e]|; < p.
Applying ®, and reducing modulo ; one gets:

1
7(T) = 0dr + ,(¢e) mod p

where
o(i)—1

i )
()= | =D+ D, €or(y)
J=1 g=1 1<i<n
so every coordinate of @, (e) is smaller than 2||e||; hence than 2u. Since 0 < 0dryin — 2p < 0drmax + 2 < %,

one can conclude that all the coordinates of 7(7T") (i.e. all the translation lengths of T') are in the interval
[0drmin — 2u; 0drmax + 211] mod %. o

Lemma 4. Within the same setting as in the previous lemma, let p = ‘;:mf_”, €< =
w< WT"“'". Let T be p-close to Ty.
Then there exists k € N such that all the translation lengths of T* are in [2¢; % — 2¢] mod %. In particular,

if U is an IET such that supp(U) c j\/e(%) then [U, TKUT—*] = id.

Proof. First, one has

1 1 1
edrmin <e< — < — < —
Ilgp ~1lg ¢
and i
JTRS §9drmin < 0drmin
and

2 1
Odrmax + 21 < 0drmax + 0drmin < 20drpax = 20drpnimp < 2ep < e < -
q q

so one can apply the previous lemma: all the translation lengths of T are in [0drmin — 2p; 0drmax + 2] mod %.
This interval is included in [%Gdrmin; %Gdrmax].
For every k € N such that 220dryax < é, the IET T* has all its translation lengths in [£0drmin; 2£60drmax] mod %

We want an integer k£ such that both 2e¢ < g&drmin and %Hdrmax < % — 2e.
Take k such that 4e < kOdrmyin < 5e (this is possible because 0dry, < €). Then one has:

3k
2

3k 3 1 7 1 2 1 1
0drmax = —0drpmp < = XHep< —— =—— — < - —— < - —2¢p < — — 2e.
2 g 22¢ q 1llg ¢ q

So T* has all its translation lengths in [2¢; % — 2¢| mod

Q=

11



— Supp(U)
1 — Supp(T]"UT_k)
q

Figure 7: Drifting small support

Finally, one has supp(T*UT~*) = T*(supp(U)) so if supp(U) < ./\/'6(%) then supp(T*UT*) < [0; 1[\/\@(%)
and supp(T*UT~*) n T*(supp(U)) = &. Hence U and T*UT~* commute.

We have found an element that can drift a small support: step 4 is done! Let us highlight the three key points
in this construction:

1. the "driftability" of Tp;
2. the localisation of the small support of U around %N;

3. the g-rationality of Tj.

3.4 Step 5: Conclusion

We now have all the elements to prove the following proposition. It is only a matter of putting together the
pieces of a jigsaw puzzle and choosing constants appropriately.

Proposition 8. Assume Sy and Ty to be g-rational and the permutation o € S,, associated to Ty to be
driftable.

Then there exist a neighbourhood U of S and an open set V which accumulates on Ty such that (S,T) is
not free of rank 2 whenever (S,T) €U x V.

Proof. Let dl be a drifting direction for ¢ let dr be the corresponding drifting vector. Let p = % and take

1

1. S in(——. —1_)- in(89rmin 1
< Tigs N < Ty 0 < min(z—, 2Hdl|\1)’ @ < min (= ).

12
Define U = B(Sp, n) the set of IETs that are at distance strictly less than 7 from Sp.
Take Ty € IET, such that A\(Tp) = A(Tp) + 0dl. Define Vy; 9 the set of IETs that are at distance strictly less
than p from Ty. Then every T € Vg ¢ verifies:

n

d(T, Ty) < d(T, Ty) + d(Tp, Tp) < pu + 0|[dl||1 < g +2-m.

Figure 8: Ty within the cone of drifting directions

From Lemma 2 one knows that for every (S,T) € U x Vg ¢ the IET U = [S?, TS?T~1] has its support included
in No(;N). From Lemma 4 one knows that there exists k € N such that [U, T*UT "] = id.

It remains to check that this relation is not trivial. Denote by u = s%ts?t 15~ %ts~9't~1 the (non-trivial) word
over the letters sT1 and t*1 such that u(S,T) = U. The word w = ut*ut *u~1t*u=1¢=% is equal to:

(sTtstt tsm 0 s e~ )t (5P ts Tt Ls 0 s T T )t TR (b5 7t T Ls P s T T LsT I R (b5t T s s T L s )R

12



which reduces to:
sTst g a s~ Al g pgty— gl g TR gLt g T L g gk L ga T gt gy L gmaly R
This word is reduced, except if k¥ = 1, in which case it reduces to:
B e L A A T it T A L

So the relation found is not trivial. Hence for every (S,T) € U x Vg9 the subgroup (S, T is not free of rank 2.
To have an open set V which accumulates on Ty we take the union of all the convenient Vg 9. More precisely,
we define:

Va= U U Vaoy —and V= U Var.

1 e (e . m o . .
<11 <173y 9<mm(’“‘min ST ) dl drifting direction

THEOREM 1 (Dahmani-Fujiwara-Guirardel). There exists a dense open set Q < IET([0;1]) x
IET;eq([0; 1]) such that for every (S,T) € Q, (S, T) is not free of rank 2.

Proof. For every g-rational IETs Sy and Ty, with Ty driftable, denote by U(Sy) and V(Ty) the open sets given
by the previous proposition and define:

o= U U U U u(So) x v(Th).

q=2 2<n<q o0€8, driftable ToelET, gq—rational Sy g—rational

The set € is a union of open sets hence it is open. And the previous proposition says that for every (S,T) € Q,
(S, T) is not free of rank 2.

Let us show that it is dense in IET([0; 1[) x TET;rreq([0; 1[). Let O < IET([0; 1[) x IET;preqa([0; 1[) be an open
set.

By density of Q in R, there exists a couple of rational IETs (Sg,Tp) in O. Let ¢ be a common denominator for
all the points in A(Sy) and A(Tp).

The open set O intersects every set that accumulates on (Sy, Tp) so:

OnQo0n USy) xV(Ty)) # T

which means that €2 is dense in IET([0; 1[) x IET;reqa([0; 1]). o

4 Extending to generalised setting

We would like to find relations between more IETs, to change the dense subset of Theorem 1 into a full-measure
subset. We do not have such a result but we still have an in between one: full-measure for the first component,
density for the second one. In order to prove it using the same main ideas, we must dispense with the g¢-
rationality of Sy. This hypothesis plays a key role to build the basic relation we have started with and to
localise the small support of U around the points in %N.

We avoid the first problem by taking [T, STZ'S—1] = id as the basic relation (instead of [S', ToS&' T '] = id),
which is true whenever Ty is g-rational (whatever properties S may have).

We fix the second problem by taking into account the location of the discontinuity points of Sy. We introduce
some notations in this purpose.

4.1 Notations

Definition 8. Let S be any IET. Let q be a positive integer.
Let us define

X,(8) = A(S) U S (;N> U {0,1}

and
Y4 (S) = m(X4(9))

where mq : [0;1] — [0; %[ is the canonical projection modulo %.

13



Define also

1 2 -1
Z4(S) = Y,(S) u ( + 3@(5)) L (q + Yq(5)> L (qq + Yq(S)) {1}
Denote by
S) = j diam(C

aq( ) C connected comp,,z}rf?nt of [O;é[\Yq (S) Zam( )
the length of the smallest interval of [0; %[\Yq(S).
And finally define
UL ={Re IET([0;1]) | ag(R) > a}.

Note that X,(S) © Z,(S) and that a4(S) > 0 is well defined because the set X (S) is finite. See Figure 9.

Iy Ip Ic Ip ‘ — Ne(A(9))

+

N

[+
+

aq(S)

Figure 9: Illustration of the notations (here, ¢ = 5)

Lemma 5. Let € > 0 and S be an IET in UZ. Then:

s <N€ (A(S) ¥ %N)) & N(X,(S)).

Proof.  Let us prove that S(N.(A(S))) = N(S(A(S)) u {1}). Denote by {b1,...,b,} = A(S) the set of
discontinuity points of S (in increasing order).

If y € S(V(A(S))), say y = S(z) with 0 < x — b, < € (resp. 0 < by — z < €), then z is in the same interval of
continuity of S than by, (resp. bx_1). In the first case one has |S(z) — S(bx)| < €, namely y € N (S(A(S))). In
the second case, y = S(z) is e-close to 1 (if 0 € &,,, the underlying permutation of S, is such that o(k—1) = n)
or to S(b;) (if o(k — 1) + 1 = ), namely y € N.({1}) U N(S(A(S))).

Conversely, assume that y € N (S(A(S)) u {1}). If y € N.({1}), then |S~1(y) — b;| < € where (i) = n and o is
the underlying permutation of S. Else y € N.(S(A(S5))), say 0 <y — S(bx) < € (resp. 0 < S(b) —y < €), then
|S7(y) — br| < € (vesp. |S~1(y) — bi| < € where o(i) = k — 1). In both cases y € S(N.(A(S))).

Let us prove that S(NVc(;N)) € No(S(IN)).

Ifye S(J\Q(%N)), say y = S(x) with |z — | < € < ag(5), then z is in the same interval of continuity of S than
“t. This implies that |S(z) — S(%*)| < ¢, namely y € NE(S(%)).

Note that the other inclusion does not necessarily hold.

14



We can conclude:

s (N (A(S) ¥ 1N>) _g (/\/E(A(S)) UN, (;N)> _ SN(A(S)) U S (/\/ (1N>)

q

< NAS(AS)) VN1 oA (5 (51) )

= N(SAE) v oy o (5 (1))
—A(8-T)u{0,1)

< Ne(X4(9))-

Indeed, S(A(S)) U {0,1} = A(S71) U {0,1} (see Remark 3). o

We are now ready to extend the results of section 3. Let us start to build an IET with small support.

4.2 Building an IET with small support

The following lemmas are quite the same as the ones of steps 2 and 3, with little changes to overcome the loss
of g-rationality of Sp.

Lemma 6. For alle >0, q € N, there exists n > 0 such that if Ty is q-rational and if T is n-close to Ty,
then for all IET S, the IET ST?S~' induces translations on [0; 1]\ S(N.(A(S) U %N)) with translation
lengths strictly less than €.

Proof. Let n < 557 and x ¢ S(N(A(S) u %N)).

Then S~1(z) ¢ N(A(S) u %N). Since T? is a translation on ./\/'e(éN) with translation length strictly less
than e (Lemma 1), one gets that [T%S~!(z) — S™!(x)| < e. Since d(S~'(z),A(S)) = e, this gives that
T%S~'(z) is in the same interval of continuity of S than S~'(z). Applying the local isometry S to the
inequality |T%'S~(z) — S~'(z)| < € one gets | ST S~ (z) — x| < e. o

Lemma 7. For all e >0, q € N, there exists n > 0 such that if Ty is q-rational and if T is n-close to Ty,
then for all IET S, the IET [T, ST S| induces the identity on each interval of [0; 1[\N(X4(9)).

Proof. Let us write A = [0; 1[\Nc(X,(S5)) and A = [0; 1[\ N (X4(S5))-
Note that Ng(%N) c Ne(Xy(5)) © Ne(Xy(5)) and S(Ng (A(S) v %N)) < Ne(X4(9)) © Ne(X4(9))-
Apply Lemma 6 with §: whenever T is closer than fq! to Ty, the IET ST S~! induces translations of translation

lengths strictly smaller than § on each connected component of [0; 1[\ S(N (A(S) u éN)) > A¢. Moreover,
Lemma 1 says that the IET 79 induces translations of translation lengths strictly smaller than 5 on each
connected component of [0; 1[\/\/’5(51\1) oA
Let z € A..
Denote by I = [a1;az] the connected component of x in Ac and by t,¢" € [—5; 5] the translation lengths of I
by T and ST S~ respectively.
On the one hand:

T o STIT Hz) =T (x +t) =x +t' +1t

because x + t' € I since 5 <rT—apand § <ag— .
On the other hand:
STTS L oTd(x) = ST'S Ha+t)=x+t+1t

because z +t € I since 5 <z —ay and § < as — .
Hence 79" and ST S~ commute on A, = [0;1[\N.(X,(S)). We conclude that [T, ST?S~!] induces the
identity on each interval of [0; 1[\ N(X,(S)). o

In other words, the IET U = [T, ST%S~!] has its support included in N;(X,(S)) and so in N.(Z,(5)).
This is useful information because it says that the support is both small and included in the "periodic" set

Ne(Z4(S)) = Ne(Yq(S)) b (NE(Yq(S)) + %) LU (/\/G(YII(S)) + %). This is really important because the

only control we have on the drift is modulo %.
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4.3 Drifting the support

The following lemma allows us to drift the support of U to [0;1[\N(Z,). We use Lemma 3 to get a lemma
analogous to Lemma 4. The only difference is the choice of constants we make.

AT maz

1 €
dTmin ’ 2

a< =, €<% 0< -—=— and

Lemma 8. Within the same setting as in Lemma 3, let p = 5 11 =

o< WT’”"". Let T be p-close to Ty.
Then there exists k € N such that all the translation lengths of T* are in [2€; o — 2¢] mod %.

Proof. First, one has

and 1
2u < §9drmin < Odrmin

and

Odrmax + 21 < Odrmpax + 0drmim < 20drpax = 20drpinp < 2ep < 1—1(] < é
so one can apply Lemma 3: all the translation lengths of T are in [0dryi, — 2p; 0drmax + 2u] mod %. This
interval is included in [%Hdrmin; %Hdrmax].
For every k € N such that ?’z—kGdrmax < %, the IET T has all its translation lengths in [g@drmin; %Gdrmax] mod
We want an integer k such that both 2e < g&drmin and %Hdrmax <a-—2€(< %)
Take k such that 4e < kOdry,i, < 5e (this is possible because 0dry;, < €). Then one has:

Q|

3k 3k 3 15 « Ta 20
— = — . < = —_—— = - — - — — 2¢.
5 Odrmax 5 Odrminp 5 X bep < 5 11 « 9 <« 11 <« €

So T* has all its translation lengths in [2€;  — 2¢] mod %. o

4.4 Conclusion

There is only one technical lemma (which is a bit painful, sorry for that) to prove before stating a generalisation
of Proposition 8.

Lemma 9. Let S be an IET such that for every distinct x,y € A(S~1) U {0}, one has x + %N #y+ %N.
If o < ag(S), then the set U2 is a neighbourhood of S.

Let us first give an example of an IET S such that U, (S) is not a neighbourhood of S to show the importance
of the hypothesis on S.

B.or e | [ Ie 3 |
2 b 4 \ 7 4 \
5 5 5 5 5
2 3 4 3 4
‘ S S | S |
SUp) © S(La) " SUo) | ORI |

Y5(S5)

as(S)

Figure 10: Example where U, is not a neighbourhood of S
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Example 4. Let ¢ > 3 and consider S defined by A(S) = ()\A =3 p=1LAc= 2’1*5) and 7(S) =

2q
< A B C )
B A C )
Let a €]0; o 2;1» €€]0; o[ and define R by A(R) = A(S) + (€, —¢,0) and 7(R) = m(5). See Figure 10.
Then o4(R) <e<a < i = a4(5), so R ¢ U, though R is at distance 2¢ from S.

Proof. Let S be an IET such that for every distinct x,y € A(S™!) U {1}, one has = + %N # Y+ %N, and let
a < oq(S9).

By definition, S € UZ.

Take § = 2¢9=% 454 show that B(S,5) < Ud. Let R e B(S,J).

8
For every x, denote by T the only point in € [0 q[ such that x € 1N + 7.

Denoting by {bo,...,bn} = {0} U A(S) U {1} (resp. {bf,...,0,}) the discontinuity points of S U {0,1} (resp. of
R), we claim that:

1. for every %,% e [0;1], if S(2) = S(%), then £ and % are in the same interval of continuity of S;

2. for every £ € [0;1[, if £ is in [by—1; bk [ the k-th interval of continuity of S, then £ is also in [b}_;; b} [ the
k-th interval of continuity of R;

3. for every £, - e [0;1[, if R(%) # R(%), then S(£)

~—

S(

2

4. for every

S

e [0:1[, [R(Z) - S(7)| < 25
5. for every z € A(R™!) U {0,1}, one has d(T, 7,(A(S™Y))) < 2 +26;

6. for every T € Y, (), there exists a unique 7 € Y, (R) such that [z — 7| < 2.

Let us prove the claims.

1. Let 2,2 € [0;1] be such that S(Z) = S(Z).

q
Let 4,i" € {0,...,n — 1} be such that £ & [b;; b;11[ and %/ € [bir; birya]-

The inverse of S is discontinuous at the points S(b;) and S(b;/) unless they are equal to 0, i.e. S(b;),S(by) €
A(S71)u{0}. By hypothesis S( ;) = S(by) if and only it S(b;) = S(bir), which means if and only if b; = b;:.
This shows that if S(2) = S(%
of S.

2. Let £ € [0;1[ and k € N be such that 2 is in the k-th interval of continuity of S: £ € [br—1; bi[.

7 ), then i = i/ and B B e [b;,bi + 1] are in the same interval of continuity

Then b}, € [by, — 3; by, + 3] (see Proposition 3), so

0 15a4(S) +
b;—z=b;_bk+bk—2>—2+aq(5)=aq(l@,) “>a

Analogously, one has

p /
*_bk7 > Q.
q 1

This shows that L is in [b),_; b} [ the k-th interval of continuity of R.

3. Let £, 2 & € [0; 1] and assume @ # R(%).
Then %,% are not in the same interval of continuity of R and thus cannot be in the same interval of
continuity of S, which leads to S(%) # S(”—,).

4. Since the translation lengths of R differ at most by 2§ from that of S, one gets |R(E) — (%) < 26. Say

q JR—
S(E) e[ m“[ Either S(Y) = “* and the hypothesis on S implies that S(£) = 0 (because 7 = 0) and
(S

then R(Z) € [0;26] so [R(E) — S(£)[ < 26. Either S(£) # 7 and by deﬁmtlon of ay

5() -

m+1
2es(

) one has:

I

> ay(S) > 26
) = aq(8) > 2

QT R

which implies that R(2) e [ mtl [and |R( )= S(E)| < 26.

17



5. Let z € A(R7Y) U {0,1} and write z = R(b},_,). Then |b},_; —by_1| < § and |R(b},_;) — S(bk—1)| < § +26
(because of Proposition 3).

6. Let T € Y,(9).
Then

y:

is in Y, (R) and at distance at most 2 from Z.
Let z € Y, (R)\ {7}. Then:

= S(bk) then

x
0; V[ because of

In the first case, if 7 = S(Z) then S(%) # S(L) because of claim 3 (because z # 7). If
S(Z) # S(be). Indeed if S(Z) = S(by) then by = 0 and Z € [by; bia[= [0;bs[, and Z € |
claim 2, which leads to R(Z) = R(b}), i.e. Z =7, which is excluded.

q
In the second case, if T = S(£) then S(£) # S(b;). Indeed if S(£) = S(b;) then b; = 0 and £ € [by; by+1[=

0;b1[, and 2 € [0; b}[ because of claim 2, which leads to R(2) = R(V,), i.e. § = Z, which is excluded. If
q 1 q J
T = S(br), then one has S(b;) # S(by) because of the hypothesis on S.

Take

B ifz=R(E)emoR(;N)

' 1
q
7

if 2 = R(B)) & my(A(R™))

~

S
—_
=

The previous paragraph shows that S(z’) # Z. Thus one has |S(z') — @

= ay(S) and:

Z—7| = ||z — S| —|S(z) — || (triangular inequality)
55  1la,(S) + 5o { |S(2") — | = aq(5)
> 8) - — = —L——— because - d
ol 2 16 12— S5(z')| < 2 < ay(9)
- 5a4(S) — ba _ id
16 2

So 7 is the only point in Y, (R) at distance at most 52—‘5 from T.

Finally, we prove that R € Ul. Let Z,7 € Z,(R) be two distinct points. For each z € {Z, 7}, let

. _ DB 1
o — S(E) ifz=R(E) e mgo R(;N) .

Then zg € Y,(S) is at distance at most % from z and Tg # Yg because of claim 6 (because T # 7). So one has:

[z -7 = |Ts —Yg| — |Ts — T — |yg — 7 (triangular inequality)
55 50 3ay(S) + ba
Pl -y -y T Ty
>«

So a4(R) > a. This means that R € UZ.
So B(S,9) c U2 and UZ is a neighbourhood of S. o

Remark 4: The condition on S corresponds to being outside a finite union of hyperplans. This means that for
every S in a full-measure set A, U, (S) is a neighbourhood of S (where o < ¢y (.5)).
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Proposition 9. Assume Ty to be g-rational and its underlying permutation o € S, to be driftable. Let S
be any IET.

Then there exist a setU = IET([0; 1[) that contains S and an open set V < IET,([0;1]) which accumulates
on Ty such that (S, T is not free of rank 2 whenever T € V.

Moreover if S is such that for every distinct x,y € A(S), one has © + %N # Y+ %N, then the set U is a
neighbourhood of S.

The proof is almost the same as the one of Proposition 8. We just have to adjust the constants to satisfy all
the hypotheses of the lemmas in the generalised setting.

Proof. Let a < ay(S). Note that a4(S) < 2%1 because S is not g-rational.
Let dl and dr be the drifting direction and vector for o. Let p = ‘fi’;“% and take

0dv:1m;n n )

€< , 3

e n oA .
n < 0 < min(z—, PR ); p < min(

4(q!6+2);
Take U = UJ. If S is such that for every distinct =,y € A(S), one has = + %N #y+ %N, then the set U/ is a

neighbourhood of S (Lemma 9).
Take Ty € IET, such that A(Tp) = A(Tp) + 0dl. Define Vg o the set of IETs that are at distance strictly less
than p from Tp. Then every T € Vg ¢ verifies:

o .
Tip’

AT, Ty) < d(T,Ty) +d(Ty, Ty) < p+ Olldls < J + 7 = .

From Lemma 7 one knows that for every (R, T) € U x V5 the IET U = [T, RT? R~!] has its support included
in N.(Z,(R)). By definition of a(R), the smallest connected component of [0;1[ \ N.(Z,(R)) has length at
least ay(R) — 2¢, hence at least o — 2¢ because R e U = UJ.

So it is enough to drift the support of U with a drift in [2¢, & — 2¢] modulo %Z. And from Lemma 8, there

exists k € N such that [U, T*UT~*] = id.
It remains to check that this relation is not trivial. Denote by u = t9'rt?'r~1¢t=%rt=9'r~1 the (non-trivial) word
over the letters 71 and ¢*! such that u(S,T) = U. The word w = ut*ut*u=1t*u=1t=* is equal to:

(t0rtd = e e ) R (4t T i e e ) R (e et T Y R (e e e e ) R
which is reduced, except if k£ = ¢! in which case it reduces to the reduced word:
A e L A L A A A
So the relation is not trivial. Hence for every (R,T) € U x Vg ¢ the subgroup (R, T is not free of rank 2.

In order to have an open set V which accumulates on Ty we take the union of all the convenient Vg 9. More
precisely, we define:

le = U U U le’e and V= U le.

o e : 7 e R
e<11p M<agry  O<min(gt—.amany) dl drifting direction

This leads to the following theorem, analogous to Theorem 1.

THEOREM 2. Let S be any IET on [0; 1[. There exists a dense open set Qirrea(S) € IET;rrea([0;1]) such
that for every T € Qyrrea(S), (S, T) is not free of rank 2.

Proof. Let S be an IET on [0;1].
For every g-rational driftable IET Ty, fix an o < a4(S) and denote by V(Tp) the open sets given by the previous

proposition and define:
Qir'red(s) = U U U U V(To)

q=2 2<n<q o0e€6, driftable ToelET, q—rational

The set Qjreq(S) is a union of open sets hence is open. And the proof of the previous proposition shows that
for every T € Qjrrea(S), (S, T) is not free of rank 2.

Let us show that it is dense in IET;;cq([0;1[). Let O < IET;;qa([0; 1[) be an open set.

By density of Q in R, there exists a rational (and irreducible) IET Tp in O.

The open set O intersects every set that accumulates on T} so:

On Qirred(s) >0n V(To) *
which means that Q;..eq(S) is dense in IET ;04 ([0; 1]). :
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4.5 Small improvements

We would like to extend the size of the set of couples of IETs which share a relation. Here are two simple
remarks that allow to get slightly bigger sets :

1. We have defined a driftable permutation as a permutation o such that the set ®_1{(R*)"} of preimages
of (R%)™ by ®, is nonempty. If o is driftable then the set of preimages of (R*)" by ®, is also non empty
(by linearity of ®,). All the proofs work the same way if we consider the set of negative drifting directions
dl = (dly, ...,dl,) € ®;H{(R*)"} (with Y. dl; = 0) instead of the set of (positive) drifting directions. They
are associated to negative drifting vectors dr € (R* )™ instead of (positive) drifting vectors. We could then
build an IET T that drifts the small support of U to the left instead of the right. Given any IET S, this
"trick" doubles the size of the set V(Tp) (built in the proof of Proposition 9) of IETs around T} sharing a
relation with S.

2. The size of the set V(Tp) is inversely proportional to the size of the basic relation we take. If the g-rational

IET Tp has order k (recall that &k divides ¢!), then we can take T = id instead of Toq! = id as the basic
relation.

We discuss a bit more the second remark in the next section.

4.6 Looking for smaller relations

The open set V(1) that we built around a g-rational IET Tj has a diameter which is bounded by (;T; times a
constant (depending only on the underlying permutation o). The factor % comes from the length of the basic
relation we used (Tg! = id). This means that we have relations only for driftable IET that are very very close

to a g-rational IET. Indeed the following Liouville’s theorem says that an algebraic number cannot be too close
to a g-rational number:

THEOREM 3 (Liouville). Let z be an algebraic number of degree d > 1. There exists A > 0 such that for
every rational number g:

x—z—)’>

q

A
F.

Proof. Let P € Z[X] be an irreducible polynomial in Q[X] (namely that has no root in Q) such that P(x) = 0.
It \J;—%\ > 1, then |x—§| > L.
Else denote M = max ]\P’(t)|, then

telz—1;2+1
p p
M|z — ’ > ’P(x) - P ()’ (mean value theorem)
q q
1
> — since ¢? P(x)—P(p>'—qd P(p> eZ
q q q
so one gets the theorem by taking A = min{1, 7;}. o

Arnoux-Yoccoz’s example
Let us study an example from Arnoux and Yoccoz (see [AY81] and [Arn88]).
Let a be the only real number such that a® + a? + a = 1. Define the IET g by

2

a a a2 CLB a3
A = [ A4 = = s = A= — Apr = — Ao = — ANev = —
(g) (A 2;14 y \B 2)3 270 270 )

and

A A B B C C
"=\ a4 B B C C)
Let h be the rotation of angle 5, namely A(h) = (Aa = 5,Ap = 3) and 7w(h) = L Define finally
f = hog. One has:

l1—a 1
A(f) = <>\A= T,)\B=a*§,)\c=

“>/
s}

I
| ]y,
“>/

Q
Il
1\3‘ 8,
N——



and

f=(4A B CDEFG
™)=\B E D G F C A
Ia gy Io . Ip ] Ig Ir Io
1 L L
[ | — [ [ [ ‘
. L | L . L L ‘
v Y |
[ [ [ [ [
L L L L L ‘
fg) fp) flg) fUr) flc) f1a)

Figure 11: The example of the IET f from Arnoux and Yoccoz

We first show that the IET f is too far from rational IETs: it is in none of the V(T) built in the proof of
Theorem 1 for a rational IET Tj.
The following table gives the constants A given by Liouville’s theorem for the lengths of the intervals of continuity

of f (which are all algebraic of order 3), so that for every rational number 5, T — % > Aq(f ),
x A(z)
11
)\A =35 5@ 25
1
Mg =a—13 89
Ae = 3a 51
)\D = )\E = %ag 46
Ap=Ag =3a® 71

We can conclude that a ¢-rational IET Tj is far from f by at least:

3 Ax) 282

d(fa TO) = q3 q

Xe{A,B,...,.G}

On the other hand f should be n-close to Tp in order to apply the technics of Proposition 8, where 7 is less
than %. This proves that f is in none of the V(Tp).

In order to overcome this issue, we can use smaller basic relations (T = id for k the order of Tj instead of
Tg! = id). This gives bigger open sets V(Ty) around g¢-rational IETs Ty that have "small" order. Indeed the size
of the set V(Tp) is inversely proportional to the size of the basic relation we take.

We want to know if it is enough. For every ¢ between 20 and 20000, we have computed the closest g-rational
IET to f, its distance 6 to f, its order & and the bound b = 40¢g(s+2)d. The condition b < 1 is necessary so
that f is in an enlarged V(Tj).

The distance d(q) between f and the closest g-rational IET seems to decrease approximately like % (and not
faster). See Figure 12.

Remark 5: The distance between f and the closest g-rational IET to f is at most equal to 2. The set of lengths

7
(1,1, ..., 05) € (%N) that is the closest to (I1,ls,...,l7) = A(f) is such that for every i € {1,...,7}, |l — ;] < 2%1.

Then we do not necessarily have 27 I =1, only % < 21-7:1 I < 2—7q. Knowing that 27 l'e %N, we conclude

i=1"t i=1"t

that 21.721 I = % whith k € {—3,...,3}. Thus the lengths of the intervals of continuity of the closest IET to
[ are given by (I7,...,l7) where l] = I} except for the k worst approximations /’; greater (resp. smaller) than
l; if k is positive (resp. negative). For these worst aproximations, IJ = [; — % (resp. 17 = 1; + %) Hence

7
Zi:1|l7/;/_li|<247q+%:§'
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Figure 12: Distance (q) between f and the closest g-rational IET to f
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For some values of ¢, the order o(q) of this ¢g-rational IET closest to f increases linearly. See Figure 13.

20000

17500

15000

12500

10000

7500

5000

order o(q) when under 20500

2500

20 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
q

Figure 13: Order s(q) of the closest g-rational IET to f

As a result, the bound b(g) increases at least linearly so it seems that there is no rational IET T} close enough
to f so that f € V(Tp). See Figure 14.
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Figure 14: Bound b(q)

There are algebraic IETs with relations

We can still find algebraic IETs in V(7). We give here an example (even a family of examples), but it is not
specific to the chosen T (we can find as many analogous examples as we want for other Tp).

Example 5. Let ¢ = 10 and Ty be the IET defined by

2 1 3 4
TH) = - — = [ I
A(To) (A"‘ TR TR TRt 10)

B C D
C B A
(see Figure 3).

Let S be any IET. We look for an IET T with algebraic lengths of intervals of continuity, such that {S,T) is
not free of rank 2.

Fix o < a4(9).

Let £ > 0 to be fixed later on. Define the IET T by A(T) = A(Tp) + (¢, —¢,&,€) and 7(T) = 7 (Ty).

Then d(T,Ty) = 4¢, B(T) = B(To) + (—&,—2¢, =€) and 7(T) = 7(Tp) + (£,3£,3£,€). So T is in the drifted
cone of Ty, in the drifting direction dl = (—1,—1,1,1) and the associated drifting vector dr = (1,3,3,1). So

and

(WS

wmo) - (

drmax _
P = drin
Following the proof of Proposition 9, we take:
a _ o« € _ a _ a
€< 11, =33 and N < I(q@72) = Ix33x(10'%2) ~ 479001864

If¢ < M = ¢, then £ < 55— =¢, and T is close enough from Ty so that (S,T’) is not free of rank 2.
Moreover if £ is algebraic of degree d > 1 then all the lengths of the intervals of continuity of T are algebraic of
degree at least 2.

For instance, we can take £ = ?r where 7 is a rational number in ]0; 2.

5 Generalisations of interval exchange transformations

There are many ways to generalise the notion of interval exchange transformations (IET). For instance, one
can allow countably many points of discontinuity, or allow intervals to be flipped, namely allow the derivative
to be equal to -1, or allow the differential to be positive (but not necessarily equal to 1). We give here a quick
overview of a special case of the second and third possibilities.
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5.1 Orientable flipped interval exchange transformations

Definition 9 (OFIET). An orientable flipped interval exchange transformation (OFIET) on [0; 1] is a bijection
T between I = [0;1[x{0}]0; 1] x {1} and itself, which is continuous but on a finite number of points and such
that:

1. For every (z,¢e) € I, if T is continuous at (x,¢€), then it is differentiable with regard to the first component.
Moreover, if T(x,€) € [0;1[x{e} then the derivative of T at (x,€) is equal to 1: T'(x,€) = 1. Conversely,
if T(x,€) € [0;1[x{1 — €} then the derivative of T at (z,€) is equal to —1: T'(x,¢e) = —1.

2. For every (z,€), T is continuous on the right (resp. on the left) at (x,€) if e =0 (resp. e =1).

One still denotes by A(T) the set of discontinuities of T.

One defines analogously an OFIET on another interval, a circle or a union of intervals and circles.

Roughly speaking, an OFIET on [0; 1| cuts two copies of [0; 1[ into a finite number of pieces and shuffles them,
with the condition that a piece that changes of connected component of I is flipped and a piece that stays in
the same connected component of [ is not.

Like an IET, an OFIET is equivalent to the data of the interval lengths and the underlying permutation (see
[BL] for a complete formalism).

Remark 6: Boissy and Lanneau have studied OFIETs that can be written as the composition of two involutions
(these OFIETS are called linear involutions), but their set is not a group. The group they generate is strictly
included in OFIET.

g g me e L TURT TR TuEn) T
L L L k L L L
_T,
] | b
I{)ot Igof ‘ T(l])ot) T(jémt)’

Figure 15: Example of an OFIET without flip

Iifop ]iop Iéop [//1,0[) I T([;op) T([Iop)
= { — - ——
_r,
] ] 1 ] ]
bot E bot n/ ‘THIJ bot 1 ‘top 1 bot\
17 13 (7)) T(I7°) T(I1,°") T(I3°%)

Figure 16: Example of an OFIET with flips

An TET can be seen as an OFIET. Let R be an IET. Roughly speaking, we the dynamic of R the component
[0;1[x {0} and the dynamics of R~! in the component ]0;1] x {1}. See Figure 17.

s Ip | | R(Ip) R(Ia) |

t |

[—)
—

135" et R(IYY) R(1g") |

Figure 17: The IET R of Example 1 seen as an OFIET

I Proposition 10. The set of OFIETs on a domain D, endowed with the law of composition, is a group.
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Figure 18: Example of composition of OFIETs
OFIETs are IETs
I THEOREM 4. There exists an isomorphism between OFIET([0;1[) and IET([—1;1]).

Proof. Set:
g: [FL1[ —  [0;1[x{1}u]0; 1] x {0}
(—z,0) if —1<z<0
o7 {(x,l) ifo<z<l1

a bijection between the domain of IET([-1;1[) and the domain of OFIET([0;1]), of inverse:

g~ [0:1[x{1}u]0; 1] x {0} —> [—1.%1[ .
(,€) ” {x ife=1

We define ¥ to be the following map:

U: OFIET([0;1]) — IET([-1;1])
T — g_loTog ’

The Figure 19 illustrates an example of an OFIET on [0;1] and its image by ¥.
Of course, we have:

U(SoT)=g toSoTog=g 'oSogogtoTog=T(S)oW(T)
for every pair (S,T) of OFIETs on [0;1], and
V(goTog H =T

for every IET T on [-1;1].

It remains to show that given an OFIET T on [0;1[, ¥(7') is an IET on [-1;1[, and conversely that given an IET
T on [-1;1[, go T o g~ is an OFIET on [0;1].

Let T be an OFIET on [0;1].

The transformation ¥(T') is a composition of local isometries, thus it is a local isometry too. The transformations
g, T and g~! have finitely many points of discontinuities, so has (7). We must check that it preserves the
orientation.
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Figure 19: Illustration of the isomorphism ¥ between OFIET([0;1]) and IET([0;1])

Let x € [—1;1] be a point at which ¥(7T) is differentiable such that T is also differentiable at g(z).
The following table sums up the different cases.

x is in g at x T at g(z) g tat Tog(x) U(T)=g 'oTogatx

reverses the orientation . .
preserves the orientation

reverses if T(—x,1) = (y,0)
(=100 . ——
the orientation | preserves the orientation . .
reverses the orientation
if T(—z,1) = (y,1) preserves
reverses the orientation . . the orientation
preserves the orientation
preserves it T(z,0) = (y,1)
10; 1]

the orientation | preserves the orientation

if T'(x,0) = (y,0)

reverses the orientation

So ¥(T) is an IET on [-1;1].

Conversely, let T be an TET on [-1;1].

The transformation g o T o g~! is a composition of local isometries, thus it is a local isometry too. The
transformations g, T and ¢~! have finitely many points of discontinuities, so has g o T o g~'. We must check
that it preserves and reverses the orientation according to the definition of an OFIET.

Let (z,€) € [0;1[x{0}U]0;1] x {1} be a point at which goT og~! is differentiable such that 7' is also differentiable
at g~1(z). The following table sums up the different cases.

€ gt at (z,¢) gat Tog ' ((xe) goTog ' at (ze)

reverses the orientation preserves the orientation

. reverses if T(—x)e[-1;0[ and goT o g~ ((z,¢€)) = (y,1)
the orientation preserves the orientation reverses the orientation

if T(—z) e [0;1] and goT o g~ ((z,€) = (y,0)
reverses the orientation reverses the orientation

0 preserves if T(x) e [-1;0[ and goT o g ((z,€)) = (y,1)
the orientation preserves the orientation preserves the orientation

if T(z) e [0;1] and goT o g~ ((z,€) = (y,0)

In each case, either g o T o g~ '((x,€)) = (y,e) and g o T o g~ preserves the orientation at (z,€), either

goTog ' ((z,€)) = (y,1 —€) and go T o g~ ' reverses the orientation at (z,€). So goT og~' is an OFIET on

[0;1].

27



Thus ¥ is an isomorphism between OFIET([0;1[) and IET([-1;1]). o

5.2 Affine interval exchange transformations

Definition 10 (AIET). An affine interval exchange transformation (AIET) on [0;1] is a bijection from [0; 1]
onto itself which is everywhere continuous on the right, continuous except on a finite number of points and
differentiable but on a finite set and with constant differential on every interval where it is defined.

One denotes by A(T) the union of discontinuities of T and of the finite set where its differential T' is not
defined.

In the following illustrations, we represent in black the intervals where the ATET is an isometry. The intervals
that are expanded (resp. tightenend) by the ATET are in deep (resp. light) colors and their images in light
(resp. deep) colors.

Example 6. Let a €]0;1[ and > 0 such that 0 < fa < 1. Define R, ¢ by:

fa ifo<z<a
Ve [0;1], Rao(z) = . .
oy + 8=1g ifa<z <1
a a

Then R, is a continuous AIET with A(R) = {a}.

1 T4 Ip

| Ra)g(IA) Ra,G(IB) ‘

Figure 20: Example of the AIET R, ¢

Example 7. Let T be defined by:

20+2 ifzeA=[0;3]

3 ifzeB=[2%,3

Vo e [0; 1], T(z) = f*w e [5: 16l
izt 5 ifzeC=[3:;5]

x*% lfIGD—[%;l[

One easily checks that 7" is an AIET, and A, B,C and D are its intervals of continuity. Figure 21 illustrates 7.

} Iy [ Ip IC [ Ip ‘

t ¢ ' |
T

f [ [ |

t T(Ip) " T(Ic) T Tp) T(14) |

Figure 21: Example of the AIET T
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An example of a subgroup

The following theorem is an adaptation of Theorem 8.1 of [DFG13].

THEOREM 5. There is a subgroup F' < AIET([0;1]) generated by two elements that contains an isomor-
phic copy of all finite groups and a free semigroup.

Proof. Consider an AIET r, defined on [0; 1[, which is the identity on [2;1[ and that acts on [0; 2[ similarly
as R, ¢ of Example 6. More precisely, let a € [0; %[ and 6 > 1 such that fa € [%, %[ and define:

fa fo<xz<a
VQ?E[O;l[, T(.I‘)_ 1119;x+%a 1fa<x<%
x if 2<z<1

Consider the involution s that switches [2;1[ and [1; 2[ (see Figure 22).

1 Ia Ip [ Io |
' . : |
3
.
‘ Oa
F [ :
! r(Ia) r(Ip) r(Ic)
L I, . I [ Ic
i H 2
3 3
S
f [ [ |
* s(I)y) s(1L:) s(Ig) |

Figure 22: The ATETs r and s

We prove that the subgroup F = (r,s) < AEIT([0;1]) contains every permutation group &,,.

Let z = 5. For every integer k > 0, set I}, = [r*(z), r* 1 (z)[.

We claim that {r, s) contains, for every k > 0, the involution that exchanges (with a piecewise affine map) I and
I+ and that is the identity everywhere else. Thus (r, s) contains the symmetric group over the non-negative
numbers.

Consider the elements r' = srs, " = r~1r'r, t = r'~1”. Then the element o, = 7*tr—* exchanges (with a

piecewise affine map) I and Iy and is the identity everywhere else. See Figure 23.

Now we prove the second part of the theorem: F' contains a free semigroup, namely G = {r,r’).

Let W be a non trivial reduced word over the letters  and r’. Denote by w the associated AIET. Both r and r’
are non decreasing piecewise affine maps, distinct to the identity, so there exist x,2’ € [0; 1] such that r(z) > x
and 7'(z') > 2/. Since W is not empty, we have either w(z) > x (if W contains the letter ) or w(z') > ' (if
W contains the letter '). Thus w is not the identity.

Let W’ # W be another non trivial reduced word over the letters r and r’. Denote by w’ the associated AIET
and let us show that w # w'.

Up to replacing W and W’ by VW and V—'W’ where V is the common prefix of W and W', we may assume
that W and W’ do not begin with the same letter. Up to exchanging the role of W and W/, we assume that
W = rW; begins with an r and W’ = ', begins with an r'.

Since r and 7’ act the same way on [0; ?%9[ (by multiplication by 6), any word of length n sends [0; 3%[ to [0; %[
by multiplication by 6. We conclude that two words over the letters 7 and ' with different lengths cannot
lead to the same ATET. So if W and W’ do not have the same length, then w # w’.
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It remains the case where W and W' have the same length n. Both w; = r~!

to [0; [ by multiplication by §"~!. In particular:

wo (Y o () 2 L
Y\asgn )~ "1\ 307 ) 30

1o =11 .1
w and w) = r'~'w’ send [0; 5=

and
wl Y, (L) 1
3] \30) 3
whereas
(LN (LY _2
“\3m) """ \30) " 3
Sow # w'.

| Ia, Ia, Ip Ic ‘

~
-
CD"" T

— ﬁ—‘
Wit

' (1a,) r'(Ic) ' (1a,) r'(Ip)
‘, IA1 r IAZ r IB IC
R |
1 1 2
362 L 3
,],,//
< — O\
{ A
- r"(1ay) " (Ip) r"(14,) r(Ic)
i’ r Il [ -[2 r ‘
<; T § r \
1 1 1
362 30 3
o
R S [ |
' oo(12) oo(l1) |
[ [ I [ I3 r |
[ T 5 r \
< H : 3
01
¥ [ | [ |
' 01(13) 01(12) ‘
| I, I I3 Iy Is Ig-- |
b f f f f I \
39 3 r(3) 3

Figure 23: The AIETs 7/, r”, t = 0¢, o1 and the first few intervals I}
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