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Abstract

We study the group of all interval exchange transformations. We �rst prove a result of Dahmani, Fujiwara and
Guirardel ([DFG13]): the group generated by a generic pair of elements of IET([0;1[) is not free (assuming a
suitable irreducibility condition on the underlying permutation). Then we extend this result to a more general
meaning of "generic pairs".
Additionally, we discuss some possible generalisations of IET([0;1[). We give an example of a two-generated
subgroup of the group of all a�ne interval exchange transformations that contains an isomorphic copy of every
�nite group.
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1 Introduction

During this internship I have worked on a question of Katok: Is there a rank 2 free subgroup in the group of
interval exchange transformations ?
If so, then the group would not be amenable. If not, we cannot conclude about amenability. The von Neumann's
conjecture (a group is amenable if and only if it does not contain a rank 2 free subgroup) was indeed disproved
in 1980 by Alexender Ol'shanskii. Nicolas Monod gave a simple counterexample in [Mon13]. On the other hand
we still do not know whether the �rst potential counterexample, the Thompsoon group F ([CF11]), is amenable
or not. Both interval exchange transformations and elements of the Thompson group F are piecewise a�ne
maps and generalise circle di�eomorphisms. Interval exchange transformations (IETs) are continuous but at
�nitely many points and are local isometries whereas elements of the Thompson group F are piecewise linear
homeomorphisms.
These groups have been studed �rst by Keane and then more widely since 1980. They have given �rst examples
of minimal and non uniquely ergodic maps. They arise in many areas of mathematics such as dynamical systems,
polygonal billiards, geometry and �ows over �at surfaces.

I will �rst introduce some notations and basic results about IETs and then present the proof of ([DFG13]) of
the fact that "lots" of couples of IETs do not generate a rank 2 free group in section 3.

Theorem 1 (Dahmani-Fujiwara-Guirardel). There exists a dense open set

Ω Ă IET pr0; 1rq ˆ IETirredpr0; 1rq

such that for every pS, T q P Ω, xS, T y is not free of rank 2.

I will then extend the result to wider sets of IETs in section 4.

Theorem 2. Let S be any IET on r0; 1r. There exists a dense open set ΩirredpSq Ă IETirredpr0; 1rq such
that for every T P ΩirredpSq, xS, T y is not free of rank 2.

Finally, we discuss some generalisations of the group of IETs. The generalisation into orientable �ipped interval
exchange transformations turns out to be an interval exchange transformations group (all its elements could
be seen as IETs). However the generalisation into a�ne interval exchange transformations (AIETs) leads to
other behaviours such as the existence wandering intervals ([BHM10]). Like the group of IETs (Theorem 8.1 of
[DFG13]), the group of AIETs has a two-generated subgroup that contains an isomorphic copy of every �nite
group.

Theorem 5. There is a subgroup F ă AIET pr0; 1rq generated by two elements that contains an isomor-
phic copy of all �nite groups and a free semigroup.

2 Interval exchange transformations

2.1 De�nition

De�nition 1 (IET). An interval exchange transformation (IET) on r0; 1r is a bijection from r0; 1r onto itself
which is everywhere continuous on the right, continuous except on a �nite number of points and di�erentiable
where it is continuous with di�erential equal to 1.
One denotes by ∆pT q the set of discontinuities of T .

One de�nes analogously an IET on another interval, a circle or a union of intervals and circles.
Roughly speaking, an IET on r0; 1r cuts the interval r0; 1r into �nitely many intervals and shu�es them. Let
us introduce some examples.

Example 1. Let θ P s0; 1r and de�ne R by:

@x P r0; 1r, Rpxq “

"

x` 1´ θ if 0 ď x ă θ
x´ θ if θ ď x ă 1

.

Then R is an IET. One can think of it as the rotation of angle 1´ θ on the circle R{Z. See Figure 1.
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Figure 1: Example of an IET which is a rotation
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Figure 2: The IET R seen as a �rst recurrence map on the torus

We can also see it as the �rst recurrence map of the �ow of angle 1
1´θ on the torus. See Figure 2.

Example 2. Let T de�ned by:

@x P r0; 1r, T pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x` 4
5 if x P A “

“

0; 2
10

“

x` 1
2 if x P B “

“

2
10 ; 3

10

“

x` 1
10 if x P C “

“

3
10 ; 6

10

“

x´ 3
5 if x P D “

“

6
10 ; 1

“

.

One easily checks that T is an IET, and A,B,C and D are its intervals of continuity. Figure 3 illustrates T and
the composition of T with the rotation R.
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r r r r r

r r r r r
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q RT pID1

q

RT

Figure 3: Composition of IETs
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Proposition 1. The set of IETs on a domain D, endowed with the law of composition, is a group.

Proof.

‹ The identity on D is an IET.

‹ If T is an IET, then T´1 is well de�ned, everywhere continuous on the right, continuous except on a �nite
number of points and di�erentiable where it is continuous with di�erential equal to 1.

‹ The composition of two interval exchange transformations S and T is a bijection, which is everywhere
continuous on the right. Moreover, if T is continuous at x P D (and so di�erentiable at x) and if S
is continuous at T pxq (and so di�erentiable at T pxq), then S ˝ T is continuous and di�erentiable at x,
with di�erential equal to 1. If S ˝ T is continuous at x P ∆pT q Y T´1p∆pSqq, then it is continuous on
a neighbourhood of x (by discreteness of ∆pT q Y T´1p∆pSqq) and di�erentiable on this neighbourhood,
with di�erential 1, so is S ˝ T at x. Hence S ˝ T is an IET.

˝

2.2 Description of an IET

We use the formalism introduced by Marmi, Moussa and Yoccoz ([MMY05]) to describe IETs. Let T be an
IET on r0; 1r. Let A be a �nite alphabet (of cardinal n) and r0; 1r“

Ť

a PA
Ia be a partition of r0; 1r such that T

is continuous on each interval Ia. For every a P A, let λa “ |Ia| be the length of Ia. Let π0 : AÑ t1, ..., nu be
the one-to-one map sending a to i if and only if a is the letter of the i-th interval (from the left to the right) of
r0; 1r with regard to the partition r0; 1r“

Ť

a PA
Ia. Let π1 : A Ñ t1, ..., nu be the one-to-one map sending a to i

if and only if a is the letter of the i-th interval (from the left to the right) of r0; 1r with regard to the partition
r0; 1r“

Ť

a PA
T pIaq. Then π “ π1 ˝ π

´1
0 P Sn describes the action of T on the set pIaqa PA.

We represent π by the table

ˆ

π´1
0 p1q π´1

0 p2q ... π´1
0 pnq

π´1
1 p1q π´1

1 p2q ... π´1
1 pnq

˙

.

Remark 1: Given a permutation π, there are many pairs pπ0, π1q such that π “ π1 ˝π
´1
0 , each one corresponding

to a di�erent labelling of the intervals. In most examples in this report, we take the latin alphabet for A and
π0 such that π0pAq “ 1, π0pBq “ 2, π0pCq “ 3 ...

Remark 2: If there exists i P t1, ..., nu such that πpi ` 1q “ πpiq ` 1, then T is continuous on the union
Iπ´1

0 piqY Iπ´1
0 pi`1q of the i-th and the pi` 1q-th intervals. The converse also holds. In other words, the intervals

pIaqa PA are exactly the intervals of continuity of T if and only if @i P r1;nr, πpi ` 1q ‰ πpiq ` 1. In this case
we call π the underlying permutation of T .

Proposition 2. An IET T is de�ned by the set λpT q of the lengths of its intervals of continuity, and the
underlying permutation πpT q.

Example 3. For the IET T of the previous example, we have λpT q “
`

λA “
2
10 , λB “

1
10 , λC “

3
10 , λD “

4
10

˘

and the underlying permutation is πpT q “

ˆ

A B C D
D C B A

˙

.

Remark 3: Given λpT q “ pλapT qqa PA and πpT q “ π1 ˝ π
´1
0 , one easily computes λpT´1q “ λpT q and πpT´1q “

π0 ˝ π
´1
1 . In our example, it gives πpT´1q “

ˆ

D C B A
A B C D

˙

. See Figure 4.

If S is another IET, the data λpS ˝ T q and πpS ˝ T q are less straightforward to compute. See Figure 5.

There are other ways to describe T : one can replace the data of the lengths of the intervals of continuity by
the data of the points of discontinuity, or replace the data of the underlying permutation by the data of the
translation lengths. Let us introduce some maps to navigate from one of these points of view to the other.
First we de�ne four maps from the set of IETs that give respectively the lengths of the intervals of continuity,
the points of discontinuity, the underlying permutation and the translation lengths. Here, the labelling of the
intervals with letters does not appear. By convention li (resp. ti) denotes the length of (resp. translation length
on) the i-th interval of continuity, and bi the i-th point of discontinuity.
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Figure 4: Example of an IET and its inverse
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Figure 5: Composition of two IETs

λ : IET pr0; 1rq ÝÑ tpa1, ..., anq | n P N, @i P t1, ..., nu, ai P R˚`,
řn
i“1 ai “ 1u

T ÞÑ λpT q “ pl1, ..., lnq

β : IET pr0; 1rq ÝÑ tpa1, ..., an´1q | n P N, 0 ă a1 ă ... ă an´1 ă 1u
T ÞÑ βpT q “ pb1, ..., bn´1q

π : IET pr0; 1rq ÝÑ Sn

T ÞÑ πpT q

τ : IET pr0; 1rq ÝÑ tpa1, ..., anq | n P N, @i, ai Ps ´ 1; 1ru
T ÞÑ τpT q “ pt1, ..., tnq

There is an obvious relation between pl1, ..., lnq “ λpT q and pb1, ..., bn´1q “ βpT q:

@i P t1, ..., nu, li “ bi ´ bi´1

with the natural convention b0 “ 0 and bn “ 1. Equivalently:

@i P t1, ..., n´ 1u, bi “
i
ÿ

j“1

lj .
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The relation between τpT q and pπpT q, λpT qq is almost as straightforward as the relation between λpT q and βpT q.
We denote by Φ the corresponding map:

Φpπ, pl1, ..., lnqq “ pt1, ..., tnq

where

@i P t1, ..., nu, ti “ ´
i´1
ÿ

j“1

lj `

πpiq´1
ÿ

j“i

lπ´1pjq.

Given a permutation σ P Sn, we will denote by Φσ the map

Φσ : Rn ÝÑ Rn .
pl1, ..., lnq ÞÑ Φpσ, pl1, ..., lnqq “ pt1, ..., tnq

In this report, we will use pl1, l2, ..., lnq for the set of lengths of intervals of continuity of an IET (l1 denotes the
length of the leftmost interval in the partition of r0; 1r and ln the length of the rightmost interval), pb1, ..., bn´1q

for the set of discontinuities (always supposed in the increasing order, with b0 “ 0 and bn “ 1 when needed),
and pt1, ..., tnq for the translation lengths. So if T is an IET with βpT q “ pb1, ..., bnq and τpT q “ pt1, ..., tnq then
T is such that:

@i P t1, ..., nu, @x P rbi´1; bir, T pxq “ x` ti.

De�nition 2 (irreducible permutation). A permutation σ P Sn is said to be irreducible if for all k ă n, the
set t1, ..., ku is not σ-invariant.

If the underlying permutation π of an IET T is reducible, say t1, ..., ku is π-invariant, then T preserves I1Y...YIk
(hence Ik`1 Y ... Y In too). We can study the dynamics of both restrictions instead of studying the dynamics
of T .
But if we want to study the group spanned by two interval exchange transformations, assuming they have
irreducible underlying permutation is a loss of generality. See example in Figure 5 of S and T where S has a
reducible underlying permutation.

2.3 Topology

One equips IETpr0; 1rq with the following distance:

d : IETpr0; 1rq ˆ IETpr0; 1rq ÝÑ R`
pS, T q ÞÝÑ

"

||λpSq ´ λpT q||1 if πpSq “ πpT q
8 otherwise

.

De�nition 3. Let π P Sn. We denote by IETπ the set of interval exchange transformations with underlying
permutation π.

Note that IETπ is not a group. We can picture it as a simplex of dimension n´ 1, because once the underlying
permutation is �xed, the IET is determined by the lengths of its intervals of continuity (or by its points of
discontinuity). Since we are working with normalized IETs (de�ned over r0; 1r) the lengths of the �rst n ´ 1
intervals of continuity are su�cient to determine an IET with n intervals of continuity.

Tˆ

λ1

λ2

λ3

Figure 6: The simplex representing IETπ and T “ pπ, λpT qq from examples 2 and 3
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Proposition 3. If T and T 1 are at distance δ from each other, then for all i:

1. |li ´ l
1
i| ď

δ
2 ;

2. |bi ´ b
1
i| ď

δ
2 ;

3. |ti ´ t
1
i| ď 2δ.

Proof. If T and T 1 are at distance δ ă 8, then they have the same underlying permutation, call it π P Sn.

1. We prove this by contrapositive. First note that |
ř

j‰i l
1
j´

ř

j‰i lj | “ |li´ l
1
i| (because

ř

j l
1
j “

ř

j lj “ 1).

If |li ´ l
1
i| ą

δ
2 , then

dpT, T 1q “ ||λpT q ´ λpT 1q ||1 ě |li ´ l
1
i| `

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j‰i

lj ´
ÿ

j‰i

l1j

ˇ

ˇ

ˇ

ˇ

ˇ

ě |li ´ l
1
i| ` |li ´ l

1
i|

ą δ.

2. By contraposition, if |bi ´ b
1
i| ą

δ
2 , then i ‰ n (because bn “ b1n “ 1) and

dpT, T 1q “ ||λpT q ´ λpT 1q ||1 ě

ˇ

ˇ

ˇ

ˇ

ˇ

i
ÿ

j“1

lj ´
i
ÿ

j“1

l1j

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“i`1

lj ´
n
ÿ

j“i`1

l1j

ˇ

ˇ

ˇ

ˇ

ˇ

ě |bi ´ b
1
i| ` | ´ bi ` b

1
i|

ą δ.

3. One has

|ti ´ t
1
i| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

i´1
ÿ

j“1

lj `

πpiq´1
ÿ

j“i

lπ´1pjq `

i´1
ÿ

j“1

l1j ´

πpiq´1
ÿ

j“i

l1π´1pjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

i´1
ÿ

j“1

´lj ` l
1
j

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

πpiq´1
ÿ

j“i

lπ´1pjq ´ l
1
π´1pjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď || l ´ l1 ||1 ` || l ´ l
1 ||1 “ 2dpT, T 1q

ď 2δ.

˝

3 Katok's question

Katok asked whether there is a free subgroup of rank 2 in IET([0;1[). If we had some relation(s) between any
two IETs S and T , then we could answer Katok's question (by no). We do not know so many relations but we
can still build a relation between two IETs taken in a dense subset. We produce such relations following the
ideas of [DFG13]:

1. (Basic relation). Pick two obvious relations between S0 and T0, both of �nite order, with discontinuities
on some rationals with the same denominator q. Say r1pS0, T0q “ id and r2pS0, T0q “ id.

2. (Small pertubation). Pick S and T close to S0 and T0. Then r1pS, T q and r2pS, T q induce translations
with small translation length on every interval of continuity which are not too close to 1

qN.

3. (An IET with small support). The commutator U “ rr1pS, T q, r2pS, T qs has a small support, located in a
neighbourhood of 1

qN.

4. (Drifting the support). With an additional condition on T0, some power k of T can drift the support of
U such that T kpsupppUqq X supppUq “ H.

5. (Relation). Then U commutes with T kUT´k, which gives the relation rU, T kUT´ks “ id.

In the following we explain each step with more details. We �rst introduce some notations.
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3.1 q-rationality and obvious relations

De�nition 4 (q-rationality). Let q P N. An IET is called q-rational if all its discontinuity points are in 1
qN.

Proposition 4. If T is q-rational, then its interval lengths pliq1ďiďn “ λpT q, and translation lengths
ptiq1ďiďn “ τpT q are all in 1

qN.

Proof. It comes directly from the relations between discontinuity points, interval lengths and translation
lengths:

@i, li “ bi ´ bi´1

@i, ti “ ´
i´1
ÿ

j“1

lj `

σpiq´1
ÿ

j“1

lσ´1pjq

where σ is the underlying permutation of T .
˝

Proposition 5. If T is q-rational, then it is of �nite order dividing q!.

Proof. Let σ P Sq be such that for all k ă q, Ik “ r
k
q ; k`1

q r is sent to Iσpkq by T .
We underline that σ is not necessarily the underlying permutation of T . It is the case if and only if T has q
intervals of continuity, namely if the set ∆pT q of points at which T is discontinuous is equal to (and not only
included in) 1

qNX r0; 1r.
For all n P N, Tn sends Ik to Iσnpkq. Hence T has same order than σ: a �nite order dividing #Sq “ q!. ˝

In particular one has T q! “ id whenever T is q-rational.

3.2 Steps 2 and 3: Building an IET with a small support

De�nition 5 (ε´ neighbourhood). Let ε ą 0 and X Ă R. We denote by

NεpXq “ ty P r0; 1r | Dx P X, |x´ y| ă εu

the set of points at distance stricly less than ε from X, and we call it the ε-neighbourhood of X.

Lemma 1. For all ε ą 0, m, q P N, there exists η ą 0 such that if S and T are η-close to q-rational
IETs S0 and T0 respectively and if w is a word of length at most m over the letters s˘1, t˘1 such that
wpS0, T0q “ id then wpS, T q acts on each connected component of r0; 1r zNεp

1
qNq with translation lengths

strictly smaller than ε.

Proof. Let ε ą 0, m, q P N.
Let η ą 0 to be �xed later on. Let S, T η-close to S0, T0 two q-rational IETs.
We show by induction that for all i ď m, for all word wi of length i, for all p ă q, the image of spq`2mη; p`1

q ´2mηr

by wipS, T q is included in sp
1

q ` 2pm´ iqη; p
1
`1
q ´ 2pm´ iqηr, where p1 “ wipS0, T0qppq.

Base case: The property is true for i “ 0, since the identity sends spq ` 2mη; p`1
q ´ 2mηr to itself.

Inductive step: Let i ď m and assume that the property is true for i´ 1. Let us show it for i.
Let p ă q and wi a word of length i, and wi´1 its su�x of length i´ 1.
Then either wipS, T q “ Swi´1pS, T q or wipS, T q “ Twi´1pS, T q.

By hypothesis wi´1pS, T q sends s
p
q ` 2mη; p`1

q ´ 2mηr to I “sp
1

q ` 2pm´ i` 1qη; p
1
`1
q ´ 2pm´ i` 1qηr, where

p1 “ wi´1pS0, T0qppq.

The interval I is included in sp
1

q `
η
2 ; p

1
`1
q ´

η
2 r, on which S (resp. T ) is continuous (Proposition 3). Moreover S

(resp. T ) has translation lengths di�ering by at most 2η (Proposition 3) from the ones of S0 (resp. T0). So the

image of I by S (resp. T ) is included in some sp
2

q `2pm´ iqη; p
2
`1
q ´2pm´ iqηr, where p2 “ Spp1q “ wipS, T qppq

(resp. p2 “ T pp1q “ wipS, T qppq). Hence the property is true for i.
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We conclude that for every word w of length m such that wpS0, T0q “ id, wpS, T q sends every interval of type
s
p
q `2mη; p`1

q ´2mηr within spq ; p`1
q r. In other words wpS, T q acts on r0; 1r zN2mηp

1
qNq with translation lengths

smaller than 2mη.
Choosing η ă ε

2m gives the lemma. ˝

Lemma 2. For all ε ą 0, q P N, there exists η ą 0 such that if S and T are η-close to q-rational IETs S0

and T0 respectively, then rSq!, TSq!T´1s induces the identity on each interval of r0; 1r zNεp
1
qNq.

Proof. Apply the previous lemma for ε
2 to the words sq! and tsq!t´1. Whenever S and T are closer than ε

4pq!`2q

to S0 and T0, the IETs Sq! and TSq!T´1 induce translations of translation lengths strictly smaller than ε
2 on

each connected component of r0; 1r zN ε
2
p 1
qNq.

Let x P r0; 1r zNεp
1
qNq.

Denote by I the connected component of x in r0; 1r zN ε
2
p 1
qNq and by tI , t

1
I P r´

ε
2 ; ε2 s the translation lengths of

I by Sq! and TSq!T´1 respectively.
On the one hand:

Sq! ˝ TSq!T´1pxq “ Sq!px` t1Iq “ x` t1I ` tI

because x` t1I P I since dpx` t1I ,
1
qNq ě dpx, 1

qNq ´ |t
1
I | ą ε´ ε

2 “
ε
2 .

On the other hand:
TSq!T´1 ˝ Sq!pxq “ TSq!T´1px` tIq “ x` tI ` t

1
I

because x` tI P I since dpx` tI ,
1
qNq ě dpx, 1

qNq ´ |tI | ą ε´ ε
2 “

ε
2 .

Hence Sq! and TSq!T´1 commute on r0; 1r zNεp
1
qNq. We conclude that rSq!, TSq!T´1s induces the identity on

each interval of r0; 1r zNεp
1
qNq. ˝

In other words the IET U “ rSq!, TSq!T´1s has a small support included in Nεp
1
qNq. We have reached the

goal of the �rst three steps. In the following section we conjugate U by a well chosen IET to get an IET that
commutes with U .

3.3 Step 4: Drifting the support

Recall that Φσ is the map that sends lengths of the intervals of continuity to the corresponding translation
lengths (see de�nition page 7).

De�nition 6 (Driftable permutation). A permutation σ P Sn is said to be driftable if there exists a vector
dl “ pdl1, ..., dlnq P Rn with

ř

dli “ 0 such that the vector dr “ Φσpdlq P Rn has only positive coordinates.
We call dl a drifting direction and dr a drifting vector.
We denote by drmin “ min

1ďiďn
dri ą 0 and drmax “ max

1ďiďn
dri the maximal and minimal drift of dr.

Proposition 6. A permutation is driftable if and only if it is irreducible.

See Proposition 5.12 of [DFG13] for a proof of this fact.

Proposition 7. The set of drifting directions or drifting vectors are cones.

Proof. Let σ P Sn be a driftable permutation. For every i P t1, ..., nu, denote by H`i the vectorial half-space

H`i “ Ri´1 ˆ R˚` ˆ Rn´i

and by
L`i “ Φ´1

σ pH
`
i q

its preimages by Φσ, which is also a vectorial half-space because Φσ is linear.
The set of drifting vectors (resp. directions) is the intersection of all the vectorial half-spaces H`i (resp. L`i ),
hence is a cone. ˝

De�nition 7. Let T0 be an IET and σ “ πpT q P Sn be its underlying permutation. Let dl P Rn. We de�ne
Tθ P IETσ by λpTθq “ λpT0q ` θdl, where θ is small enough to ensure that all the lengths of the intervals of
continuity lipTθq are positive.
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Lemma 3. Let σ P Sn be a driftable permutation, and dl and dr be associated the drifting direction and
drifting vector. Let q P N and T0 P IETσpr0; 1rq be q-rational. Let θ be such that 0 ă θdrmax ă

1
q and

small enough so that Tθ is well de�ned.
Then all the translation lengths of Tθ are in rθdrmin; θdrmaxs mod 1

q .

And if T is µ-close to Tθ, where 2µ ă θdrmin and 2µ ă 1
q ´ θdrmax, then all the translation lengths of T

are in rθdrmin ´ 2µ; θdrmax ` 2µs mod 1
q .

Proof. One computes the translation lengths of Tθ using the linear map Φσ:

τpTθq “ ΦσpλpTθqq “ ΦσpλpT0q ` θdlq “ ΦσpλpT0qq ` θΦσpdlq “ τpT0q ` θdr

which reduces to:

τpTθq ” θdr mod
1

q

because T0 is q-rational. Since 0 ă θdrmin ď θdrmax ă
1
q , one can conclude that all the coordinates of τpTθq

(i.e. all the translation lengths of Tθ) are in rθdrmin; θdrmaxs mod 1
q .

To prove the second point, one writes:
λpT q “ λpT0q ` θdl ` ε

where ε “ pεiq1ďiďn P Rn is such that ||ε||1 ă µ.
Applying Φσ and reducing modulo 1

q one gets:

τpT q ” θdr ` Φσpεq mod
1

q

where

Φσpεq “

¨

˝´

i
ÿ

j“1

εj `

σpiq´1
ÿ

j“1

εσ´1pjq

˛

‚

1ďiďn

so every coordinate of Φσpεq is smaller than 2||ε||1 hence than 2µ. Since 0 ă θdrmin ´ 2µ ď θdrmax ` 2µ ă 1
q ,

one can conclude that all the coordinates of τpT q (i.e. all the translation lengths of T ) are in the interval
rθdrmin ´ 2µ; θdrmax ` 2µs mod 1

q . ˝

Lemma 4. Within the same setting as in the previous lemma, let ρ “ drmax

drmin

, ε ă 1
11qρ , θ ă

ε
drmin

and

µ ă θdrmin

4 . Let T be µ-close to Tθ.
Then there exists k P N such that all the translation lengths of T k are in r2ε; 1

q ´ 2εs mod 1
q . In particular,

if U is an IET such that supppUq Ă Nεp
1
q q then rU, T

kUT´ks “ id.

Proof. First, one has

θdrmin ă ε ă
1

11qρ
ď

1

11q
ă

1

q

and

2µ ă
1

2
θdrmin ă θdrmin

and

θdrmax ` 2µ ă θdrmax ` θdrmin ď 2θdrmax “ 2θdrminρ ă 2ερ ă
2

11q
ă

1

q

so one can apply the previous lemma: all the translation lengths of T are in rθdrmin ´ 2µ; θdrmax ` 2µs mod 1
q .

This interval is included in r 12θdrmin; 3
2θdrmaxs.

For every k P N such that 3k
2 θdrmax ă

1
q , the IET T

k has all its translation lengths in rk2 θdrmin; 3k
2 θdrmaxs mod 1

q .

We want an integer k such that both 2ε ă k
2 θdrmin and 3k

2 θdrmax ă
1
q ´ 2ε.

Take k such that 4ε ă kθdrmin ď 5ε (this is possible because θdrmin ă ε). Then one has:

3k

2
θdrmax “

3k

2
θdrminρ ď

3

2
ˆ 5ερ ă

15

2

1

11q
“

1

q
´

7

22q
ă

1

q
´

2

11q
ă

1

q
´ 2ερ ď

1

q
´ 2ε.

So T k has all its translation lengths in r2ε; 1
q ´ 2εs mod 1

q .
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Supp(U)

Supp(TkUT´k)1
q

Figure 7: Drifting small support

Finally, one has supppT kUT´kq “ T kpsupppUqq so if supppUq Ă Nεp
1
q q then supppT kUT´kq Ă r0; 1r zNεp

1
q q

and supppT kUT´kq X T kpsupppUqq “ H. Hence U and T kUT´k commute. ˝

We have found an element that can drift a small support: step 4 is done! Let us highlight the three key points
in this construction:

1. the "driftability" of T0;

2. the localisation of the small support of U around 1
qN;

3. the q-rationality of T0.

3.4 Step 5: Conclusion

We now have all the elements to prove the following proposition. It is only a matter of putting together the
pieces of a jigsaw puzzle and choosing constants appropriately.

Proposition 8. Assume S0 and T0 to be q-rational and the permutation σ P Sn associated to T0 to be
driftable.
Then there exist a neighbourhood U of S and an open set V which accumulates on T0 such that xS, T y is
not free of rank 2 whenever pS, T q P U ˆ V.

Proof. Let dl be a drifting direction for σ let dr be the corresponding drifting vector. Let ρ “ drmax

drmin

and take

ε ă 1
11qρ ; η ă ε

4pq!`2q ; θ ă minp ε
drmin

, η
2||dl||1

q; µ ă minp θdrmin

4 , η2 q.

De�ne U “ BpS0, ηq the set of IETs that are at distance strictly less than η from S0.
Take Tθ P IETσ such that λpTθq “ λpT0q ` θdl. De�ne Vdl,θ the set of IETs that are at distance strictly less
than µ from Tθ. Then every T P Vdl,θ veri�es:

dpT, T0q ď dpT, Tθq ` dpTθ, T0q ă µ` θ||dl||1 ă
η

2
`
η

2
“ η.

dl

T0

Tθ

Vdl,θ

Figure 8: Tθ within the cone of drifting directions

From Lemma 2 one knows that for every pS, T q P UˆVdl,θ the IET U “ rSq!, TSq!T´1s has its support included
in Nεp

1
qNq. From Lemma 4 one knows that there exists k P N such that rU, T kUT´ks “ id.

It remains to check that this relation is not trivial. Denote by u “ sq!tsq!t´1s´q!ts´q!t´1 the (non-trivial) word
over the letters s˘1 and t˘1 such that upS, T q “ U . The word w “ utkut´ku´1tku´1t´k is equal to:

psq!tsq!t´1s´q!ts´q!t´1qtkpsq!tsq!t´1s´q!ts´q!t´1qt´kptsq!t´1sq!ts´q!t´1s´q!qtkptsq!t´1sq!ts´q!t´1s´q!qt´k

12



which reduces to:

sq!tsq!t´1s´q!ts´q!tk´1sq!tsq!t´1s´q!ts´q!t´ksq!t´1sq!ts´q!t´1s´q!tk`1sq!t´1sq!ts´q!t´1s´q!t´k.

This word is reduced, except if k “ 1, in which case it reduces to:

sq!tsq!t´1s´q!t2sq!t´1s´q!ts´q!t´ksq!t´1sq!ts´q!t´1s´q!tk`1sq!t´1sq!ts´q!t´1s´q!t´k.

So the relation found is not trivial. Hence for every pS, T q P U ˆ Vdl,θ the subgroup xS, T y is not free of rank 2.
To have an open set V which accumulates on T0 we take the union of all the convenient Vdl,θ. More precisely,
we de�ne:

Vdl “
ď

εă 1
11qρ

ď

ηă ε
4pq!`2q

ď

θăminp ε
drmin

, η
2||dl||1

q

Vdl,θ and V “
ď

dl drifting direction

Vdl.

˝

Theorem 1 (Dahmani-Fujiwara-Guirardel). There exists a dense open set Ω Ă IET pr0; 1rq ˆ
IETirredpr0; 1rq such that for every pS, T q P Ω, xS, T y is not free of rank 2.

Proof. For every q-rational IETs S0 and T0, with T0 driftable, denote by UpS0q and VpT0q the open sets given
by the previous proposition and de�ne:

Ω “
ď

qě2

ď

2ďnďq

ď

σPSn driftable

ď

T0PIETσ q´rational

ď

S0 q´rational

UpS0q ˆ VpT0q.

The set Ω is a union of open sets hence it is open. And the previous proposition says that for every pS, T q P Ω,
xS, T y is not free of rank 2.
Let us show that it is dense in IETpr0; 1rq ˆ IETirredpr0; 1rq. Let O Ă IETpr0; 1rq ˆ IETirredpr0; 1rq be an open
set.
By density of Q in R, there exists a couple of rational IETs pS0, T0q in O. Let q be a common denominator for
all the points in ∆pS0q and ∆pT0q.
The open set O intersects every set that accumulates on pS0, T0q so:

O X Ω Ą O X pUpS0q ˆ VpT0qq ‰ H

which means that Ω is dense in IETpr0; 1rq ˆ IETirredpr0; 1rq. ˝

4 Extending to generalised setting

We would like to �nd relations between more IETs, to change the dense subset of Theorem 1 into a full-measure
subset. We do not have such a result but we still have an in between one: full-measure for the �rst component,
density for the second one. In order to prove it using the same main ideas, we must dispense with the q-
rationality of S0. This hypothesis plays a key role to build the basic relation we have started with and to
localise the small support of U around the points in 1

qN.
We avoid the �rst problem by taking rT q!0 , ST

q!
0 S

´1s “ id as the basic relation (instead of rSq!0 , T0S
q!
0 T

´1
0 s “ id),

which is true whenever T0 is q-rational (whatever properties S may have).
We �x the second problem by taking into account the location of the discontinuity points of S0. We introduce
some notations in this purpose.

4.1 Notations

De�nition 8. Let S be any IET. Let q be a positive integer.
Let us de�ne

XqpSq “ ∆pS´1q Y S

ˆ

1

q
N
˙

Y t0, 1u

and
YqpSq “ πqpXqpSqq

where πq : r0; 1s Ñ r0; 1
q r is the canonical projection modulo 1

q .
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De�ne also

ZqpSq “ YqpSq \

ˆ

1

q
` YqpSq

˙

\

ˆ

2

q
` YqpSq

˙

\ ¨ ¨ ¨ \

ˆ

q ´ 1

q
` YqpSq

˙

\ t1u.

Denote by
αqpSq “ min

C connected component of r0; 1q r zYqpSq
diampCq

the length of the smallest interval of r0; 1
q r zYqpSq.

And �nally de�ne
Uqα “ tR P IET pr0; 1rq |αqpRq ą αu.

Note that XqpSq Ă ZqpSq and that αqpSq ą 0 is well de�ned because the set XqpSq is �nite. See Figure 9.

αqpSq
0 1

q

IA IB IC ID

SpIAqSpIBqSpICqSpIDq

S

Nεp∆pSqq
Nεp 1qNq

SpNεp∆pSqqq
SpNεp 1qNqq

XqpSq

YqpSq

ZqpSq

Figure 9: Illustration of the notations (here, q “ 5)

Lemma 5. Let ε ą 0 and S be an IET in Uqε . Then:

S

ˆ

Nε

ˆ

∆pSq Y
1

q
N
˙˙

Ă NεpXqpSqq.

Proof. Let us prove that SpNεp∆pSqqq “ NεpSp∆pSqq Y t1uq. Denote by tb1, ..., bnu “ ∆pSq the set of
discontinuity points of S (in increasing order).
If y P SpNεp∆pSqqq, say y “ Spxq with 0 ă x´ bk ă ε (resp. 0 ă bk ´ x ă ε), then x is in the same interval of
continuity of S than bk (resp. bk´1). In the �rst case one has |Spxq ´ Spbkq| ă ε, namely y P NεpSp∆pSqqq. In
the second case, y “ Spxq is ε-close to 1 (if σ P Sn, the underlying permutation of S, is such that σpk´ 1q “ n)
or to Spbiq (if σpk ´ 1q ` 1 “ i), namely y P Nεpt1uq YNεpSp∆pSqqq.
Conversely, assume that y P NεpSp∆pSqq Y t1uq. If y P Nεpt1uq, then |S

´1pyq ´ bi| ă ε where σpiq “ n and σ is
the underlying permutation of S. Else y P NεpSp∆pSqqq, say 0 ă y ´ Spbkq ă ε (resp. 0 ă Spbkq ´ y ă ε), then
|S´1pyq ´ bk| ă ε (resp. |S´1pyq ´ bi| ă ε where σpiq “ k ´ 1). In both cases y P SpNεp∆pSqqq.

Let us prove that SpNεp
1
qNqq Ă NεpSp

1
qNqq.

If y P SpNεp
1
qNqq, say y “ Spxq with |x´ m

q | ă ε ď αqpSq, then x is in the same interval of continuity of S than
m
q . This implies that |Spxq ´ Spmq q| ă ε, namely y P NεpSp

1
q qq.

Note that the other inclusion does not necessarily hold.
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We can conclude:

S

ˆ

Nε

ˆ

∆pSq Y
1

q
N
˙˙

“ S

ˆ

Nεp∆pSqq YNε

ˆ

1

q
N
˙˙

“ S pNεp∆pSqqq Y S

ˆ

Nε

ˆ

1

q
N
˙˙

Ă NεpSp∆pSqqq YNεpt1uq YNε

ˆ

S

ˆ

1

q
N
˙˙

Ă NεpSp∆pSqq Y t0, 1u
looooooooomooooooooon

“∆pS´1qYt0,1u

q YNε

ˆ

S

ˆ

1

q
N
˙˙

Ă NεpXqpSqq.

Indeed, Sp∆pSqq Y t0, 1u “ ∆pS´1q Y t0, 1u (see Remark 3). ˝

We are now ready to extend the results of section 3. Let us start to build an IET with small support.

4.2 Building an IET with small support

The following lemmas are quite the same as the ones of steps 2 and 3, with little changes to overcome the loss
of q-rationality of S0.

Lemma 6. For all ε ą 0, q P N, there exists η ą 0 such that if T0 is q-rational and if T is η-close to T0,
then for all IET S, the IET ST q!S´1 induces translations on r0; 1r zSpNεp∆pSq Y

1
qNqq with translation

lengths strictly less than ε.

Proof. Let η ă ε
2q! and x R SpNεp∆pSq Y

1
qNqq.

Then S´1pxq R Nεp∆pSq Y
1
qNq. Since T q! is a translation on Nεp

1
qNq with translation length strictly less

than ε (Lemma 1), one gets that |T q!S´1pxq ´ S´1pxq| ă ε. Since dpS´1pxq,∆pSqq ě ε, this gives that
T q!S´1pxq is in the same interval of continuity of S than S´1pxq. Applying the local isometry S to the
inequality |T q!S´1pxq ´ S´1pxq| ă ε one gets |ST q!S´1pxq ´ x| ă ε. ˝

Lemma 7. For all ε ą 0, q P N, there exists η ą 0 such that if T0 is q-rational and if T is η-close to T0,
then for all IET S, the IET rT q!, ST q!S´1s induces the identity on each interval of r0; 1r zNεpXqpSqq.

Proof. Let us write Aε “ r0; 1r zNεpXqpSqq and A ε
2
“ r0; 1r zN ε

2
pXqpSqq.

Note that N ε
2
p 1
qNq Ă N ε

2
pXqpSqq Ă NεpXqpSqq and SpN ε

2
p∆pSq Y 1

qNqq Ă N ε
2
pXqpSqq Ă NεpXqpSqq.

Apply Lemma 6 with ε
2 : whenever T is closer than ε

4q! to T0, the IET ST q!S´1 induces translations of translation

lengths strictly smaller than ε
2 on each connected component of r0; 1r zSpN ε

2
p∆pSq Y 1

qNqq Ą A ε
2
. Moreover,

Lemma 1 says that the IET T q! induces translations of translation lengths strictly smaller than ε
2 on each

connected component of r0; 1r zN ε
2
p 1
qNq Ą A ε

2
.

Let x P Aε.
Denote by I “ ra1; a2s the connected component of x in A ε

2
and by t, t1 P r´ ε

2 ; ε2 s the translation lengths of I

by T q! and ST q!S´1 respectively.
On the one hand:

T q! ˝ ST q!T´1pxq “ T q!px` t1q “ x` t1 ` t

because x` t1 P I since ε
2 ă x´ a1 and ε

2 ă a2 ´ x.
On the other hand:

ST q!S´1 ˝ T q!pxq “ ST q!S´1px` tq “ x` t` t1

because x` t P I since ε
2 ă x´ a1 and ε

2 ă a2 ´ x.
Hence T q! and ST q!S´1 commute on Aε “ r0; 1r zNεpXqpSqq. We conclude that rT q!, ST q!S´1s induces the
identity on each interval of r0; 1r zNεpXqpSqq. ˝

In other words, the IET U “ rT q!, ST q!S´1s has its support included in NεpXqpSqq and so in NεpZqpSqq.
This is useful information because it says that the support is both small and included in the "periodic" set

NεpZqpSqq “ NεpYqpSqq \
´

NεpYqpSqq `
1
q

¯

\ ... \
´

NεpYqpSqq `
q´1
q

¯

. This is really important because the

only control we have on the drift is modulo 1
q .
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4.3 Drifting the support

The following lemma allows us to drift the support of U to r0; 1r zNεpZqq. We use Lemma 3 to get a lemma
analogous to Lemma 4. The only di�erence is the choice of constants we make.

Lemma 8. Within the same setting as in Lemma 3, let ρ “ drmax

drmin

, α ă 1
2q , ε ă

α
11ρ , θ ă

ε
drmin

and

µ ă θdrmin

4 . Let T be µ-close to Tθ.
Then there exists k P N such that all the translation lengths of T k are in r2ε;α´ 2εs mod 1

q .

Proof. First, one has

θdrmin ă ε ă
α

11ρ
ď

1

22qρ
ă

1

q

and

2µ ă
1

2
θdrmin ă θdrmin

and

θdrmax ` 2µ ă θdrmax ` θdrmin ď 2θdrmax “ 2θdrminρ ă 2ερ ă
1

11q
ă

1

q

so one can apply Lemma 3: all the translation lengths of T are in rθdrmin ´ 2µ; θdrmax ` 2µs mod 1
q . This

interval is included in r 12θdrmin; 3
2θdrmaxs.

For every k P N such that 3k
2 θdrmax ă

1
q , the IET T

k has all its translation lengths in rk2 θdrmin; 3k
2 θdrmaxs mod 1

q .

We want an integer k such that both 2ε ă k
2 θdrmin and 3k

2 θdrmax ă α´ 2ε pă 1
q q.

Take k such that 4ε ă kθdrmin ď 5ε (this is possible because θdrmin ă ε). Then one has:

3k

2
θdrmax “

3k

2
θdrminρ ď

3

2
ˆ 5ερ ă

15

2

α

11
“ α´

7α

22
ă α´

2α

11
ă α´ 2ε.

So T k has all its translation lengths in r2ε;α´ 2εs mod 1
q . ˝

4.4 Conclusion

There is only one technical lemma (which is a bit painful, sorry for that) to prove before stating a generalisation
of Proposition 8.

Lemma 9. Let S be an IET such that for every distinct x, y P ∆pS´1q Y t0u, one has x` 1
qN ‰ y ` 1

qN.
If α ă αqpSq, then the set Uqα is a neighbourhood of S.

Let us �rst give an example of an IET S such that UαpSq is not a neighbourhood of S to show the importance
of the hypothesis on S.

r r r

r r r

IA IB IC

SpIBq SpIAq SpICq

1
5

2
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3
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4
5

1
5

2
5

3
5

4
5

r r r

r r r

I 1A I 1B I 1C

RpI 1Bq RpI 1Aq RpI 1Cq

1
5

2
5

3
5

4
5

1
5

2
5

3
5

4
5

α5pSq

Y5pSq

α5pRq

Y5pRq

Figure 10: Example where Uα is not a neighbourhood of S
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Example 4. Let q ě 3 and consider S de�ned by λpSq “
´

λA “
3
2q , λB “

1
q , λC “

2q´5
2q

¯

and πpSq “
ˆ

A B C
B A C

˙

.

Let α Ps0; 1
2q r, ε Ps0;αr and de�ne R by λpRq “ λpSq ` pε,´ε, 0q and πpRq “ πpSq. See Figure 10.

Then αqpRq ă ε ă α ă 1
2q “ αqpSq, so R R Uα though R is at distance 2ε from S.

Proof. Let S be an IET such that for every distinct x, y P ∆pS´1q Y t1u, one has x ` 1
qN ‰ y ` 1

qN, and let

α ă αqpSq.
By de�nition, S P Uqα.
Take δ “

αqpSq´α
8 and show that BpS, δq Ă Uqα. Let R P BpS, δq.

For every x, denote by x the only point in P r0; 1
q r such that x P 1

qN` x.
Denoting by tb0, ..., bnu “ t0u Y∆pSq Y t1u (resp. tb10, ..., b

1
nu) the discontinuity points of S Y t0, 1u (resp. of

R), we claim that:

1. for every p
q ,

p1

q P r0; 1r, if Sppq q “ Spp
1

q q, then
p
q and p1

q are in the same interval of continuity of S;

2. for every p
q P r0; 1r, if pq is in rbk´1; bkr the k-th interval of continuity of S, then p

q is also in rb1k´1; b1kr the
k-th interval of continuity of R;

3. for every p
q ,

p1

q P r0; 1r, if Rppq q ‰ Rpp
1

q q, then Sp
p
q q ‰ Spp

1

q q;

4. for every p
q P r0; 1r, |Rppq q ´ Sp

p
q q| ď 2δ;

5. for every x P ∆pR´1q Y t0, 1u, one has dpx, πqp∆pS
´1qqq ď δ

2 ` 2δ;

6. for every x P YqpSq, there exists a unique y P YqpRq such that |x´ y| ď 5δ
2 .

Let us prove the claims.

1. Let p
q ,

p1

q P r0; 1r be such that Sppq q “ Spp
1

q q.

Let i, i1 P t0, ..., n´ 1u be such that p
q P rbi; bi`1r and

p1

q P rbi1 ; bi1`1r.

The inverse of S is discontinuous at the points Spbiq and Spbi1q unless they are equal to 0, i.e. Spbiq, Spbi1q P
∆pS´1qYt0u. By hypothesis Spbiq “ Spbi1q if and only if Spbiq “ Spbi1q, which means if and only if bi “ bi1 .

This shows that if Sppq q “ Spp
1

q q, then i “ i1 and p
q ,

p1

q P rbi, bi` 1r are in the same interval of continuity
of S.

2. Let p
q P r0; 1r and k P N be such that p

q is in the k-th interval of continuity of S: p
q P rbk´1; bkr.

Then b1k P rbk ´
δ
2 ; bk `

δ
2 s (see Proposition 3), so:

b1k ´
p

q
“ b1k ´ bk ` bk ´

p

q
ě ´

δ

2
` αqpSq “

15αqpSq ` α

16
ą α.

Analogously, one has
p

q
´ b1k´1 ą α.

This shows that p
q is in rb1k´1; b1kr the k-th interval of continuity of R.

3. Let p
q ,

p1

q P r0; 1r and assume Rppq q ‰ Rpp
1

q q.

Then p
q ,

p1

q are not in the same interval of continuity of R and thus cannot be in the same interval of

continuity of S, which leads to Sppq q ‰ Spp
1

q q.

4. Since the translation lengths of R di�er at most by 2δ from that of S, one gets |Rppq q ´ Sp
p
q q| ď 2δ. Say

Sppq q P r
m
q ; m`1

q r. Either Sppq q “
m
q and the hypothesis on S implies that Sppq q “ 0 (because m

q “ 0) and

then Rppq q P r0; 2δr so |Rppq q ´ Sp
p
q q| ď 2δ. Either Sppq q ‰

m
q and by de�nition of αqpSq one has:

$

&

%

S
´

p
q

¯

´ m
q ě αqpSq ą 2δ

m`1
q ´ S

´

p
q

¯

ě αqpSq ą 2δ

which implies that Rppq q P r
m
q ; m`1

q r and |Rppq q ´ Sp
p
q q| ď 2δ.

17



5. Let x P ∆pR´1qYt0, 1u and write x “ Rpb1k´1q. Then |b
1
k´1´ bk´1| ď

δ
2 and |Rpb1k´1q´Spbk´1q| ď

δ
2 ` 2δ

(because of Proposition 3).

6. Let x P YqpSq.

Then

y “

$

&

%

Rppq q if x “ Sppq q P πq ˝ Sp
1
qNq

Rpb1kq if x “ Spbkq P πqp∆pS
´1q Y t0, 1uq

is in YqpRq and at distance at most 5δ
2 from x.

Let z P YqpRq z tyu. Then:

z “

$

’

&

’

%

Rpp
1

q q P πq ˝Rp
1
qNq

or

Rpb1jq P πqp∆pR
´1q Y t0, 1uq

.

In the �rst case, if x “ Sppq q then Sp
p1

q q ‰ Sppq q because of claim 3 (because z ‰ y). If x “ Spbkq then

Spp
1

q q ‰ Spbkq. Indeed if Spp
1

q q “ Spbkq then bk “ 0 and p1

q P rbk; bk`1r“ r0; b1r, and
p1

q P r0; b11r because of

claim 2, which leads to Rpp
1

q q “ Rpb1kq, i.e. z “ y, which is excluded.

In the second case, if x “ Sppq q then Sp
p
q q ‰ Spbjq. Indeed if Sppq q “ Spbjq then bj “ 0 and p

q P rbk; bk`1r“

r0; b1r, and
p
q P r0; b11r because of claim 2, which leads to Rppq q “ Rpb1jq, i.e. y “ z, which is excluded. If

x “ Spbkq, then one has Spbjq ‰ Spbkq because of the hypothesis on S.

Take

z1 “

$

&

%

p1

q if z “ Rpp
1

q q P πq ˝Rp
1
qNq

bj if z “ Rpb1jq P πqp∆pR
´1qq

.

The previous paragraph shows that Spz1q ‰ x. Thus one has |Spz1q ´ x| ě αqpSq and:

|z ´ x| ě ||z ´ Spz1q| ´ |Spz1q ´ x|| (triangular inequality)

ě αqpSq ´
5δ

2
“

11αqpSq ` 5α

16
because

"

|Spz1q ´ x| ě αqpSq

|z ´ Spz1q| ď 5δ
2 ă αqpSq

ą
5αqpSq ´ 5α

16
“

5δ

2
.

So y is the only point in YqpRq at distance at most 5δ
2 from x.

Finally, we prove that R P Uqα. Let x, y P ZqpRq be two distinct points. For each z P tx, yu, let

zS “

$

&

%

Sppq q if z “ Rppq q P πq ˝Rp
1
qNq

Spbkq if z “ Rpb1kq P πqp∆pR
´1q Y t0, 1uq

.

Then zS P YqpSq is at distance at most 5δ
2 from z and xS ‰ yS because of claim 6 (because x ‰ y). So one has:

|x´ y| ě |xS ´ yS | ´ |xS ´ x| ´ |yS ´ y| (triangular inequality)

ě αqpSq ´
5δ

2
´

5δ

2
“

3αqpSq ` 5α

8
ą α

So αqpRq ą α. This means that R P Uqα.
So BpS, δq Ă Uqα and Uqα is a neighbourhood of S. ˝

Remark 4: The condition on S corresponds to being outside a �nite union of hyperplans. This means that for
every S in a full-measure set A, UαpSq is a neighbourhood of S (where α ă αqpSq).
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Proposition 9. Assume T0 to be q-rational and its underlying permutation σ P Sn to be driftable. Let S
be any IET.
Then there exist a set U Ă IET pr0; 1rq that contains S and an open set V Ă IETσpr0; 1rq which accumulates
on T0 such that xS, T y is not free of rank 2 whenever T P V.
Moreover if S is such that for every distinct x, y P ∆pSq, one has x ` 1

qN ‰ y ` 1
qN, then the set U is a

neighbourhood of S.

The proof is almost the same as the one of Proposition 8. We just have to adjust the constants to satisfy all
the hypotheses of the lemmas in the generalised setting.

Proof. Let α ă αqpSq. Note that αqpSq ď
1
2q because S is not q-rational.

Let dl and dr be the drifting direction and vector for σ. Let ρ “ drmax

drmin

and take

ε ă α
11ρ ; η ă ε

4pq!`2q ; θ ă minp ε
drmin

, η
2||dl||1

q; µ ă minp θdrmin

4 , η2 q.

Take U “ Uqα. If S is such that for every distinct x, y P ∆pSq, one has x ` 1
qN ‰ y ` 1

qN, then the set U is a

neighbourhood of S (Lemma 9).
Take Tθ P IETσ such that λpTθq “ λpT0q ` θdl. De�ne Vdl,θ the set of IETs that are at distance strictly less
than µ from Tθ. Then every T P Vdl,θ veri�es:

dpT, T0q ď dpT, Tθq ` dpTθ, T0q ă µ` θ||dl||1 ă
η

2
`
η

2
“ η.

From Lemma 7 one knows that for every pR, T q P UˆVdl,θ the IET U “ rT q!, RT q!R´1s has its support included
in NεpZqpRqq. By de�nition of αqpRq, the smallest connected component of r0; 1r z NεpZqpRqq has length at
least αqpRq ´ 2ε, hence at least α´ 2ε because R P U “ Uqα.
So it is enough to drift the support of U with a drift in r2ε, α ´ 2εs modulo 1

qZ. And from Lemma 8, there

exists k P N such that rU, T kUT´ks “ id.
It remains to check that this relation is not trivial. Denote by u “ tq!rtq!r´1t´q!rt´q!r´1 the (non-trivial) word
over the letters r˘1 and t˘1 such that upS, T q “ U . The word w “ utkut´ku´1tku´1t´k is equal to:

ptq!rtq!r´1t´q!rt´q!r´1q.tk.ptq!rtq!r´1t´q!rt´q!r´1q.t´k.prtq!r´1tq!rt´q!r´1t´q!q.tk.prtq!r´1tq!rt´q!r´1t´q!q.t´k

which is reduced, except if k “ q! in which case it reduces to the reduced word:

tq!rtq!r´1t´q!rt´q!r´1tktq!rtq!r´1t´q!rt´q!r´1t´krtq!r´1t2q!rt´q!r´1t´q!t´k.

So the relation is not trivial. Hence for every pR, T q P U ˆ Vdl,θ the subgroup xR, T y is not free of rank 2.
In order to have an open set V which accumulates on T0 we take the union of all the convenient Vdl,θ. More
precisely, we de�ne:

Vdl “
ď

εă α
11ρ

ď

ηă ε
4pq!`2q

ď

θăminp ε
drmin

, η
2||dl||1

q

Vdl,θ and V “
ď

dl drifting direction

Vdl.

˝

This leads to the following theorem, analogous to Theorem 1.

Theorem 2. Let S be any IET on r0; 1r. There exists a dense open set ΩirredpSq Ă IETirredpr0; 1rq such
that for every T P ΩirredpSq, xS, T y is not free of rank 2.

Proof. Let S be an IET on r0; 1r.
For every q-rational driftable IET T0, �x an α ă αqpSq and denote by VpT0q the open sets given by the previous
proposition and de�ne:

ΩirredpSq “
ď

qě2

ď

2ďnďq

ď

σPSn driftable

ď

T0PIETσ q´rational

VpT0q.

The set ΩirredpSq is a union of open sets hence is open. And the proof of the previous proposition shows that
for every T P ΩirredpSq, xS, T y is not free of rank 2.
Let us show that it is dense in IETirredpr0; 1rq. Let O Ă IETirredpr0; 1rq be an open set.
By density of Q in R, there exists a rational (and irreducible) IET T0 in O.
The open set O intersects every set that accumulates on T0 so:

O X ΩirredpSq Ą O X VpT0q ‰ H

which means that ΩirredpSq is dense in IETirredpr0; 1rq. ˝
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4.5 Small improvements

We would like to extend the size of the set of couples of IETs which share a relation. Here are two simple
remarks that allow to get slightly bigger sets :

1. We have de�ned a driftable permutation as a permutation σ such that the set Φ´1
σ tpR˚`qnu of preimages

of pR˚`qn by Φσ is nonempty. If σ is driftable then the set of preimages of pR˚´qn by Φσ is also non empty
(by linearity of Φσ). All the proofs work the same way if we consider the set of negative drifting directions
dl “ pdl1, ..., dlnq P Φ´1

σ tpR˚´qnu (with
ř

dli “ 0) instead of the set of (positive) drifting directions. They
are associated to negative drifting vectors dr P pR˚´qn instead of (positive) drifting vectors. We could then
build an IET T that drifts the small support of U to the left instead of the right. Given any IET S, this
"trick" doubles the size of the set VpT0q (built in the proof of Proposition 9) of IETs around T0 sharing a
relation with S.

2. The size of the set VpT0q is inversely proportional to the size of the basic relation we take. If the q-rational

IET T0 has order k (recall that k divides q!), then we can take T k0 “ id instead of T q!0 “ id as the basic
relation.

We discuss a bit more the second remark in the next section.

4.6 Looking for smaller relations

The open set VpT0q that we built around a q-rational IET T0 has a diameter which is bounded by 1
q!q times a

constant (depending only on the underlying permutation σ). The factor 1
q! comes from the length of the basic

relation we used (T q!0 “ id). This means that we have relations only for driftable IET that are very very close
to a q-rational IET. Indeed the following Liouville's theorem says that an algebraic number cannot be too close
to a q-rational number:

Theorem 3 (Liouville). Let x be an algebraic number of degree d ą 1. There exists A ą 0 such that for
every rational number p

q :
ˇ

ˇ

ˇ

ˇ

x´
p

q

ˇ

ˇ

ˇ

ˇ

ě
A

qd
.

Proof. Let P P ZrXs be an irreducible polynomial in QrXs (namely that has no root in Q) such that P pxq “ 0.
If |x´ p

q | ą 1, then |x´ p
q | ą

1
qd
.

Else denote M “ max
tPrx´1;x`1s

|P 1ptq|, then

M

ˇ

ˇ

ˇ

ˇ

x´
p

q

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

P pxq ´ P

ˆ

p

q

˙
ˇ

ˇ

ˇ

ˇ

(mean value theorem)

ě
1

qd
since qd

ˇ

ˇ

ˇ

ˇ

P pxq ´ P

ˆ

p

q

˙
ˇ

ˇ

ˇ

ˇ

“ qd
ˇ

ˇ

ˇ

ˇ

P

ˆ

p

q

˙
ˇ

ˇ

ˇ

ˇ

P Z

so one gets the theorem by taking A “ mint1, 1
M u. ˝

Arnoux-Yoccoz's example

Let us study an example from Arnoux and Yoccoz (see [AY81] and [Arn88]).
Let a be the only real number such that a3 ` a2 ` a “ 1. De�ne the IET g by

λpgq “

ˆ

λA “
a

2
, λA1 “

a

2
, λB “

a2

2
, λB1 “

a2

2
, λC “

a3

2
, λC1 “

a3

2

˙

and

πpgq “

ˆ

A A1 B B1 C C 1

A1 A B1 B C 1 C

˙

.

Let h be the rotation of angle 1
2 , namely λphq “ pλA “

1
2 , λB “

1
2 q and πphq “

ˆ

A B
B A

˙

. De�ne �nally

f “ h ˝ g. One has:

λpfq “

ˆ

λA “
1´ a

2
, λB “ a´

1

2
, λC “

a

2
, λD “

a2

2
, λE “

a2

2
, λF “

a3

2
, λG “

a3

2

˙
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and

πpfq “

ˆ

A B C D E F G
B E D G F C A

˙

.

r

r r r r r rr

r r r r rr

IA IB IC ID IE IF IG

g

h

r r r r r r rr
fpIBq fpIEq fpIDq fpIGq fpIF q fpICq fpIAq

f

Figure 11: The example of the IET f from Arnoux and Yoccoz

We �rst show that the IET f is too far from rational IETs: it is in none of the VpT0q built in the proof of
Theorem 1 for a rational IET T0.
The following table gives the constants A given by Liouville's theorem for the lengths of the intervals of continuity

of f (which are all algebraic of order 3), so that for every rational number p
q ,

ˇ

ˇ

ˇ
x´ p

q

ˇ

ˇ

ˇ
ě

Apxq
qd

.

x Apxq

λA “ 1
2 ´

1
2a

λB “ a´ 1
2

λC “ 1
2a

λD “ λE “ 1
2a

2

λF “ λG “ 1
2a

3

25

89

51

46

71

We can conclude that a q-rational IET T0 is far from f by at least:

dpf, T0q ě
ÿ

XPtA,B,...,Gu

ApλXq

q3
“

282

q2
ą

1

q!
.

On the other hand f should be η-close to T0 in order to apply the technics of Proposition 8, where η is less
than 1

q! . This proves that f is in none of the VpT0q.

In order to overcome this issue, we can use smaller basic relations (T k0 “ id for k the order of T0 instead of

T q!0 “ id). This gives bigger open sets VpT0q around q-rational IETs T0 that have "small" order. Indeed the size
of the set VpT0q is inversely proportional to the size of the basic relation we take.
We want to know if it is enough. For every q between 20 and 20000, we have computed the closest q-rational
IET to f , its distance δ to f , its order `o and the bound b “ 40qp`o`2qδ. The condition b ă 1 is necessary so
that f is in an enlarged VpT0q.
The distance δpqq between f and the closest q-rational IET seems to decrease approximately like 1

q (and not

faster). See Figure 12.

Remark 5: The distance between f and the closest q-rational IET to f is at most equal to 5
q . The set of lengths

pl11, l
1
2, ..., l

1
7q P

´

1
qN

¯7

that is the closest to pl1, l2, ..., l7q “ λpfq is such that for every i P t1, ..., 7u, |l1i ´ li| ď
1
2q .

Then we do not necessarily have
ř7
i“1 l

1
i “ 1, only 7

2q ď
ř7
i“1 l

1
i ď

7
2q . Knowing that

ř7
i“1 l

1
i P

1
qN, we conclude

that
ř7
i“1 l

1
i “

k
q whith k P t´3, ..., 3u. Thus the lengths of the intervals of continuity of the closest IET to

f are given by pl21, ..., l
2
7q where l

2
i “ l1i except for the k worst approximations l1j greater (resp. smaller) than

lj if k is positive (resp. negative). For these worst aproximations, l2j “ lj ´
1
q (resp. l2j “ lj `

1
q ). Hence

ř7
i“1 | l

2
i ´ li | ď

4
2q `

3
q “

5
q .
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Figure 12: Distance δpqq between f and the closest q-rational IET to f
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For some values of q, the order `o(q) of this q-rational IET closest to f increases linearly. See Figure 13.

Figure 13: Order `opqq of the closest q-rational IET to f

As a result, the bound bpqq increases at least linearly so it seems that there is no rational IET T0 close enough
to f so that f P VpT0q. See Figure 14.
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Figure 14: Bound bpqq

There are algebraic IETs with relations

We can still �nd algebraic IETs in VpT0q. We give here an example (even a family of examples), but it is not
speci�c to the chosen T0 (we can �nd as many analogous examples as we want for other T0).

Example 5. Let q “ 10 and T0 be the IET de�ned by

λpT0q “

ˆ

λA “
2

10
, λB “

1

10
, λC “

3

10
, λD “

4

10

˙

and

πpT0q “

ˆ

A B C D
D C B A

˙

(see Figure 3).
Let S be any IET. We look for an IET T with algebraic lengths of intervals of continuity, such that xS, T y is
not free of rank 2.
Fix α ă αqpSq.
Let ξ ą 0 to be �xed later on. De�ne the IET T by λpT q “ λpT0q ` p´ξ,´ξ, ξ, ξq and πpT q “ πpT0q.
Then dpT, T0q “ 4ξ, βpT q “ βpT0q ` p´ξ,´2ξ,´ξq and τpT q “ τpT0q ` pξ, 3ξ, 3ξ, ξq. So T is in the drifted
cone of T0, in the drifting direction dl “ p´1,´1, 1, 1q and the associated drifting vector dr “ p1, 3, 3, 1q. So
ρ “ drmax

drmin

“ 3.
Following the proof of Proposition 9, we take:

ε ă α
11ρ “

α
33 and η ă ε

4pq!`2q “
α

4ˆ33ˆp10!`2q “
α

479001864 .

If ξ ă η
2||dl||1

“
η
8 , then ξ ă

ε
drmin

“ ε, and T is close enough from T0 so that xS, T y is not free of rank 2.

Moreover if ξ is algebraic of degree d ą 1 then all the lengths of the intervals of continuity of T are algebraic of
degree at least 2.

For instance, we can take ξ “
?

2
2 r where r is a rational number in s0; η8 r.

5 Generalisations of interval exchange transformations

There are many ways to generalise the notion of interval exchange transformations (IET). For instance, one
can allow countably many points of discontinuity, or allow intervals to be �ipped, namely allow the derivative
to be equal to -1, or allow the di�erential to be positive (but not necessarily equal to 1). We give here a quick
overview of a special case of the second and third possibilities.
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5.1 Orientable �ipped interval exchange transformations

De�nition 9 (OFIET). An orientable �ipped interval exchange transformation (OFIET) on r0; 1r is a bijection
T between I “ r0; 1rˆt0u\s0; 1s ˆ t1u and itself, which is continuous but on a �nite number of points and such
that:

1. For every px, εq P I, if T is continuous at px, εq, then it is di�erentiable with regard to the �rst component.
Moreover, if T px, εq P r0; 1rˆtεu then the derivative of T at px, εq is equal to 1: T 1px, εq “ 1. Conversely,
if T px, εq P r0; 1rˆt1´ εu then the derivative of T at px, εq is equal to ´1: T 1px, εq “ ´1.

2. For every px, εq, T is continuous on the right (resp. on the left) at px, εq if ε “ 0 (resp. ε “ 1).

One still denotes by ∆pT q the set of discontinuities of T .

One de�nes analogously an OFIET on another interval, a circle or a union of intervals and circles.
Roughly speaking, an OFIET on r0; 1r cuts two copies of r0; 1r into a �nite number of pieces and shu�es them,
with the condition that a piece that changes of connected component of I is �ipped and a piece that stays in
the same connected component of I is not.
Like an IET, an OFIET is equivalent to the data of the interval lengths and the underlying permutation (see
[BL] for a complete formalism).

Remark 6: Boissy and Lanneau have studied OFIETs that can be written as the composition of two involutions
(these OFIETs are called linear involutions), but their set is not a group. The group they generate is strictly
included in OFIET.

r r r r

s s s

T

r r r r

s s s

Itop1 Itop2 Itop3 Itop4

Ibot1 Ibot2 Ibot3

T pItop3 q T pItop2 q T pItop4 q T pItop1 q

T pIbot2 q T p
bot
1 q T pIbot3 q

Figure 15: Example of an OFIET without �ip

r r r r

s s s

T

r r r

s s s s

Itop1 Itop2 Itop3 Itop4

Ibot1 Ibot2 Ibot3

T pItop3 q T pIbot2 q T pItop1 q

T pItop2 q T pIbot1 q T pItop4 q T pIbot3 q

Figure 16: Example of an OFIET with �ips

An IET can be seen as an OFIET. Let R be an IET. Roughly speaking, we the dynamic of R the component
r0; 1rˆt0u and the dynamics of R´1 in the component s0; 1s ˆ t1u. See Figure 17.

r r

s s

r r

s s

Rθ

IA IB

1´ θ

IbotAIbotB

RpIBq RpIAq

RpIbotA q RpIbotB q

Figure 17: The IET R of Example 1 seen as an OFIET

Proposition 10. The set of OFIETs on a domain D, endowed with the law of composition, is a group.

25



r r r r

s s s

T

r r r

s s s s

Itop1 Itop2 Itop3 Itop4

Ibot1 Ibot2 Ibot3

T pItop3 q T pIbot2 q T pItop1 q

T pItop2 q T pIbot2 q T pItop4 q T pIbot3 q

r r r

s s

S

r r r

s s

Jtop1 Jtop2 Jtop3

Jbot1 Jbot2

SpJtop3 q SpJbot2 q SpJtop1 q

SpJbot1 q SpJtop2 q

r r r r

s s s s s s

ST

r r r r r

s s s s s

A B C D

E F1 F2 F3 G1 G2

F3 A G2 C F1

B E D G1 F2

Figure 18: Example of composition of OFIETs

OFIETs are IETs

Theorem 4. There exists an isomorphism between OFIET pr0; 1rq and IET pr´1; 1rq.

Proof. Set:
g : r´1; 1r ÝÑ r0; 1rˆt1uYs0; 1s ˆ t0u

x ÞÑ

"

p´x, 0q if ´ 1 ď x ă 0
px, 1q if 0 ď x ă 1

a bijection between the domain of IET([-1;1[) and the domain of OFIET([0;1[), of inverse:

g´1 : r0; 1rˆt1uYs0; 1s ˆ t0u ÝÑ r´1; 1r

px, εq ÞÑ

"

´x if ε “ 0
x if ε “ 1

.

We de�ne Ψ to be the following map:

Ψ : OFIET pr0; 1rq ÝÑ IET pr´1; 1rq
T ÞÑ g´1 ˝ T ˝ g

.

The Figure 19 illustrates an example of an OFIET on [0;1[ and its image by Ψ.
Of course, we have:

ΨpS ˝ T q “ g´1 ˝ S ˝ T ˝ g “ g´1 ˝ S ˝ g ˝ g´1 ˝ T ˝ g “ ΨpSq ˝ΨpT q

for every pair pS, T q of OFIETs on [0;1[, and

Ψpg ˝ T̃ ˝ g´1q “ T̃

for every IET T̃ on [-1;1[.
It remains to show that given an OFIET T on [0;1[, ΨpT q is an IET on [-1;1[, and conversely that given an IET
T̃ on [-1;1[, g ˝ T̃ ˝ g´1 is an OFIET on [0;1[.
Let T be an OFIET on [0;1[.
The transformation ΨpT q is a composition of local isometries, thus it is a local isometry too. The transformations
g, T and g´1 have �nitely many points of discontinuities, so has ΨpT q. We must check that it preserves the
orientation.
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T

Itop1 Itop2 Itop3 Itop4

Ibot1 Ibot2 Ibot3

J top1 J top2 J top3

Jbot1 Jbot2 Jbot3 Jbot4

gpItop1 q gpItop2 q gpItop3 q gpItop4 qgpIbot1 qgpIbot2 qgpIbot3 q

A B C D E F G

A G C E F B D

ΨpT q

gpJ top1 q gpJ top2 q gpJ top3 qgpJbot1 qgpJbot2 qgpJbot3 qgpJbot4 q

Figure 19: Illustration of the isomorphism Ψ between OFIET([0;1[) and IET([0;1[)

Let x P r´1; 1r be a point at which ΨpT q is di�erentiable such that T is also di�erentiable at gpxq.
The following table sums up the di�erent cases.

x is in g at x T at gpxq g´1 at T ˝ gpxq ΨpT q “ g´1 ˝ T ˝ g at x

r´1; 0r

reverses the orientation
preserves the orientation

reverses if T p´x, 1q “ py, 0q

the orientation preserves the orientation
reverses the orientation

if T p´x, 1q “ py, 1q preserves

r0; 1r

reverses the orientation
preserves the orientation

the orientation

preserves if T px, 0q “ py, 1q

the orientation preserves the orientation
reverses the orientation

if T px, 0q “ py, 0q

So ΨpT q is an IET on [-1;1[.
Conversely, let T̃ be an IET on [-1;1[.
The transformation g ˝ T̃ ˝ g´1 is a composition of local isometries, thus it is a local isometry too. The
transformations g, T̃ and g´1 have �nitely many points of discontinuities, so has g ˝ T̃ ˝ g´1. We must check
that it preserves and reverses the orientation according to the de�nition of an OFIET.
Let px, εq P r0; 1rˆt0uYs0; 1sˆt1u be a point at which g˝T̃ ˝g´1 is di�erentiable such that T̃ is also di�erentiable
at g´1pxq. The following table sums up the di�erent cases.

ε g´1 at px, εq g at T̃ ˝ g´1ppx, εqq g ˝ T̃ ˝ g´1 at px, εq

1

reverses the orientation preserves the orientation

reverses if T̃ p´xq P r´1; 0r and g ˝ T̃ ˝ g´1ppx, εqq “ py, 1q

the orientation preserves the orientation reverses the orientation

if T̃ p´xq P r0; 1r and g ˝ T̃ ˝ g´1ppx, εqq “ py, 0q

0

reverses the orientation reverses the orientation

preserves if T̃ pxq P r´1; 0r and g ˝ T̃ ˝ g´1ppx, εqq “ py, 1q

the orientation preserves the orientation preserves the orientation

if T̃ pxq P r0; 1r and g ˝ T̃ ˝ g´1ppx, εqq “ py, 0q

In each case, either g ˝ T̃ ˝ g´1ppx, εqq “ py, εq and g ˝ T̃ ˝ g´1 preserves the orientation at px, εq, either
g ˝ T̃ ˝ g´1ppx, εqq “ py, 1´ εq and g ˝ T̃ ˝ g´1 reverses the orientation at px, εq. So g ˝ T̃ ˝ g´1 is an OFIET on
[0;1[.
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Thus Ψ is an isomorphism between OFIET([0;1[) and IET([-1;1[). ˝

5.2 A�ne interval exchange transformations

De�nition 10 (AIET). An a�ne interval exchange transformation (AIET) on r0; 1r is a bijection from r0; 1r
onto itself which is everywhere continuous on the right, continuous except on a �nite number of points and
di�erentiable but on a �nite set and with constant di�erential on every interval where it is de�ned.
One denotes by ∆pT q the union of discontinuities of T and of the �nite set where its di�erential T 1 is not
de�ned.

In the following illustrations, we represent in black the intervals where the AIET is an isometry. The intervals
that are expanded (resp. tightenend) by the AIET are in deep (resp. light) colors and their images in light
(resp. deep) colors.

Example 6. Let a Ps0; 1r and θ ą 0 such that 0 ă θa ă 1. De�ne Ra,θ by:

@x P r0; 1r, Ra,θpxq “

$

&

%

θa if 0 ď x ă a

1´θa
1´a x`

θ´1
1´aa if a ď x ă 1

.

Then Ra,θ is a continuous AIET with ∆pRq “ tau.

r r r

r r r

a

IA IB

θa

Ra,θpIAq Ra,θpIBq

Figure 20: Example of the AIET Ra,θ

Example 7. Let T be de�ned by:

@x P r0; 1r, T pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2x` 3
5 if x P A “

“

0; 2
10

“

x` 3
10 if x P B “

“

2
10 ,

3
10

“

1
3x`

3
10 if x P C “

“

3
10 ; 6

10

“

x´ 3
5 if x P D “

“

6
10 ; 1

“

.

One easily checks that T is an AIET, and A,B,C and D are its intervals of continuity. Figure 21 illustrates T .

r r r r

r r r r

IA IB IC ID

T pIAqT pIBqT pICqT pIDq

T

Figure 21: Example of the AIET T
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An example of a subgroup

The following theorem is an adaptation of Theorem 8.1 of [DFG13].

Theorem 5. There is a subgroup F ă AIET pr0; 1rq generated by two elements that contains an isomor-
phic copy of all �nite groups and a free semigroup.

Proof. Consider an AIET r, de�ned on r0; 1r, which is the identity on r 23 ; 1r and that acts on r0; 2
3 r similarly

as Ra,θ of Example 6. More precisely, let a P r0; 2
3 r and θ ą 1 such that θa P r 13 ; 2

3 r and de�ne:

@x P r0; 1r, rpxq “

$

’

’

’

&

’

’

’

%

θa if 0 ď x ă a

1´θa
1´a x`

θ´1
1´aa if a ď x ă 2

3

x if 2
3 ď x ă 1

.

Consider the involution s that switches r 23 ; 1r and r 13 ; 2
3 r (see Figure 22).

r r r

r r r

a 2
3

IA IB IC

θa

rpIAq rpIBq rpICq

r

r r r

r r r

1
3

2
3

I 1A I 1B IC

spI 1Aq spI 1Cq spIBq

s

Figure 22: The AIETs r and s

We prove that the subgroup F “ xr, sy ă AEIT pr0; 1rq contains every permutation group Sn.
Let x “ 1

2θ . For every integer k ě 0, set Ik “ rr
kpxq, rk`1pxqr.

We claim that xr, sy contains, for every k ě 0, the involution that exchanges (with a piecewise a�ne map) Ik and
Ik`1 and that is the identity everywhere else. Thus xr, sy contains the symmetric group over the non-negative
numbers.
Consider the elements r1 “ srs, r2 “ r´1r1r, t “ r1´1r2. Then the element σk “ rktr´k exchanges (with a
piecewise a�ne map) Ik and Ik`1 and is the identity everywhere else. See Figure 23.

Now we prove the second part of the theorem: F contains a free semigroup, namely G “ xr, r1y.
Let W be a non trivial reduced word over the letters r and r1. Denote by w the associated AIET. Both r and r1

are non decreasing piecewise a�ne maps, distinct to the identity, so there exist x, x1 P r0; 1r such that rpxq ą x
and r1px1q ą x1. Since W is not empty, we have either wpxq ą x (if W contains the letter r) or wpx1q ą x1 (if
W contains the letter r1). Thus w is not the identity.
Let W 1 ‰W be another non trivial reduced word over the letters r and r1. Denote by w1 the associated AIET
and let us show that w ‰ w1.
Up to replacing W and W 1 by V ´1W and V ´1W 1 where V is the common pre�x of W and W 1, we may assume
that W and W 1 do not begin with the same letter. Up to exchanging the role of W and W 1, we assume that
W “ rW1 begins with an r and W 1 “ r1W1 begins with an r1.
Since r and r1 act the same way on r0; 1

3θ r (by multiplication by θ), any word of length n sends r0; 1
3θn r to r0; 1

3 r

by multiplication by θn. We conclude that two words over the letters r and r1 with di�erent lengths cannot
lead to the same AIET. So if W and W 1 do not have the same length, then w ‰ w1.
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It remains the case where W and W 1 have the same length n. Both w1 “ r´1w and w11 “ r1´1w1 send r0; 1
3θn´1 r

to r0; 1
3 r by multiplication by θn´1. In particular:

w1

ˆ

1

3θn

˙

“ w11

ˆ

1

3θn

˙

“
1

3θ

and

w

ˆ

1

3θn

˙

“ r

ˆ

1

3θ

˙

“
1

3

whereas

w1
ˆ

1

3θn

˙

“ r1
ˆ

1

3θ

˙

“
2

3
.

So w ‰ w1.

r r r r

r r r r

1
3θ

2
3

1
3

IA1 IA2 IB IC

2
3
` θa

r1pIA1
q r1pICq r1pIA2

q r1pIBq

r1

r r r r

r r r r

1
3θ2

1
3θ

2
3

IA1
IA2 IB IC

3´ 1
3θ

r2pIA1
q r2pIBq r2pIA2

q r2pICq

r2

r r r r

r r r r

1
3θ2

1
3θ

1
3

I1 I2

σ0pI1qσ0pI2q

σ0

r r r r

r r r r

1
3θ

1
3

rp 1
3
q

I2 I3

σ1pI2qσ1pI3q

σ1

r r r r r r r r r
1
3θ

1
3

r
`

1
3

˘

2
3

I1 I2 I3 I4 I5 I6 ...

Figure 23: The AIETs r1, r2, t “ σ0, σ1 and the �rst few intervals Ik

˝
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