
Higher-level error messages for OCaml modules
Malo Monin

Intern
ENS Rennes
Bruz, France

Florian Angeletti
Research engineer

Cambium team
Inria Paris center, France

Abstract—Small mistakes in OCaml modules often result in
huge error messages that are both hard to read and uninforma�
tive, although technically correct. Indeed, some modules contain
many thousands of items. Detecting typos in field names can
greatly improve error messages by providing a few “did you
mean”�like suggestions to the user instead of a long list of
missing fields. In order to display those hints in reasonable time,
we have explored a way to compute them efficiently using an
ingenious combination of commonly known data structures and
algorithms.

Index Terms—OCaml, modules, diffing, error messages

I. Introduction

OCaml is a functional programming language created in 1996
[1]. One of its characteristic features is its module system,
which lets the user organize programs into well-separated
units of code. A module is a collection of named fields that
can be values, types, or even other modules and module types.
An OCaml program consists of pairs of .ml and .mli files
which correspond respectively to a module implementation
and its interface (called a module type). Due to the high
generality of OCaml modules, related error messages are often
very complex, although technically correct. This means one
often finds oneself having to decrypt very large error messages
that were caused by simple spelling mistakes. Our goal is
to produce more readable error messages by detecting those
spelling mistakes. To do so, we design and implement an
algorithm that detects patchable spelling mistakes and creates
error messages accordingly.

Consider the OCaml module types presented in Listing 1,
and suppose the user provides a module of type Implem
where a module of type Interface is expected (for
example, in the .ml file corresponding to a .mli file). To
a human, it is abundantly clear what the two errors are: a
spelling mistake (lenght instead of length), and a missing
field (succ). While the compiler is able to detect the missing
field properly, it does not notice the spelling mistake and
instead considers the value length as a missing field as
well, which can be confusing to the user. The resulting error
message is shown in Figure 1. Ideally, the compiler should be
able to detect spelling mistakes and take them into account
when generating error messages.

In Section II, we formalize this goal and give a weight
function to minimize, as well as time constraints. We then
describe the approach we explored in Section III, before
discussing its viability in Section IV.

module type Implem =
sig
 type t
 val lenght : t -> int

end

module type Interface =
sig
 type t
 val length : t -> int
 val succ : t -> t
end

Listing 1: Two module types—that of an implementation, and an interface.

Signature mismatch:
...
The value length is required but not provided
The value succ is required but not provided

Fig. 1: The current error message in the situation presented in Listing 1
(slightly altered for readability).

II. Objective

Given an expected module type (the interface) and the type of
a provided module (the implementation), we intuitively want
to construct a “patch” from the type of the provided module
to the expected module type. Such a patch should be able to
perform common operations like renaming fields, changing
the type of values, or, if necessary, adding new fields. Ideally,
we want to suggest changes that are the easiest possible to
implement. In particular, we want to favor name changes to
field additions because the former can be applied by changing
a few characters only, while the latter requires writing new
code. In this section, we formalize the notion of a patch and
propose a way to measure its quality.
A. A formalization of patches

Formally, we consider module types as sets of fields. A field 𝑓
is composed of a name, denoted name(𝑓), and a description
(for a value, its type; for a type, an alias, a constructor, or
nothing; etc.), denoted desc(𝑓). Each field 𝑓 also has a kind
(“value,” “type,” “module,” “module type,” “class,” “class
type,” or “type extension”), denoted kind(𝑓). The descriptions
of fields of the same kind are partially ordered by a subtyping
relation ⪯. A field 𝑓 is said to be assignable to a field 𝑔
if desc(𝑓) ⪯ desc(𝑔). Because fields of different kinds live
within different namespaces, we consider each kind separately.
From now on, we suppose that all values have the same kind.

Given an expected module type 𝑀 and a provided module
type �̃� , the patch 𝑝 we want to construct consists of:

• the set of valid fields alongside their counterpart in the
interface

𝒱(𝑝) = {(𝑓, 𝑔) ∈ �̃� ×𝑀|name(𝑓) = name(𝑔)
desc(𝑓) ⪯ desc(𝑔) }

June–July 2024 (last updated January 2025) 1/6 L3 internship report

• a set of fields with invalid descriptions alongside their
counterparts in the interface

𝒟(𝑝) = {(𝑓, 𝑔) ∈ �̃� ×𝑀|name(𝑓) = name(𝑔)
desc(𝑓) ⋠ desc(𝑔) }

• a set of fields to rename alongside their counterparts in
the interface

𝒩(𝑝) ⊆ {(𝑓, 𝑔) ∈ �̃� ×𝑀|name(𝑓) ≠ name(𝑔)
desc(𝑓) ⪯ desc(𝑔) }

• a set of fields to add
𝒜(𝑝) ⊆ 𝑀

A patch 𝑝 must be such that any field of �̃� appears at most
once in 𝒱(𝑝) ⊔ 𝒟(𝑝) ⊔𝒩(𝑝), and each field of 𝑀 appears
exactly once in 𝒱(𝑝) ⊔ 𝒟(𝑝) ⊔𝒩(𝑝) ⊔ 𝒜(𝑝) (i.e., a field is
either valid, has the wrong description, has the wrong name,
or is missing). Intuitively, 𝑝 describes how to morph �̃� into
𝑀 by altering the fields of �̃� to transform them into fields of
𝑀 . Many such patches may exist for a single ⟨�̃�,𝑀⟩ pair.
The next section aims to quantify the quality of a patch.
B. Weight of a patch

Different categories of changes have different implications for
the user: adding a field requires writing new code, changing
the description of a field likely requires rewriting some code
(e.g., changing the type of a function requires changing its
implementation), and altering the name of a field only requires
editing a few characters. Our goal being to suggest a minimal
amount of changes to the user, we should prefer renaming
to other categories of changes. Nonetheless, we only want to
suggest renames that are likely to be correct. This is why we
only consider 𝒜(𝑝) and 𝒩(𝑝) in the weight of a patch 𝑝.

As a reminder, the usual edit distance between two
words 𝑤 and 𝑤′, denoted ED(𝑤,𝑤′), is the minimal
amount of single character deletions, insertions, or substi-
tutions necessary to transform 𝑤 into 𝑤′. For example,
ED(survey,surgery) = 2 (replace v with g, and add
r). This is typically calculated using dynamic programming
algorithms [2]. Some more complex edit distances might
allow character transpositions (i.e., swapping two adjacent
characters), or even assign different costs to each edit (e.g.,
based on the physical distance between keys of a keyboard).
In this work, we use the most basic form of edit distance for
simplicity.

To prevent favoring changing short names simply because
there are fewer characters to modify, we define the normal"
ized edit distance between two words 𝑤 and 𝑤′, denoted
ED(𝑤,𝑤′):

ED(𝑤,𝑤′) = ED(𝑤,𝑤′)
|𝑤′|

Additionally, to hinder changing the name of a field too much,
we define the normalized edit distance with a cutoff 𝛼 ∈ ℝ+
for any two words 𝑤 and 𝑤′, denoted ED𝛼(𝑤,𝑤′), as follows:

ED𝛼(𝑤,𝑤′) = {ED(𝑤,𝑤
′), if ED(𝑤,𝑤′) ≤ 𝛼

+∞, otherwise

�̃� =

{{
{{
{{
{val x1 : int
val x2 : int
val xc : bool
val x5 : unit}}

}}
}}
}

𝑀 =

{{
{{
{{
{val x1 : int
val x2 : float
val x3 : bool
val x4 : char }}

}}
}}
}

𝑝 :

{{
{{
{{
{𝒱(𝑝) = {val x1 : int}
𝒟(𝑝) = {(val x2 : int,val x2 : float)}
𝒩(𝑝) = {(val xc : bool,val x3 : bool)}
𝒜(𝑝) = {val x4 : char}

Fig. 2: Two module types �̃� and 𝑀 , and a patch 𝑝 from �̃� to 𝑀 .

Finally, given a patch 𝑝, we judge its quality by considering
its weight, denoted 𝑤(𝑝), and defined by

𝑤(𝑝) = ⟨|𝒜(𝑝)|, ∑
(𝑓,𝑔)∈𝒩(𝑝)

ED1/2(name(𝑓), name(𝑔))⟩

The weight of a patch is a pair whose first component is the
number of fields the patch considers as completely missing,
and whose second component is the sum of the normalized
edit distances with cutoff 1/2 corresponding to each rename.
For example, the patch in Figure 2 has a weight of ⟨1,12⟩.
The value of the cutoff was chosen arbitrarily and is probably
a good default.

Ideally, we want to minimize the weight for the order ⊴
such that ⟨𝑥,𝑦⟩ ⊴ ⟨𝑥′,𝑦′⟩ if, and only if, both 𝑥 ≤ 𝑥′ and 𝑦 ≤
𝑦′. Sadly, this order is not total, so there might not be a least
element. Therefore, we try to minimize the weight for the
lexicographic order. This is not too problematic because the
second component is bounded thanks to the cutoff.

An interesting subtlety is that some fields of a module
can appear in the description of other fields. For example, a
type can appear within the type of a submodule, or in that
of a value (Listing 2). Essentially, this makes the subtyping
relation ⪯ dependent on the patch itself. This can be solved by
computing the patch in multiple iterations to find a fixed point,
each time using the previous patch as a basis. In practice, we
only do five iterations, but a future improvement could be to
compute an actual fixed point.
C. Time constraint for feedback loops

Minimizing the weight of patches is not the only important
metric. Indeed, programmers often use editors that let them
preview error messages in real-time, as they are editing source
code [3]. For this reason, it is not acceptable to have error
messages take too much time to compute. In this work, we
impose a total time of less than 500 ms for modules at the

module type Provided =
sig
 type me_type
 val x : me_type
end

module type Expected =
sig
 type my_type
 val x : my_type
end

Listing 2: Renaming me_type to my_type has the effect of making the
value x well-typed.

June–July 2024 2/6 L3 internship report

boundary between human-written and machine-generated in
terms of size. This is in line with the 150 ms average visual
stimulus reaction time for humans. In practice, some code-
bases contain modules with thousands of elements. In most
reasonable cases, however, this upper bound is unreached.
Moreover, modules that contain hundreds of fields are gen-
erally obtained by including smaller modules that can be
checked independently.

As explained in Section II.A, a different patch is computed
for each kind by only considering the corresponding fields.
There are seven different field kinds, leaving us a 70 ms
window to compute a patch for each.

III. Efficiently finding spelling mistakes using
fuzzy matching

The first step in constructing a patch 𝑝 is to match fields by
name. Unchanged fields are matched silently (they constitute
𝒱(𝑝)), and each field whose name is unmodified, but whose
description does not respect the subtyping relation, (i.e., each
element of 𝒟(𝑝)) displays a type error. What remains are
the disjoint sets 𝑅 ⊆ 𝑀 of expected, but absent, fields, and
𝐿 ⊆ �̃� of present, but not required, fields. We are trying
to pair the fields of those two sets with each other (i.e.,
construct 𝒩(𝑝) ⊆ 𝐿 × 𝑅, from which 𝒜(𝑝) can be deduced)
in a way that minimizes the weight of the resulting patch.
Because patches are computed separately for each field kind,
we suppose hereafter that all considered fields have the same
kind (i.e., the kind function is constant over 𝐿 ⊔ 𝑅).
A. Using a greedy algorithm

As a first attempt, one might be tempted to use a greedy ap-
proach: for each field 𝑔 ∈ 𝑅 successively, consider it a rename
of the first not-yet-paired, compatible field 𝑓 ∈ 𝐿 such that
ED1/2(name(𝑓), name(𝑔)) is finite. This algorithm is both
easy to implement and computationally efficient. However, it
fails at producing an optimal patch, as illustrated in Listing 3.
B. Computing a maximum stable marriage

Another way is to compute a stable marriage between 𝐿
and 𝑅, where the order of preference of a field 𝑓 ∈ 𝐿
is given by 𝑔 ↦ ED1/2(name(𝑓), name(𝑔)) (i.e., 𝑓 prefers
𝑔1 to 𝑔2 if, and only if, ED1/2(name(𝑓), name(𝑔1)) ≤
ED1/2(name(𝑓), name(𝑔2))), and that of a field 𝑔 ∈ 𝑅 is
given similarly by 𝑓 ↦ ED1/2(name(𝑓), name(𝑔)).

As a reminder, given two disjoint sets 𝐿 and 𝑅 and, for each
element, an order of preference of elements of the other set,
a stable marriage is a pairing of elements of 𝐿 with elements
of 𝑅 such that there are no two elements ℓ ∈ 𝐿 and 𝑟 ∈ 𝑅
that both prefer each other to their respective pairing. The

module type Provided =
sig

 val do_domething : t
end

module type Expected =
sig
 val undo_something : t
 val do_something : t
end

Listing 3: The greedy algorithm may consider do_domething a rename of
undo_something, yielding a patch of weight ⟨1, 314⟩. The optimal solution,
however, pairs do_domething with do_something in a patch of strictly
lesser weight ⟨1, 112⟩.

module type Provided =
sig
 val field_a : 'a
 val field_b : 'a -> 'b
end

module type Expected =
sig
 val field_1 : 'a
 val field_2 : 'a -> 'b
end

Listing 4: In this situation, {field_a↦ field_2} is a stable marriage
with weight ⟨1,17⟩, maximal for inclusion. Meanwhile, the stable marriage
{field_a↦ field_1,field_b↦ field_2}, pairs more fields, re-
sulting in a strictly lesser weight of ⟨0,27⟩.

usual Gale–Shapley algorithm [4] is guaranteed to compute a
stable marriage of maximal cardinality only if each element
ranks all elements from the other set, with a strict order.

Unfortunately, we are not in this situation: as illustrated
in Listing 4, the Gale–Shapley algorithm is not sufficient to
reduce the first component of the weight function as much
as possible (i.e., pair as many fields as possible). Computing
a stable marriage of maximal cardinality in the general case
turns out to be NP‑hard, which is why we settle for the
3/2‑approximation computed by Király’s algorithm [5].

Király’s algorithm runs in time linear in the sum of the
lengths of the preference lists. It works similarly to the Gale–
Shapley algorithm, except it handles ties more carefully. In
this regard, it might consider some pairings multiple times,
although this is bounded, which guarantees the linear run time.
C. Computing the preference lists

a) A first approach: Computing the orders of preference essen-
tially requires computing a matrix of edit distances between
elements of 𝐿 and elements of 𝑅 (akin to the ranking matrix
in [4]). The naïve method, consisting of computing each cell
independently using an algorithm such as the Wagner–Fischer
algorithm [2], is too slow for our needs. For this reason, we
use tries to compute each column of the matrix in a single
operation, taking inspiration from common fuzzy searching
algorithms for fixed dictionaries [6], [7]. This is especially
efficient because there are typically fewer missing fields than
additional fields.

A trie is a way to represent a map from words to arbitrary
data that shares the representation of common prefixes, as
illustrated in Figure 3. By constructing a trie 𝔗 mapping
names of fields of 𝐿 to the corresponding fields, we can
compute the edit distance between any given word and all
names of fields of 𝐿 simultaneously. In particular, this lets
us compute a column of the matrix, corresponding to a field
𝑔 ∈ 𝑅, in a single pass. Sorting the fields of 𝐿 by increasing
distance to 𝑔 gives us the order of preference of 𝑔.

Algorithm 1 is a simplified version of the algorithm one
may use to compute a column of the distance matrix. To

t

o
o

e a

i
n

𝜀

t

to too

te tea

i in

Fig. 3: A trie containing the words “to,” “too,” “tea,” and “in.” Terminal
nodes are represented with rectangles; each typically contains associated data.

June–July 2024 3/6 L3 internship report

Algorithm 1: Compute column 𝑗 of distance matrix 𝐷.

ComputeDistances(𝑇 , 𝑤, 𝑑):
1 if 𝑤 = 𝜀 and 𝑇 is a terminal node with value 𝑖:
2 [𝐷]𝑖,𝑗 ← min([𝐷]𝑖,𝑗, 𝑑) ▷ Update distance.
3 if 𝑤 ≠ 𝜀:
4 ComputeDistances(𝑇 , 𝑤[1 :], 𝑑 + 1) ▷ Delete 𝑤[0].
5 for each edge →

𝑎
𝑇 ′ of 𝑇 :

6 ComputeDistances(𝑇 ′, 𝑤, 𝑑 + 1) ▷ Insert 𝑎.
7 if 𝑤 ≠ 𝜀:
8 if 𝑎 = 𝑤[0]:
9 ComputeDistances(𝑇 ′, 𝑤[1 :], 𝑑) ▷ Keep 𝑎.

10 else:
▷ Substitute 𝑎 for 𝑤[0].

11 ComputeDistances(𝑇 ′, 𝑤[1 :], 𝑑 + 1)

compute the column 𝑗 corresponding to a field 𝑟 ∈ 𝑅, call
Walk(𝔗, name(𝑟), 0), where 𝔗 is the trie mapping all names
of fields of 𝐿 to the index 𝑖 of their corresponding lines in
the distance matrix (all the distances are initially infinite).

b) Lazy preference list computation: One benefit of Király’s
algorithm is that it considers the elements of each preference
list in order, and does not always go through the entirety of
each list. We can take advantage of that by computing the
elements of the preference lists on demand to prevent unnec-
essary computations. This requires first rewriting Algorithm 1
as the more general Algorithm 2, which computes all transfor-
mations of a word 𝑤 into the words of a trie 𝑇 . Algorithm 2 is
essentially the implementation of a Levenshtein automata [7].

Given a word 𝑤, the tree of transformations
Transform(𝔗,𝑤) can be searched using an algorithm such
as Dijkstra’s [8]. Contrary to Boytsov in [7], we search the
tree of transformations breadth-first instead of depth-first. This
means we get the elements in order of preference directly, and
lets us compute only the information we need by extending the
boundary just enough to compute the next element every time.

In practice, the transformation tree is searched and pruned
using the A* search algorithm [9] with a simple heuristic
based on additional metadata attached to each trie (namely, the
lengths of the shortest and longest suffixes starting at each sub-
trie). A set of (𝑇 , 𝑤) pairs, each alongside a current distance
𝑑, (i.e., a priority queue) is enough to represent the state of the
search algorithm because the transformation tree is acyclic.
Therefore, the search algorithm can easily be converted into
an external iterator that is called whenever a new element of
the preference list is needed by Király’s algorithm. Such an
external iterator is created for each field of 𝑅.

c) Limiting the length of the preference lists: Király’s algo-
rithm performs in time linear in the sum of the lengths of the
preference lists. As aforementioned, each field typically has
a very short preference list. Nevertheless, a maximum length
of ten elements, after which no more field is considered, is
enforced. This is a fair balance between not affecting the

Algorithm 2: Transformations of 𝑤 into words of a trie 𝑇 .

Transform(𝑇 , 𝑤):
1 𝑀 ← ∅
2 if 𝑤 = 𝜀 and 𝑇 is terminal:
3 𝑀 ← {(𝑇 , 𝜀)}
4 if 𝑤 ≠ 𝜀:

▷ Delete 𝑤[0].
5 𝑀 ←𝑀 ⊔ (𝑇 ,𝑤) →

1
 Transform(𝑇 , 𝑤[1 :])

6 for each edge →
𝑎
𝑇 ′ of 𝑇 :

▷ Insert 𝑎.
7 𝑀 ←𝑀 ⊔ (𝑇 ,𝑤) →

1
 Transform(𝑇 ′, 𝑤)

8 if 𝑤 ≠ 𝜀:
9 if 𝑎 = 𝑤[0]:

▷ Keep 𝑎.
10 𝑀 ←𝑀 ⊔ (𝑇 ,𝑤) →

0
 Transform(𝑇 ′, 𝑤[1 :])

11 else:
▷ Substitute 𝑤[0] for 𝑎.

12 𝑀 ←𝑀 ⊔ (𝑇 ,𝑤) →
1

 Transform(𝑇 ′, 𝑤[1 :])
13 return 𝑀

vast majority of cases, and preventing extreme situations from
degrading performances too much.
D. Using the greedy algorithm as a fallback

Despite all those optimizations, our implementation of
Király’s algorithm stays slower than the greedy algorithm
mentioned in Section III.A. For this reason, we fall back
to the greedy algorithm when the input becomes too large.
The empirically determined condition to switch to the greedy
algorithm is max(|𝐿|, |𝑅|) > 60.

One thing to note is that the inputs of Király’s algorithm are
𝐿 and 𝑅, meaning only the missing fields from the expected
module type and the additional (or misspelled) fields from
the provided module type matter in terms of complexity. In
particular, the size of the expected module type has no impact
on the performance of Király’s algorithm. This is not exactly
the case for the size of the provided module type, as any
field of the provided module type that is not present in the
expected module type is part of 𝐿, and needs to be compared
to fields of 𝑅. This is a problem on the matter of which closer
attention should be brought in the future.

IV. Results

The work presented in this document has been fully imple-
mented in a fork of the OCaml compiler [10] and will be
submitted to the main branch as a pull request. After review,
and some potential changes and improvements, this change
could be included in the next publicly distributed version of
the compiler.

June–July 2024 4/6 L3 internship report

module type Provided =
sig
 val my_float : bool
 val also_floot : float
 val my_bool : bool
 val my_int : int
 val my_other_int : int

 module MyModule : sig
 val inner_int : int
 end
end

module type Expected =
sig
 val my_float : float
 val also_float : float
 val my_bool : bool
 val my_int : int

 module MyModuleA : sig
 val inner : float
 end
 module MyModuleB : sig
 val inner_int : int
 end
end

The value also_float is required but not provided
The module MyModuleA is required but not provided
The module MyModuleB is required but not provided

Try changing value my_float to be a float
Hint: Try renaming value also_floot to also_float
Hint: Try renaming module MyModule to MyModuleB
Try adding a module MyModuleA

Listing 5: A situation where a module of type Provided was provided
where a module of type Expected was expected would previously result
in the first message, and now results in the second message.

We are now able to make smarter suggestions to the user
when a provided module does not have the expected type.
Listing 5 and Listing 6 are two examples of situations where
the error message is noticeably improved.

In this section, we measure the quality of the error messages
and the execution time of the algorithm, especially on large
inputs. This requires generating large modules, which is done
using a Python script that creates OCaml modules containing
values with random names (strings of ten to fifteen random
identifier characters) and types (built recursively from a pool
of type constructors from the standard library), and applies
random modifications to them. A modification consists of
reordering values, adding a value, removing a value, renaming
a value, or changing the type of a value. Those five kinds of
modification are assigned equal probabilities. A small example
of a generated module (Expected) and its modified version
(Provided) are available in Appendix 1.
A. Quality of the result

We will first evaluate the quality of the error messages,
by considering the first component of the weight function
introduced in Section II.B. In other words, we measure the
number of fields the algorithm suggests adding, in opposition
to obtaining them by renaming other fields. About a fifth of the
modifications introduced by the generator are value deletions,

module type Provided =
sig
 type me_type
 val me_value : me_type
end

module type Expected =
sig
 type my_type
 val my_value : my_type
end

Hint: Try renaming type me_type to my_type
Hint: Try renaming value me_value to my_value

Listing 6: A situation where a module of type Provided was provided
where a module of type Expected was expected now results in the message
above. This situation is akin to the one presented in Listing 2

TABLE I: Average number (two significant figures) of non-paired
fields on random modules of varying size, and with a varying amount
of modifications applied. The parenthesized numbers are the expected
amount of deletion modifications. Gray cells: the greedy algorithm

is used.

Modifs →
Size ↓

10
(2)

20
(4)

50
(10)

100
(20)

200
(40)

500
(100)

1 000
(200)

100 1.9 4.1 9.2

200 1.9 4.8 10 19

500 2.2 3.7 10 18 38

1 000 1.6 4.2 9.3 18 40 100

2 000 1.6 3.7 8.8 22 40 100 200

5 000 2.1 4.1 11 19 37 100 200

meaning we expect the first component of the weight function
to be about a fifth of the total number of modifications intro-
duced. Table I illustrates that the number of paired items is
close to optimal.

It should be noted that the randomly generated names tend
to be very far apart, meaning the preference lists often consist
of single elements, which does not create situations where the
greedy algorithm performs unsatisfyingly. This does not affect
the satisfactory nature of those results in the cases where
Király’s algorithm is used.
B. Performance

We now try to measure the compute time of the algorithm.
Remember that we imposed a 70 ms window for each run
in Section II.C. In other words, all the benchmarks in this
section have the goal of being below this 70 ms upper bound.

Figure 4 illustrates that this upper bound is generally
respected, with the exception of some extreme cases. One
important detail is that the complexity of the whole algorithm
does not depend on the module size. Rather, the determining
factor is the number of modifications.

In Figure 5, we can see that the modules with additional
fields compared to the expected interface take more time to
analyze. Indeed, each additional field needs to be considered

10 20 50 100 200 500 1 000
Number of modifications

0.5
1
2

5
10
20

50
100
200

Ti
m

e
(m

s)

Module size
50 000
20 000
10 000
5 000
2 000
1 000
500
200
100

Fig. 4: Average compute time on random modules with varying sizes.
Dots: the greedy algorithm is used. The gray area indicates the 70 ms
threshold.

June–July 2024 5/6 L3 internship report

10 20 50 100 200 500
Number of modifications

1
2
5

10
20
50

100
200

Ti
m

e
(m

s)

Additional fields
1 000
500
200
100
50
20
10
5
0

Fig. 5: Average compute time on random modules with varying amounts of
additional fields. Dots: the greedy algorithm is used. The gray area indicates
the 70 ms threshold.

when trying to find a missing field. This result is less satis-
factory than the previous one and indicates that additional
work is needed to improve this situation.

V. Future works

Future works in this area could focus on the following topics.
Performance-wise, more benchmarks could be made in order
to more clearly understand the impact of different parts of the
algorithm on its performance. This would make it possible
to improve the implementation to gain a constant factor.
Moreover, the current dependency of the compute time on
the number of additional fields is not satisfactory and should
be reduced if not eliminated. A possible improvement could
be to take into account the placement of fields in sources,
as users tend to write fields in the same order in the imple-
mentation as in the interface. Feature-wise, diffing modules
recursively, as well as considering tree-wise modifications
(such as subtree copying and moving) for modules, could
help provide more precise suggestions to the user, at the cost
of a much higher computational complexity. Moreover, other
edit distances could be explored, as well as different ways of
normalizing the edit distance (e.g., dividing by the sum of the
lengths of both arguments, or by their product).

VI. Conclusion

During this internship, we explored a way to improve OCaml
module error messages by detecting spelling mistakes effi-
ciently using an ingenious combination of algorithms and data
structures. An implementation of this work in a fork of the
OCaml compiler has been done, and will soon be proposed
as a pull request on the main compiler branch.

References

[1] X. Leroy, J. Vouillon, D. Doligez, D. Rémy, and A. Suárez, The
core OCaml system: compilers, runtime system, base libraries. (1996).
[Online]. Available: https://github.com/ocaml/ocaml

[2] Wikipedia contributors, “Wagner–Fischer algorithm.” Accessed: Jun.
05, 2024. [Online]. Available: https://en.wikipedia.org/w/index.php?
title=Wagner%E2%80%93Fischer_algorithm&oldid=1211775080

[3] Stack Overflow, “Stack Overflow Developer Survey 2023.” Accessed:
Jul. 17, 2024. [Online]. Available: https://survey.stackoverflow.co/2023/

[4] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, Jan. 1962, doi: 10.1080/00029890.1962.11989827.

[5] Z. Király, “Linear Time Local Approximation Algorithm for Maximum
Stable Marriage,” Algorithms, vol. 6, pp. 471–484, Aug. 2013, doi:
10.3390/a6030471.

[6] G. Navarro, “A guided tour to approximate string matching,” ACM
Computing Surveys (CSUR), vol. 33, no. 1, pp. 31–88, Mar. 2001,
doi: 10.1145/375360.375365.

[7] L. Boytsov, “Indexing methods for approximate dictionary searching:
Comparative analysis,” ACM Journal of Experimental Algorithmics, vol.
16, pp. 1.1–1.91, May 2011, doi: 10.1145/1963190.1963191.

[8] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”
Numerische Mathematik, vol. 1, pp. 260–271, Jun. 1959.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, Jul.
1968, doi: 10.1109/TSSC.1968.300136.

[10] M. Monin and F. Angeletti, MDLC01/ocaml at improved"module"error"
messages. (Jun. 2024). [Online]. Available: https://github.com/MDLC
01/ocaml/tree/improved-module-error-messages

Appendix 1: An example of a random module

The playful reader is encouraged to find the seven modifications introduced
by the generator.

module type Provided = sig
 val rhhpxdt88duy_q'ny : int Seq.t * ('h * 'u)
 val q9f7064sn9liyyza5 : bool -> float
 val l1jijy'10aadvi8fg : int * float
 val xz7k6s7imgky1wo'8 : bool
 val po3qqtfzvifh : unit -> int
 val bbq6'_yt9d2bh70s5 : bool
 val a6ibeit4enp1i : int
 val ab2x0ng_ijmizokpe : int
 val d0l65b5ezhzie : int
 val o867ijoir750hq : 'k list -> int -> unit
 val rue'e0l9vinj0fnv_ : float
 val v489maf18whfdi5 : unit
 val bvytkl99fb3qzgy : unit
 val aqxndc_u1bs'2d : float
 val d_scrmxvv_u'07qh5 : float
 val y40d206ni4f236 : bool
 val bt2'g31ack6aqju : bool
 val j5mbcfg7s_yt9nvp : int
 val u6a010w22kns1zwqb : unit * 'e list
 val egtxu5dzu66g : int * bool
end

module type Expected = sig
 val rhhpxdt88duy_q'ny : int Seq.t * 'h * 'u
 val q9f7064sn9liyyza5 : bool -> float
 val l1jijy'10aadvi8fg : int * float
 val bmq6'_yt92bh7s5 : bool
 val afvf51afh_3fv'r_6 : unit -> unit
 val a6ibeit4enp1i : int
 val ab2x0ng_ijmizokpe : int
 val d0l65b5ezhzie : int
 val o867ijoir750hq : 'k list -> int -> unit
 val rue'e0l9vinj0fnv_ : float
 val v489maf18whfdi5 : unit
 val bvytkl99fb3qzgy : unit
 val aqxndc_u1bs'2d : float
 val d_scrmxvv_u'07qh5 : unit
 val y46206ni4fc36 : bool
 val bt2'g31ack6aqju : bool
 val j5mbcfg7s_yt9nvp : int
 val egtxu5dzu66g : int * bool
end

June–July 2024 6/6 L3 internship report

https://github.com/ocaml/ocaml
https://en.wikipedia.org/w/index.php?title=Wagner%E2%80%93Fischer_algorithm&oldid=1211775080
https://en.wikipedia.org/w/index.php?title=Wagner%E2%80%93Fischer_algorithm&oldid=1211775080
https://survey.stackoverflow.co/2023/
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.3390/a6030471
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/1963190.1963191
https://doi.org/10.1109/TSSC.1968.300136
https://github.com/MDLC01/ocaml/tree/improved-module-error-messages
https://github.com/MDLC01/ocaml/tree/improved-module-error-messages

	Introduction
	Objective
	A formalization of patches
	Weight of a patch
	Time constraint for feedback loops

	Efficiently finding spelling mistakes using fuzzy matching
	Using a greedy algorithm
	Computing a maximum stable marriage
	Computing the preference lists
	A first approach
	Lazy preference list computation
	Limiting the length of the preference lists

	Using the greedy algorithm as a fallback

	Results
	Quality of the result
	Performance

	Future works
	Conclusion
	References
	Appendix 1: An example of a random module

