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Abstract—Large codebases with many contributors inevitably
fall victim to the emergence of bugs and vulnerabilities. The
precise way they are progressively introduced is not yet fully
understood. Prior works have focused mainly on small amounts
of Java codebases because they rely on slow tools and require
human intervention. We propose and evaluate a novel process
for extracting from a Git commit history the changes that induce
a fixing commit and mining patterns from those changes. For
tracking down fix-inducing changes, we use HyperAST, a tool
that far surpasses its predecessors both in terms of memory
usage and in terms of execution time.

Index Terms—Software vulnerabilities, detecting fix-inducing
commits, polyglot code analysis, empirical software engineering

I. INTRODUCTION

When working on codebases where singular contributors
cannot have a complete understanding of the intricate inter-
actions between different parts, it is inevitable that some
modifications will inadvertently contribute to the emergence
of bugs, vulnerabilities, or security breaches. Previous works
[11, [2], [3], [4] have focused on identifying changes within
a codebase history that contribute to the emergence of a bug
or vulnerability (“fix-inducing changes”). This process can
performed at the commit level, or more finely at the level
of particular changes within those commits. One of the ways
of determining the fix-inducing changes for a specific bug
or vulnerability is, given a fixing commit, to track down the
changes that previously affected the same pieces of source
code. However, no satisfying systematic method exists for
applying this procedure. Indeed, previous works use slow
methods involving tools such as Spoon [5], which can take
up to multiple days to analyze an entire project [6], and often
only consider a single programming language (typically, Java
[51, [7], [8]). We present and implement a novel method for
tracking down changes affecting the same pieces of code as
a fixing commit using HyperAST [6]. We apply this method
and use pattern mining algorithms [9] to attempt to reproduce
some of the results from the literature [1], [2], [3], [4].

More specifically, we propose a generic approach that,
starting from a given commit (typically, a fixing commit)
and its repository, traces back the related changes in the
project’s history and compute an abstract summary. An ab-
stract summary is a succession of sets of edits. Each set of
edits describes a commit, and an edit is either an insertion,
a deletion, a move, or an update, associated with semantic
information. For example, adding a function could result in
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the edit “Insert FunctionDefinition.” An abstract summary
describes changes to apply to a starting point (in our case,
the project’s initial commit) to get to an end point (in our
case, the parent of the fixing commit). Then, we mine frequent
closed sequential patterns from the SPMF pattern mining java
library [10] to mine patterns from those abstract summaries.

We formulate the hypothesis that results analogous to the
state of the art’s can be reproduced more efficiently using
HyperAST. To test this hypothesis, we run an evaluation on
Defects4] [11], a dataset of real-world defects. Out of 854 de-
fects, we were able to generate abstract summaries for 280 of
them, and the pattern mining algorithms detected 191,594,297
patterns. This exceedingly large number of patterns, which
indicates that the pattern mining algorithm we used is not
appropriate. We considered other algorithms, but did not have
the time to apply them.

In the Section II, we clarify our goal by laying out the
state of the art, briefly presenting HyperAST, and formulat-
ing a hypothesis and research questions. In Section III, we
unfold the entire process, from the collection of vulnerability-
contributing changes, to the implementation of the tracker,
to the choice pattern mining algorithms. In Section IV, we
compare our results to the state of the art and answer the
research questions. Section V provides an overview of related
works and contextualizes the work presented here.

II. GoaL

In this section, we present existing studies on the emergence
of bugs, vulnerabilities, and complex functions, in code. We
detail some of the methods used in those works to retrace the
life of pieces of code corresponding to bugs or vulnerabilities.
Next, we give a background on HyperAST, the tool we use
for this purpose. Finally, we formulate the hypothesis that
results analogous to the state of the art’s can be reproduced
more efficiently using HyperAST, and introduce our research
questions.

A. State of the art

Previous studies [1], [2] have been able to find valuable
information regarding the emergence of vulnerabilities in
source code. This information ranges from change patterns
(i.e., number of lines added and removed, [1], [2], number
of files touched [1], complexity of the changes [2]) to meta-
information (i.e., time since the project creation, time since
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the file creation, experience of the contributor, workload of
the contributor [1]).

Although existing works use various different methods to
identify the fix-inducing changes or commits (SZZ algorithm
[1], [4], backporting regression tests [3], etc.), they all heavily
rely on human intervention. The state of the art primarily
focuses on Java code, even though it has been shown that the
notion of code complexity, which plays an important role in
the emergence of vulnerabilities [12], varies across languages
[13]. Additionally, the reliance on slow tools, as well as the
requirement for manual classification of commits and changes,
make the state of the art methods unsuitable for large-scale
polyglot analyses. In the following section, we introduce a
data structure that solves those issues.

B. HyperAST

HyperAST [6] is a new data structure that represents an
abstract syntax tree that evolves across time. It is based on Git
and uses Tree-sitter [14] to parse source files. As such, it is
compatible with any language for which a Tree-sitter grammar
can be provided. From a Git repository, HyperAST builds
a concrete syntax tree (CST) with a temporal dimension. It
associates Git object identifiers (OIDs) with CST nodes, thus
making it possible to share the representation of identical
objects in the tree. The overall approach is illustrated in Fig. 1
HyperAST has been implemented in Rust and shows up to
a 99.9% reduction in memory footprint, and up to a 99.99%
gain in construction time compared to Spoon [5], the more
traditional approach. The input files are parsed without error
in 99.98% of the cases. One of the use cases of HyperAST
is tracing the evolution of code elements. [6, Section 4.4, use
case #3] This can be applied to the pieces of code affected
by a fixing commit to trace them back in time and determine
the commits that affected them.

Additionally, we make use of HyperDiff [15], an extension
of HyperAST that enables diffing of commits and the gener-
ation of edit scripts that contain the semantic information
required to build abstract summaries.

C. Research questions

We formulate the hypothesis that results analogous to the
state of the art’s can be reproduced more efficiently using
HyperAST. To test this hypothesis, we propose the following
research questions.

RQ1 Can we track down changes affecting a piece of code
and generate abstract summaries efficiently with Hyper-
AST?

RQ2 Can we mine patterns analogous to the state of the art’s
from the generated abstract summaries?

III. METHODOLOGY

The method presented here is separated into three inde-
pendent steps that each use the result of the previous step.
It is illustrated in Fig. 2. The first step (Section IIL.A) is
the collection of Git repositories and fixing commits. This
information can be obtain for different sources, independently
of the other steps. For example, one might source data from
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Fig. 1: Overall approach of HyperAST [6, Figure 3].

security breach databases, or from bug databases. The second
step (Section IIL.B) accepts the list of Git repositories and
fixing commits collected in the first step in a format agnostic
of the initial database and, for each fixing commit, tracks
down the fix-inducing changes and summarizes them into an
abstract summary, using HyperAST. Finally, the third step
(Section III.C) mines patterns from the abstract summaries
generated in the second step. We detail the inner workings of
each step in the following sections.

A. Gathering data from databases

The first step consists of collecting a list of Git repositories
and fixing commits that can be provided to the tracker. This
step is independent of both the forge where the Git repository
is stored, and the contents of the repository, including the
programming languages used. However, it should be adapted
to each different data source. Indeed, the goal of this step is
to convert data from a given source to a unified format that
can be parsed by the tracker.

The information that the tracker needs is a list of fixing
commits and corresponding Git repositories. For simplicity,
and as further discussed in Section III.B, only repositories
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Fig. 2: Pipeline architecture of the proposed method. Each column corresponds to a step of the process. The top row contains the programs that we wrote,
while the bottom row consists of the existing resources we make use of. Notice how the first and last steps are completely oblivious of each other. Dashed

arrows indicate communication with distant forges using Git.

hosted on GitHub! are supported for now. This is a temporary
restriction that should be lifted in the future. The information
is provided to the tracker as command line arguments. This
makes it easy to plug any bug or vulnerability database into
the tracker using a simple script.

As a proof of concept, we rely on Defects4J [11] as our bug
database. Defects4] is a database of Java bugs that provides
the necessary information. Defects4] contains a total of 854
defects from 17 different repositories. They use Git as their
version control system, with the exception of a single one
(responsible for 26 defects) which uses Apache Subversion,
and had to be excluded for this reason. Defects4] does not
provide a direct link to the project’s repositories. Instead, we
derive it from the report URL. Out of the 828 defects from
the repositories using Git, 280 (33.8 %) have report URLs
under the domain github.com. From those, we infer the URL
of the corresponding GitHub repositories. The corresponding
280 fixing commits and associated GitHub repositories are
the ones we use as inputs for the tracker. In total, we thus
use 32.8 % of the defects from Defects4]. In a Python script,
we query Defects4] through its command line interface, and
call the tracker using subprocess.? An example of a fixing
commit is provided in Listing 1.

Other databases were considered, such as OSV,? a vulner-
ability database maintained by Google. However, lack of time
prevented our applying the method to these databases.

B. Tracking pieces of code

The second step consists of tracking down changes affecting
the same pieces of code as a given commit in prior commits
(i.e., ancestors in the git tree) within a given repository, and
generating a corresponding abstract summary. An concrete
summary is an ordered sequence of sets of edits, where each

thttps://github.com/
2https://docs.python.org/3/library/subprocess.html
3https://osv.dev/

-—— a/Main. java
+++ b/Main. java
@@ -51,12 +51,14 Q@
String code;
switch (color) {
case RED:
code =
break;
case GREEN:
code =
break;
case BLUE:
code =
-+ break;
case YELLOW:
code = "#FFFFO00";

"#FF0000";

"#00FFO0O0";

"#0000FF";

}
Listing 1: Simplified diff for a hypothetical fixing commit.

set of edits corresponds to a single commit, and an edit affects
a given text within a file, and is either an insertion, a deletion,
a modification, or a move. An abstract summary is similar a
concrete summary where text is abstracted away and replaced
with semantic information (e.g., an edit consisting of adding
a new function might become “Insert FunctionDefinition™).
Listing 2 presents an example of a fix-inducing commit, and
Fig. 3 the corresponding abstract summary.

This is achieved using a Rust program that relies on Hyper-
AST as a library. The tracker accepts a list of Git repositories
and commits as command line arguments and generates an
abstract summary for each of them in parallel. For now, the
repositories have to be hosted on GitHub.! This restriction is
temporary and allowed for faster prototyping of the tracker.

Each command line argument received by the tracker corre-
sponds to a single abstract summary generation task and is
independent of the other tasks. As such, the tasks are embar-
rassingly parallelizable, which results in considerable speed
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-—— a/Color. java
+++ b/Color. java
@@ -2,4 +2,5 @@ enum Color {
RED,
GREEN,
BLUE,
+ YELLOW,
}
-—— a/Main. java
+++ b/Main. java
@@ -51,11 +51,13 Q@
String code;
switch (color) {
case RED:
code =
break;
case GREEN:
code =
break;
case BLUE:
code = "#0000FF";
+ case YELLOW:
+ code = "#FFFFO00";
}

Listing 2: Simplified diff for a hypothetical fix-inducing commit leading to
the fixing commit from Listing 1.

"#FF0000";

"#00FFO0OQ0";

up on machines with many cores. The computed abstract
summaries are written to disk at the end of each task.

The tracker uses HyperAST in multiple places to interact
with Git repositories. Notably, HyperAST is used to track
down pieces of code, and to generate abstract summaries.
HyperAST proved to be a powerful tool, although the interface
is imperfect and still evolving as HyperAST is developed. For
this reason, we resort to using the Git command line interface
to detect the pieces of code affected by a fixing commit instead
of relying of HyperAST (left dashed arrow in Fig. 2). This
allowed for faster development of the tracker, but results in
possibly slightly less exact results and worse code quality.
Additionally, some minor modifications had to be applied to
the HyperAST library. Notably, we had to expose 21 struct
fields, a module, a type, and a function, as well as remove
a panic case, raise a constant, and derive Debug for a type
(Rust’s way of making values of a type printable for debug
purposes).

As a developing tool, HyperAST sometimes proves unable
to track pieces of code from a specific commit to its parent.
This happens on 93.9 % of the inputs, although some repos-
itories cause more problems than others, and may take the
form of a panic, an error, or an empty result. In case of a panic
or error, a possible solution is to simply stop the algorithm
as soon as a problem is encountered, effectively acting as if

e Set 1 (corresponding to the only commit)
» Insert EnumValue
» Insert SwitchCase

Fig. 3: A simplified abstract summary* corresponding to the fix-inducing
commit from Listing 2 (we assume no other commit affects this piece of
code in the project history).

4Not generated by the tracker.

the commit history stopped at this point. This solution is not
satisfactory because vulnerabilities are often introduced over
large periods of time: vulnerabilities take an average of 4.2
years, and up to 20 years, to be fully introduced [1, Section
3.1], and are not fixed until 2.6 years after their full intro-
duction on average [1, Section 3.3]. Instead, we simply skip
the parent and compare the child commit to its grandparent.
Seeing as our end goal is to construct an abstract summaries,
skipping some commits is not an issue as long as we do not
skip too many successive commits.

C. Mining patterns

The third and final step consists of mining patterns from the
abstract summaries generated in the previous step. Although
options exist for pattern mining specifically in Git commit
histories [16], [17], we used more a generic solution for
simplicity: an abstract summary is an ordered collection of
unordered sets of edits. This structure matches that of the
inputs of sequential pattern mining algorithms. Sequential pat-
tern mining algorithms mine patterns from ordered sequences
of sets of items [9]. More precisely, the mined patterns are
sequences that occur in more than some given amount of
input sequences. A sequence X, ..., X, is said to occur in
another sequence Yy, ..., Y, if and only if, there exists integers
1<iy<..<ipz<msuchthat X; C Y, ,...,X; CY, . The
support of a sequence is the number of input sequences in
which it appears. A mined sequence is said to be closed when
it does not occur in a different mined sequence having the
same support.

We relied on SPMF [10], a Java pattern mining library.
It provides implementations for a large collection of pattern
mining algorithms [9]. Specifically, we used the frequent
sequential pattern mining algorithm PrefixSpan.’

IV. REesuLts

In this section, we present the results of our works. In par-
ticular, we focus on the benefits of HyperAST and the quality
of the mined patterns. We answer our research questions.

A. Can we track down changes affecting a piece of code
and generate abstract summaries efficiently with HyperAST?

(RQI)

On a ProLiant DL365 Genl0 Plus (2 x AMD EPYC 7543
32-Core CPU @ 2.8GHz; 32/32 cores, 64 threads / CPU) with
a RAM of 756GB, we were able to handle 280 inputs in about
four hours. Since each task is parallelizable, the running time
is determined by the longest-running tasks. Most run in under
five minutes, but some may take multiple hours. Tasks that
result in an empty abstract summary are not always among
the fastest to execute, but tasks that result in an error or panic
tend to halt in a matter of minutes.

With only 6.1 % of the tasks resulting in a non-empty
result, it is not possible to answer RQ1 affirmatively without
first solving this issue. This is further discussed in Section VI.

Shttps://www.philippe-fournier-viger.com/spmf/PrefixSpan.php
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TABLE I: THE FIRST FOUR OUT OF 191,594,297 PATTERNS MINED USING THE
PREFIXSPAN ALGORITHM. THE SUPPORT OF A PATTERN IS THE NUMBER OF
SEQUENCES IN THE INPUT THAT CONTAIN THE PATTERN. THE LAST COLUMN
INDICATES WHETHER A PATTERN IS CLOSED AMONG THE PATTERNS IN THE TABLE.

Pattern Support | Closed?

¢ In some commit

» Insert OpeningBrace 17 No

* In some commit
» Insert Openingbrace 12 No
» Insert WildcardBound

¢ In some commit

» Insert Openingbrace 17 Yes
» Insert ClosingBrace

* In some commit
» Insert Openingbrace 12 Yes

» Insert ClosingBrace
» Insert WildcardBound

B. Can we mine patterns analogous to the state of the art’s
from the generated abstract summaries? (RQ2)

The only pattern mining algorithm we had the time to
test was PrefixSpan [9], and it produced 191,594,297 patterns
from 17 abstract summaries. This amount is too high to
allow for manual interpretation of the generated patterns. In
particular, we were not able to find patterns analogous to the
state of the art’s.

PrefixSpan mines frequent sequential patterns from se-
quences. It is not restricted to closed patterns. In other words,
many of the mined patterns are related for the sequence
inclusion relation. For example, the first four mined patterns
are shown in Table I. Frequent closed sequential pattern
mining algorithms should be considered in the future for a
better chance of meaningful results. This is further discussed
in Section VL

C. Comparison to the state of the art

We were not able to reproduce results analogous to the
states of the art’s. Whether this is due to limitations of
HyperAST, HyperDiff, the pattern mining algorithms used,
or the general method, is to be determined as part of future
works. For now, it is not possible to validate the hypothesis
that results analogous to the state of the art’s can be repro-
duced with HyperAST.

D. Limitations & threats to validity

Mainly due to lack of time, this work has limitations and
threats to validity.

Notably, it prevented our making the abstract summary
generation phase work on all inputs, as well as testing more
pattern mining algorithms. This is detrimental to the quality
of the final result, which may unfairly represent the true
potential of the proposed method. Currently, the tracker fails
to generate abstract summaries in two ways: by erroring or
panicking when calling HyperAST or HyperDiff, and by not
detecting any change, therefore generating empty summaries.
Out of the 280 defects that we used as input to the tracker,
only 17 abstract summaries were generated, which amounts
to a 93.9 % of unsuccessful cases.

Additionally, the necessity to modify the source code
HyperAST deprived us of the ability to depend on HyperAST
as a crates.io® dependency, as is usual with Cargo-built Rust
programs, instead requiring us to include altered sources of
HyperAST as part of the tracker. In particular, this means
future updates to HyperAST will be non-trivial to apply as the
tracker essentially behaves as a fork of HyperAST. However,
the modifications in question are minor and could become part
of HyperAST itself in the future, allowing us to depend on it
as a remote Git dependency, or even as a crates.io dependency.

V. RELATED WORKS

Previous works have already tackled similar topics. While
most focus on Java [5], [7], [8], some propose polyglot
methods, such as CodeShovel [18], a tool that reconstructs
the history of a method in a codebase. This is similar to
our second step, where we track changes related to individual
pieces of code across a repository’s commit history, but
is more limited in scope, CodeShovel focuses on methods,
whereas we may consider any kind of code element.

This builds upon Le Dilavrec’s work on HyperAST [6] and
HyperDiff [15] and presents a use case for those tools: finding
changes affecting the same code elements as a given commit
throughout a Git repository’s history. Some existing work do
not use specialized tools for similar goals, and instead rely on
Git alone to track pieces of code to prevent having to parse
source files [7], [8]. This has the advantage of much faster
execution times (up to the order of magnitude of a minute)
compared to HyperAST and other tools that do not rely on
Git mechanisms.

VI. CONCLUSION AND FUTURE WORKS

We proposed and implemented a novel method to study
the mergence of security breaches in code. We showed how
HyperAST has the potential to outperform existing tools in
terms of compute time to generate abstract summaries, which
we can then mine for patterns, although we lacked time to
make the tracker work in a majority of inputs. Using Hyper-
AST and HyperDiff, we were able to successfully track the
changes in a project’s history that affected the same pieces of
code as a given fixing commit, and generate a corresponding
abstract summaries for 2 % of the defects from Defects4], a
dataset of Java defects.

Future works on this matter should expand on what
was done here and address the limitations mentioned in
Section IV.D. In particular, improving HyperAST, HyperDiff,
and our implementation of the tracking phase to make it
work on more inputs. Indeed, we currently generate non-
empty abstract summaries for 6.1 % of the inputs. It appears
HyperAST errors or panics on some inputs, but this could be
due to improper usage in the tracker.

Additionally, the only pattern mining algorithm we had
the time to consider was PrefixSpan [9], which is a frequent
sequential pattern mining algorithm. This generated a very
high amount of patterns (191,594,297), which makes it harder

Shttps://crates.io/
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to interpret them and extract useful information. Instead,
frequent closed sequential pattern mining algorithms should
be considered. For example, SPMF [10] implements CloFast,’
CM-ClaSP.? as well as a post-processing phase for PrefixSpan
to keep only closed patterns.’

Finally, we only generated and mined patterns on abstract
summaries. Intuitively, abstract summaries get rid of unnec-
essary information such as variable names or even whitespace,
allowing for more meaningful patterns to be mined. However,
it might be that concrete summaries actually result in better-
quality patterns. This hypothesis should be properly tested.
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