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TD 3 : Variables aléatoires, indépendance.

Exercice 1. Mesurabilité et tribu trivialeblanc
Montrer qu’une application X : Ω 7→ (R,B(R)) est une variable aléatoire par rapport à la tribu
triviale sur Ω si et seulement si elle est constante.

Exercice 2. Limsup et liminf, le retourblanc
Soit (Xn)n∈N une suite de va. réelles définies sur un espace mesurable (Ω,F)

1. Comparer les ensembles {lim supnXn > 1}, lim supn {Xn > 1}, {lim supnXn ≥ 1} et
lim supn {Xn ≥ 1}.

2. Comparer les ensembles {lim infnXn > 1}, lim infn {Xn > 1}, {lim infnXn ≥ 1} et
lim infn {Xn ≥ 1}.

Exercice 3. Copies ordonnéesblanc
Soient X,Y deux variables aléatoires réelles sur un espace de probabilité (Ω,F ,P).

1. On suppose que P(Y ≤ t < X) = 0, pour tout t ∈ R, montrer que P(Y < X) = 0.
2. On suppose maintenant que X et Y ont même loi. Montrer que si X ≤ Y p.s. alors X et Y

sont presque sûrement égales.

Exercice 4. Min et max de variables indépendantesblanc
Soient X1, X2, . . . , Xn des variables aléatoires réelles indépendantes et de même loi, définies sur
un même espace de probabilité (Ω,F ,P). On désigne par F leur fonction de répartition commune.
Déterminer les fonctions de répartitions de m = mini=1...nXi et M = maxi=1...nXi.

Exercice 5. Parties entières et fractionnaires d’une exponentielleblanc
Soit X une variable exponentielle de paramètre λ > 0, i.e. X est une variable aléatoire positive
telle que P(X ≥ t) = e−λt pour tout t ∈ R.

1. Déterminer la loi de la partie entière ⌊X⌋ et de la partie fractionnaire {X} := X − ⌊X⌋.
2. Les variables ⌊X⌋ et {X} sont-elles indépendantes ?

Exercice 6. Sur les variables uniformesblanc
L’objet de l’exercice est de montrer que la loi uniforme n’est pas “divisible”.

1. Montrer qu’il n’existe aucun vecteur (a, b, c, d, λ) ∈ (0,+∞)5 tel que

ab = λ, cd = λ, et ac+ bd ≤ λ.

2. Soit n ≥ 1. Existe-t-il deux variables aléatoires indépendantes à valeurs dans {0, . . . , n} et
chargeant tous les points dont la somme suit une loi uniforme sur {0, . . . , 2n}?



Exercice 7. Entropie d’une variable discrèteblanc
Soit X une variable aléatoire à valeurs dans un ensemble fini {x1, . . . , xn}, avec P(X = xi) = pi
pour i = 1, . . . , n. On définit l’entropie de X par

H(X) := −
n∑

i=1

pi ln (pi)

avec la convention x lnx = 0 si x = 0.

1. Démontrer que H(X) ≥ 0.
2. Démontrer que H(X) = 0 si et seulement si X est presque surement constante, c’est-à-dire

s’il existe i ∈ {1, . . . , n} tel que pi = 1.
3. Vérifier que, pour tout k = 1, . . . , n, on a (−npk) ln (npk) ≤ 1−npk, avec égalité ssi npk = 1.
4. En déduire que H(X) ≤ lnn.
5. Démontrer que H(X) = lnn si et seulement si X est équidistribuée, ie si pi = 1/n pour tout

i = 1, . . . , n.

Exercice 8. Produit eulérienblanc
Sur un espace de probabilité (Ω,F ,P), on considère une variable aléatoire X à valeurs dans N∗ et
dont la loi est donnée par

PX({n}) = P(X = n) :=
1

ns ζ(s)
, avec s > 1.

1. Pour k ≥ 1, on désigne par Ek l’événement “k divise X”. Montrer que

PX(Ek) =
1

ks
.

2. Si (pi)ni=1 sont des nombres premiers distincts, montrer que les événements Epi sont indé-
pendants :

PX

(
n⋂

i=1

Epi

)
=

n∏
i=1

P (Epi) .

3. En déduire la représentation en produit eulérien de la fonction Zeta

1

ζ(s)
=
∏
p∈P

(
1− 1

ps

)
.

4. En dd́uire la divergence de la s’erie
∑

p∈P
1
p .

Exercice 9. Pile ou faceblanc
On lance une infinité de fois une pièce de monnaie équilibrée. On fixe un entier m arbitraire-
ment grand. Montrer qu’avec probabilité 1, on obtiendra une infinité de fois m piles consécutifs.
Généraliser.



Exercice 10. Indécomposabilité de la loi de Poisson - Agrég (leçons séries entières, analyse com-
plexe, probas)blancLe but de cet exercice est de montrer le résultat suivant :

Soit Z une variable aléatoire suivant une loi de Poisson de paramètre λ. Soit X,Y des variables
aléatoires indépendantes à valeurs dans N telles que Z = X +Y . Alors X et Y suivent des lois de
Poisson. (On sait déjà que la réciproque est vraie : si X et Y suivent des lois de Poisson et sont
indépendantes, X + Y suit une loi de Poisson).

1. Rappeler la fonction génératrice GZ de Z. Donner la formule liant GZ , GX , GY et son do-
maine de validité.

2. Montrer que GX et GY sont entières (c’est à dire développable en série entière avec un rayon
de convergence infini). On pourra regarder P(X = n)P(Y = 0).

3. Expliquer pourquoi la formule établie dans la première question reste valable sur C.
4. Justifier qu’il existe F,G analytiques telles que GX = eF et GY = eG.
5. Nous cherchons maintenant à identifier F et G. Soit z ∈ C, r = |z| ≥ 1. Justifier que

|GX(z)| ≤ GY (r), puis que P(Y = 0)GX(r) ≤ eλ(r−1). Enfin, montrer que

Re(F (z)) ≤ ln

(
GY (r)

P (Y = 0)

)
+ λ (|z| − 1)

6. Conclure, en utilisant le lemme suivant :

Théorème. Soit f = u+iv une fonction entière, f(z) =
∑

n≥0 anz
n, A(r) = sup|z|=r Ref(z).

Alors :

— Pour tout n ≥ 1, r > 0, |an| ≤ 2A(r)−A(0)
rn

— Si d ≥ 0 est tel que A(r) = O(rd) alors f est une fonction polynomiale de degré inférieur
ou égal à d.

7. Montrer le lemme (on pourra utiliser, notamment, la représentation intégrale des coeffi-
cients).

Sources : Quéfellec & Quéfellec - Analyse complexe, site web de Geoffrey Deperle


