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1 Chaînes de Markov - Introduction

On s’intéresse ici aux chaînes de Markov sur des espaces au plus dénombrables. Ici, E sera donc fini
ou dénombrable (une partie de N en somme). On appelle E l’espace d’état.

Définition 1 (Chaîne de Markov). Soit (Xn) une suite de variables aléatoires à valeurs dans E. (Xn)
est une chaîne de Markov si et seulement si pour tout k ∈ N, (x0, · · · , xk+1) ∈ Ek+2 tels que P(Xk =
xk, · · · , X0 = x0) > 0,

P(Xk+1 = xk+1|Xk = xk, · · ·X0 = x0) = P(Xk+1 = xk+1|Xk = xk).

L’indice n représente le temps. Les chaînes de Markov sont donc en quelque sorte sans mémoire,
c’est à dire qu’elles vérifient la propriété suivante : "le futur ne dépend que du présent", ou encore,
conditionnellement au présent, passé et futur sont indépendants.

Définition 2 (Chaine de Markov homogène). Une chaîne de Markov (Xn) est dite homogène dès que
pour tout k ∈ N, x, y ∈ E, P(Xk+1 = x|Xk = y) = P(X1 = x|X0 = y).

Nous nous intéresserons dans ce qui suit qu’à des chaînes de Markov homogènes. Le résultat suivant
est utile pour montrer rapidement que quelque chose est une chaîne de Markov.

Propriété 3. (Xn) est une chaîne de Markov homogène si et seulement s’il existe une fonction f mesu-
rable, une suite (Un) de variables aléatoires indépendantes et indépendantes de X0 telles que pour tout
n ∈ N Xn+1 = f(Xn, Un+1).

Démonstration. Pour trouver f , méthode d’inversion (cf cours de Jean-Christophe Breton). Pour
vérifier que c’est une chaîne de Markov, on l’écrit, et utilise le fait que Un+1 est indépendante de
X0, · · ·Xn.

Définition 4. On appelle probabilité de transition entre les états x, y ∈ E la quantité

px,y = P(Xk+1 = y|Xk = x) = P(X1 = y|X0 = x).

On a alors, par conditionnements successifs :

Propriété 5. Si ν0 désigne la loi de X0, alors pour tout x0, · · · , xn ∈ E, P(Xn = xn, Xn−1 =

xn−1, · · ·X0 = x0) = ν0(x0)
n−1∏
i=0

pxi,xi+1
.

Définition 6 (Matrice de transition). On appellematrice de transition la matrice P = (px,y)x,y∈E :

P =

px0,x0 px0,x1 px0,x2 · · ·
px1,x0 px1,x1 px1,x2 · · ·

...
...

... . . .

 .

D’après le lemme précédent, la loi d’une chaîne de Markov est caractérisée par la loi ν0 de X0 et par sa
matrice de transition.

Remarque 7. C’est une grosse matrice : potentiellement infinie.

Propriété 8. P est une matrice stochastique. C’est à dire :

1. Pour tout x, y ∈ E, 0 ≤ px,y ≤ 1.
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2.
∑
y∈E

px,y = 1.

On sait alors que 1 est valeur propre de P , de vecteur propre associé (1, · · · , 1)

On donne dans ce qui suit quelques exemples importants, et non triviaux.

Exemple 9. Ici, E = 0, 1. On passe de 0 à 1 avec probabilité α, de 1 à 0 avec probabilité β.Ecrire la
matrice de transition, et le graphe associé.

Solution

Exemple 10 (Marche aléatoire simple sur Z). E = Z. px,y = p si y = x + 1, 1 − p si y = x − 1.
Donner la matrice et le graphe associé.

Solution

Remarque 11. Une version plus élaborée : (Xn) une suite de variables aléatoires i.i.d sur Zd. Sn =
n∑

k=0

Xk est une chaîne de Markov homogène. Si f est la loi de Xn, alors Px,y = f(y − x). Avec quel f

retrouve-t-on l’exemple précédent ?
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Solution

Exemple 12 (La ruine du joueur). A joue contre B à pile ou face, avec une pièce faisant pile avec
probabilité p. Au départ, A possède a euros, B b euros. Ils possèdent donc en tout a+ b euros.A gagne un
euro si le résultat est pile, sinon il perd un euro. Le jeu s’arrête quand l’un des joueurs est ruiné. Donner
l’ensemble des états, la matrice de transition et le graphe.

Solution

Exemple 13 (Le modèle de diffusion d’Ehrenfest). On dispose de deux urnes, A et B. Contenant à
elles deux a ≥ 1 boules. Xn est le nombre de boules dans l’urne A à l’instant n. A chaque instant, on
choisit une boule de façon uniforme, et on la change d’urne. Donner l’ensemble des états, la matrice de
transition et le graphe.
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Solution

2 La relation de Chapman-Kolmogorov

Derrière ce nom peut être un peu inquiétant, la propriété, simple et naturelle, qui relie les probabilités
de transition en n étapes aux probabilités de transition en une étape.

On note donc p(n)i,j = P(Xn = xj|X0 = i). Alors p(n)i,j = Pn
i,j .

Propriété 14. Pour tout n ∈ N, (Xnk)k∈N est une chaîne de Markov de matrice de transition Pn.

Propriété 15 (Relation de Chapman-Kolmogorov). Soitm,n ∈ N, xi, xj ∈ E. Alors :

P(Xm+n = j|X0 = i) =
∑
xk∈E

P(Xm = xk|X0 = xi)P (Xn = xj|X0 = xk)

La démonstration n’est que l’associativité du produit matriciel. La formule dit donc que pour aller
de xi à xj enm+ n étapes, il faut aller de i à un certain xk enm étapes, puis de xk àxj en n étapes.
On a alors les deux propriétés suivantes :

Propriété 16. Soit n ≥ 0, r ≥ 1. Alors :

P(Xn+r = xr, · · ·Xn+1 = x1|Xn = yn, · · · , X0 = y0) = P(Xr = xr · · ·X1 = x1|X0 = yn) (1)

= pyn,x1

r−1∏
i=1

pxi,xi+1
. (2)

Tout ceci se réécrit plus formellement :

Propriété 17. Soit A− un élément de la tribu du passé Fn−1 = σ(X0, · · ·Xn−1), et A+ un élément de
la tribu du futur σ(Xn+1, ...), alors :

P(A+|A−, Xn = xn) = P(A+|Xn = xn).
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3 Propriété de Markov forte

Le but de cette section est de généraliser les formules précédentes à des temps d’arrêts.
On fixe donc T un temps d’arrêt à valeur dans [0,+∞] adapté à (Xn).
On rappelle que F∞ désigne la tribu engendrée par la réunion des Fn, et que A ∈ F∞ ∈ FT si pour
tout n ≥ 0, A ∩ [T = n] ∈ Fn.
On a alors :

Propriété 18 (Propriété de Markov forte). Si T est un temps d’arrêt à valeurs dans [0,+∞] adapté à
la chaîne de Markov (Xn), d’ensemble d’états E et de matrice de transition P , que x ∈ E et A ∈ FT

sont tels que P(T <∞, A,XT = x) > 0, alors :

P(XT+1 = x1, · · · , XT+r = xr|T <∞, A,XT = x) = P(X1 = x1, · · · , Xr = xr|X0 = x) (3)

= px,x1

r−1∏
i=1

pxi,xi+1
. (4)

Voici un corollaire très utile et essentiel :

Propriété 19. Soit Tx = inf (n ≥ 1, Xn = x). Conditionnellement à [Tx < ∞], la suite (XTx+n) est
une chaîne de Markov de matrice de transition P et d’état initial x. De plus, elle est indépendante de la
tribu FT .

4 Classification des états

Dans ce qui suit, on suppose, sans perte de généralité, que E est un sous ensemble de N. On notera
alors les états i, j plutôt que xi, xj .

Définition 20. On dit que l’état j est accessible à partir de l’état i s’il existe un entier n ≥ 0 tel que
p
(n)
i,j > 0. On note i⇝ j.

Propriété 21. La relation⇝ est réflexive et transitive.

Propriété 22. Sont équivalents :

1. i⇝ j

2. Le processus partant de i passe par j avec probabilité strictement positive.

Démonstration. Le sens direct est clair. Pour le sens retour, on montre la contraposée : Si pour tout
n ≥ 0, p

(n)
i,j = 0, avecA l’événement "le processus passe par j, P(A|X0 = i) = P(

⋃
n∈N

(Xn = j)|X0 =

i) ≤
∑
n≥0

P (Xn = j|X0 = i) = 0.

Définition 23. On dit que deux états i et j communiquent si i⇝ j et j ⇝ i. On note i←→ j.

Propriété 24. La relation←→ est une relation d’équivalence. Ses classes d’équivalence sont les com-
posantes fortement connexes du graphe de la chaîne de Markov. On les appelle parfois composantes
irréductibles, ou classes irréductibles.
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Remarque 25. Si C1 et C2 sont deux classes irréductibles distinctes, alors il est peut être possible d’aller
de C1 à C2. Mais alors, on ne peut pas revenir en arrière.

Remarque 26. Les classes peuvent être réduites à un singleton : par exemple, dans le cas des états
absorbants.

Définition 27. S’il y a une seule classe irréductible, c’est à dire que tous les états communiquent, alors
on dit que la chaîne est irréductible.

Exemple 28. La marche aléatoire sur Z est irréductible.

Exemple 29. Pour les deux matrices suivantes, donner les classes irréductibles :

P =


1

2

1

2
0

1

2

1

4

1

4

0
1

3

2

3

 P =



1

2

1

2
0 0

1

2

1

2
0 0

1

4

1

4

1

4

1

4
0 0 0 1


Solution

5 Périodicité

Nous allons étudier dans quelles conditions le temps qui sépare deux retours au même état est ou
n’est pas multiple d’un temps minimum.

Propriété 30 (Période). Soit j ∈ E. On appelle période de j, noté d(j) la quantité d(j) = pgcd(n ≥
1, p

(n)
j,j > 0). On dit, par convention, de pgcd(∅) = +∞.

Si d(j) = d ≥ 2, on dit que j est un état périodique de période d.Si d(j) = 1, l’état est dit apériodique.
Une chaîne apériodique est une chaîne dont tous les états sont apériodiques.

Remarque 31. Si pi,i > 0, i est apériodique.

Propriété 32. Si i est périodique de période d(i) finie, que i ←→ j, alors j est périodique de période
d(i) : la périodicité est un invariant de classe.
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Démonstration. On suppose que i ←→ j. Soit alors n,m tels que p(n)i,j et p(m)
j,i > 0. Comme i est de

période d(i) finie, soit s ≥ 1 (multiple de d) tel que p
(s)
i,i > 0. Alors p(m+s+n)

j,j ≥ p
(m)
j,i p

(s)
i,i p

(n)
i,j > 0.

Comme p(s)i,i > 0, on a également p(2s)i,i > 0, et donc comme précédemment p(m+2s+n)
j,j > 0. Donc la

période d(j) de j divise m + s + n et m + s + 2n donc elle divise s. On a donc montré que d(j)
divise tout temps de retour en i, donc le pgcd des temps de retour en i, donc d(i). Donc d(j) divise
d(i). On montre de même que d(i) divise d(j) et donc d(i) = d(j).

Exemple 33. Pour

P =

0 1 0
p 0 1− p
1 0 0


, déterminer les classes récurrentes, et la période de chaque classe.

Solution

Exemple 34. Même chose avec

P =


0 0

1

2

1

2
1 0 0 0
0 1 0 0
0 1 0 0


.

Solution

Exemple 35. Même chose avec la marche aléatoire sur Z.
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Solution

6 Etats récurrents, états transients

Comme on l’a fait précédemment, on notera Tj = inf {n ≥ 1, Xn = j}. C’est un temps d’arrêt. On
note aussi Nj =

∑
n≥0

1Xn=j le nombre de passages en j. On notera également pour tout événement

A : Pj(A) = P(A|X0 = j). Cela revient à prendre comme loi initiale δj : on appelle cette chaîne la
chaîne issue de j.
On a alors Pj(Tj <∞) = Pj(Nj > 1).

Définition 36 (Etat récurrent). On dit que l’état j est récurrent si la chaîne issue de j revient presque
sûrement en j en un temps fini, c’est à direPj(Tj <∞) = 1. Sinon, l’état est dit transient, ou transitoire.

Propriété 37. Si j est récurrent, le nombre de passages en j en partant de j est presque sûrement
infini : Pj(Nj = +∞) = 1, et à fortiori :Ej(Nj) = +∞. Si j est transient, le nombre de passage en j
en partant de j suit une loi géométrique. et est donc presque sûrement fini, et d’espérance finie. De plus,
en partant de i quelconque, le nombre de passage en j transient est également finie d’espérance finie.

On en déduit le corollaire suivant très utile :

Propriété 38. 1. j est récurrent ssi
∑
n≥0

p
(n)
j,j diverge.

2. j est transient ssi
∑
n≥0

p
(n)
j,j converge.

Démonstration. Onprouve 1 en calculantEj(Nj) avec une permutation espérance série. On en déduit
automatiquement 2 par contraposée.

Exemple 39. Les états absorbants.

Exemple 40. La marche aléatoire sur Z ? Distinguer p =
1

2
et 0 < p < 1.

11



Solution

Remarque 41. On peut s’intéresser à la nature des états de la marche aléatoire sur Zd. En fait, le
résultat montré précédemment reste vrai pour d = 2. Pour d ≥ 3, c’est le contraire. C’est un superbe
développement que vous pouvez trouver sur le site de Thomas Cavallazzi. Il y a beaucoup de recasages !

Propriété 42. La récurrence et la transience sont des propriétés de classe. On peut donc parler de classe
transiente et de classe récurrente.

Définition 43 (Classe close). Une classe C de l’espace d’états E est dite close si pour tout j /∈ C, i ∈
C,pi,j = 0.

On a alors le théorème suivant :

Théorème 44. L’espace d’états se partitionne en classes d’équivalences pour la communication.
1. Une classe non close est transiente.
2. Une classe close finie est récurrente.

En particulier, pour les chaînes de Markov à espace d’états finis, les classes récurrentes sont les classes
closes, les classes transientes les classes non closes. De plus, une chaîne de Markov à espaces d’états
finis admet au moins un état récurrent : on en déduit qu’une chaîne de Markov finie irréductible est
récurrente.

On en donne une esquisse de preuve :

Démonstration. Preuve du premier point : Soit C non close. Soit i ∈ C, j /∈ C tel que pi,j > 0. Comme
j /∈ C, P(Xn = j|X0 = i) = 0 quelque soit n ∈ N. Donc P(Ti <∞|X0 = i) = 0.
Donc P(Ti = +∞|X0 = i) ≥ P(Ti = +∞|X0 = i,Xi = j)P(Xi = j|X0 = i) = 1 × pi,j > 0.
Donc i transient, C transitoire. Preuve du second point : Soit C une classe close finie. On procède par
l’absurde et on suppose que tous les états sont transitoires. Soit i ∈ C. Partant de i, la chaîne reste
dans C, donc presque sûrement,

∑
j∈C

Nj = +∞. On a une somme finie qui est presque sûrement

infinie, donc il existe presque surement un terme de la somme infini : Pi(∃j ∈ C, Nj = +∞) = 1.
Or, on a supposé que tous les états étaient transitoires donc Pi(Nj = +∞) = 0 pour tout j ∈ C, ce
qui est absurde : toute classe close d’une chaine finie est donc récurrente.
Enfin, une chaîne à espace d’états finis possède nécessairement une classe close. En effet, si on consi-
dère le graphe des classes de communication de E dont les arêtes sont données par l’existence d’un
chemin d’une classe vers l’autre, il est acyclique par définition, et un graphe fini orienté acyclique
admet nécessairement un puits, c’est à dire un sommet sans "sortie" : c’est cette classe qui nous
fournit une classe close, qui est donc récurrente.
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Voici alors une recette de cuisine pour l’étude d’une chaîne de Markov à espace d’états fini :
Si la chaîne part d’un état récurrent, la classe est close et la chaîne y reste. Si elle part d’un état
transitoire, au bout d’un temps fini presque surement elle sortira de sa classe, jusqu’à atteindre une
classe récurrente, et y rester. En partant d’un état transitoire, on atteint presque sûrement un état
récurrent. L’inverse est presque sûrement impossible.
Quelques contre exemples à étudier, sur Z :

Exemple 45. Xn = n

Exemple 46. La marche aléatoire biaisée, avec p >
1

2

Solution

Exemple 47. Retour à la ruine du joueur : quels sont les états transitoires ? Récurrents ? On fixe N =
a + b la fortune totale. On note paA = P(T0 <∞ X0 = a) la probabilité de ruine de A sachant que sa
fortune initiale est a. Déterminer une formule de récurrence vérifiée par paA, et puis calculer p

a
A. Faire de

même avecm(a) l’espérance de temps de jeu en partant de a.

Solution
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Exemple 48. La marche aléatoire simple équilibrée sur Zd est récurrente si 1 ≤ d < 3, transiente si
d ≥ 3. La preuve fait l’objet d’un beau développement, disponible sur le site de Thomas Cavallazzi, qui
remplit les leçons de proba, séries, intégration. C’est le théorème de Polyà.

7 Mesures, et loi de probabilités stationnaires

On identifiera les mesures µ sur E à des vecteurs lignes µ = (µ1, · · · )

Définition 49. Soit µ une mesure sur E. On dit que c’est une mesure stationnaire, ou invariante, si
µ = µP .

Si ν est une loi invariante, alors si X0 est de loi ν, Xn est de loi νPn = ν. Ces lois sont intimement
liées au comportement asymptotique. En effet, on a la propriété suivante :

Propriété 50. Si (Xn) converge en loi vers ν, alors ν est une loi stationnaire.

Démonstration. ν0Pn −→ ν et ν0Pn+1 = (ν0Pn)P− > νP = ν, donc ν est une loi invariante.

On a la propriété suivante :

Propriété 51. Les mesures stationnaires ne chargent que les états récurrents : si i est transient et ν
stationnaire, ν(i) = 0.

Démonstration. ν = νP(n) pour tout n ∈ N donc : ν(i) =
∑
j

ν(j)p
(n)
j,i

Et si i est transitoire, p(n)j,i tend vers zéro. Le théorème de convergence dominée s’applique (pour-
quoi ?) et conclut.

Remarque 52. En particulier, si tous les états sont transitoires, il n’y a pas de mesure de probabilité
invariantes et donc pas de convergence en loi.

Pour chercher des mesures invariantes, peut parfois utiliser les résultats suivants :

Définition 53. Unemesureπ est dite réversible pourP si pour tout x, y ∈ E, π(x)p(x, y) = π(y)p(y, x)

Propriété 54. Une mesure réversible est invariante.

Exemple 55. Mesure invariante pour la marche aléatoire à deux états ?

Solution
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Exemple 56. Pour la marche aléatoire symétrique sur Z ? Effectuer une remarque.

Solution

Appliquons tout ceci aux chaînes de Markov à espaces d’état fini :

8 Lois invariantes et comportement asymptotique des chaînes
de Markov à espace d’état fini

Théorème 57 (Chaînes de Markov à espaces d’état fini : lois invariantes et convergence en loi).
Soit (Xn) une chaîne de Markov sur un espace d’état E fini. Alors elle possède au moins une loi
stationnaire. Si de plus (Xn) est irréductible, alors la loi de probabilité stationnaire est unique. On

l’appelle ν, et alors ν(i) =
1

Ei(Ti)
où Ti est le temps de retour en i. Si (Xn) est de plus irréductible

et apériodique, alors Pn converge vers la matrice dont toutes les lignes sont constantes égales à ν. En
particulier, quelle que soit ν0, il y a convergence en loi de (Xn) vers ν

Démonstration. C’est de l’algèbre linéaire, à travers notamment le théorème de Perron-Frobenius,
et un développement !

Remarque 58. Pour estimer la loi invariante, une solution est donc de calculer les puissances de P , par
exemple en la diagonalisant, et faire tendre n vers l’infini.

Remarque 59. La vitesse de convergence est exponentielle : |P (Xn = i)− ν(i)| ≤ α|λ|n où |λ| est la
deuxième plus grande valeur propre deP enmodule, la première étant 1. On appelle ça le trou spectral.

Remarque 60. La convergence est en loi. On ne peut pas espérer de convergence presque sûre : cela
reviendrait à avoir une chaîne constante à partir d’un certain rang.

Remarque 61. S’il n’y a qu’une classe récurrente et des états récurrents, alors en temps fini la chaîne
vit dans cette classe récurrente, et donc il y a une unique mesure invariante qui a pour support la classe
récurrente, et le théorème précédent s’applique également.

15



Remarque 62. S’il y a plusieurs classes récurrentes, elle admet pour chaque classe une loi invariante
ayant pour support ladite classe. De plus, toute combinaison convexe de ces classes est une loi invariante,
et en fait, ce sont les seules. Donc la dimension de l’espace propre associé à la valeur propre 1 est le nombre
de classes récurrentes de la chaîne.

Exemple 63. Reprendre les exemples du modèle à deux états, et du modèle de diffusion d’Ehrenfest.

Solution

Solution

Théorème 64 (Théorème ergodique, Théorème centrale limite). (Xn) une chaine de Markov irré-
ductible sur un espace d’état fini. Soit µ son unique loi invariante. On a alors presque sûrement :

lim
n−→+∞

1

n

n−1∑
k=0

f(Xk) =
∑
i∈E

f(i)

Ei(Ti)
=

∫
fdµ.

De plus,
√
n

(
1

n

n−1∑
k=0

f(Xi)−
∫

fdµ

)
converge en loi vers une loi normale centrée.

9 Retour au cas général

Ce qui suit n’a d’intérêt que quand E est infini.
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Définition 65 (Temps d’attentemoyen). On définit le temps d’attentemoyenMi,j parMi,j = E(Tj|X0 =

i) =
∑
n≥1

nP (Tj = n|X0 = i) =
∑
n≥1

nfi,j .

Définition 66. On appelleMj,j le temps de retour moyen en j, et
1

Mj,j

la fréquence moyenne de retour

en j. SiMj,j < +∞, on dit que l’état j est positif. Dans le cas contraire, on dit qu’il est nul.

Propriété 67. Un état transient est forcément nul.

Propriété 68. Si j transient, alors P (Tj = +∞|X0 = j) > 0 doncMj,j = +∞.

Remarque 69. Les états récurrents nuls sont entre les transients et les récurrents : ils sont récurrents,
mais leur temps moyen de retour est infini comme les transients.

Propriété 70. Un état j récurrent est nul ssi p(n)j,j −→ 0.

Démonstration. Long, et pas simple ! ! !

Remarque 71. On a dit plus tôt qu’un état était récurrent ssi
∑

pnj,j diverge. Un état récurrent est
donc positif si et seulement si la série diverge grossièrement : c’est une autre manière d’exprimer le fait
que les états récurrents nuls sont entre les transients et les récurrents : si la série diverge grossièrement,
on est récurrent positif, si la série diverge non grossièrement, récurrent nul, si elle converge, transient.

Propriété 72. La positivité est une propriété de classe. De même pour la nullité.

Démonstration. p(n0)
i,j > 0, p(n1)

j,i > 0. Donc p
(n0+n1+m)
i,i ≥ p

(n0)
i,j p

(m)
j,j p

(n1)
j,i . Donc en envoyant m en

l’infini on voit que la nullité de i entraîne celle de j.

Propriété 73. Si E est fini, tous les états récurrents sont positifs.

La théorie n’a donc d’intérêt que pourE quelconque. On fixemaintenant (Xn) une chaîne deMarkov
irréductible récurrente. Nous allons exhiber une mesure invariante. Dans cette partie, ce ne sera pas
nécessairement une mesure de probabilité. Nous verrons que cette mesure est finie, et peut être
choisie comme une mesure de proba, quand la chaîne est récurrente positive. Cette dernière sera
unique.

Théorème 74. Soit (Xn) irréductible récurrente. On note

uj
i = E

[∑
n≥0

1Xn=j,n≤Ti−1|X0 = i

]
.

uj
i compte alors le temps moyen passé en j avant de revenir en i. Alors νi définie par νi(j) = uj

i est
stationnaire, et vérifie νi(i) = 1, νi(j) <∞ pour tout j ∈ E et νi(E) = E[Ti|X0 = i]. De plus, toutes
les mesures invariantes sont proportionnelles. Donc, si la chaîne est irréductible récurrente positive,
νi(E) <∞ et il existe une unique loi de probabilité stationnaire, laquelle est donnée par

µ(i) =
1

Mi,i

=
1

E(Ti|X0 = i)
.

A l’inverse, si la chaîne est récurrente nulle, νi(E) = +∞ et il n’y a pas de mesure invariante.

Remarque 75. uj
i est le temps moyen que l’on passe en j entre deux passages en i.
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Démonstration. Très longue.

Définition 76. On définit Nn(j) =
n−1∑
k=0

1Xk=j et Fn(j) =
1

n
Nn(j). Nn(j) est le nombre de passages

en j dans l’intervalle de temps [0, n− 1] et Fn(j) la fréquence associée.

Si les (Xn) étaient iid, on pourrait appliquer la loi forte des grands nombres à la suite (Fn). C’est en
fait le cas, en remplacant une éventuelle loi commune par une loi invariante.

Théorème 77. Si (Xn) irréductible, alors Fn(j) −→
1

Mj,j

presque sûrement.

On a alors les corollaires suivants :

Théorème 78. Si une chaîne de Markov est irréductible, la suite Pn converge au sens de Césaro vers

la matrice π dont toutes les lignes sont égales et vérifient πi,j =
1

Ej(Tj)
. Si la chaîne n’est pas positive,

la limite est nulle. Si elle est récurrente positive, toutes les lignes de la matrice limite sont égales à
l’unique probabilité invariante. De plus, si la suite est irréductible récurrente positive apériodique, il y
a convergence au sens usuel, et donc en loi vers l’unique loi stationnaire.

Démonstration. Le début est assez direct avec le théorème précédent. On admet la fin.

Théorème 79 (Théorème ergodique). Si (Xn) est irréductible récurrente positive d’unique loi de pro-
babilité invariante µ, alors pour toute fonction f µ−intégrable :

lim
n

1

n

n−1∑
k=0

f(Xk) =

∫
fdµ.

Démonstration. Vraie pour les étagées avec ce qui précède, donc pour toute fonction par convergence
monotone.

Ce théorème dit en d’autre mots que la moyenne de f temporelle sur une trajectoire est égale à la
moyenne spatiale.
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