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1 Chaines de Markov - Introduction

On s’intéresse ici aux chaines de Markov sur des espaces au plus dénombrables. Ici, £ sera donc fini
ou dénombrable (une partie de N en somme). On appelle F I'espace d’état.

Définition 1 (Chaine de Markov). Soit (X,,) une suite de variables aléatoires d valeurs dans E. (X,,)
est une chaine de Markov si et seulement si pour tout k € N, (zg, - ,211) € E*"? tels que P(X), =
T, -+, Xo = ) >0,

P(Xk+1 = $k+1|Xk = Tp, -+ Xog = $0) = P<Xk+1 = 96k+1’Xk = «Tk)-
L’indice n représente le temps. Les chaines de Markov sont donc en quelque sorte sans mémoire,

c’est a dire qu’elles vérifient la propriété suivante : "le futur ne dépend que du présent", ou encore,
conditionnellement au présent, passé et futur sont indépendants.

Définition 2 (Chaine de Markov homogéne). Une chaine de Markov (X,,) est dite homogéne dés que
pourtoutk € N,z,y € E,P(Xj11 = 2| Xy = y) = P(Xy = 2| Xo = v).

Nous nous intéresserons dans ce qui suit qu’a des chaines de Markov homogénes. Le résultat suivant
est utile pour montrer rapidement que quelque chose est une chaine de Markov.

Propriété 3. (X,,) est une chaine de Markov homogéne si et seulement s’il existe une fonction f mesu-
rable, une suite (U,,) de variables aléatoires indépendantes et indépendantes de X telles que pour tout

n e N Xn+1 == f(Xn, Un+1).

Démonstration. Pour trouver f, méthode d’inversion (cf cours de Jean-Christophe Breton). Pour
vérifier que c’est une chaine de Markov, on I’écrit, et utilise le fait que U, est indépendante de
Xo, - X O

Définition 4. On appelle probabilité de transition entre les états v,y € E la quantité

Pey = P(Xip1 = y|Xi = ) = P(X1 = y| X = 2).

On a alors, par conditionnements successifs :

Propriété 5. Si vy désigne la loi de X,, alors pour tout zo,--- ,z, € E, P(X, = z,,X,_1 =
n—1

Tp_1, - Xg = 370) = Vo(ﬂfo) pri,xi+1-
i=0

Définition 6 (Matrice de transition). On appelle matrice de transition la matrice P = (pyy)z ek :

pxo,a)o p.’L‘O,Z‘l pLUO,.IQ

P = | Prixo Priz1 Prias

D’apres le lemme précédent, la loi d’une chaine de Markov est caractérisée par la loi vy de X et par sa
matrice de transition.

Remarque 7. C’est une grosse matrice : potentiellement infinie.

Propriété 8. P est une matrice stochastique. C’est a dire :

1. Pourtoutx,y € £,0 <p,, <1



2. me,y =L

yeE
On sait alors que 1 est valeur propre de P, de vecteur propre associé (1,--- ,1)

On donne dans ce qui suit quelques exemples importants, et non triviaux.

Exemple 9. Ici, E = 0,1. On passe de 0 a 1 avec probabilité o, de 1 a 0 avec probabilité 3.Ecrire la
matrice de transition, et le graphe associé.

Exemple 10 (Marche aléatoire simple sur Z). £ = Z.p,, =psiy=a+ 1,1 —psiy =x — L
Donner la matrice et le graphe associé.

Remarque 11. Une version plus élaborée : (X,,) une suite de variables aléatoires i.i.d sur Z°. S, =

Z X}, est une chaine de Markov homogeéne. Si f est la loi de X,,, alors P, ,, = f(y — x). Avec quel f

k=0
retrouve-t-on l'exemple précédent ?



Exemple 12 (La ruine du joueur). A joue contre B a pile ou face, avec une piéce faisant pile avec
probabilité p. Au départ, A posséde a euros, Bb euros. Ils possédent donc en tout a + b euros. A gagne un
euro si le résultat est pile, sinon il perd un euro. Le jeu s’arréte quand 'un des joueurs est ruiné. Donner
Pensemble des états, la matrice de transition et le graphe.

Exemple 13 (Le mode¢le de diffusion d’Ehrenfest). On dispose de deux urnes, A et B. Contenant a
elles deux a > 1 boules. X,, est le nombre de boules dans 'urne A a 'instant n. A chaque instant, on
choisit une boule de facon uniforme, et on la change d’urne. Donner I’ensemble des états, la matrice de
transition et le graphe.



2 Larelation de Chapman-Kolmogorov

Derriére ce nom peut étre un peu inquiétant, la propriété, simple et naturelle, qui relie les probabilités
de transition en n étapes aux probabilités de transition en une étape.

(m) — P(X, = z;| X, = i). Alors pgz) =P

On note donc p; ; i
Propriété 14. Pour toutn € N, (X, )ren est une chaine de Markov de matrice de transition P".

Propriété 15 (Relation de Chapman-Kolmogorov). Soit m,n € N, z;,z; € E. Alors :
P(Xiin = j1Xo =) = Y P(Xpn = 24| Xo = 2;) P(X,, = 2| Xo = x)

rreE

La démonstration n’est que ’associativité du produit matriciel. La formule dit donc que pour aller
de z; a x; en m + n étapes, il faut aller de ¢ a un certain z;, en m étapes, puis de x;, az; en n étapes.

On a alors les deux propriétés suivantes :

Propriété 16. Soitn > 0,7 > 1. Alors :

P(Xn—‘rr = x?"a"'Xn+1 = :L‘1|Xn =Yn, 7X0 = yO) = P(Xr :xr"'Xl = Il|XO = yn) (1)

r—1
= DPyn,z1 priyﬂ?i+1' (2)
=1

Tout ceci se réécrit plus formellement :

Propriété 17. Soit A_ un élément de la tribu du passé F,,_1 = 0(Xo, - X,,—1), et A, un élément de
la tribu du futur o (X, 41, ...), alors :

P(AL|A_, X, = 2,) = P(A,| X, = z,).



3 Propriété de Markov forte

Le but de cette section est de généraliser les formules précédentes a des temps d’arréts.
On fixe donc 7" un temps d’arrét a valeur dans [0, +oo] adapté a (X,).

On rappelle que F.,, désigne la tribu engendrée par la réunion des F,,, et que A € F, € Fy si pour
toutn > 0,AN[T =n| € F,.

On a alors :

Propriété 18 (Propriété de Markov forte). Si 1" est un temps d’arrét a valeurs dans [0, 00| adapté a
la chaine de Markov (X,,), d’ensemble d’états E et de matrice de transition P, que x € E et A € Fr
sont tels que P(T < oo, A, Xo = x) > 0, alors :

PXryi=a1,- , Xppr =2, |T <00, A, Xp =2)=P(X1 =21, , X, =2, [Xo=2) (3)

r—1
= Pz, H pxi,$i+1 . (4)
i=1

Voici un corollaire trés utile et essentiel :

Propriété 19. Soit T, = inf (n > 1, X,, = x). Conditionnellement da [T, < oo, la suite (Xr,,) est
une chaine de Markov de matrice de transition P et d’état initial x. De plus, elle est indépendante de la

tribu Fr.

4 Classification des états

Dans ce qui suit, on suppose, sans perte de généralité, que £ est un sous ensemble de N. On notera
alors les états 7, j plutot que z;, z;.

Définition 20. On dit que I’état j est accessible a partir de I’état ¢ s’il existe un entier n > 0 tel que

pz(»z) > 0. On notei ~ j.

Propriété 21. La relation ~ est réflexive et transitive.
Propriété 22. Sont équivalents :

1L i~

2. Le processus partant de i passe par j avec probabilité strictement positive.

Démonstration. Le sens direct est clair. Pour le sens retour, on montre la contraposée : Si pour tout
n>0,p"

n
2%

= 0, avec A I’événement "le processus passe par j, P(A| X, = i) = P( U (X, =7)|Xo =
neN
i) <Y P(X, =j|Xg=1i)=0. O

n>0
Définition 23. On dit que deux états i et j communiquent sii ~~ j et j ~» 1. On note i <— j.

Propriété 24. La relation <— est une relation d’équivalence. Ses classes d’équivalence sont les com-
posantes fortement connexes du graphe de la chaine de Markov. On les appelle parfois composantes
irréductibles, ou classes irréductibles.



Remarque 25. SiC; et C, sont deux classes irréductibles distinctes, alors il est peut étre possible d’aller
de Cy a Cy. Mais alors, on ne peut pas revenir en arriére.

Remarque 26. Les classes peuvent étre réduites a un singleton : par exemple, dans le cas des états
absorbants.

Définition 27. S’il y a une seule classe irréductible, c’est a dire que tous les états communiquent, alors
on dit que la chaine est irréductible.

Exemple 28. La marche aléatoire sur Z est irréductible.

Exemple 29. Pour les deux matrices suivantes, donner les classes irréductibles :

1
1
2
0

W = O | =
WIS — O

~

Il
O MO N |
OB | N
= O (@)

Ol = O

5 Périodicité

Nous allons étudier dans quelles conditions le temps qui sépare deux retours au méme état est ou
n’est pas multiple d’'un temps minimum.

Propriété 30 (Période). Soit j € E. On appelle période de j, noté d(j) la quantité d(j) = pged(n >
1,p§3) > 0). On dit, par convention, de pged(()) = +oc.

Sid(j) = d > 2, on dit que j est un état périodique de période d.Si d(j) = 1, I’état est dit apériodique.
Une chaine apériodique est une chaine dont tous les états sont apériodiques.

Remarque 31. Sip;; > 0,7 est apériodique.

Propriété 32. Sii est périodique de période d(i) finie, que i «— j, alors j est périodique de période
d(i) : la périodicité est un invariant de classe.



(n) o (m)

Démonstration. On suppose que ¢ <— j. Soit alors n, m tels que p; / et p;;” > 0. Comme ¢ est de

(s)

période d(i) finie, soit s > 1 (multiple de d) tel que p;; > 0. Alors pgf';“m) > pg-?)pgi-)pgz) > 0.
Comme pgi-) > 0, on a également pff) > (), et donc comme précédemment p§?+25+") > 0. Donc la

période d(j) de j divise m + s + n et m + s + 2n donc elle divise s. On a donc montré que d(7)
divise tout temps de retour en 7, donc le pged des temps de retour en ¢, donc d(7). Donc d(j) divise

d(i). On montre de méme que d(¢) divise d(j) et donc d(i) = d(j). O
Exemple 33. Pour
0 1 0
P=1p 0 1-p
10 0

, déterminer les classes récurrentes, et la période de chaque classe.

Exemple 34. Méme chose avec

oo = O
_ -0 O
S O o=
O O oo -

Exemple 35. Méme chose avec la marche aléatoire sur Z.
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6 Etats récurrents, états transients

Comme on 'a fait précédemment, on notera 7; = inf {n > 1, X,, = j}. Cest un temps d’arrét. On

note aussi N; = Z 1x,—; le nombre de passages en j. On notera également pour tout événement
n>0

A:PI(A) = P(A|Xy = j). Cela revient a prendre comme loi initiale §; : on appelle cette chaine la

chaine issue de j.

On a alors P/ (T} < oo) = P/(N; > 1).

Définition 36 (Etat récurrent). On dit que I’état j est récurrent si la chaine issue de j revient presque
stirement en j en un temps fini, c’est a dire P’ (TJ < 00) = 1. Sinon, I’état est dit transient, ou transitoire.

Propriété 37. Si j est récurrent, le nombre de passages en j en partant de j est presque stirement
infini : P/(N; = 4+00) = 1, et a fortiori :E?(N;) = +00. Si j est transient, le nombre de passage en j
en partant de j suit une loi géométrique. et est donc presque stirement fini, et d’espérance finie. De plus,
en partant de i quelconque, le nombre de passage en j transient est également finie d’espérance finie.

On en déduit le corollaire suivant trés utile :

Propriété 38. 1. j est récurrent ssi Z p%) diverge.
n>0

2. j est transient ssi Z pg;) converge.
n>0

Démonstration. On prouve 1 en calculant E/ (N;) avec une permutation espérance série. On en déduit
automatiquement 2 par contraposée. [

Exemple 39. Les états absorbants.

1
Exemple 40. La marche aléatoire sur Z ? Distinguer p = 3 et <p<1.
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Remarque 41. On peut s’intéresser d la nature des états de la marche aléatoire sur Z°. En fait, le
résultat montré précédemment reste vrai pour d = 2. Pour d > 3, c’est le contraire. C’est un superbe
développement que vous pouvez trouver sur le site de Thomas Cavallazzi. Il y a beaucoup de recasages!

Propriété 42. La récurrence et la transience sont des propriétés de classe. On peut donc parler de classe
transiente et de classe récurrente.

Définition 43 (Classe close). Une classe C de Uespace d’états E est dite close si pour tout j ¢ C,i €
C.pij = 0.

On a alors le théoréme suivant :

Théoréme 44. L’espace d’états se partitionne en classes d’équivalences pour la communication.

1. Une classe non close est transiente.
2. Une classe close finie est récurrente.

En particulier, pour les chaines de Markov a espace d’états finis, les classes récurrentes sont les classes
closes, les classes transientes les classes non closes. De plus, une chaine de Markov d espaces d’états
finis admet au moins un état récurrent : on en déduit qu’une chaine de Markov finie irréductible est
récurrente.

On en donne une esquisse de preuve :

Démonstration. Preuve du premier point : Soit C non close. Soit i € C, j ¢ C tel que p; ; > 0. Comme
j ¢ C,P(X,, =j|Xo =1) =0 quelque soit n € N. Donc P(7; < oo| Xy =1i) = 0.

Donc ¢ transient, C transitoire. Preuve du second point : Soit C une classe close finie. On procede par
I’absurde et on suppose que tous les états sont transitoires. Soit ¢ € C. Partant de ¢, la chaine reste

dans C, donc presque slirement, Z N; = 400. On a une somme finie qui est presque siirement
jec

infinie, donc il existe presque surement un terme de la somme infini : P*(3j € C, N; = +o0) = 1.

Or, on a supposé que tous les états étaient transitoires donc P*(N; = +00) = 0 pour tout j € C, ce

qui est absurde : toute classe close d’une chaine finie est donc récurrente.

Enfin, une chaine a espace d’états finis possede nécessairement une classe close. En effet, si on consi-
dere le graphe des classes de communication de £ dont les arétes sont données par I'existence d’'un
chemin d’une classe vers l'autre, il est acyclique par définition, et un graphe fini orienté acyclique
admet nécessairement un puits, c’est a dire un sommet sans "sortie" : c’est cette classe qui nous
fournit une classe close, qui est donc récurrente. O]
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Voici alors une recette de cuisine pour I'étude d’une chaine de Markov a espace d’états fini :

Si la chaine part d’un état récurrent, la classe est close et la chaine y reste. Si elle part d'un état
transitoire, au bout d’un temps fini presque surement elle sortira de sa classe, jusqu’a atteindre une
classe récurrente, et y rester. En partant d’un état transitoire, on atteint presque stirement un état
récurrent. L’inverse est presque siirement impossible.

Quelques contre exemples a étudier, sur Z :

Exemple 45. X,, =n

1
Exemple 46. La marche aléatoire biaisée, avec p > 5

\.

Exemple 47. Retour a la ruine du joueur : quels sont les états transitoires ? Récurrents? On fixe N =
a + b la fortune totale. On note p% = P(Ty < 0o Xy = a) la probabilité de ruine de A sachant que sa
fortune initiale est a. Déterminer une formule de récurrence vérifiée par p’y, et puis calculer p‘. Faire de
méme avec m(a) espérance de temps de jeu en partant de a.

13



Exemple 48. La marche aléatoire simple équilibrée sur Z¢ est récurrente si1 < d < 3, transiente si
d > 3. La preuve fait l'objet d’un beau développement, disponible sur le site de Thomas Cavallazzi, qui
remplit les lecons de proba, séries, intégration. C’est le théoréme de Polya.

7 Mesures, et loi de probabilités stationnaires

On identifiera les mesures y sur E a des vecteurs lignes pt = (puy, - -+ )

Définition 49. Soit ;1 une mesure sur . On dit que c’est une mesure stationnaire, ou invariante, si
p=pP.

Si v est une loi invariante, alors si X est de loi v, X, est de loi vP™ = v. Ces lois sont intimement
liées au comportement asymptotique. En effet, on a la propriété suivante :

Propriété 50. Si (X,,) converge en loi vers v, alors v est une loi stationnaire.
Démonstration. vgP™ — v et P = (vyP")P— > vP = v, donc v est une loi invariante. [

On a la propriété suivante :

Propriété 51. Les mesures stationnaires ne chargent que les états récurrents : si i est transient et v
stationnaire, v (i) = 0.

(n)

Démonstration. v = vP™ pour tout n € N donc : (i) = Z v(j)p;

J

(n)

Et si ¢ est transitoire, p;;’ tend vers zéro. Le théoreme de convergence dominée s’applique (pour-

quoi?) et conclut. O]

Remarque 52. En particulier, si tous les états sont transitoires, il n’y a pas de mesure de probabilité
invariantes et donc pas de convergence en loi.

Pour chercher des mesures invariantes, peut parfois utiliser les résultats suivants :
Définition 53. Une mesure est dite réversible pour P si pour toutz,y € FE,m(z)p(x,y) = 7(y)p(y, )
Propriété 54. Une mesure réversible est invariante.

Exemple 55. Mesure invariante pour la marche aléatoire a deux états?

14



Exemple 56. Pour la marche aléatoire symétrique sur Z ? Effectuer une remarque.

Appliquons tout ceci aux chaines de Markov a espaces d’état fini :

8 Loisinvariantes et comportement asymptotique des chaines
de Markov a espace d’état fini

Théoréme 57 (Chaines de Markov a espaces d’état fini : lois invariantes et convergence en loi).
Soit (X,,) une chaine de Markov sur un espace d’état /' fini. Alors elle posséde au moins une loi
stationnaire. Si de plus (X,,) est irréductible, alors la loi de probabilité stationnaire est unique. On

Uappelle v, et alors v(i) = ou T; est le temps de retour en i. Si (X,,) est de plus irréductible

E(T3)
et aperiodique, alors P" converge vers la matrice dont toutes les lignes sont constantes égales a v. En
particulier, quelle que soit vy, il y a convergence en loi de (X,,) vers v

Démonstration. C’est de I'algébre linéaire, a travers notamment le théoréme de Perron-Frobenius,
et un développement! [

Remarque 58. Pour estimer la loi invariante, une solution est donc de calculer les puissances de P, par
exemple en la diagonalisant, et faire tendre n vers l’infini.

Remarque 59. La vitesse de convergence est exponentielle : |P(X,, = 1) — v(i)| < a|A|" ot || est la
deuxiéme plus grande valeur propre de’P en module, la premiére étant 1. On appelle ¢a le trou spectral.

Remarque 60. La convergence est en loi. On ne peut pas espérer de convergence presque siire : cela
reviendrait a avoir une chaine constante a partir d’un certain rang.

Remarque 61. S’il n’y a qu’une classe récurrente et des états récurrents, alors en temps fini la chaine
vit dans cette classe récurrente, et donc il y a une unique mesure invariante qui a pour support la classe
récurrente, et le théoreme précédent s’applique également.
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Remarque 62. S’il y a plusieurs classes récurrentes, elle admet pour chaque classe une loi invariante
ayant pour support ladite classe. De plus, toute combinaison convexe de ces classes est une loi invariante,
et en fait, ce sont les seules. Donc la dimension de [’espace propre associé a la valeur propre 1 est le nombre
de classes récurrentes de la chaine.

Exemple 63. Reprendre les exemples du modéle a deux états, et du modéle de diffusion d’Ehrenfest.

Solution

Solution

\.

Théoréme 64 (Théoréme ergodique, Théoréme centrale limite). (X,,) une chaine de Markov irré-
ductible sur un espace d’état fini. Soit ;1 son unique loi invariante. On a alors presque siirement :

3 =3 g = f s
k=0 i€ER

n—1
1
De plus, /n (ﬁ Z f(X5) — /fd,u) converge en loi vers une loi normale centrée.
k=0

9 Retour au cas général

Ce qui suit n’a d’intérét que quand E est infini.



Définition 65 (Temps d’attente moyen). On définit le temps d’attente moyen M, ; par M, ; = E(T;| Xy =

i)=Y nP(T;=n|Xg=1i) =Y nfi

n>1 n>1

1
Définition 66. On appelle M; ; le temps de retour moyen en j, et S la fréquence moyenne de retour

Jd
en j. Si M;; < 400, on dit que I’état j est positif. Dans le cas contraire, on dit qu’il est nul.
Propriété 67. Un état transient est forcément nul.

Propriété 68. Si j transient, alors P(T; = +o00| Xy = j) > 0 donc M, ; = +oc.

Remarque 69. Les états récurrents nuls sont entre les transients et les récurrents : ils sont récurrents,
mais leur temps moyen de retour est infini comme les transients.

Propriété 70. Un état j récurrent est nul ssi p%') — 0.

Démonstration. Long, et pas simple!!! [

Remarque 71. On a dit plus t6t qu’un état était récurrent ssi Zp;fj diverge. Un état récurrent est
donc positif si et seulement si la série diverge grossiérement : c’est une autre manieére d’exprimer le fait
que les états récurrents nuls sont entre les transients et les récurrents : si la série diverge grossiérement,
on est récurrent positif, si la série diverge non grossiérement, récurrent nul, si elle converge, transient.

Propriété 72. La positivité est une propriété de classe. De méme pour la nullité.

(no+nit+m) - p(no) (m), (n1)

Démonstration. p%o) > 0, pﬁl) > 0. Donc p; ; i; Dj; Dj; -Donc en envoyant m en

I'infini on voit que la nullité de 7 entraine celle de j. O

Propriété 73. Si E est fini, tous les états récurrents sont positifs.

La théorie n’a donc d’intérét que pour £ quelconque. On fixe maintenant (X, ) une chaine de Markov
irréductible récurrente. Nous allons exhiber une mesure invariante. Dans cette partie, ce ne sera pas
nécessairement une mesure de probabilité. Nous verrons que cette mesure est finie, et peut étre
choisie comme une mesure de proba, quand la chaine est récurrente positive. Cette derniere sera
unique.

Théoréeme 74. Soit (X,,) irréductible récurrente. On note

j - o
w! =E ) Lx,—jner—1|Xo =i

n>0

uf compte alors le temps moyen passé en j avant de revenir en i. Alors v; définie par v;(j) = ugest
stationnaire, et vérifie v;(i) = 1,v;(j) < oo pour tout j € E et v;(FE) = E[T;| Xy = i]. De plus, toutes
les mesures invariantes sont proportionnelles. Donc, si la chaine est irréductible récurrente positive,
vi(F) < oo et il existe une unique loi de probabilité stationnaire, laquelle est donnée par

1 1
M;; E(Tj|Xo=1)

pli) =

A linverse, si la chaine est récurrente nulle, v;(E') = +oc et il n’y a pas de mesure invariante.

Remarque 75. ui est le temps moyen que l'on passe en j entre deux passages en i.
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Démonstration. Tres longue. ]
n—1 1
Définition 76. On définit N,,(j) = Z 1x,—; et F,,(j) = —Nu(j). Nn(j) est le nombre de passages
n
k=0
en j dans Uintervalle de temps [0,n — 1] et F},(j) la fréquence associée.

Siles (X,,) étaient iid, on pourrait appliquer la loi forte des grands nombres a la suite (F,). C’est en
fait le cas, en remplacant une éventuelle loi commune par une loi invariante.

Théoréme 77. Si (X,,) irréductible, alors F,,(j) — presque siirement.

757
On a alors les corollaires suivants :

Théoréme 78. Si une chaine de Markov est irréductible, la suite P" converge au sens de Césaro vers

la matrice  dont toutes les lignes sont égales et vérifient 7; ; = . Si la chaine n’est pas positive,

Ei(T))
j

la limite est nulle. Si elle est récurrente positive, toutes les lignes de la matrice limite sont égales a

l'unique probabilité invariante. De plus, si la suite est irréductible récurrente positive apériodique, il y

a convergence au sens usuel, et donc en loi vers ['unique loi stationnaire.

Démonstration. Le début est assez direct avec le théoréme précédent. On admet la fin. O]

Théoréme 79 (Théoreme ergodique). Si (X,,) est irréductible récurrente positive d unique loi de pro-
babilité invariante 1, alors pour toute fonction f u—intégrable :

i S 7060 = [ S
k=0

Démonstration. Vraie pour les étagées avec ce qui précede, donc pour toute fonction par convergence
monotone. [l

Ce théoréme dit en d’autre mots que la moyenne de f temporelle sur une trajectoire est égale a la
moyenne spatiale.
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