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This report was written during my internship at the university of Duisburg-Essen, that I
did with Dr. Vytautas Paskunas, whom I thank for supervising me. The goal of the internship
was to get familiar with tools of number theory and representation theory, more specically to
understand the following paper by [BP] R. Beuzart-Plessis, in the case where the group G is
GLn(F ), where F is a p-adic eld. The rst chapter is heavily inspired by the pdf of the course
’Algebraic number theory’, which I took during my internship.

I will try to make this document accessible to anyone who has never seen p-adic elds before,
but that is not a guarantee. Missing proofs can most often times be found in [Sp]
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1 p-adic elds and their rings of integers

Denition 1.1. Let K be a eld. An absolute value on K is a function  : K → R+ such
that the following two conditions hold for all x, y ∈ K :

1. x+ y ≤ x+ y

2. xy = xy

3. x = 0 =⇒ x = 0

Denition 1.2. A valued eld is a eld equipped with an absolute value.

Example 1.3. (R, ) and (Q, ) are valued elds

Denition 1.4. Let p be a prime number. We dene the p-adic absolute value on Q as follows
: If n = pαm ∈ Z where p ∤ m, then np = p−α. In other words, np = p−νp(n). If x = a

b ∈ Q,
then xp = ap − bp
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Remark 1.5. This is well dened and an absolute value. I will only show the well-denedness.
Indeed, if a

b = c
d , then adp = bcp, which implies that

p−(νp(a)+νp(d)) = p−(νp(b)+νp(c))

Taking logs yields the desired result.

Proposition 1.6. The p-adic absolute value is ultrametric, which means that it veries the
following identity :

∀x, y ∈ Q, x+ yp ≤ max(x, y)

Proof. Let x = pαm, y = pβl ∈ Z. We have pmin(α,β)x+ y, hence νp(x+ y) ≥ min(α,β). Thus,
−νp(x+ y) ≤ max(−α,−β), hence

x+ yp ≤ pmax(−α,−β) = max(p−α, p−β) = max(xp, yp)

Now take x = a
b , y = c

d . We have

x+ yp =
ad+ bcp

bdp
≤ max(adp, bcp)

bdp
= max(xp, yp)

Remark 1.7. This absolute value means that the more a number is divisible by p, the ”smaller”
it is. The notion of closeness is not the one of Q equipped with the usual absolute value. With
this new absolute value, n and n+ 1 can vastly dier in their absolute values.

Denition 1.8. We say that an absolute value  is discrete if the values taken by log() is
a discrete subset of R.

Example 1.9. p is discrete.

Remark 1.10. One can show that such an absolute value is ultrametric.

Denition 1.11. A discrete valuation ring (DVR) is a principal ideal domain with exactly
one non-zero maximal ideal.

Denition 1.12. Let A be a DVR and m be its maximal ideal. Then κ := Am is called the
residue eld

Proposition 1.13. Let (k, ) be a complete discretely valued eld. Then,

A = x ∈ kx ≤ 1

is a discrete valuation ring, with maximal ideal

m = x ∈ kx < 1

and group of units
A× = x ∈ kx = 1

Proof. A is clearly a ring, as follows from the axioms of an absolute value. Recall that a ring
has a unique maximal ideal if and only if A \ A× is an ideal. The group of units is clearly
x ∈ kx = 1, and as m = x ∈ kx < 1 is an ideal, this shows that m is the only maximal
ideal. As the valuation is discrete, one can choose an element x of m of maximal valuation. Such
an element will generate all of m. I will not give a proof for this, but it can be found in [Sp]
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Proposition 1.14. Let (k, ) be a complete discretely valued eld. Let A be its valuation ring,
m = () its maximal ideal and let R ⊂ OF be a system of representatives for Am. Then, every
x ∈ k \ 0 can be written as

x = m
∞

i=0

ai
i

with m = ν(x) and ai ∈ R

Proof. A proof of this can be found in [Sp]

Recall the following denition : The completion of a vector space is dened to be the set of
all Cauchy sequences of that space, modulo zero-sequences. One can show that this construction
makes this space complete, and in the case where the vector space is a eld, it also endows the
completion with a eld structure. For more information, see [As]

Denition 1.15. We dene Qp to be the completion of (Q, p) and Zp to be its ring of integers.

Denition 1.16. A p-adic eld F is a nite extension of Qp

With the following two theorems, one can show that a p-adic eld F is a complete discretely
valued eld. Hence, every element in F can be represented as in 1.14. The rst one is useful for
the proof of the second and will be useful later, which is why I put it here.

Lemma 1.17 (Hensel’s lemma). Let A be a discretely valued ring and k its fraction eld. If
f ∈ A[X] is primitive and decomposes in

f̄ = ḡh̄ ∈ κ[X]

with ḡ and h̄ coprime, then, there exists g, h ∈ A[X] such that

• g = ḡ mod m, h = h̄ mod m

• deg(g) = deg(ḡ)

• f = gh

Theorem 1.18 (Extension of absolute values). Let (k, ) be a complete discretely valued eld,
and let LK be a nite eld extension of degree n. Then,  extends uniquely to L, which makes
L a complete discritely valued eld such that for x ∈ L,

xL = NL/K(x)1/n

Example 1.19. In Qp, the set of all elements of norm ≤ 1 is Zp. As Q injects into Qp and Z
into Zp, I will treat elements of Q as elements of Qp. p is an element of norm < 1, and also
an element which has the biggest norm which is stricly smaller than 1. Hence it generates a
maximal ideal of Zp. Thus, every element of x ∈ Qp can be written as

x = pνp(x)
∞

k=0

akp
k

Example 1.20. In Qp,

1

1− p
=

∞

k=0

pk

A reason why this series makes sense is that this is absolutely convergent series in Qp and since
Qp is complete, the series converges.
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Now let’s talk a bit about the topology of Qp. This topology is a little bit special, as every
point has a neighbourhood of compact-open subsets around it.

Proposition 1.21. For x ∈ Qp, (x + pnZp)n∈N forms a basis of compact open subsets around
x.

Proof. As (Qp,+) is a topological group, it only suces to show that (pnZp)n∈N forms a basis
of compact open subsets around 0. Let U be an open subset around 0. Let B(0, ϵ) ⊂ U be a
ball of radius ϵ > 0. There exists an N such that for pNZp ⊂ B(0, ϵ). Moreover

pNZp = x ∈ Qpxp ≤ 1

pN
 = x ∈ Qpxp <

1

pN−1


The rst expression gives us the compactness, the second gives the openness.

Remark 1.22. This is still true for all p-adic elds, with  instead of p

Now for a theorem that links the analytic view of Zp, with an algebraic one :

Theorem 1.23. Zp
∼= limn∈N∗ ZpnZ in the category of topological rings

Proof. According to 1.14 we can write an element x of Zp as

x =

∞

k=0

akp
k

with ak ∈ [[0, p− 1]] Let us dene
n : Zp → ZpnZ

which maps an element x =
∞

k=0 akp
k to

n(x) =

n−1

k=0

akp
k

This is well dened and a ring homomorphism. Let x ∈ ZpnZ.
We have

−1
n (x) = 

n−1

k=0

akp
k +

∞

i=n

bip
ibi ∈ [[0, p− 1]] = x+ pnZp

. As ZpnZ is equipped with the discrete topology, and as −1
n (x) is open according to 1.21, n

is a continuous ring homomorphism, and it makes the following diagram commute :

Zp

ZpnZ Zpn+1Z

ϕn ϕn+1

Now let (xn)n∈N∗ ∈ limn∈N∗ ZpnZ. This means that xn+1 is equal to xn modulo pn. Thus,
in a certain cense, xn+1 can only have p dierent values, which makes sense because we want to
write (xn) as a series in which each term can take p dierent value. Let us then dene

 : lim
n∈N∗

ZpnZ → Zp

which maps (xn) to
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x1 +

∞

n=1

xn+1 − xn

pn
pn

We then check that  is a continous ring homomorphism, which makes the following diagram
commute :

limn∈N∗ ZpnZ

Zp

ZpnZ Zpn+1Z

ϕ

ϕn ϕn+1

and hence the desired result

I will end with a lemma which I will use later.

Lemma 1.24 (Krasner’s lemma). Let F be a p-adic eld. Let α,β ∈ F . Denote α = α1, · · · ,αn

the galois conjugates of α. If for all i ∈ [[2, n]],

β − α < β − αi

then, F (α) ⊂ F (β)

Proof. Suppose α ∈ F (β). Then, let us consider the extension LF (β) generated by the ga-
lois conjugates of α over F (β). By construction LF (β) is Galois. Hence there exists some
σ ∈Gal(LF (β)) such that σ(α) ̸= α. Hence, σ(α) = αi for some i ∈ [[2, n]]. Moreover,  ◦ σ is
still an absolute value on L. By uniqueness in 1.18, we have that  =  ◦ σ. Thus,

β − α = σ(β − α) = σ(β)− σ(α) = β − αi

which is absurd

Let’s now talk a bit about ramication, as I will need it in the future. I will use notions
which were in the number theory course given by F.Ivorra in the semester 2 of my M1 without
redemonstrating them.

First of all, let us recall that rings of integers are Dedekind rings, and as such, there exists
a unique prime decomposition of ideals :

Theorem 1.25. Let A be a dedeking ring and let I be an ideal of A. Then, there exists a unique
decomposition of I into prime ideals :

I =


Jprime

JeJ

with eJ ∈ N

Let us now x a nite extension of Dedeking Rings BA (as in B is a ring and a A-module
of nite type). Let us write L := Frac(B), and K := Frac(A)
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Denition 1.26. Let p be a prime ideal of A. Let us consider the decomposition of p in B :

p = Pe1
1 · · ·Per

r

with ei ∈ N Then ei is called the ramication index of Pi over p and if we let κ(p) = Ap
and κ(Pi) = BPi, then the degree of the residue eld extension fi := [κ(p) : κ(P)] is called
the inertia degree

Remark 1.27. The inertia degree is well dened. Indeed, if e1, · · · , en generates B as an A-
module, then for x ∈ B,

x =

n

i=1

aiei

and if we denote by πi : B → κPi
then

πi(x) =

n

i=1

πi(ai)πi(ei)

which means that the degree of the residue eld extension is less or equal to that of the eld
extension

Theorem 1.28.
r

i=1

eifi = [L : K]

Proof. Can be found in [Sp]

Returing to the context of p-adic elds, we have the fact that the rings of integers of such
elds are DVR. Hence, they have a unique maximal ideal. As they are also Dedekind rings, they
have a unique prime ideal. Hence the following corollary.

Corollary 1.29. Let EF be a nite extension of p-adic elds of dimension n. If e and f ∈ Z
such that

• e
E = F

• [κE : κF ] = f

Then,
n = ef

2 Smooth representations

In this section, we take G = Gln(F ) where F is a p-adic eld. The topology on this group is
given by the topology on F and by the product topology. This makes G into a topological group
which also has a basis of compact open subsets.

Denition 2.1. A smooth representation of G is a pair (V,π) such that V is a complex nite
dimensional vector space, and π : G → GL(V ) is a smooth group homomorphism, meaning
that for every vector v ∈ V , there exists an open subgroup K of G such that for all g ∈ K,
π(g)(v) = v.

Remark 2.2. We will often x a representation π and forget about it, and we will write abusively
gv for π(g)(v).
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Proposition 2.3. Let  be a normalized uniformizer for F , i.e. val() = 1. Then, (V,π) is a
smooth representation if and only if, for all v ∈ V there exists some N such that 1+NGLn(OF )
stabilizes v.

Proof. Let v ∈ V . Suppose there exists an N such that 1 + NGLn(OF ) stabilizes v. Then,
according to 1.22, this set is open. It is also clearly a group. Reciprocally, if there exists an
open subgroup K such that K ⊂ Stab(v), then according to 1.22, because 1 ∈ K, there exists
some N such that 1 +NGLn(OF ) stablizes v

Example 2.4. An example of such a representation when F = Qp and dim(V ) = 1 is the following
character

χ : x → e2iπ{x}p

where xp denotes the fracitonal part of x.

Remark 2.5. Composing this character with TrF/Qp
gives a character of any p-adic eld.

Remark 2.6. More constructions of such smooth representations can be found in [Bu]

Denition 2.7. Denote C∞
c (G) the set of complex valued, compactly supported locally constant

functions on G. Such functions will be called smooth functions.

Remark 2.8. The reason why locally constant functions are the ones being considered for
”smoothness” is very much linked to the topology of p-adic elds. This topology has a ba-
sis of compact-open sets. If a function happened to not be locally constant, it then wouldn’t be
continuous. The following proposition precises this :

Proposition 2.9. A function f ∈ C∞
c (G) is smooth (meaning it is (left) invariant under trans-

lation by some open subgroup) if and only if it is locally constant.

Proof. Suppose f is smooth. Let K ⩽ G be an open subgroup under which f is invariant. Let
x ∈ G. Then f(Kx) = f(x) As Kx is open, f is locally constant. Reciprocally, suppose f is
locally constant, and let x ∈ G. Then there exists U open such that f(U) = f(x). Thus, Ux−1

is an open set containing 1. Hence Ux−1 contains an open subgroup according to 1.22, which
gives the desired result.

3 Haar measures and integration on groups

The goal of this section is to create a theory of integration on all locally compact groups.
We already know how to dene the lesbegue measure on Rd. This part will generalize this.

Denition 3.1. Let G be a locally compact group. A (left) Haar measure on G is a borelian
regular measure λ such that, for all g ∈ G, and for all borelians B,

λ(gB) = λ(B)

Example 3.2. On (Rd,+), the Lesbegue measure is a Haar measure.

Example 3.3. On (R∗
+,×), dx

x is a Haar measure. Indeed, if [a, b] is a segment of R∗
+ and r > 0,

then, by a change of variables,

 rb

ra

dx

x
=

 b

a

dx

x

Because segments generate the entier σ-algebra, this concludes.
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Example 3.4. Let f : [0, 2π] → C such that f(t) = eit. Then, the measure on S1 given by

λ(B) = m(f−1(B))
2π where m is the lesbegue measure is a Haar measure on the circle.

Example 3.5. For G = GLn(R), a Haar measure is given by

λ(B) =



B

dx

det(x)n

Let B be a borelian and g ∈ G. Then, the jacobian of g is g itself, as a map from Rn2

to itself.
In the basis of standard vectors, the matrix of g as a map from Rn2

to itself is just a block
diagonal matrix, whose every block in the diagonal is g itself as an n × n matrix. Hence, the
determinant of the jacobian is det(g)n. the rest follows from the change of variables formula.

Theorem 3.6 (Existence and uniqueness of Haar measure). Let G be a locally compact topolog-
ical group. Then, there exists a unique, up to scalar multiplication, measure λ which is a Haar
measure on G.

Remark 3.7. The proof of this theorem resembles that of the construction of the lesbegue
measure.

Remark 3.8. If we x some compact borelian B, then, because a Haar measure is nite on
compact sets, we can x a value to B, for example λ(B) = 1. There will then exist a unique
Haar measure which veries this. In the future, we will x a Haar measure on p-adic elds F
such that λ(OF ) = 1.

4 Parabolic subgroups and cusp forms

Denition 4.1. Let V be a complex nite dimensional vector space of dimension n. A ag on
V is a nite sequence of increasing sub vector spaces (Vk) such that

0 = V0 ⊊ V1 ⊊ · · · ⊊ Vk = V

Remark 4.2. If di is the dimension of the ith vector space, then

0 = d0 < d1 < · · · < dk = n

Example 4.3. If for all i, di = i, then the ag is called complete. It is the case where, for
instance, Vi is the vector space generated by the rst i standard basis vectors.

Denition 4.4. Let (Vk) be a ag. The parabolic subgroup associated with this ag is the
group

P = g ∈ GLn(F )∀i ∈ [[1, k]]gVi = Vi

In the rest of this section, we will x V a nite dimensional complex vector space, and for a
ag (Vi), we will denote P the corresponding parabolic subgroup.

Denition 4.5. A basis e1, · · · , en such that e1, · · · , ed1
is a basis of V1, e1, · · · , ed2

is a basis
of V2, · · · , e1, · · · , en is a basis of Vk is called a basis adapted to the ag.

Let us now also x a basis adapted to the ag.
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Remark 4.6. In such a basis, the elements of P can be written as




A1 ∗ · · · ∗
0 A2 · · · ∗
...

...
. . .

...
0 · · · 0 Ak




where Ai is an invertible matrix of size dim(ViVi−1)

Denition 4.7. M =
k

i=1 GL(ViVi−1) is called the Levi component of the parabolic sub-
group

Remark 4.8. In the basis adapted to the ag, M can be embedded in P by

M → GLn(C)

(g1, · · · gk) →




g1 0 · · · 0
0 g2 · · · 0
...

...
. . .

...
0 · · · 0 gk




Denition 4.9. N = g ∈ P ∀i ∈ [[1, n]](g−In)Vi ⊂ Vi−1 is called the Unipotent subgroup
of P

Remark 4.10. N is normal in P .

Example 4.11. In a basis adapted to the ag, the elements of N are of the form



I1 ∗ · · · ∗
0 I2 · · · ∗
...

...
. . .

...
0 · · · 0 Ik




where Ik is the identity matrix of size dk.

Theorem 4.12 (Levi decomposition). P can be written as P = MN where M is the Levi and
N is the unipotent subgroup.

Proof. Clearly, according to their matrix forms, MN ⊂ P . Let now A ∈ P such that

A =




A1 A1,2 · · · A1,n

0 A2 · · · A2,n

...
...

. . .
...

0 · · · 0 Ak




We can also see that



A−1
1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 · · · 0 A−1

k







A1 A1,2 · · · A1,n

0 A2 · · · A2,n

...
...

. . .
...

0 · · · 0 Ak




is an upper triangular matrix with identity blocks in its diagonal. Hence, it is an element of N .
Thus, A ∈ MN
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Now to the main important word of this report :

Denition 4.13. Let (V,π) be a smooth representation ofG. (V,π) is said to be supercuspidal
if for all proper parabolic subgroups P of G, and for all vectors v ∈ V then



N

π(n)(v)dn = 0

where N denotes the Levi component of the parabolic subgroup

Remark 4.14. As G is locally compact, N also is. Moreover, this denition doesn’t depend on
the choice of the Haar measure.

Denition 4.15. A representation is said to be irreducible if no non-trivial sub-representations
exist.

Denition 4.16. Denote C∞
c,cusp(G) ⊂ C∞

c (G) the subspace of cusp forms, i.e. of functions f
such that for all proper parabolic subgroups G = MN , and for all x ∈ G



N

f(xn)dn = 0

Let us now dene a Fourier transform on Mn(F ) : We rst x a non trivial continuous
additive character ψF : F → C× One way to construct such a character would be by 2.5.
Another is given in [Bu], which has the advantage of being trivial on pF and non trivial on OF .
We will choose this one. Next, we choose a non degenerate bilinear form B on Mn(F ) that is G
invariant. We can take, for example

Mn(F )×Mn(F ) → F

(A,B) −→ Tr(AB)

Using elementary matrices, we see that this form is non-degenerate.

Denition 4.17. Let  ∈ C∞
c (Mn(F )). We dene the Fourier transform of  to be

̂(Y ) =



Mn(F )

(X)ψF (B(X,Y ))dX

Remark 4.18. This is very similar to the Fourier tranform on the group (Rd,+) with the usual
scalar product instead of B and the exponential being the character from (R,+) to (R×,×).
This is merely a generalization to locally compact abelian groups. For further references, see
this

5 How to construct a supercuspidal representation for G =

GLn(F )

We will construct an example for the following theorem :

Theorem 5.1. Let G = GLn(F ). Then, there exists a supercuspidal irreducible representation
of G.

In order to prove the preceding theorem, we will prove this one :

10



Theorem 5.2. C∞
c,cusp(G) ̸= 0

And, in order to prove this theorem, we will nd a non zero function  ∈ C∞
c,cusp(Mn(F )),

and lift it via the exponential map. In order to understand how to lift this function, and how
the second theorem implies the rst, I refer to [BP]

In the following section, we x EF a nite extension of p-adic elds, with n = [E : F ], with
n being the same as the one of GLn(F ). Let us also x α such that E = F [α], and let us x an
F -basis B of E. This is possible because as the characteristic is 0, this extension is separable.
We will need a few propositions before we get to the bulk of it.

Proposition 5.3. There is an injective group morphism E× → G

Proof. Every element of E× can be seen as a linear transformation of F : we see x ∈ E as
mx : y → xy. These functions are clearly invertible. Once a basis is xed, we thus have an
inclusion.

Remark 5.4. We will often make no dierence between x and mx.

For context reasons, we will denote tell(F ) the image of E× in G.

Denition 5.5. We will write tell,reg(F ) the subset of tell(F ) consisting of elements with a
minimal polynomial with distinct roots in an algebraic closure of F

Denition 5.6. Dene tell,reg(F )G to be the subset of G with elements that are G-conjugated
to an element of tell,reg(F ). In other words,

tell,reg(F )G = gXg−1g ∈ G, X ∈ tell,reg(F )

Remark 5.7. We know that in R, the set of polynomials with distinct roots in C is open. Here,
a similar proof can be applied. And the function  that we would want to take is something
resembling 1tGell,reg

The problem is that this is then non-constructive.

Proposition 5.8. Let B ∈ Mn(F ). Then, B ∈ tell,reg(F )G ⇐⇒ E = F [λ] for λ some
eigenvalue of µB in F̄

Proof. Suppose B ∈ tell,reg(F )G. Then B = gXg−1 for some g ∈ GLn(F ) and X ∈ tell,reg(F ).
Thus, X is diagonalizable in F̄ . Thus, as its minimal polynomial in F̄ is equal to its characteristic
polynomial in F̄ . As χF ∈ F [X], then the minimal polynomial of X is of degree n, and hence
if X is multiplication by β, E = F [β] by equality of dimensions. Moreover, we have :

χB = χX = χβ = µβ = µX = µB

which implies that β is an eigenvalue of B, as χB(β) = 0.
Conversly, if E = F [λ] for λ an eigenvalue of B, then

χB = µλ = χλ

As two cyclic endomorphisms with the same characteristic polynomials are conjugated, it suces
to show that multiplication by λ has a characteristic polynomial with distinct roots. As its
characteristic polynomial is equal to its minimal polynomial, this is trivially the case, and hence
the desired result.

I will rst show a non-constructive proof of the opennes of tell,reg(F )G in Mn(F )
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Lemma 5.9. Let α ∈ F̄ such that µα is of degree n. Then, there exists ϵ > 0 such that for all
q ∈ F [X ] monic of degree n such that

µα − qp < ϵ

there exists β ∈ F̄ such that q(β) = 0 and F [α] = F [β].

Remark 5.10. The abolute value on polynomials is the one given by the maximum of all the
absolute values of the coecients in F

Proof. Let α such that µα is of degree n and denote A the associated matrix. Let 0 < ϵ < 1
that we will x alter. Let q be a monic polynomial of degree n such that µα − q < ϵ. Because
M → χM is surjective from Mn(F ) to monic polynomials in F of degree n (take for instance
companion matrices), there exists a B such that q = χB . As the set of all polynomials separated
in F is opên, we can choose ϵ small enough such that χB has distinct roots, i.e B has distinct
eigenvalues.

Let now δ > 0 such that if β is a root of χB then β − α < δ (possible because the function
which maps a polynomial to its roots is continuous), and let ϵ2 = min(ϵ, δ). There exists a
C > 0 which only depends on ϵ2 such that chiA(β)− q(β) < Cϵ. Indeed, this C is given by :

χA(β)− q(β) ≤
n

i=0

χAi
− qiβi

≤ ϵ

n

i=0

βi

≤ ϵ

n

i=0

(α+ ϵ2)
i

< Cϵ

as ϵ < 1. It also doesn’t depend on B or β. So, we can suppose ϵ small enough such that

χA(β) < ϵ

In F̄ , χA(β) =
n

i=1(β−αi) where the αi are the Galois conjugates of α, with α1 = α. We now
take ϵ3 =min(ϵ2,mini̸=j(αi − αj 2)), then for all j ̸= 1,

β − α < β − αj 

Then, for i ̸= j,

β − αj  = β − α− (αj − α)
≤ max(β − α, α− αj )
≤ α− αj 

Then, by , this shows that F [α] ⊂ F [β]. But, as [F [β] : F ] ≤ n and [F [α] : F ] = n, we have

F [α] = F [β]
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Theorem 5.11. tell,reg(F )G is an open subset of Mn(F )

Proof. Let α ∈ tell,reg(F )G. Then, according to 5.9 there exists an ϵ > 0 such that for all
q ∈ F [X] monic of degree n such that µα − q < ϵ then q = µβ = χβ such that F [α] = F [β].
According to 5.8 this means that β ∈ tell,reg(F )G. this means that

χxx ∈ tell,reg(F )G

is open in P ∈ Fn[X], P monic . By continuity of x → χx, this concludes the proof.

Denition 5.12. Let

P = A ∈ EndF (E)∀n ∈ Z , ApnE ⊂ pn+1
E 

Proposition 5.13. In a good basis,

P =




pF OF · · · OF

pF pF · · · OF

...
...

. . .
...

pF · · · pF pF




Proof. Let e be the ramication index of [E : F ]. This means that e
E = F . Let π(e1) · · ·π(ef )

be a basis of the residue eld extension κEκF . We will show that (k
Eei)1≤k≤e,1≤i≤f is a basis

in which all elements of P look like what is above. First of, let’s show that this is indeed a basis.
Suppose there exists λk,i such that


λk,i

k
Eei = 0

. We can, without loss of generality, suppose that these lambda have positive valuation. Then,
applying π, we get 

i



k

π(λk,i)π(
k
E)π(ei) = 0

and as (π(ei)) is a basis, we get that, for all i,

e−1

k=0

λk,i
k
E ∈ pF

but, if this is non zero, it is in contradiction with the fact that k
E = F (contradiction with

the absolute value of these elements). Hence,
e−1

k=0 λk,i
k
E = 0. As the λ’s have valuation 0,

this implies that they are 0. So, (k
Eei) is a free family. According to 1.29, it is a basis. Let

now A ∈ P . A sends k
Eei to an element of valuation k + 1. Hence Ak

Eeican be written as

k

i=0

ai
i
E +

e−1

i=k+1

bi
i
E

with ai ∈ pF and bi ∈ OF . Hence the desired result.

Just have to verify the thing with the lambda having val 0.

Denition 5.14. For k ∈ Z, dene Pk to be A ∈ EndF (E)∀n ∈ Z , ApnE ⊂ pn+k
E 
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The goal is now to show that if m = val(α) then α+P1−m is an open subset of tell,reg(F )G.
I haven’t had the time to show this if you’re reading it.

Suppose that it is true.
Let us now dene

 = 1tell,reg(F )G

The above statement tells us that  ∈ C∞
c (G)

In [BP], the author proves that ̂ is a cusp form. Here,

ˆ(X) =



Mn(F )

1α+P1−mψF (Tr(XY ))dY

=



α+P1−m

ψF (Tr(XY ))dY

=



P1−m

ψF (Tr(X(α+ Y )))dY

= ψF (Tr(Xα))



P 1−m

ψF (Tr(XY ))dY

Now, for all Y ∈ P1−m, ψF (Tr(XY )) = 1 if and only if Tr(XY ) ∈ pF if and only if X ∈ Pm.
This can be seen with elementary matrices. Choosing the Haar measure in order to normalize
the nal result, we have :

̂(X) = ψF (Tr(Xα))1Pm(X)
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