Maxime CAUTÉ maxime.caute@college-de-france.fr*

February 17th, 2025

1 Finding equivalent formulae

Exercise 1. For each of the formulae below, write a formula that is equivalent to it and whose only connectives are \neg and \lor .

- 1. $(\neg a \land (b \to c)) \to \neg (\neg b \lor c)$
- 2. $(a \lor \neg (b \land c)) \land \neg (d \to (\neg a \land e))$

Exercise 2. Same thing with \neg and \land

2 Induction

Exercise 3.* Below are two definitions by inductions on formulaes. How could you describe the corresponding notions in English?

1. For any atom p , and any binary	2. For any binary connector \bullet :
connector \bullet :	$p^{+} = 1$
$p^{\star} = 0$	1
$(\neg \phi)^{\star} = \phi^{\star}$	$(\neg \phi)^+ = \phi^+$
$(\phi \bullet \psi)^{\star} = \phi^{\star} + \psi^{\star} + 1$	$(\phi \bullet \psi)^+ = \phi^+ + \psi^+$

Can you prove by induction that $\phi^+ = \phi^* + 1$?

3 Either NAND or NOR

Exercise 4. Reproduce the truth-table defining the Scheffer stroke \uparrow . How could you paraphrase $A \uparrow B$ using plain English? Show that a language whose only connective is \uparrow is as expressive as the one based on $\{neg, \land, \lor, \rightarrow\}$

Exercise 5. Now considering a connective \downarrow that could be paraphrased by 'Neither A nor B', write down its truth-table. Again, show that a language whose only connective is \downarrow is as expressive as the one based on { $neg, \land, \lor, \rightarrow$ }

^{*}Template and exercise 3 amiably provided by M. Sablé-Meyer

4 Naive set theory

Exercise 6. For each statement below, tell whether it is true or false.

- 1. $\{x : x \text{ is a dog}\} \subseteq \{x : x \text{ is a mammal}\}$
- 2. $\{x : x \text{ is a dog}\} \subseteq \{y : y \text{ is a dog}\}$
- 3. $\{x : x \text{ is a mammal}\} \subseteq \{x : x \text{ is a cow}\}$

Exercise 7. Same with the statements below

1. $a \in \{a, b, c\}$	7. $\{a, b, c\} \in \{\{a\}, \{a, b, c\}, \{\{b, c\}\}\}$
2. $a \subseteq \{a, b, c\}$	8. $\{a, b, c\} \subseteq \{\{a\}, \{a, b, c\}, \{\{b, c\}\}\}$
3. $\{a\} \in \{a, b, c\}$	9. $\emptyset \in \{\emptyset, \{a\}\}$
4. $\{a\} \subseteq \{a, b, c\}$	10. $\emptyset \subseteq \{\emptyset, \{a\}\}$
5. $\{a\} \in \{\{a\}, b, \{a, c\}\}$	11. $\emptyset \in \{\{a\}\}$
6. $\{a\} \subseteq \{\{a\}, b, \{a, c\}\}$	12. $\emptyset \subseteq \{\{a\}\}$