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Abstract

The hypothesis of a Language of Thought (LoT) at the heart of human perception has received
an increasing attention over the year. Many studies proposed to analyze human performance
on various tasks along the lines of the complexity of the mental program required to process
their related stimuli. However, these domains have until now mostly been studied in isola-
tion. Although some work tackled the interactions between domains such as language and
mathematics, behavior and brain imaging results do not agree over the existence of shared
syntactic mechanisms. In this work, we proposed to investigate a potential domain-generality
of LoT over two simpler domains: binary patterns and binary sequences. As binary sequences
were already shown to display the signature of a LoT-like mechanism in the literature, we
replicated these findings for binary patterns in Exp. 1. In Exp. 2, we tried to find a priming
effect across the two domains, without success. Given our small sample size, it is impossible
to know whether this failure is due to an absence of effect or to an insufficient statistical
power. Our results are nonetheless encouraging and push for further investigations.
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This thesis investigates the domain-generality of the Language of Thought (LoT). Although
some prior work did tackle LoT-based interaction for complex domains such as language and
mathematics, no clear consensus emerged from these works. To limit the number of possible
confounds, we focused on simple domains, which were never studied beyond isolation. We
proposed a habituation-based priming paradigm to investigate the syntactic interactions
across domains. Although time did not allow to run a full experiment using this paradigm, we
reported encouraging results. Should this work be pursued, it may tip decisively the balance
about whether syntactic structures are shared across different domains of cognition, one way
or another.
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Pre-registration

0.1 Administrative information

The internship will be conducted at NeuroSpin’s Unicog team (INSERM – CEA Paris-Saclay)
under the supervision of Stanislas Dehaene. Mathias Sablé-Meyer (PhD students) acted as a
junior referee.

0.2 Introduction

Background and rationale. Syntactic ability is foundational for human language and the
complex organisation of sentences. It notably plays an essential role in allowing for a wide
expressibility of human languages and their learning. Karl Lashley’s [Las+51] and Noam
Chomsky’s [Cho57] early proposals of a mental representation of syntax involving recursively
nested structures were pursued by Jerry Fodor in 1975 [Fod75], who theorized that human
syntax could be described in a “Language of Thought” (LoT). LoT-theoretic approaches were
consequently proposed to describe items in further cognitive domains, such as mathematics,
geometrical figures [Ama+17; Sab+21], or auditory sequences [Pla+21]. The latter notably
used the same language of thought, Geo [Ama+17] (or a simplification in the case of binary
sequences), which closely matched the “complexity gradients” that could be correlated
both to human insight on inherent complexity and performance [Sab+21], [Ama+17]. Most
interestingly, this gradient was found by Sablé-Meyer et al. [Sab+21] to hold across ages and
cultures.

In parallel, recent studies have found syntactic interactions across these different cog-
nitive domains. Scheepers et al [Sch+11] observed in 2011 that the positioning of relative
clauses in sentences was primed by the structure of a prior arithmetic formula: upon being
presented the ambiguous, incomplete sentence “The tourist guide mentioned the bells of the
church that. . . ”, participants would be more likely to use a plural verb in the relative clause
(i.e. attach “that” to “the bells”; high-attachment) than a singular verb (i.e. attach “that” to
“the church”; low-attachment) if presented a high-attachment-like formula like “80 – (9 + 1)
x 5” prior to this. Conversely, they were more prone to complete the sentence with a low-
attachment clause if primed with a low-attachment-like formula such as “80 – 9 + 1 x 5”. This
mathematics-linguistic syntactic priming effect has since then been replicated numerous
times [HCN18; NO18; SS14; PHS18; ZML18; ZMZ21]. Further works also highlighted syntactic
interactions with other domains [VH16], especially music [VH16; FP14].
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Research question Is the complexity of binary sequences, as computed by the Language-of-
Thought Geo (from Amalric et al. [Ama+17]), a factor in human proficiency with them in the
visual modality?

Experimental hypotheses We hypothesized that binary sequences are dealt with in humans
by a geometrical language of thought similar to Geo, and that more complex sequences would
result in a lesser efficiency of human subjects in tasks involving them.

0.3 Methods

Participants 100 participants will be recruited by an on-line advertisement on Twitter. Since
we test for an arguably universal capacity (syntax, required for language), no demographic
criterion will be implemented, with the sole exception of neurological deficits or current
psychiatric medication. We will also reject participants whose performance is too low: namely
whose response time is above median plus 3 standard errors, or whose accuracy was not
significantly better (p < 0.05) than chance, as measured by a binomial test against a balanced
coin (P(1) = 0.5) on all their trials. Responses whose reaction time is above 3200ms will also
be specifically excluded.

Procedure and stimuli We will use a match-to-sample paradigm, in which we will present
16-item binary sequences to participants as both sample and query. Sequences will be
displayed vertically at the center of the screen; items will be black dots shifted either to the
left or to the right. The sample sequence will be presented 1200ms, followed by a mask
flashed during 500ms; the query sequence will be presented in the same fashion. The masks
will consist in a display of all possible dot positions, that is of two vertical trails of dots shifted
to the left and the right from the center.

Our original sequences will be the 10 size-16 ones used in Planton et al., and will present
various complexities (as per Planton et al.’s measure; see Fig. 2.2 ). Deviant sequences will be
generated by shifting a single dot to the other side (from left to right, or right to left), with a
uniform random choice over said dot. These will then be broken down between participants,
as we will only present each one of them with 4 of these 16 possible unique deviants.

We will then balance the trials for each participant with three controlled parameters, by
evenly splitting them between matching trials (both sample and query are the same) and
non-matching trials (one point was shifted between sample and query); this would be the
match condition. For non-matching trials, deviants will be presented as sample in half the
trials, the other half having the original as sample instead (and, consequently, the deviant
as query); this would be the order condition. Finally, we will make it so that sequences were
presented with their first dot to the left (normal display) or to the right (negative display); this
would be the negativity condition. In total, each participant will thus pass 23 = 8 test trials
matched over these 3 conditions per sequence, or 80 in total. Participants also had 4 training
trials prior to test, with 2 very simple and unbalanced sequences (with 1 or 2 B-items only),
in both matching and non-matching conditions. We also introduced 10 control trials, with
one popping every 10 test trials, one per test sequence, in which the query sequence was the
negated sample, to test whether participants could distinguish left-right inversion. There
were thus 94 trials in total, including training and control.
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Measures We will measure success rate and reaction time as dependent measures.

Predictions Our hypotheses predict that success rate will be negatively correlated with
complexity, and that reaction time will similarly display a positive correlation with complexity.

Analyses Reaction time will be converted to logarithmic values in order to reduce the
correlation effect between its values and its standard deviation.

Analyses will be run by fitting a Generalized Linear Model (GLM), for both success rate
and reaction time in parallel, with LoT-complexity of the sequence as a fixed factor, and
participants as a random factor. Analyses will be separate for matching and non-matching
conditions. Non matching conditions will also have the distance of the outlier on the se-
quence, and the outlier position relative to the sequence template as further fixed factors. We
will also add Shannon surprise as a fixed factor for all conditions, to account for effects from
transition probabilities. These analyses should find a significant, positive (resp. negative)
effect of complexity on success rate (resp. reaction time).

Interpretation Should we find the significant results presented above, we will conclude that
our hypothesis is verified. If not, the hypothesis will be rejected

0.4 Expected contributions

All my work will be mainly done by myself. Mathias Sablé-Meyer (MSM) and Stanislas
Dehaene (SD) will provide guidance and feedback. MSM will provide templates and help for
experiment code and analysis code.
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CHAPTER 1

Introduction

Human language is perhaps one of our most characterizing feature as a species. Many
other animals display communicative systems (like monkeys [Cäs+13; Coy+15] or songbirds
[Ber+11]), yet none of these systems is considered equivalent to language. A key difference
lies in the existence of “long-range dependencies” in human languages, where an arbitrarily
long relative clause may be inserted between two words without affecting their relationship
[Deh+15]. E.g. in English, the sentence “The car behind the truck is red”, is still read as “The
car [. . . ] is red”, and not, “[. . . ] the truck is red”. These dependencies are well highlighted
by syntactic processes such as agreement: “The cars behind the truck are red”. No similar
observation was reported in animal productions [HCF02].

Generative linguists, Lashley [Las+51] and Chomsky [Cho56] ahead, offered a formal
account for this intriguing discrepancy. They proposed that the syntax of human language
uniquely relies on recursively nested structures [Cho57; Deh+15]: a sentence like above can
be derived from the simple sentence “[The car]DP isV redAP ” with the substitution rule “DP
→ DP behind DP”. Here this rule is applied to the determiner phrase (DP) “[the car]DP ”,
which is replaced by “[[the car]DP behind [the truck]DP ]DP ”. The operation can be repeated
at will, e.g. to get “The car behind the truck behind the bike is red”.

Although we only gave one substitution rule in the above example, languages possess
many, as even a simple sentence like “[[Mary]N P [likesV [John]N P ]V P ]S” features (at least)
two : S → N P V P and V P →V N P . Crucially, the set of all substitution rules in a language,
called its grammar, needs to be parsimonious. In fact, the sentence above may be obtained
with a grammar such as {S → N P N P ; N P → V N P }; however this grammar may also pro-
duce invalid sentences like “[[Mary]N P [likesV [likesV [John]N P ]N P ]N P ]S”. The constraint of
parsimony heavily restricts the space of possible grammars for human languages. It has been
mathematically demonstrated that, to account for all natural sentences and only them, a
supra-regular grammar was needed [Shi88]. Supra-regular grammars rank high in Chomsky’s
hierarchy [Cho57], given that they can not be generated using simple mechanisms such as
finite-state automata.

Since only human languages appear to use (or at least require) supra-regular grammars,
a major question arose: are they accessible to other animals, or is it a human specificity?
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Comparative studies tackled the question using artificial grammar learning (AGL) paradigms
(for a review, see [FF12] (2012) or [Deh+15] (2015)). In AGL paradigm, subjects are taught a
pattern involving categories of items (e.g. symbols or sounds), their ability to generalize the
known pattern to novel categories being tested afterwards. The results of comparative AGL
experiments are heavily disputed [Deh+15]. Recent research nonetheless suggests that some
monkeys are able to learn and generalize at least one supra-regular grammar1 [Jia+18; MDF20;
Fer+20]. Although these studies challenge the view of supra-regularity being human-specific,
they also highlight the huge advantage of humans in this field. Monkeys’ generalization of
the grammar comes at the cost of hundreds of trials, while humans, including preschoolers,
only require a few of them [Jia+18]. Furthermore, despite their success, monkeys failed in
generalizing another, more complex grammar, that humans could generalize [MDF20].

If anything, humans thus appear to have an edge in grammar manipulation and process-
ing that may go well beyond natural languages. In 1975 already, Fodor [Fod75] proposed
that human thoughts were structured along rules similar to natural languages: mental states
(e.g. of belief) could be considered recursive, along the grammar {MP → P ; MP →O R MP },
where P is a proposition (e.g. “the Earth is flat”), O an organism (“Mary”, or “Philip”), and R
a relation from organisms to mental representations MP (“believes that”). This may create
mental states such as “Mary believes that the Earth is flat”, but also “Philip believes that Mary
believes that the Earth is flat”.

Fodor’s hypothesis of a “Language of Though” (LoT) was generalized in by Fitch [Fit14],
who argued that many domains of human cognition actually featured recursive syntactic
structures. Musical phrases display long-distance key agreement, even though a local, sub-
dominant part may have a different key [Koe+13]; in mathematics, the formula 2x3+4 should
be interpreted as the nested structure [[2x3] + 4]. This “dendrophilia” hypothesis, named
after the tree-like structures involved in Chomsky’s generative grammar [Cho57], received a
significant attention over the years [PTG12; RSF13; Ama+17; Dav18; Sab+21; Pia21]. In the
modern version of the LoT Hypothesis (LoTH), concepts are often thought of as the output
of a “program”, especially for domains with some abstract formalism, such as geometrical
figures [Sab+21; Tra+21], sequences [YJ15; Ama+17; Pla+21], and numbers [PTG12; RSF13]. In
particular, it has been proposed that subject performance on a given stimulus was directly re-
lated to the complexity of the program required to generate it [PTG12; RSF13; YJ15; Ama+17].
However, these domains have mostly been studied in isolation. Although Yildirim et al. [YJ15]
observed that LoT-based knowledge could be transferred across modalities, they did not test
it across two different domains.

In this work, we investigated the domain-generality of a potential LoT, by focusing on two
simple domains: binary sequences of sounds and binary patterns. In Exp. 1, we look for LoT
effects in an experimental design involving binary patterns; the case of binary sequences has
already been covered by prior work from Planton et al. [Pla+21]. In Exp. 2, we investigate
cross domain effects using in a priming-oriented experimental setup.

1More precisely, the mirror of language patterns, e.g. ABCCBA.
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CHAPTER 2

State of the art

2.1 Interactions between mathematics and language

According to Fitch’s [Fit14] dendrophilia hypothesis, the human brain processes many do-
mains with recursively embedded tree structures. This is precisely how mathematical for-
mulas are accounted for in programming languages, using Chomsky’s formal grammars
[Cho57]. As a result, the highly abstract domain of mathematics appears a typical candidate
for dendrophilia [SS14; AD19]. Here, we propose a quick overview of the interactions between
mathematics and music.

Syntactic priming Priming is a classical way to highlight a conceptual relationship between
two stimuli. Kintsch & Mross [KM85] observed in 1984 that recognizing an existing word,
such as “steel” was easier when presented before with a semantically associated word, such as
“iron”. This priming effect heavily relies on conceptual proximity, since the effect was much
stronger than with a mere thematic relationship (e.g. “gate” was barely primed by “plane”,
even though they were linked by the context of an airport). A similar effect, called syntactic
priming (or structural priming) exists across syntactic structures. People are more likely to
utter a sentence in the passive form if they were themselves presented with a passive before
that [Boc86]. This effect is known as syntactic priming, or structural priming.

Syntactic priming was used to highlight structural interactions between mathematics and
music. Scheepers et al [Sch+11] observed in 2011 that the positioning of relative clauses in
sentences was primed by the structure of a prior arithmetic formula: upon being presented
the ambiguous, incomplete sentence “The tourist guide mentioned the bells of the church
that. . . ”, participants would be more likely to use a plural verb in the relative clause (i.e. attach
“that” to “the bells”; high-attachment) than a singular verb (i.e. attach “that” to “the church”;
low-attachment) if presented a high-attachment-like formula like “80 – (9 + 1) x 5” prior to
this. Conversely, they were more prone to complete the sentence with a low-attachment
clause if primed with a low-attachment-like formula such as “80 – 9 + 1 x 5”. his mathematics-
linguistic syntactic priming effect has since then been replicated numerous times [SS14;
NO18; HCW20] including in other languages than English [PHS18; ZML18]. As a note, further
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works highlighted syntactic interactions across other domains [VH16], especially music [FP14;
VH16].

Brain imaging Another way to probe relationship between concepts is to observe the
common networks involved in their processing. Amalric & Dehaene [AD19] scanned the brain
of mathematicians under fMRI while they were processing simple assertions of either general
knowledge or mathematics. Participants had to label these assertions as true or false in a
very short time (2.5s). For mathematics, assertions ranged from rotely memorized formula
to sentences regarding properties of geometrical figures or complex numbers. General
knowledge was used as a proxy for language.

Mathematical statements were associated with the activation of a distinct language from
general knowledge. This network was centered on bilateral IntraParietal Sulci (IPS; notably
involved in number perception [Pia+04; Fia+07]) and Inferior Temporal (IT) regions. The
regions were not only significantly more activated when presented with mathematical state-
ments; they also had a significant drop of activity when general knowledge statements were
presented instead. On the contrary, language-specific activation appeared around the tem-
poral pole and the pars orbitalis of the Inferior Frontal Gyrus (IFG): only geometry- and
complex-numbers-related statement did trigger activation along with general knowledge;
other mathematical statements were presented as formulas. Quite notably, this held true
even when formulas where heard and not read by the participant, refuting low-level interpre-
tations. Other regions (pars triangularis of the IFG and the Superior Temporal Sulcus (STS))
displayed significantly greater activity for language, but were still activated by mathematics.

A second experiment dropped formulas and focused on natural-language assertions of
similar grammatical complexity, still covering either mathematical or general knowledge. The
set of stimuli also now included negated and quantified statements (e.g. “some oceans are
warm”). Under these knew conditions, maths-specific activation was still found in bilateral
IPS and IT. Similarly, greater activation for language was still observed in the STS and the left
pars orbitalis of the IFG.

Although these results provide strong evidence for dissociated networks in mathematics
and language, it must be noted that the study focused on semantic differences between
the two. This is especially true for the second experiment, which specifically controlled for
syntactic discrepancies! As a result, the possibility for a shared syntactic network between
maths and language two domains remains open.

In the following sections, we will focus on simpler domains which are less likely to bear
higher-order effects. In particular, we will cover previous research on LoT-interactions per-
taining to sequences of items.

2.2 A first take on cross-modality

Yildirim & Jacobs’ experiment Yildirim & Jacobs [YJ15] provided a first experimental take
on LoT interactions across modalities. They investigated transfer learning, that is, whether
knowledge acquired in the auditory modality could be applied to the visual modality, and
vice-versa. In Yildirim & Jacobs’ experiment, this knowledge was a set of categorization rules.
Participants were in fact presented with sequences of items generated by 4 possible rules,
resulting in 4 categories they had to learn. The sequences had 7 possible different items,
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ordered on an imaginary circle, resulting in a succession relationship between them: item B
was the successor of item A; item C was of B; up to A which was the successor to item G. The
4 possible rules defined the relationship between the item of the sequence. As an example,
the first one, [+1], imposed that every item in the sequence was obtained from the previous
one by a clockwise shift on the imaginary circle (e.g. “BCDEFGABC...”).

Participants learned the categories through trial and error. They took a training session
(with auditory feedback) of 7 blocks of 36 trials, with 9 exemplars of each of the 4 categories.
Once the sequences learned, they took 56 further trials in a subsequent test, this time without
feedback. Testing trials included both sequences from training (n=9), and new sequences
from each categories (n=6). Crucially, training and testing did not occur in the same modality.

For half the participants, training sequences were visually displayed. The display used
7 LEDs placed regularly on a circle. Each LED corresponded to a sequence item, so that
links between LEDs matched those of the items (e.g., shifting the LED for item A by a 1/7th
clockwise rotation gave the LED for item B). Sequences were then played using a flash of the
associated LED. For the other half of the participants, training sequences were displayed with
audio sounds. This display used audio emitters instead of LEDs, organized in an identical
way. Instead of flashing a light, the emitters produced a small beep to play their items. The
beep was common across emitters: participants perceived sequences as a series of sound
locations, and not of different sounds.

Results After training, participants were tested on their converse modality. What was tested
was thus their ability to translate the rules for visually-perceived spatial locations into rules for
the same locations, this time perceived auditorily (and vice-versa). Yildirim & Jacobs. found
that their participants were able to do so, since their 18 participants (9 for each modality) did
significantly better than chance on training.

Three further observations were of interest to us. First, participants trained in the visual
modality achieved better performances than those trained in the auditory one. The authors
argued that this was most likely due to differing reliability between the two modalities. A sec-
ond observation was that participants did not fare significantly better on familiar sequences
than new ones, showing some degree of spontaneous generalization. The third, last obser-
vation was that classification performance varied across categories. As an example, ∼ 90%
of sequences from category 1 (following a simple [+1], clockwise turn rule) were correctly
classified, while only ∼ 80% of sequences from category 4 were. Category 4 followed a [+2 -1]
rule which was to turn two times clockwise to get the second item from the first, and then
one time counterclockwise to get the third item from the second, and repeating this pattern.
One example of such sequence would be “ACBDCED. . . ”. The differences in performance
across categories occurred in both training and testing.

Model Variations in difficulty are typically interpreted as signatures of a hypothesized
LoT [AD19; Pla+21]. Here, Yildirim & Jacobs propose a LoT generating possible rules as
programs. Programs combined LoT-primitives, including probabilistic ones, so that their
output was not entirely deterministic. One program could thus generate several sequences.
The assignment of one specific program (i.e. rule) to a category used a model balancing the
program’s precision (its ability to generate the attested examples, no more no less) and its
simplicity. The details of this model are beyond the scope of this thesis; see Piantadosi et al.
[PTG12] for more information on probabilistic LoT-grammars, which Yildirim & Jacobs [YJ15]
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adapted for their model. This LoT-based model was able to account well for participants’
data, showing similar patterns of performance on the same trials set. Namely, once categories
ranked by performance, the order was the same for human participants and the model.

Limitations The results from Yildirim & Jacobs brought strong evidence that some common
knowledge was used in both visual and auditory modality. It also demonstrated that the
learning and use of this knowledge could be well accounted for by a LoT-based approach.
However, this work undergoes three limitations.

First, although perception occurs in two different modalities, both target the same domain
of spatial locations. From a LoT-perspective, this experiment may thus be explained by
multisensory semantics (relative to spatial locations) rather than a shared syntactic module
across domains. However, LoT is hypothesized to occur even across a variety of domains
[VH16], linked by syntactic effects, such as priming [SS14].

Another limitation of Yildirim & Jacobs is that participants were aware of the existence
of a common rule across modalities: they were told that visual categories were the same as
auditory ones. Therefore, this experiment does not provide any evidence as to how sponta-
neous the observed transfer-learning is. This also opens the way to convoluted conversion
strategies across modalities.

A final limitation of this experiment is that, although its design is rooted within geometry
(with regular positions on a circle), it does not investigate geometric properties such as sym-
metry. Although their heptagonal design precisely limited the possibilities for symmetries to
play a role, their proposed LoT consequently may not be able to properly capture operations
run by the human brain. In the following section 2.3, we will present an alternative LoT
proposed by Amalric et al. [Ama+17], aimed to better cover geometric abilities. The other two
limitations are related to cross-modality and will be covered in Exp. 2 of the present thesis.

2.3 Geo, a language for patterns in the brain

2.3.1 Formal definition of Geo

Amalric et al. [Ama+17] proposed a formal language, Geo, dedicated to describing sequences
of movement over a regular octagon. Regular octagons are very convenient polygons for
pattern perception, given that they display a number of interesting symmetries. When drawn
so that they have one horizontal segment (see Fig. 2.1), they display a horizontal symmetry H,
a vertical symmetry V, two diagonals symmetry A and B, and even a point symmetry P. These
regularities allow to describe movement on octagons in a very compressed manner.

The language Geo thus contains two types of movement descriptors: rotation-based
descriptors, and symmetry-based ones. Rotation-based descriptors are similar to those
used in Yildirim & Jacobs [YJ15], as they correspond to a number of rotations clockwise or
counterclockwise. As an example, 0 denotates staying at the same location, +1 denotates
a movement to the next element clockwise, while −2 denotates a movement to the second
element counterclockwise. Symmetry-based descriptors are specific to Geo and describe
movement along the symmetry axes and center presented above. As an example, point-
symmetry movement P is equivalent to a +4. See Fig. 2.1 for all descriptors and a movement
example.
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Fig. 2.1. Representation of Amalric et al.’s stimuli octogon, and the possible primitive instruc-
tions of Geo.

Using these elementary descriptors, as primitives for Geo, one can already describe any
sequence on the octagon. As an example, a sequence of movements in a square could
be expressed as +2 +2 +2 +2. However, Geo provides a way to compress these repeating
sequences, through the [X ]n operation, where X denotes an expression and n the number
of times it is repeated. As such, +2 +2 +2 +2 can also be equivalently expressed as [+2]4.
Repetitions can also include some variation between them. Envision one wants to draw a
square over 4 points of the octagon, and then draw another square over the four remaining
points. Without repetition, it could be expressed as +2 +2 +2 +2 (first square) +1 (offset)
+2 +2 +2 +2 (second, offset square). With simple repetition, it could be simplified as [+2]4

+1 [+2]4. Variations allow to express this under the form [X ]n < I >, where I is a single
instruction (movement) offsetting every repetitions. Our expression can thus be expressed as
[[+2]4]2 <+1 >: there are two squares ([+2]4), offset by +1 from one another1.

Geo thus propose a way to represent sequences over an octagon in a recursive way. It
combines 10 primitive instructions (rotation2: 0, +1, +2, −1, −2; symmetry: H, V, A, B, P)
with 3 primitive operators (concatenation [, ], repetition []n ; and repetition with variations
[]n <>). These representations can be numerous for one single sequence, as seen above for
the 2-squares example. However, some are more compact than others: this compactness is
measured by description length. Description length is computed as a measure of the number
of primitive used, potentially weighted by primitives. In Geo, the description length of an
expression is defined recursively as follows:

1. the length of any instruction is 23;

1Crucially, the offset instructions apply with respect to the repeated sequences start, and not their end. The
fact that [[+2]4]2 < +1 > is equivalent to [+2]4 +1 [+2]4 is a coincidence only due to the fact that [+2]4 both
starts and ends on the same point. [[+2]2]2 <+1 > is, as an example, not equivalent to [+2]2 +1 [+2]2, but to
[+2]2 −3 [+2]2.

2Rotations beyond 2 were not used as primitives by Amalric et al. Note that these absent rotations can be
obtained from ±1, ±2, and P (e.g. +3 is [P; -1]; -3 is [P; +1]).

3The choice for instructions being of length 2 was made so that +2 +2 was stricly longer than [+2]2. This
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2. the length of a consecutive expressions is the sum of each expression’s length;
3. the length of an expression iterated n times is the length of this expression plus log (n);
4. the length of a repetition with variations is the length of the repetition plus the length

of the variation instruction.

Given a sequence of movements, there is at least one expression whose length is minimal,
that is, so that there is no other expression for the sequence with a smaller length. This
minimal length is called the Minimum Description Length (MDL) of the sequence. As they
hypothesized LoT to use the most parsimonious representation, Amalric et al. assumed MDL
to be a good descriptor of how complex the LoT-representation of the sequence was. From
now on, we will call MDL the LoT-complexity of a sequence.

2.3.2 Geo across populations

Amalric et al. [Ama+17] proceeded to test whether Geo could account well for human
performance on geometrical tasks. French adults were asked to predict sequences of flashing
lights on the corners of an octagon. Sequences were chosen so that their LoT-Complexities
(according to Geo) spanned a wide range of possibilities, from irregular, incompressible
sequences, to simple series of 1-element rotations. For each sequence, its two first items
were flashed with possible variations on the starting point. Participants had to predict the
following items one by one, being corrected for wrong guesses (so that they could predict the
rest).

Amalric et al. found that participants made much more errors for sequences with a
high LoT-complexity than for more regular ones. Overall, the complexity computed by Geo
correlated very well with error rate. Crucially, some sequences’ regularities relied heavily on
symmetry. The better performance on those sequences, when compared to their irregular
counterparts, demonstrated how important symmetries were to the hypothesized LoT. In fact
a degraded version of Geo, without symmetries, performed much worse on these sequences,
while the overall prediction was still decent. Amalric et al. also ran item-by-item analyses,
showing that errors in sequences were higher for movements (=instructions) nested deeper
in a Geo-generated expression for the sequence. Geo thus appeared as a good LoT-account
for performance of French adults on this geometrical task.

Given the geometrical nature of the task, a potential LoT effect could however be heavily
driven by formal education in mathematics. To investigate this possibility, Amalric et al. stud-
ied preschoolers and Munduruku adults on a simplified version of the task. As Mundurukus
are people from an isolated Amazonian tribe, with little to no formal education, any shared
difference could only be explained by education, and not age or culture.

Amalric et al. found that Geo was able to once again predict performances fairly well
for these populations, although less than for French adults. The difference was greater for
sequences involving point symmetry P, and higher level of nesting. Although the performance
improved when P and nesting were made more complex (had greater length), it dropped
when they were forbidden. These results thus hint that there is a difference between educated
and non-educated difference, lying in how complex some LoT-operations are.

made compression optimal even on simpler repetitions
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2.3.3 Geo in the brain

FMRI observations Beyond behavior, for which Geo accounted well, this language was
also tested using brain imagery. Wang et al. [Wan+19] first investigated participant’s brain
responses on Amalric et al.’s [Ama+17] task when they simply had to follow with their eyes
items as they moved. Wang et al. observed that the main hierarchical processing areas in-
volved were the Inferior Frontal Gyri (IFG), the right Dorsolateral Prefrontal Cortex (DLPFC),
and bilateral anterior caudate. Although the ventral part of IFG is often considered a core
language network, the activation here was more dorsal, replicating observations from Amal-
ric & Dehaene [AD19] on mathematics versus language. The IFG was found to correlate
mostly with the overall sequence complexity, while the caudate and DLPFC were particularly
responsive to the degree of embedding of the representation structure predicted by Geo.

A MEG-oriented experiment Al Roumi et al. [Al +21] adapted Amalric et al.’s [Ama+17]
paradigm, in which participants had to indicate their predictions for the upcoming move-
ments on an octagon. Participants instead had to report violations of a sequence they
learned prior to the test. This adaptation allowed to smooth imagery results by simplifying
participant’s action: pressing a button (violation report) instead of 8 (prediction). It also
separated the learning part from the testing part, a welcome modification when analyzing
brain imagery.

The learning part consisted in 12 repetitions of a 8-items sequence, flashed over the
octagon as in Amalric et al. [Ama+17]. If participants felt they learned the sequence before
the end of this part, they could stop early by pressing a button. This offered a first, dependent
measure of the task complexity as “encoding time”. Once the learning part over, either by the
participant or by the 12-repetitions limit, the sequence was played 12 times again, this time
with violations. Participants had to report violations by pressing the button again, as soon
as they spotted them. This provided two further dependent measures of reaction time and
wrongness of the answer.

Beyond sequences, Al Roumi et al. also tested possible primitives, that is single movement
instructions. These were taken from Geo’s instruction primitives (minus the stay one, as
none of their tested sequences included twice the same position), with the additional ±3
rotations. Primitives were tested in a way analogous to sequences: participants had to learn
them during 32 repetitions (which they could still stop), and then spot violations again on
32 repetitions. Unlike for sequences, the starting point for the primitive movement changed
across repetitions, to prevent rote memorization.

Behavioral results Al Roumi et al. observed that the three dependent variables nicely
predicted one another, and that they correlated well with LoT-complexity on sequences. Still,
the inclusion of ±3 rotations and a distance-between-positions effect improved the fit of the
model. Primitives were also significantly easier than a control condition, where movements
could only be rote memorized from the starting point. These result corroborated Amalric et
al.’s [Ama+17] finding with Geo, but pushed for the integration of two ±3 additional primitives
and visual distance into the language. These results were furthered by a later computational
approach comparing different languages [Rom+18], which nonetheless favored Geo and this
amended version over languages with arbitrary primitives such as following the digits of π.
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MEG decoding In addition to behavior, the essence of Al Roumi et al.’s study was the brain
imagery of the participant under Magneto-Encephalo-Graphy (MEG). Using decoders, they
were able to predict better than chance which position was being flashed from brain activity.
LoT was not correlated with how accurate the prediction was, but participant performance
was. Beyond the currently flashed position, they were able to predict the upcoming flash
position better than chance as well. This time, the accuracy of the prediction was influenced
by LoT-complexity: prediction was less accurate for more complex sequences. This result
matches the error patterns of the participants, with higher error rate on complex sequences,
and hints at a LoT-driven anticipation in participants.

Al Roumi et al found further indirect evidence of a LoT like Geo in the brain. They trained
a decoder for which primitive was displayed in the part where participants had to detect
violations of primitives. The decoder was able to classify them better than chance. This
classification was not only sensitive to visual features. Visually, primitives amounted to
movements on the screen; yet two primitives could, from the same starting position, fall
onto the same ending position. This is the case for +1 and horizontal symmetry H when
starting from the topmost left corner of the octagon: both will end on its right, horizontally
aligned counterpart (see Fig. 2.1 for illustration). The only difference between the two is
their context, as one occurs within a block of +1 movements, and the other in a block of H
movements. Brain activity still differentiated such trials, as the decoder was able to infer the
correct category. Therefore, Al Roumi et al. provided here evidence that the brain encoded
the abstract geometrical symmetries to an extent, well beyond the only visual features.

Al Roumi et al. were not only able to decode primitives from brain activity. Within a
movement predicted by Geo to be in a loop, they succeeded in decoding the number of the
iteration step better than chance. Overall, their imagery work provided numerous, yet still
indirect, evidence of LoT in the brain, strengthening the Language of Thought Hypothesis
(LoTH) but not testing it decisively.

2.4 Adaptation to binary sequences

In the wake of the difficulties faced to test LoTH, studies tried to investigate the most mini-
mally structured case of patterns: binary sequences. In the following parts, we will refer to
sequences as series of items A & B.

2.4.1 Investigating the signature of LoT

Binary-Geo Planton et al. [Pla+21] amended Geo for cases where only two items were
possible: among instructions, only 0 (staying on the same item) and P (point symmetry; i.e.
swapping to the other item) were relevant. They kept concatenation [], repetition []n and
repetition with variation []n operators as primitives. The individual cost (length) of primitives
were kept from the original language.

Experimental setup Planton et al. then tested how LoT-complexity would account for
participant performance on a task. As Al Roumi et al. [Al +21], they used a violation detection
paradigm. Upon being habituated to a sequence of sounds (with only two possible different
sounds), participants had to detect violations in subsequent repetitions of this sequence.
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Violations consisted in having one single item of the sequence being changed: in most cases,
the wrong sound out of the possible two was played (creating a deviant); however, it also
happened that a third, unrelated sound was played instead (super deviant).

Planton et al. tested participants on a variety of sequences, across 5 independent ex-
periments. Each experiment only displayed sequences of same length, but chosen so that
they spanned a wide range of LoT-complexity as computed by Geo. The first 4 experiments
involved auditory sequences of length 16, 12, 8, 6. The 5th experiment included not only
auditory sequences of length 8, but also visual sequences of same length to test if effects held
across modalities. Length-16 sequences, which we reused in our experiments, can be seen in
Fig. 2.2.

Fig. 2.2. Sequences from Planton et al., with their name and LoT complexity. All sequences
were reused in Exp. 1, except for the underlined sequence (Alt&Pairs2), which had its later
item swapped due to a coding error. Resulting complexity was 19.

LISAS measure Participant performance was computed using the Linear Integrated Speed-
Accuracy Scor (LISAS) measure [Van17]. This measures combines both accuracy and reaction
time over a series of trials into a unique measure for each participant, along the following
formula.

LI S AS = RT j +SRT × ER

SER

Formally, the LISAS performance of a participant j is the sum of their reaction time RT j

and the standard deviation of reaction times across participants SRT , pondered by the error
rate ER j , reduced with the standard deviation of error rates SER across participants.

Results For all lengths and modalities, Planton et al. found a correlation of participant
performance with LoT-complexity. Within auditory modality, LoT-complexity was even a
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very good predictor of performance across different sequences length. Furthermore, as
participants were asked to rate sequences by complexity, it was found that LoT-complexity
closely matched this subjective metrics.

2.4.2 Beyond the Language of Thought

Binary sequences are a well explored domain of human cognition ([MMD22]), but it has
also been abundantly considered by computer science and information theory [Sha48]. As a
result, many studies have bridged the two disciplines: information-theoretic measures were
proposed as predictors of human behavior when facing (among others) binary sequences.

Shannon surprise Shannon surprise [Sha48] (hereafter surprise) is a measure of how unex-
pected a signal is, given a set of statistics. Formally, the surprise associated to an event E is
defined as the negative logarithm of its probability pE of occurrence.

S(E) =−log (pE )

In Planton et al. [Pla+21] , and likewise in our subsequent experiments, the surprise
considered is the one related to transition probabilities (TPs). In fact, humans (but also
non-human animals) have been shown to track to transitions between items in the form
of probabilities [Deh+15]. To account for this in their models, Planton et al. computed the
surprise associated with the deviant D given the preceding point X :

sX→D =−log (p(D|X )) =−l og (pX→D )

Entropy Entropy is a measure of how uncertain a sequence of events is [Sha48]. If only one
event can occur, the sequence is deterministic; if all events are equiprobable, no prediction is
possible whatsoever. In other words, a sequence is as uncertain as its elements are individu-
ally surprising. To capture this, the entropy H of a series of events S is defined as the average
surprise of the events; by considering the proportion pE of event E in S, H can be formulated
as:

H(S) =−∑
E

pE log (pE )

To integrate the tracking of both TPs and individual items occurrence probabilities, Plan-
ton et al. considered the entropy of sequences on the basis of their item pairs. In fact, given
a pair of item X , Y (possibly identical), the probability PX Y of the pair X Y is defined as
PX .PX→Y . As a result, entropy in our case was defined as:

H =−(p A Al og (p A A)+p AB l og (p AB )+pB Al og (pB A)+pBB log (pBB )

Chunk complexity Chunk complexity, proposed by Mathy & Feldman [MF12] is a measure
of how much a sequence can be chunked into subgroups with some constant regularity.
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Planton et al. defined these subgroups as repetitions of a single item [Deh+15] (e.g. BBBB)4;
note that the chunking was assumed to be maximal, that is, there could be no consecutive
chunks repeating both the same item. Following Mathy & Feldman, the chunk-complexity of
a sequence is defined as:

CC =∑
i

log (1+Li )

where Li is the length of chunk i . As an example, the sequence A ABBB A would have
a chunk complexity of log (3) + l og (4) + log (2). Note that, for a given sequence length,
chunk complexity is maximal for alternations; more generally, chunk-complexity could be
understood as how fragmented the sequence is.

Other predictors Planton et al. also introduced further predictors from information theory.
However they did not perform better than LoT-complexity or the previously described pre-
dictors, neither in their experiment nor in ours. For the full description of their predictors,
see the study by Planton et al. [Pla+21].

Lot-chunk variant The last predictor introduced by Planton et al. actually amended Geo.
While it didn’t change its primitives, it added the constraint that valid expressions could not
divide chunks. As an example, the sequence AB ABBB couldn’t, under this constraint, be
interpreted as (AB AB)BB . To borrow a term from formal linguistics, this means that chunks
are constituents of the sequence. Since this only constrains expressions considered as valid,
using LoT-chunk instead of LoT will not decrease the complexity of sequences; however,
some might see their complexity increase if their minimal expression was violating the added
constraint.

Empirical comparison of predictors The predictors introduced above were compared
to LoT-complexity in their prediction of participant performance on auditory sequences.
Surprise was found to be a significant predictor, independently of LoT. However, prediction
was oftentimes better when the two were combined.

The other predictors were analyzed in competition with LoT. Both the original LoT scored
far better than its competitors, only being outmatched by its LoT-chunk variant. This held
true both with and without surprise as an additional predictor.

Overall, Planton et al. brought indirect existence for a mechanism akin to a “Language of
Thought” when processing binary sequences of sound. This evidence relied on the identi-
fication of complexity signatures in participant performance for a range of stimuli. In the
following Exp. 1, we adapt this paradigm to another, close domain: binary patterns.

4Note however that different definitions could be used: Mathy & Feldman, who used a task of digits
sequences memorization, defined chunks as groups of digits with constant increment or decrement (e.g. 34567
or 8642).
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CHAPTER 3

Experiment 1: On the complexity of binary patterns

3.1 Methods & Participants

Participants We recruited from Twitter 49 participants, 10 of whom where filtered out due
to them not being significantly better than chance (n=9), or being too slow (median response
time 3 times higher than average; n=1). This left us with a sample of n=39 participants (15
females; mean age = 39.1; 3 missing demographics data).

Procedure In this experiment, we tested participant memory on a range of visual binary pat-
terns using the same-different paradigm. As in a violation detection paradigm, participants
had to detect in a query pattern deviations from a target pattern. The main difference is that
this pattern was not learned through a habituation phase; instead, it was briefly displayed
shortly before the query. In addition to this, participants faced a forced choice: rather than
tagging violations, participants were asked to tell whether the target and the query were
matching. Participants could answer directly upon query presentation. However query was
only displayed a short amount of time; to prevent retinian persistence effect, a brief static
mask was added after both presentations.

Stimuli We used the 10 length-16 binary sequences used in Planton et al. [Pla+21] as tem-
plates1 (see Fig. 2.2). These templates presented various LoT-complexities (as computed by
the binary version of Geo), but consistently had as many items (eight) of each category. Devi-
ated versions were generated from templates by replacing a single item, from one category
to another. This deviant item, or outlier was randomly chosen within the template. While
it did unbalance the two categories (since one now had 9 items and the other 7), it kept the
number of outliers minimal, reducing the effectiveness of strategies rote memorizing only
parts of the sequence.

1Due to an error in the code, one sequence was actually modified, as its last item was of the wrong category.
Complexity was adapted to the erroneous version in latter analyses.
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Item sequences were displayed as static patterns at the center of the screen, aligned along
the vertical axis. Items were displayed as black dots shifted either to the left (category A) or
to the right (category B), and from top to bottom. The target pattern was presented 1200ms,
after a 50ms blank its mask was flashed during 500ms; after another 1s blank, the query
pattern was presented similarly to the target. The masks consisted in a static display of all
possible item positions, that is of two vertical trails of dots shifted to the left and the right
from the center. See Fig. 3.1 for an illustration.

Fig. 3.1. Illustration of the time course of the experiment. 50ms blanks between sequences
and masks were omitted. Here, this is a deviant trial given that one dot was moved in the
query and the template was the "Alternate" sequence (in target). The clock indicates that we
started measuring reaction time upon presentation of the target.

Across the whole experiment, test trials were presented in a random order. However, each
of the 10 templates was used 8 times in total; this defined a balanced template condition.
Within template condition, the trials were further balanced with three controlled parameters.
First, half the 8 trials featured a deviated pattern; this was the deviancy condition. When no
deviated pattern was introduced, both target and query patterns were visual displays of the
template, and were thus matching; otherwise, only one of the two patterns was a deviated
version, and thus target and query were different. Which of the two was deviated made the
order condition. This condition was balanced as well, with 2 out of the 4 non-matching trial
having a deviated target, and the other two a deviated query.

To artificially increase the variety of patterns displayed to participants, we also made it so
that some of the trial used a negative display. Under such occurrences, the categories were
mapped to the opposite side of the screen: an item of category A would be shifted to the
right instead of left. This was of course consistent across target and query. This negativity
condition was balanced as well, so that each combination of the previous conditions would
feature as many trials under normal display as trials under negative display.

We thus tested participant with a 10 (template) x 2 (deviancy) x 2 (order) x 2 (negativity)
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balanced design, although order had no effect when the two sequences were matching.
In addition to this, we made sure that the 4 outliers appearing for each template were all
different from one another. This resulted in 80 test trials per participants, with 4 outliers out
of the 16 possible ones for each template.

To familiarize participants to the task, we also presented them with 4 training trials.
The displayed pattern was obtained from a quasi-monotone template (that is, all the items
belonged to the same category, except for one or two; e.g. A A AB A AB A). In addition to
training trials, control trials were integrated to the testing part, with one every 10 trials. In
these controls, the query pattern was the negated version of the target. The target itself was a
visual display of a template, and every template occurred once within these 10 control trials.
This allowed us to test whether participants would distinguish left-right inversions.

3.2 Results

Every participant took 94 trials, 80 of which were testing them. Participants as a whole went
through 3510 test trials in total, 68 of which were further filtered out due to abnormally long
response times (over 3200ms, i.e. 2s after end of display). As a measure of performance, we
will focus on error rate, as it was strongly correlated with reaction time (simple linear model
predicting error rate by reaction time for all sequence: R2 = 0.93;β= 833ms; p < 0.001).

Condition differences The error rate reached 26% on average across participants (d ′ ∼ 1.5;
see Fig. S1). However, these errors were heavily driven by deviancy cases: participants
had a hard time spotting most sequence alterations (average miss rate: ∼ 37%); conversely,
participants rarely reported differences for two identical sequences (average false alarm
rate: ∼ 15%). A chi-squared test found this asymmetry in deviancy condition significant
(χ2 = 184.34;d f = 1; p < 0.001; see Fig. 2A.). We ran similar tests for negativity condition
(related to the side on which the first item was displayed), which yielded no significance
(χ2 = 0.038;d f = 1; p = 0.84). Order condition, related to which of the template or the deviated
pattern appeared first in deviancy cases, was also not significant (χ2 = 0.21;d f = 1; p =
0.65). Template condition revealed that some sequences were however significantly easier to
process than others, with error rates ranging from 9% to 36% (χ2 = 109.07;d f = 9; p < 0.001;
see Fig. 2A.).

Outlier position We then proceeded to give a closer look to deviancy cases, in which
featured a variety of possibilities for the outlier position. Deviants occurring on later positions
were mildly but significantly harder to spot (linear model over average error rate, for each
position: R2 = 0.42;β= 1,6x10−2; p = 0.006).

Looking at the actual curves of error rate by outlier position (see Fig. 3.2 and Fig. S1),
we observed the first three positions seemed to trigger considerably less errors: 23% less on
average! We confirmed that this effect was significant using an ANOVA separating these trials
from other deviant trials (F = 22.27;d f = 1; p < 0.001).

When excluding those positions, outlier position appeared no longer correlated to error
rate (R2 = 0.07;β= 0.6x10−2; p = 0.38). Nonetheless, a non-linear effect was still present as
error rates still differed by position (chi-squared test over deviant trials with outlier beyond
3rd position: χ2 = 26.697;d f = 12; p = 0.008).
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Fig. 3.2. Average error rate on deviant trials, depending on the template and the position of
the outlier. The first group only features 3 positions because these have particularly low error
rates. Bars stand for 1 standard error across participants. Dashed line represents chance level
(50%)

LoT-complexity We then proceeded to investigated how difficulty varied within template
condition. We tried to predict the average error rate across participants given the LoT-
complexity of the template using a simple regression. As deviancy condition was shown to
significantly affect performance, the analysis was run separately for matching and deviant
trials. Under both conditions was LoT well correlated with errors (matching: R2 = 0.784;β=
0.51x10−2; p < 0.001; deviant: R2 = 0.623;β= 1.8x10−2; see Fig. 3.3 A & B.).

To rule out possible confounding factors, we joined LoT-complexity with other predictors
in binomial Mixed-Effects Models. For matching trials, a mixed model was used to predict
single-trial outcomes (whether answer was wrong), with LoT-complexity and the index of
the trial (as a proxy for learning) as fixed effect, and a random intercept per participant as
a random effect. To allow for effect size comparisons, all fixed effects were rescaled. All the
effects came out significant (LoT: β= 0.22±0.07; p = 0.001; index: β=−0.17±0.07; p = 0.02).
For deviant trials, we added outlier group (first three positions or other) and the Shannon
surprise associated with the deviant as fixed effects on top of the others. Again, all fixed effects
came out significant (LoT: β = 0.36±0.06; p < 0.001; surprise: β = −0.40±0.08; p < 0.001;
outlier group: −0.38±0.07; p < 0.001; index: β=−0.12±0.05; p = 0.038).

We also investigated whether LoT was still a relevant predictor for deviant trials where the
outlier was on the first three positions. Using a simple LM, we still found a significant, albeit
less decisive effect (R2 = 0.41;β= 1.1x10−2; p = 0.046).
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Fig. 3.3. A) Error rate depending on template, for both deviancy conditions. LoT-complexity
is highlighted in the background. Error bars represent 1 standard error and the dashed line
chance level (50%); B) Correlation of error rate with LoT-complexity. Each point represent
performance over one template in either deviancy condition.

Predictors comparison We further tested how the LoT-complexity predictor compared
with other complexity measures, already used as competitors by Planton et al. [Pla+21].
We adapted the models from above, replacing the LoT-complexity measure by one of its
counterparts as a predictor. Models were compared on the basis of the Akaike Information
Criterion (AIC) [Aka98], a measure of how good the model’s fit is, while penalizing its com-
plexity (degrees of freedom) for a given set of data. The best models have the lower AIC. To
assess the relevance of the AIC difference between our models, we computed their relative
Akaike weight (wAIC) [WF04]. Given a set of models, Akaike weights can be interpreted as the
probability that the associated model is the best of the set. This measure is thus only valid as
a comparison tool between competing models.

In matching condition (Fig. 3.4A), in which trials featured the exact same sequence as
sample and as query, we fitted 7 different models predicting false alarms from one of the
complexity measures. These models were Mixed-Effects Models similar to the ones previously
used for the condition: they included learning as a covariate fixed effect and participants as a
random effect. The best predictor for errors was LoT-complexity, with a wAIC of 0.30. The
LoT-chunk complexity variant fitted almost as well, with a wAIC of 0.24. Other predictors’
models had weights between 0.17 and 0.01, except chunk-complexity which was by far the
worst predictor (wAIC = 0.003).
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Fig. 3.4. Comparison of the different predictors for performance in Exp. 1. Models are
compared to the best. Numbers at the tip of the bar represent Akaike weights of the model
within the set. Light gray indicate that surprise was included as a predictor A) Matching
condition; B) Deviant condition.

In deviancy condition (Fig. 3.4), we fitted 7 different pairs of models, again similar to
those used for this condition. 7 models predicted misses from a fixed complexity effect (with
each of our 7 measures) with a random participant effect and learning and outlier position as
covariate fixed effects. The remaining 7 models also included surprise as a covariate fixed
effect, in line with Planton et al. [Pla+21]. Similarly to them, we found that surprise improved
the AIC for all models but entropy. Unlike this previous study however, the model with the
best fit was the chunk-complexity (with surprise) model, with a wAIC of 0.46. The second
best was LoT-complexity (wAIC = 0.35; with surprise) and its LoT-chunk-complexity variant
(wAIC = 0.014; with surprise). Entropy followed with a wAIC of 0.01, with or without surprise.
All other models were weighted below 0.01.

Did the good score of chunk-complexity in deviant condition advocate against LoT?
To test this, we added chunk-complexity as a fixed effect to the original LoT-complexity
binomial Mixed-Effects Model. All fixed effects, including LoT- and chunk-complexity, were
significant (LoT: β = 0.29±0.07; p < 0.001; chunk: β = 0.31±0.07; p < 0.001; surprise: β =
−0.47±0.08; p < 0.01; group: β=−0.36±0.07; p < 0.001; index: β−0.012±0.05; p = 0.03). The
results were almost identical when replacing LoT predictor by its chunk variant (LoT-chunk:
β= 0.29±0.06; p < 0.001; chunk: β= 0.32±0.07; p < 0.001; surprise: β=−0.47±0.08; p < 0.01;
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group: β=−0.35±0.07; p < 0.001; index: β−0.012±0.05; p = 0.03).

Replication of Planton et al. We then proceeded to compare our results to Planton et
al.’s [Pla+21]. To match their study closer, we restrained the data to the trials from deviant
condition where the outlier was the 9th, 11th, 13th, or 15th item. We also used LISAS instead
of error as the performance measure, and removed fixed effects other than complexity and
surprise. We then ran the same comparisons as above (Fig. S2B). LoT-chunk-complexity
model (with surprise) had the highest weight (wAIC = 0.23), immediately followed by the
original LoT variant (with surprise; wAIC = 0.20). The 5 other predictors, when combined
with surprise, had lower but close weights, ranging from 0.08 to 0.02. Despite a smaller scale,
the profile of the comparison roughly resembled Planton et al.’s [Pla+21] (Fig. S2A & B).

The results above highlight a degree of qualitative similarity (along with some differences)
with Planton et al. [Pla+21]. This similarity was also quantitative, as the LISAS measures for
each1 length-16 template were significantly correlated between the two studies (linear model
over average LISAS for all templates: R2 = 0.635;β= 0.65; p = 0.01; see Fig. 3.5).

Fig. 3.5. Replication of Planton et al. with Exp. 1

3.3 Discussion

Our result show that participants do not process all binary patterns equally: some lead to
significantly less errors than others. This difference is well-captured by the hypothesis of
Language of Thought (LoT) processing patterns as combinations of primitives, with the
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complexity of said combination negatively affecting performance. Even though several
competing measures were introduced, LoT-complexity remained one of the bests. It was
only outmatched in deviancy cases by chunk-complexity, which measures how fragmented a
pattern is.

Yet even when accounting for chunk complexity, LoT-complexity remained significant. It
also remained significant under further comfounding factors, such as the surprise associated
by the transition induced by the oulier, and the position of said outlier (first three positions
or not). These results overall strongly argue for a LoT account of binary patterns processing
in the visual modality, in line with the findings of Planton et al. [Pla+21] in the visual and
auditory modalities using sequences. This convergence was highlighted by the correlation
between our results and theirs.

The good scores of other predictors independently of LoT complexity also raise questions.
Sequential predictors, such as surprise and outlier position, hint at a step-by-step processing
of the sequence, and not of its whole structure. Since LoT-complexity did not account for
how the template sequence was modified, we cannot conclude any further on how these
findings relate to LoT processing. They could be signatures of an item-by-item comparison
to a memorized template as a LoT-representation (with errors being related to memory load,
i.e. complexity); but they could also belong to an entirely independent process happening in
parallel.

Previous research in fact argues for the existence if processes independent from LoT to an
extent: Sablé-Meyer et al. [Sab+21] found that baboons were insensitive to LoT-complexity
differences, but could nonetheless achieve a related task. Remarkably, their strategy also pre-
dicted human behavior to a lesser extent2. Although the uniqueness of human LoT remains
an open question, it is thus not far-fetched to assume that we still run ancestral processes for
binary sequences in parallel to LoT. In fact, the tracking of transition probabilities and simple
patterns have been observed in both humans and non-human primates [Deh+15].

Chunk complexity, precisely, may capture such alternative process. This predictor out-
matched LoT-complexity in deviancy cases, and is tightly linked to interesting properties
of the sequence. It could e.g. measure fragmentation (it is maximal for many small chunks
and minimal for one single chunk). Very interestingly, chunk complexity only fared well in
deviancy cases, and not when the two compared sequences were identical. It was also a
poor predictor in Planton et al.’s [Pla+21] study. Given its limited advantage (∆AIC < 10) we
cannot tell whether this result is due to noise or really highlights some concurrent strategy
specific to our experimental design. In the latter case, this strategy could be specific to the
visual modality or the use of patterns; but it could also be built on the constant length (16) of
our sequences, while Planton et al.’s were of length 6 to 16. Either case, prediction would be
greatly improved (∆AIC = 12.44; w AIC > 0,99; see Fig. S3) by considering the gap variant of
chunk-complexity. This gap variant was computed as the absolute difference in complexity
between target and query. Since the difference is null when target and query are matching,
this improvement is consistent with the poor performance of chunk-complexity in matching
cases. Given the focus of our experiment, we didn’t push further the analysis of this predictor,
although it could be a trail for future work.

2A key difference with our results, however, was that this processing wasn’t observable anymore within
adults educated in mathematics. This may be explained by the fact that a) their task involved geometrical
quadrilatera and was thus more mathematics-driven than ours; and that b) the alternative strategy was much
less efficient than in our case, which incentized resorting to LoT-based judgment.
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Among possible alternative strategies, some degree of rote memorization is also a likely
candidate. One could e.g. expect working memory to store the first items and their positions,
with a limitation to the first 3 or 4 items due to memory constraints [MF12]. In agreement
with this, we found that participants fared much better when the deviant was on the first 3
positions (error rate of 19% vs 41% otherwise on average). However, even when restricting
ourselves to these outliers, the effect of LoT was still significant, albeit less decisive (R2 of
0,41 instead of 0.62). This may suggest that LoT operates in parallel to working memory,
and may marginally help improving its output. This weak effect of LoT despite a “basic”,
independent strategy is also observable in Planton et al. [Pla+21]. In their experiment, LoT-
complexity predicted performance in detecting super-deviants (sounds absent from the
original sequence).

Overall, our results in this experiment suggest that binary patterns processing are driven
by a mechanism that can be analyzed as a “language of thought” (LoT) [Fod75]. This mech-
anism appears to be similar to the one observed by Planton et al. [Pla+21]. Notably, and
unlike Planton et al.’s visual experiment, the similarity held across a different domain from
temporal sequences: static patterns. Although the full extent will be more generally discussed
later in chapter 5, this raises a major question: do we observe two “accidentally” similar
processes, or is there rather a common, cross-domain mechanism underlying both? The
possible cross-modal and cross-domain nature of LoT will be investigated in the following
Experiment 2.
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CHAPTER 4

Experiment 2: Testing priming from auditory sequences to visual
patterns

4.1 Methods & Participants

Participants We recruited 10 participants (8 females; mean age: 38.7) from the RISC plat-
form. Participants took the test on site, under our supervision, using a laptop and its keyboard.
They were paid 10€ for 45 minutes on average. Due to our small sample size, we did not filter
out any participant.

Procedure Participants went through a succession of pairs of blocks, alternating between
an auditory and a visual task. Auditory trials were based on Planton et al.’s study [Pla+21]:
first, we asked participants to listen and memorize sequences of auditory tones 8 times. If
participants were confident that they had perfectly memorized the sequence, they could
press the space bar to indicate it and move to the next block. Then, participants took 16
auditory test trials in which they had to spot outliers in the previously learned sequence. We
asked participants to report an outlier by pressing the J key as soon as they detected one.
If they did not spot any outlier, participants had to press F at the end of the sequence to
move on to the next trial. This procedure was adapted from Exp 1, for consistency with visual
trials. In fact, we also reused the very same procedure as Exp. 1 for visual trials. After each
auditory/visual pair, participants were allowed to take a small break, and resumt at will.

Stimuli For this cross-modal experiment, auditory and visual trials were combined in a 5x5
design, using five length-16 template sequences from Planton et al. [Pla+21]. Each auditory
blocks used a single template, hypothesized to induce priming for the following visual block,
and visual trials used all five sequences to test this priming.

In auditory trials, we used two different, monotonous, 250ms tones: the first was at 425Hz
and the second at 925Hz. Binary templates items were mapped onto these tones depending
on their category, so that the mapping was consistent across the experiment. The mapping
allowed conversion of templates into binary sequences, with an inter-item interval of 250ms.
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To distinguish between them, sequences were separated with 1s empty periods. Outliers
could only occur within the second half of each sequence, equiprobably at positions 10, 12, 14
or 16. This is similar to Planton et al., save for the set of positions which was offset by one item
compared to their design. We thus used a close version of their experiment while making sure
that the effect occurred on all positions, as predicted by our Language of Thought Hypothesis.

For visual trials, templates were converted into patterns by mapping each item category
to a left-shifted or right-shifted position with respect to the central axis of the screen, as in
Exp. 1. We nonetheless slightly deviated from stimuli from Exp. 1: matching trials could
either display twice the exact template pattern (as in Exp. 1), or twice a deviated version of
it. Every target and query had individually 50% chance to be deviated. We thus had a 2x2
balanced design, where outliers occurred 50% of the time, and every trial had at most one
outlier. Every template was used 8 times in the visual part of each block. Those 8 occurences
were distributed in 8 different groups of trials within the block, so that each group included
every template once and only once. We then concatenated those group to form the visual part
of the block, as we aimed to avoid immediate repetitions of a template across two consecutive
trials. Since repetitions could still occur at the boundary of two blocks, we shuffled them
when their first template was the same as the last one of the previous group.

Training was very important to match performance across blocks: instructions were
followed by short practice blocks, and the experiment started with a fake test block which
was ignored in our analyses. Training sequences and patterns were both simple and different
from test ones : in auditory trials, we used length-8 patterns that were almost monotone
(used only one of the two tones except for one or two items); in visual trials we kept the
regular length for display consistency, but again used quasi-monotone templates as well as
one difficult, handcrafted one to force participants to attend carefully.

4.2 Results

Participants took 3500 trials in total (auditory habituations were counted as 1 trial), among
which 2850 test trials. We filtered out 11 trials on the basis of two criteria: for auditory trials,
we removed trials where a lack of violation was reported before the end of sequence (n = 3);
for visual trials, we removed answers over 3200ms reaction time, as in Exp. 1.

As a a common measure of performance for both types of trials, we focused on error
rate. As Planton et al. [Pla+21], a deviant report was considered a correct only if it occurred
between 200 and 2500ms after the deviant onset. Participants failed on average 23% of trials
in the auditory modality and 28% in the visual modality. The difference between modalities
wasn’t significant (t-test pairing participant error rates: t =−1.47;d f = 9; p = 0.18).

Auditory trials Auditory trials started with a habituation part, where a given sequence was
repeated up to 8 times. Participants could trigger an early stop: all participants used this
possibility at least at least once, and 6 out of 10 used it for every block. As a result, sequences
were repeated 5.7 times on average. To measure this accurately, we computed encoding time
(HT) across sequences as the duration between the start of the first repetition of the sequence
and the pressing of space bar by participants. If participants did not press the space bar, we
used the total duration of the trial (8 x 5,000ms = 40,000ms) as HT. HT was intended as a
similar measure to Al Roumi et al.’s “encoding time” [Al +21].
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We then analyzed HT as a function of sequence using an ANOVA across all participants.
This revealed a significant difference between templates (F = 6.21;d f = 4,36; g es = .223; p <
0.001; Fig. 4.1A). This effect was well-captured using LoT-complexity measure (linear model
over average HT per template: R2 = 0.86;β= 632.5ms; p = 0.02; Fig. 4.1B). Conversely, average
HT did not correlate well with average order of the block (R2 = 0.24;β=−9,607ms; p = 0.40).

Fig. 4.1. A) Habituation time for each sequence. Error bars represent 1 standard error. Dashed
lines represent repetitions starts, and plain line represent the forced end of habituation. B)
Correlation of habituation time with LoT-complexity of the sequence.

Following habituation, participants took 16 test trials in which they had to spot out-
liers in the sequence they just learned. Detecting outliers was harder (33% errors on av-
erage by participants) than checking for their absence (14%, chi-squared test over all tri-
als: χ2 = 42.765;d f = 1; p < 0.001). We investigated whether sequences elicited different
difficulties under either condition (deviancy or matching; see Fig. 4.2A), using ANOVAs
across subjects for each template sequence. There was a significant difference for deviancy
cases (F = 7.78;d f = 4,36; g es = 0.322; p < 0.001), but not matching cases (F = 1.12;d f =
4,36; g es = 0.097; p = 0.36). We completed this analysis with a linear regression of the
average error rate across participant for every template sequence as a function of LoT-
complexity. This model predicted very well error rates (see Fig. 4.2B) in both deviancy cases
(R2 = 0.90;β = 2.3x10−2; p = 0.01) and matching cases (R2 = 0.89;B = 0.7x10−2; p = 0.02).
To capture between-subject variability, we modeled single trial outcomes (if the answer
was wrong) using a binomial Mixed-Effects Model. It included a random intercept per
participants as a random effect, and LoT-complexity, deviancy condition and whether the
habituation was stopped as fixed effects, with the later two being binary factors. As above, the
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Fig. 4.2. A) Error rate on auditory trials depending on sequence and deviancy condition. Error
bars represent 1 standard error. B) Correlation between performance and LoT-complexity for
either condition on auditory trials.

LoT-complexity and deviancy condition came out significant (LoT: β= 10.1x10−2; p < 0.001;
deviancy: β= 65x10−2; p < 0.001), but habituation stopping wasn’t (β= 40x10−2; p = 0.32).

To see if we replicated Planton et al.’s [Pla+21], we tried to see if the average LISAS measure
for each sequence in our experiment could be predicted by the LISAS measure in the original
study. Using a simple linear regression, we found a significant correlation between the two
experiments (R2 = 0.88;β= 1.60ms; p = 0.02). The intercept wasn’t significatively different
from zero (β= 216ms; p = 0.60).

Visual trials Visual trials presented one target pattern, followed by one query pattern, in
which participants had to check for outlier. Either target, or query, or both could have one
(which they shared if both had one). This resulted in a 2x2 local design, or pair condition,
balanced over the block. We analyzed if this condition drove differences in response using
chi-squared tests over single trials. The overall effect between pair conditions was highly
significant (χ2 = 86.922;d f = 3; p < 0.001). However, it was heavily driven by whether or not
the two patterns were matching (deviancy condition; X 2 = 85.74;d f = 1; p < 0.001; see Fig.
4.3A). Indeed, when the patterns were matching, there was no significant effect of whether
they deviated from the template or not (X 2 = 0.25186;d f = 1; p = 0.62). Similarly, there was
no significant effect of which of target or query was deviated when the two differed (order
condition; X 2 = 0.8x10−30;d f = 1; p ∼ 1).

Given that pair condition seems to reduce to deviancy condition, we ran the very same set
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of analyses on templates as for auditory trials. The ANOVAs revealed a significant difference in
error rates between template patterns for deviant trials (F = 19.17;d f = 4,36; g es = 0.497; p <
0.001), but not for matching ones (F = 1.52;d f = 4,36; p < 0.218). In the former case, LoT-
complexity was only correlated to error rate as a trend (R2 = 0.71;β= 2.0x10−2; p = 0.07), and
wasn’t significantly correlated at all in the latter case (R2 = 0.023;β= 0.07x10−2; p = 0.80; see
Fig. 4.3B). When using a more sensitive binomial Mixed-effect Model over single trials, with
participants as a random effect, the correlation became very significant for deviant cases
(β= 0.091; p < 0.001). It still wasn’t for matching cases (β= 0.005; p = 0.71).

Fig. 4.3. A) Error rate depending on template and condition for visual trials in Experiment
2. Error bars stand for 1 standard error. Note that the profiles only differ along deviancy
condition. B) Error rate depending on LoT-complexity in either deviancy condition.

As for auditory trials with Planton et al. [Pla+21], we checked whether our results repli-
cated Exp. 1. Although cases where both target and sequences were deviated didn’t occur
in Exp. 1, we disregarded this difference given its lack of apparent effect (see above). With a
simple linear regression, we checked whether the average error rate for each template pattern
in this Exp. 2 could be predicted from those of Exp. 1. We found a strong correlation between
the two experiments (R2 = 0.87;β= 1.31; p = 0.02).

Priming effect Our aim was to investigate whether being habituated to a sequence in
the auditory trials affected performance for the subsequent visual trials of the block. In
particular, we wanted to test whether performance improved on the visual patterns sharing
their templates with the habituated sequence. To that end, we computed the average error
rate for each participant and each habituated-tested pair of sequences and patterns. We then
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computed the average error rate for participants when the templates underlying the pair
were the same, and when they weren’t. We analyzed these two paired distributions using a
t-test. The difference wasn’t found to be significant (t = 1.37;d f = 49; p = 0.18; Fig. 4.4; also
see Fig. S3 for graphs for each template). Without correction for multiple tests, one template
(“Shrinking”) had significantly better results in the primed block (paired t-test restricted to
this template: t = 2.445;d f = 9; p = 0.037).

Fig. 4.4. Error rate on primed vs non-primed blocks per template. Error bars stand for 1
standard error.

Focusing back on habituation-tested pairs, we computed the average error rate across
participants for each one of them (Fig. 4.5A). We aimed at predicting error rates using a
combination of three different models. The first model was based on task complexity, and
assumed error rate to simply be proportional to the LoT-complexity of the tested template,
regardless of the habituation (Fig. 4.5B). The second, opposite model, was based on memory
load, and assumed error rate to be proportional to the LoT-complexity of the habituation
template (Fig. 4.5C). The last model was a model for priming, assuming error rate to be
maximal for non-primed templates, and minimal for primed ones, irrespective of anything
else (Fig. 4.5D). These models were used as predictors in a LM on error rate. Only task
complexity was found a significant predictor (R2 = 0.48; t askcomplexi t y : β = 0.17; p <
0.001; memory load: β= 0.023; p = 0.57; priming: β= 0.032; p = 0.41).

As a finer grained-analysis, we broke this prediction at the level of the participant (Fig.
S4, aiming to predict their error rate on template pairs with our three models. We were
mostly interested in a potential priming effect, and focused on the associated coefficient
yielded by the regression for each participant. Using a one-sample t-test, we found that

28



Fig. 4.5. A) Average error rates matrix for each habituation-visual template pair. Brighter
colors indicate lower error rate. B) Expected error rates matrix for ideal participants, under
the assumption that only task complexity affects error rate. C) As before for memory load. D)
As before for priming.

the distribution of β-estimates was not significantly different from a zero-centered one
(t = 1.1068; M = 0.032;d f = 9; p = 0.30).

Training effect Aside from priming effect, which was defined as an effect from a habituated
sequence on the patterns sharing the same template only within the same block, we consid-
ered a training effect spanning over the rest of the experiment following its habituation. We
thus ran similar analyses as above, but this time grouping visual trials by position to their
template habituation. We thus differentiated them based on whether they occurred in the
same/a following block, or one before said habituation (see Fig. 4.6, and also Fig. S5 for full
split along relative position to the block). As above, our first analysis was a paired t-test using
difference in error rates for each participants for trials before/after prime. Given that the
first (resp. last) primes did not have any trials before (resp. after) them, they were de facto
excluded from the pair analysis. The t-test found a significant effect of occurring after the
prime (t =−3.4549;∆M =−0.11;d f = 29; p = 0.002).

We then regressed error rates again with our previous models, this time replacing priming
with training. In training, error rates were supposed minimal for blocks including and after
the habituation to the template, and maximal for those before. Since training model made
different predictions for each participant (depending on the order of the block), we directly
analyzed the distribution over participants of the estimates for the training model. We
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Fig. 4.6. Error rate before vs. after being habituated for each template. Error bars stand for 1
standard error across participants.

found no significant difference from a zero-centered one (one-sampled t-test: t = 1.34; M =
0.039;d f = 9; p = 0.21).

To rule out a generic effect of task learning, we ran two binomial Mixed-Effects Models on
single trials (to predict wrong answers). Both models had an intercept per participant as a
random effect, and LoT-complexity, the binary deviancy condition, and the binary relative
position to prime (before/after) as fixed effects. One of the models also included trial index
as a further predictor and confounder to position to prime. In both cases, LoT-complexity
(without trial index: β= 0.06; p < 0.001; with trial index: β= 0.06; p < 0.001) and deviancy
condition (without trial index: β= 0.51; p < 0.001; with trial index: β= 0.51; p < 0.001) were
highly significant. When trial index wasn’t included, occurring after prime had a trending
effect (β=−0.10; p = 0.0578). This effect was no longer significant at all (β= 0.03; p = 0.67)
once trial index was included, and the effect was very significant for trial index instead
(β=−0.0027; p < 0.001).

4.3 Discussion

Despite a low number of subjects (n=10), this experiment provides a good replication of
both Planton et al.’s [Pla+21] experiment, and Exp. 1 of the present thesis. For both auditory
sequences and visual patterns, we were able to accurately predict participant performance
using the Language of Thought (LoT) Geo [Ama+17]. This result was not affected by the
minimal changes we introduced. Participants could stop habituation to sequences early in
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the auditory part, and were forced to answer in the subsequent trials; outliers also occurred
on different position than by Planton et al. In the visual part, the ordering of the trials was
better controlled by avoiding immediate repetitions of a template. As such insensitivity was
predicted by our LoT hypothesis (LoTH), the latter is left strengthened by these observations.
Beyond solely confirming previous findings, it also demonstrated the viability of a common
paradigm for the two domains investigated. This step is essential in the investigation of the
interactions between them.

The purpose of this experiment was precisely to investigate a potential priming effect
across these domains. It relied on the structural similarity of the templates used to generate
their respective stimuli, adapting to a much simpler situation prior research on maths-
language syntactic priming [SS14]. Unfortunately, we were not able to find a significant
effect of the auditorily habituated sequence on visual patterns sharing the same template
during the rest of the block. Of course, this may indicate that the priming effect we were
hypothesizing simply isn’t a thing. However, this lack of observed effect, could also derive
from the experiment proper: first, we only had a sample of 10 participants. Although their
data was of decent individual quality due to onsite testing (as highlighted by the low number
of filtered trials), the priming effect size could be small, especially given our design.

In fact, we deviated from the typical priming experiment: primes did not occur right
before trials, but instead were repeated before a group of trials (although some studies
highlighted effect over several trials [BG00]). On top of that the groups were fairly long (40
trials), as we wanted a balanced design with enough data points for each of the 5 templates.
The result is that we assumed the priming to last over two minutes (counting three seconds
per trial)! This assumption was arguably bold, although it was intended to hide the priming
purpose of the experiment, which the alternation of auditory and visual trials might have
revealed. This part at least was well achieved, given that only one participant spontaneously
reported that sequences and patterns were linked. When it was revealed, 8 of the other 9
participants reported not noticing it, while the last one was “unsure”.

Just as we may have overestimated the duration of the priming, we could have underesti-
mated it: priming may have carried on to the following blocks. Our design acted against such
lasting phenomenon but only loosely: participants took small pauses between blocks, and
each new auditory habituation was assumed to overwrite the previous one. We couldn’t en-
sure that this was sufficient to prevent overlap between hypothesized primings. We decided
to fully bite the bullet, and investigate the extreme version of this possibility: that priming
never worn off across the experiment. In other words, we assumed auditory habituation
on a template to train participant on this very template for the visual part. We then com-
pared participant performance before and after this hypothesized training. We found that,
although performance increased after a habituation part, this wasn’t specific to the primed
template; instead, trials involving each template were better solved. We thus associated this
improvement with a better generic mastery of the task rather than a better knowledge of a
given stimulus. No effect was observed after accounting for this, perhaps due to the lack of
statistical power from our limited sample size.

As a result, none of our analyses hinted any kind of priming effect whatsoever. Nonethe-
less, many shortcomings of the experimental setup, and especially the 10-participant sample
size, do not push for a blunt rejection of the hypothesis of a shared syntax across domains.
Most notably, one template showed significant improvement upon priming, although this
significance did not survive multiple-tests correction (see Fig. 4.4 and Fig. S3, template
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“Shrinking”).
Furthermore, the sequences where the priming effect was the least probable statistically

were the most complex ones (“ThreeTwo”, and “Complex”). As such, some sequences might
be too complex for priming to occur properly, although this is only speculation at this time.
This possibility is also disputable, since “ThreeTwo” has a barely higher complexity than
“Shrinking” (15 vs 14; although this becomes 18 vs. 15 under Planton et al.’s [Pla+21] LoT-
chunk variant), which witnessed the highest improvement. However, a sharp cut-off is not
impossible either. The question of how LoT-complexity would affect priming thus remains
unanswered.
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CHAPTER 5

General discussion

During this internship, we aimed to explore the possibility of a “Language of Thought”
(LoT) [Fod75] in the human brain. Prior studies proposed that such a mechanism would
apply across a wide range of domains [VH16], including sequences of items [Pla+21]. This
domain had already been shown to allow for cross-modal transfer learning [YJ15]; across
more complex domains, such as mathematics and language, shared syntactic structures were
found to trigger priming effects. We thus wanted to test the potential domain-generality of
LoT. To better control for confounding effects, we tested syntactic interactions across the
simple domains of binary sequences and binary patterns. To further disentangle the two, the
domains were associated with different modalities.

Since binary sequences of sounds were already known to display LoT-complexity effects
[Pla+21], Experiment 1 was designed to check whether these occurred in binary visual pat-
terns as well. Using a same-different paradigm, we found support for a LoT account of their
processing. Alongside, we also found evidence of simultaneously occurring processes, such
as rote memorization. Overall, this experiment attested that our two domains displayed the
effects a similar mechanism.

Experiment 2 was intended to test whether this similarity could be credited to a shared,
syntactic mechanism for the two domains. Using a non-conventional priming design, we tried
to see if habituating participants to an auditory sequence would improve their performance
on patterns sharing the same template. Perhaps due to a low sample size (10 participants),
this experiment wasn’t successful, as performance did not significantly improve for primed
patterns. This may be due to a lack of statistical power given the relatively small effect size
that was expected [BG00]. Nonetheless, we observed an almost significant effect on one
template, although it did not survive multiple-test correction.

Despite the lack of significance, we deem our observations to be encouraging overall. A
larger-extent study could thus be envisioned beyond what was intended as a simple pilot.
Still, improvements of the design might be considered to improve our chances of detecting
an effect, and especially its reliance on a 2-minute long priming effect! To lessen the need
for such a long priming, due to priming being tested over a single block, we could split this
block into several others. As an example, our 40-visual-trial block, featuring 8 times each
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template, could be split into 8 mini-blocks featuring each template once. By keeping the
exact same trials as the original block, but dispatching them over the mini-blocks, we would
not change the whole set of visual trials that participants go through. However, shuffling all
the mini-blocks, that would all start with the same auditory part as of now, we would only
require priming to last for a handful of trials. This would also provide us with potentially more
data on the auditory modality, which we could relate to the intensity of a putative priming
effect.

Beyond our two tested domains, our findings could potentially decisively address the
possibility of a domain-general LoT. The LoT Hypothesis has in fact been suffering from
contradicting results between behavioral experiments, highlighting syntactic priming across
mathematics and language [Sch+11; SS14], and brain imaging, which revealed dissociated
networks for the two domains [AD19]. The existence of a shared mechanism beyond domains,
i.e. semantics, relying on syntax, might reconcile the two: mathematics and language may
(partly) share their syntax, but not their semantics. However, it must be noted that no brain
region was identified as a good candidate for this shared mechanism in prior fMRI studies
[AD19; Wan+19]. Assuming that we identify a syntactic interaction across domains, future
work may thus focus on brain imagery to investigate which brain area could be shared
across these domains. In particular, an experiment from Pallier et al. [PDD11] may offer
an interesting lead. The authors investigated "jabberwocky" pseudo-sentences featuring
constituents of various length as well as pseudo-function-words. This experiment could
probably be adapted to include a mathematical part and provide a simple framework for
maths and language syntactic comparison.

Although we were not did not succeed in supporting the hypothesis of a central, cross-
domain-and-modality brain network dedicated to syntactic structures, we paved the way
for it to be tested. Highlighting a common mechanism dedicated to syntax, or otherwise
multiple, domain-specific ones, would improve greatly our understanding of how human
language and mathematics evolved. It may also lead us to better account for our remarkable
capacity for abstraction [Sab+21].
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APPENDIX A

Statistics

A.0.1 Tools and softwares

Experiment were coded in HTML 5 and Javascript, using jsPsych 6.3.1. Data analysis was
performed with R 3.6.3, with the software RStudio 1.1.463. For ANOVAs and Mixed-Effects
Model, afex package was used.

A.0.2 Statistical tests significance conventions

For all our statistical tests (ANOVAs, chi-squared, t-tests, correlation tests...), we will be
refuting the null hypothesis when p < 0.05.
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APPENDIX B

Supplementary figures

Fig. S1. Error rate by position of the outlier, irrespective of the sequence. Notice the plateau
on the first 3 positions. Dashed line represent chance level (50%)
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Fig. S2. Comparison on predictors across length-16 sequences. Models are compared to the
best one, on the basis on fit to LISAS performance for every trials with an outlier on position
9, 11, 13, 15. Numbers at the tip of the bars represent respective Akaike weights. A) Results
from Planton et al’s [[Pla+21] experiment (auditory sequences). B) Results from present Exp.
1. (visual patterns).
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Fig. S3. Error rate of primed vs non-primed block for each template. Each point represents
a participants. The boxplots represent median and quartiles. The black lines highlights
whether error rates decreases or not during priming. The overall effect is displayed under
"ANY".
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Fig. S4. Error rates matrices for each participants. Columns represent the template to which
participants were habituated at the start of the block, and rows the template of the current
trial. Lighter colors indicate lower error rate.
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Fig. S5. Error rates for each template depending on position relative to primed block for this
template.
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APPENDIX C

Additional works

C.1 Codes for MEG-javascript interaction

In the context of a fellow intern’s work on risk estimation, I developed a mini-python/javascript
library to communicate with a MEG device. The idea was to adapt previous code for a MEG
experiment in which the participant would have to make bets by pressing buttons. The
challenge was that our response devices only communicated through parallel ports, while
the experiment was coded in javascript: for safety reasons, javascript cannot read data from
parallel ports.

We successfully adapted the experiment using a python pipeline, which retrieved the
data using the expyriment library. The data was then sent to a server which was regularly
queried by javascript. All the code can be found at https://github.com/MaximeCaute/
MEG_interactions.

Given that neither my colleague nor I had a significant previous experience with MEG,
this side project was both challenging and very enriching. I hope the acquired knowledge for
good use for an eventual MEG experiment.

C.2 Compositionality in chimpanzees

As a term project for the course of super semantics at the CogMaster, I wrote an essay
on a paper from Oña et al. [OSL19]. The authors observed responses of chimpanzees
to combinations of faces and gestures by their conspecifics. They found out that a face
in particular had two opposite effects on affiliativeness (how "friendly" an interaction is)
depending on the associated gesture. This inconsistency led them to claim that face-gesture
semantics in chimpanzees were non-compositional. Their conclusion may however be
objected that their measure of semantics was indirect, and that compositional systems could
similarly account for their data.

On a weekly basis, I thus worked with Emmanuel Chemla and Philippe Schlenker on a
preparing a response to Oña et al. We also more generally started investigating the formal
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properties of animal semantic systems. This work is as of now heavily in progress, and will
carry on over the next year.
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