Global Transformations: A new formalism for rewriting system L3 Internship Bibliography

MOUSSAOUI REMIL Naïm

Laboratoire d'Algorithmique, Complexité et Logique Université Paris Est-Créteil Supervisor: SPICHER Antoine

December 15, 2021

1 Introduction

2 A category based formalism

3 Conclusion

MOUSSAOUI REMIL Naïm

1 Introduction

2 A category based formalism

B Conclusion

MOUSSAOUI REMIL Naïm

Rewriting system (Informal)

System than can change in accord to some local rules.

Example:

- Biological System with L-System
- Graph rewriting
- Code Generation
- Particle System

Definition

A D0L system consists of :

- an alphabet Σ_L
- a mapping $P_L: \Sigma_L \to \Sigma_L^*$

 $\begin{array}{l} \mbox{Example : "Filamentous organism"} \\ \Sigma_L = \{a,b\} \ , \ P_L: a \mapsto b \ b \mapsto ab \\ abbab \Rightarrow \ bababbab \Rightarrow \ abbabbabbab \Rightarrow \ldots \end{array}$

The Overlapping Problem 1

Triangle of Sierpinski Rewriting System

The Overlapping Problem 2

MOUSSAOUI REMIL Naïm

The Overlapping Problem 3

Objective

We want a global model which is :

- Local
- Synchronous
- Deterministic

Introduction

2 A category based formalism

Conclusion

MOUSSAOUI REMIL Naïm

The idea

Idea

- Define the rules systems with the inclusions of the lhs
- Composition of rules

Goal:

- formalise the idea of a thing being a part an other
- capture transitivity of this notion

Definition (Category)

A category C consist of:

- a collection C_{ob} of elements called **object**
- for any $a, b \in C_{ob}$ a set $Arr_C(a, b)$ whose elements are called **arrows**

- for every a, b, c a **composition law** $Arr_{C}(b, c) \times Arr_{C}(a, b) \mapsto Arr_{C}(a, c)$ which is associative

- for every x, an **identity** arrow id_x

Basic examples of categories:

- Set: category of set
- Grp: category of groupe
- Top: category of topology
- Graph: category of graph

Question: For a category C describing a locality structure , what does it mean for a transformation F on C to respect locality ?

Definition (Functor)

A functor $F : C \mapsto D$: - a map $F_{ob} : C_{ob} \mapsto D_{ob}$ - a map $F_{arr} : Arr_C(a, b) \mapsto Arr_D(F_{ob}(a), F_{ob}(b))$ for every a, bThese maps have to preserve identity and composition

Designing and Respecting Locality 2

Role of arrows

- Rule system is a category
- We need to maps rules in the category C

Definition (Global Transformation)

A global transformation T consists of :

- a category C (output, input, hs)
- a category Γ whose object are rules φ =< l, r > and arrows are inclusions
- a fully faithful injective functor $L: \Gamma \mapsto C$ "lhs"
- a functor $R : \Gamma \mapsto C$ "rhs"

The construction of the output is done by categorical operation on T

How do we process? In three steps :

- Pattern Matching: where are the lhs in the input
- Application of local rules
- Construct the output

How can we formalise that ?

Construction of the output 2

Goal: Distinguish each lhs in the input

Rule Instance

Input X and a rule γ A Rule Instance of γ is a pair: $< \gamma$, p: $L(\gamma) \mapsto X >$

Comma Category L/X

Let L/X be the category that has:

- for object : every rules instances of γ (for $\gamma \in \Gamma$)
- for arrow from $<\gamma_1, p_1 >$ to $<\gamma_2, p_2 >$ every $g: \gamma_1 \mapsto \gamma_2$ such that $p_1 = p_2 \circ L(g)$

Pattern Matching 2

Visualisation of the Comma Category

MOUSSAOUI REMIL Naïm

Goal: Rewrite each lhs into rhs

- Local application is achieved by : $R_{ob} \circ Proj_{L/X}$
- (P): inclusions between rhs is justified by an inclusion between corresponding lhs
- (P) => Structure of inclusion is preserved after the local application

Local Application 2

Visualisation of the Local Application

23 / 27

Construction of the output 2

Intuition:

Definition

Given a global transformation T, the result T(X) is an object $T(X) = Colim(R_{ob} \circ Proj_{L/X})$

Introduction

2 A category based formalism

3 Conclusion

MOUSSAOUI REMIL Naïm

26 / 27

Conclusion

Done:

- Formalism respect the pre-condition
- Capture different data-structure

Future works:

- Benchmark vs other framework
- Extends the design-tool web app