
Unfolding-based Dynamic Partial Order

Reduction for LTL Model Checking

Moussaoui Remil, Näım. Jéron, Thierry. Quinson, Martin.

Abstract

Unfolding-based Dynamic Partial Order Reduction (UDPOR) is a re-
cent technique mixing Dynamic Partial Order Reduction (DPOR) with
concepts of concurrency such as unfoldings to efficiently migitate state
space explosion in model-checking of concurrent programs. To achieve
this, UDPOR used the notion of cutoff that stops the exploration of an
interleaving when a known event with some conditions is rediscovered. In
other words, loops are cut in the exploration of programs with UDPOR.
Model checking of LTL being based on the detection of loops is then in-
feasible with the current UDPOR algorithm. In this paper, we propose a
refined cut-off notion to detect loops and so a refined version of UDPOR
that allow LTL-X model checking.

1 Introduction

Model-checking is a set of techniques allowing verification automatically and
effectively of some properties on distributed systems. The principle is usually
to explore all possible behaviors (states and transitions) of the system model.
However, state spaces increase exponentially with the number of concurrent
processes. Unfoldings and Partial order reduction (POR) are two candidate al-
ternative techniques born in the 90’s to mitigate this state space explosion and
scale to large applications.

POR comprises a set of explorations techniques (see [6]), sharing the idea,
that to detect deadlocks (and by extension, for checking safety properties) it is
sufficient to cover each Mazurkiewicz trace, i.e. a class of interleavings equivalent
by commutation of consecutive independent actions. This state-space reduction
is obtained by choosing at each state, based on the independence of actions,
only a subset of actions to explore (ample, stubborn, or persistent sets, depend-
ing on the method), or to avoid (sleep set). Dynamic Partial Order Reduction
(DPOR) [5], was later introduced to combat state space explosion for stateless
model-checking of software. In this context, while POR relies on a statically de-
fined and imprecise independence relation, DPOR may be much more efficient
by dynamically collecting it at run-time. Nevertheless, redundant explorations,
named sleep-set blocked (SSB), may still exist that would lead to an already

1

visited interleaving, and detected by using sleep sets.

Unfolding (see [3]) is a concept of concurrency theory providing a represen-
tation of the behaviors of a model in the form of an event structure aggregating
causal dependencies or concurrency between events (occurrence of actions), and
conflicts that indicate choices in the evolution of the program.
In general, the unfolding of a program-model creates an infinite structure due to
the presence of loops in the model. To handle this McMillan [7] has introduced
the notion of cutoff. While unfolding the model we can stop the expansion of
the Event Structure when we rediscover a known event with a shorter history.
It allows us to cut the infinite discovery of a loop. Thus, the unfolding with
cut-off is finite.
This (finite) representation may be exponentially more compact than an inter-
leaving semantics, while still allowing to verify some properties such as safety.
However the usual notion of cutoff makes liveness properties and LTL in general
not verifiable.

In the last few years, two research directions were investigated to improve
DPOR. The first one tries to refine the independence relations: the more precise,
the fewer Mazurkiewicz traces exist, thus the more efficient could be DPOR.
For example, [2] proposes to consider conditional independence relations where
commutations are specified by constraints, while in [4] independence is built
lazily, conditionally to sfuture actions called observers. The other direction
proposes alternatives to persistent sets, to minimize the number of explored in-
terleavings.
Optimality is obtained when exactly one interleaving per Mazurkievicz trace is
built. In [9] the authors propose unfolding-based DPOR (UDPOR), an optimal
DPOR method combining the strengths of PORs and unfolding with the notion
of alternatives. Despite being optimal UDPOR makes liveness properties not
verifiable by inheritance of the unfolding semantics.

In [4] the author have already studied the LTL verification problem for Petri
nets unfolding. They solved it by refining their cut-off to explore more events
and being able to detect loops. In our context we will take the same approach.

We propose in this paper a version of UDPOR to make liveness and more
generally LTL-X properties verifiable.
The paper is organized as follows. Section 2 recalls notions of unfolding and
partial order reductions along with their combination in UDPOR and the au-
tomata approach of LTL model checking. Section 3 presents the new cut-off.
Section 4 presents our adapted UDPOR .

2

2 Preliminaries

2.1 Model Checking of LTL: the Automata Approach

The behaviors of a distributed program can be described in an interleaving
semantics by a labeled transition system, or in a true concurrency semantics by
an event structure.

Définition .1. A labelled transition system (LTS) is a tuple T = ⟨S, s0,Σ,→⟩
where S is a set of states, s0 ∈ S the initial state, Σ is the alphabet of actions,
and →⊆ S × Σ× S is the transition relation.

We note s
a−→ s′ when (s, a, s′) ∈→ and extend the notation to execution

sequences: s
a1.a2...an−−−−−−→ if ∃s0 = s, s1, ...sn = s′ with si−1

a−→i si for i ∈ [1, n].

For a state s in S, we denote enabled(s) = {a ∈ Σ : ∃s′ ∈ S, s
a−→ s′} the set of

actions enabled at s.

The goal of model checking is to verify properties on distributed system’s
model (here a LTS). In our context, we would like these properties to express
logical time. To fulfill this purpose, we will use Linear Time Logic (LTL) and
more precisely the LTL-X fragment. For convenience reasons, we use an action-
based temporal logic.

Définition .2. Given a finite set of actions AP , the abstract syntax of LTL-X
is defined as followed:
ϕ := a ∈ AP | ¬ϕ| ϕ1 ∧ ϕ2| ϕ1Uϕ2

The semantic of LTL-X is a set of infinite words over the 2AP alphabet.
However because two actions cannot happen simultaneously the alphabet can
be restrict to set of singleton in 2AP which is isomorphic to AP . Furthermore,
for every LTL-X formula ϕ we can associate its ω − language: L(ϕ).

Now we can define the model checking problem. Given a LTS T over AP
and LTL formula ϕ over AP we want to know if P ⊨ ϕ hold. To resolve this
problem we use the classical approach:

• Construct the Büchi Automaton A¬ϕ that accept all words satisfying ¬ϕ,

• Construct the product T ⊗A¬ϕ,

• search a path in T ⊗A¬ϕ that meets the acceptance condition of A¬ϕ,

• If we find such a path then T ⊭ ϕ
Else T ⊨ ϕ.

Let’s introduce needed definitions.

Définition .3. A Non-deterministrict Büchi Automata (NBA) is tuple A =
(Q,Σ, δ, I, F) that consist of:

3

• Q is a finite set which elements are the states of A,

• Σ is the alphabet of A,

• ∆ ∈ Q× Σ× Σ is the transition relation of A,

• I is the set of initial state,

• F ⊆ Q is the set of terminal state. A accepts exactly those infinite runs
in which at least one elements of F occurs infinitely often.

Définition .4. The product of a labelled transition system T = ⟨S, s0,Σ,→⟩
and an NBA A = (Q,Σ,∆, I, F) is a tuple T ⊗A = ⟨S ×Q,Σ,−→′⟩ where −→′ is
the minimal transition relation defined by the rule : []s -⟩s

Hence, the product T ⊗A¬ϕ is a LTS containing a transition ⟨s, q⟩ α′

−→
′
⟨s′, q′⟩

for every q
α−→ q′ in A¬ϕ and for every s such that ∃s′ ∈ T, s′ ∈ ∆(s, α).

For the LTL model checking we use a subset V ∪ {τ} with V ⊆ Σ to create
the product T ⊗A¬ϕ instead of the entire set Σ. V is the set of visible actions,
in practice it is the set of action appearing in ϕ. The action τ is used to rep-
resent the invisible actions. This syncrhonisation is more efficient (in the size
of the product). However, it creates a new type of traces with invisible actions.
It leads us to split the infinite traces of T ⊗ A¬ϕ into two sets. In one hand,

the illegal infinite-trace whose execution sequences are as follows: ⟨s1, q1⟩
a1−→

⟨s2, q2⟩
a2−→ ⟨s3, q3⟩... with infinitely many ⟨si, qi⟩ such that qi is a terminal state

of A¬ϕ. In the other hand, the illegal livelock whose executions sequences are as

follow: ⟨s1, q1⟩
a1−→ ⟨s2, q2⟩

a2−→ ⟨s3, q3⟩...⟨sn−1, qn−1⟩
an−1−−−→ ⟨sn, qn⟩.. with ai = τ

for every i⟩n− 1.

This synchronization leads to the following theorem which replaces the third
point of the LTL model checking procedure.

Théorème .1. Let T be a labelled transition system and ϕ a LTL-X formula.
T ⊨ ϕ if and only if the product T ⊗ A¬ϕ has no illegal infinite trace and no
illegal livelock.

Now the third point of the LTL model checking procedure is :

• search a path in T ⊗ A¬ϕ that is an illegal infinite-trace or an illegal
livelock.

The major drawback of the current procedure is the exploration/construction
of the set of execution sequences in T ⊗ A¬ϕ. To do so a naive approach is to
explore all possible executions of T ⊗ A¬ϕ. However, as we mentioned in the
introduction the size of the state spaces increase exponentially with the number
of concurrent processes i.e. the number of executions in T ⊗ A¬ϕ increases
exponentially. To reduce this space of executions we will use Unfolding-based
Dynamic Partial Order Reduction (UDPOR) on T ⊗A¬ϕ.

4

2.2 UDPOR

An LTS equipped with an independence relation can be unfolded into an event
structure [9]. This is the main step for UDPOR.

Independence is a key notion in both POR techniques and unfoldings linked
to the possibility to commute actions:

Définition .5. Two actions a1, a2 of a LTS T = ⟨S, s0,Σ,→⟩ commute in a
state s if they satisfy two conditions:

• executing one action does not enable nor disable the other one :
a1 ∈ enabled(s) ∧ s

a1−→ s′ ⇒ (a2 ∈ enabled(s) ⇔ a2 ∈ enabled(s′)) (1)

• their execution order does not change the overall result:
a1, a2 ∈ enabled(s) ⇒ (s‘

a1.a2−−−→ s′ ∧ s‘
a2.a1−−−→ s′′ ⇒ s′ = s′′) (2)

A relation I ⊆ Σ×Σ is a valid independence relation if it under-approximates
commutation; i.e for all a1, a2, I(a1, a2) implies that a1 and a2 commute in
all states. Conversely a1 and a2 are dependent and we note D(a1, a2) when
¬(I(a1, a2))
A Mazurkiewicz trace is an equivalence class of executions (or interleavings) of
an LTS T obtained by commuting adjacent independent actions. By the second
item of Definition 2, all these interleavings reach a unique state. The princi-
ple of all DPOR approaches is precisely to reduce the state space exploration
while covering at least one execution per Mazurkiewicz trace. If a deadlock
exists, a Mazurkiewicz trace leads to it and will be discovered. More generally,
safety properties are preserved. The UDPOR technique that we consider also
uses concurrency notions. A classical model of true concurrency is prime event
structures:

Définition .6. Given an alphabet of actions Σ, a Σ − prime event structure
(Σ− PES) is a tuple E = ⟨E,<,#, λ⟩ where E is a set of events, ⟨ is a partial
order relation on E, called the causality relation, λ : E → Σ is a function
labelling each event e with action(e), # is an irreflexive and symmetric relation
called the conflict relation such that, the set of causal predecessors or history
of any event e, ⌈e⌉ = {e′ ∈ E : e′ < e} is finite and conflicts are inherited by
causality: ∀ e, e′, e” ∈ E, e#e′ ∧ e′⟨e′′ ⇒ e#e′′

Intuitively, e < e′ means that e must happen before e′, and e#e′ that
those two events cannot belong to the same execution. Two distinct events
that are neither causally ordered nor in conflict are said concurrent. The set
[e] = ⌈e⌉ ∪ {e} is called the local configuration of e.
An event e can be characterized by a pair ⟨λ(e), H⟩ where λ(e) is its action,
and H = ⌈e⌉ its history. We note conf(E) the set of configurations of E ,
where a configuration is a set of events C ⊆ E that is both causally closed
(e ∈ C ⇒ ⌈e⌉ ⊆ C) and conflict free (e, e′ ∈ C ⇒ ¬(e#e′)). A configuration C
is characterized by its causally maximal events maxEvents(C) = {e ∈ C : ∄e′ ∈
C, e < e′}, since it is exactly the union of local configurations of theses events :

5

C =
⋃

e∈maxEvents(C)[e]; conversely a conflict free set K of incomparable events

for ⟨ defines a configuration config(K) and C = config(maxEvents(C)).
A configuration C, together with the causal independence relation defines a
Mazurkiewicz trace: all interleavings are obtained by causally ordering all de-
pendent events in the configuration but commuting concurrent ones. The state
of a configuration C denoted by state(C) is the state in T reached by any
of these executions, and it is unique as discussed above. We write enab(C) =
enabled(state(C)) ∈ Σ for the set of actions enabled at state(C), while action(C)
denotes the set of actions labelling in C.
The set of extensions of C is ex(C) = {e ∈ E \ C : ⌈e⌉ ⊆ C}, i.e the set of
events not in C but whose causal predecessors are all in C. When appending an
extension to C, only resulting conflict-free sets of events are indeed configura-
tions.
These extensions constitute the set of enabled events en(C) = {e ∈ ex(C) : ∄e′ ∈
C, e#e′} while the other ones are conflicting extensions cex(C) := ex(C)\en(C).

Parametric Unfolding Semantics. Given an LTS T and an independence
relation I, one can build a prime event structure E such that each linearization
of a maximal (for inclusion) configuration represents an execution in T , and
conversely, to each Mazurkiewicz trace in T corresponds a configuration in E
[10].

Définition .7. The unfolding of an LTS T under an independence relation I
is the Σ − PES E = ⟨E,<,#, λ⟩ incrementally constructed from the initial
Σ− PES ⟨∅, ∅, ∅, ∅⟩ by the following rules until no new event can be created:

• for any configuration C ∈ conf(E), any action a ∈ enabled(state(C)), if
for any e0 ∈ maxEvents(C), I(a, λ(e0)), add a new event e = ⟨a,C⟩ to E;

• for any such new event e = ⟨a,C⟩ , update <,# and λ as follows: λ(e) := a
and for every e0 ∈ E \ e, consider three cases:

1. if e0 ∈ C then e0 < e

2. if e0 /∈ C and (a, λ(e0)), then e#e0

3. otherwise, i.e. if e0 /∈ C and I(a, λ(e0)), then e and e0 are concurrent.

This definition of unfolding can lead to an infinite prime event structure.
For example, consider an LTS with a loop. In order to obtain a finite unfolding,
we introduce the notion of cutoff.

Définition .8. Let T be a LTS and E = ⟨E,<,#, λ⟩ be a finite prefix of T ’s
unfolding. An event e is a cutoff if and only if there is an event e′ ∈ E such that
state(e) = state(e′) and |[e′]| < |[e]|. We will call e′ the representative of e.

The intuition of a cutoff is simple. While extending the unfolding we declare
a known event as a cutoff if we already know an event in the unfolding whose
local configuration is shorter and has the same state. We suppose a boolean

6

function Cutoff(e) returning true if e is a cutoff and false if it’s not. Now we
can define a finite unfolding.
As our goal is to handle the model checking problem we will propose a definition
for a product T ⊗A = ⟨S×Q,Σ,−→′⟩. To do it, we need to update the definition
of enabled(). For any state ⟨s, q⟩ ∈ S × Q we redefined enabled(⟨s, q⟩) =

{⟨a, q′⟩ : ∃⟨s′, q′⟩ ∈ S ×Q, ⟨s, q⟩ a−→ ⟨s′, q′⟩}.

Définition .9. Given a LTS T and a NBA A. The unfolding of the product
T ⊗A under an independence relation I is the Σ−PES E = ⟨E,<,#, λ⟩ incre-
mentally constructed from the initial Σ−PES ⟨∅, ∅, ∅, ∅⟩ by the following rules
until no new event can be created:

• for any configuration C ∈ conf(E), any pair ⟨a, q⟩ ∈ enabled(state(C)), if
for any e0 ∈ maxEvents(C), (a, λ1(e0)), if ¬ Cutoff(⟨a, q, C⟩) then add
a new event e = ⟨a, q, C⟩ to E;

• for any such new event e = ⟨a, q, C⟩ , update ⟨,# and λ as follows: λ(e) :=
a and for every e0 ∈ E \ e, consider three cases:

1. if e0 ∈ C then e0 < e

2. if e0 /∈ C and (a, λ(e0)), then e#e0

3. otherwise, i.e. if e0 /∈ C and I(a, λ(e0)), then e and e0 are concurrent.

3 Detecting illegal infinite trace

In this section we consider a LTL-X formula ϕ, its corresponding Büchi Au-
tomata Aϕ and LTS P .

In [9], the authors use the notion of cutoff to obtain a finite unfolding. Cut-
off stops the exploration of loops thus the exploration algorithm presented in [9]
limits the model checking to safety properties. To handle the model checking
of LTL-X we have to work a little bit. Theorem 1 splits the procedure into two
parts: we have to detect illegal infinite traces and illegal livelocks in T ⊗ A¬ϕ.
In this section we will answer the first problem.

The detection of illegal infinite traces consists in detecting loops in the un-
folding of T ⊗ A¬ϕ in which an event ⟨a,H, q⟩ where q is a terminal state of
A¬ϕ appears.

First, we notice that we detect a loop if and only if we have a cut-off. Thus the
problem of detecting a loop is the same as detecting a cut-off. Now we have to
find out a way to detect if these loops represented by cut-off are illegal infinite
traces or not.
To do so, we first notice that the unfolding of a transition system is a tree.

7

Hence, a loop can be represented by a cutoff in the same branch as its repre-
sentative or in another branch.
Dealing with cutoff in the same branch as its representative is easy. The idea is
whenever a cutoff e = ⟨a,H, q⟩ with representative e′ = ⟨a′, H, q′⟩ with e < e′ is
detected. We check if in H ′ \H there is an event ⟨at, Ht, qt⟩ with q′ a terminal
state of A¬ϕ.
If yes, then we can exhibit an illegal infinite trace which is the linearization of
the configuration H ′ \H.

For the cutoff detected in another branch, this is not that simple. In [4], the
problem of LTL model checking has already been handled with the unfolding of
Petri nets. For that, they have extended their definition of the cut-off as follows:

Définition .10. Let T be a LTS and E = ⟨E,<,#, λ⟩ be a finite prefix of T ’s
unfolding. An event e is a cutoff if and only if there is an event e′ ∈ E such
that state(e) = state(e′), |[e′]| < |[e]| and:

• e < e′ or

• ¬(e < e′), [e′] ≺ [e] and #F (H
′) ≥ #F (H), where #F (H) is the number

of events with a transition leading to terminal state.

Their definition of cut-off is still necessary and sufficient in our context. Let’s
show that this is a necessary condition with the following example.

Here we consider the set of atomic propositions AP = {a, b, c, d} with the
visible actions {c, d} and the following LTS ”T ”.

We want to verify the formula ϕ = ♢(c ∧ ♢b) which is not satisfied by the LTS,
thus we must find a counterexample. Thus we create the Büchi Automaton A¬ϕ

of ¬ϕ = □(¬c ∨□¬b)

8

With the classical cutoff definition, the exploration algorithm of [9] will give us
this exploration tree.

The representation of the nodes is like in [9] plus a counter that we will detail
in the next section. In this counter-example, we see that the exploration is
stopped when discovering event number 6 because we already know event 5 and
state(e6) = state(e5)|[e5]| = 2⟨|e6| = 3. Thus we obtain a cutoff and we cannot

9

exhibit a counter-example.
Let’s see the exploration algorithm graph with the new cutoff definition.

Here, when the algorithm reaches event 6 it does not find a cut-off because
neither condition (1) nor condition (2) is satisfied. (#F ([e6]) = |{q0}|+|{q0}| =
2⟩#F ([e5]) = |{q0}|) Thus the exploration continues and will find event 3 which
is declared as cutoff with event 5 as corresponding event. Here, we apply our
first solution for cut-off in the same branch and we obtain an illegal infinite-trace

⟨s0, q0⟩
b−→ ⟨s1, q0⟩(

d−→ ⟨s1, q0⟩
c−→ ⟨s1, q0⟩)ω ∈ (P ⊗A¬ϕ). Thus P ⊭ ϕ.

4 A new Unfolding based partial order reduc-
tion approach to LTL Model Checking

In section 3 , we bring solutions to the issues caused by cutoff in UDPOR. They
are mainly based on a refined notion of cutoff. However, we still need to fix one
thing : the detection of livelocks.
To detect livelock we will use an algorithmic solution in our update version of
the exploration algorthim of [9]. The idea is as follows: at each step of the
exploration we maintain a counter hv that represents the last visible discovered
event’s height.

10

Hence, when we will detect a cutoff event (in the same branch) e = (ap, H, (q1, x1, q
′
1))

and his correspondent e′ = (a′p, H
′, (q2, x2, q

′
2)) we will check if x1 = ϵ that’s

mean the program action is done on invisible actions and if hv⟨H ′ which mean
that the correspondent is an invisible event too i.e a livelock .

Now we have all elements to change the exploration algorithm of [9] and
verify LTL formulae with UDPOR.

Algorithm 1 LTL Model Checking with UDPOR

procedure Explore(C,D,A,hv):
Extend(C,hv)
if en(C) = ∅ then
return

end if
if A = ∅ then

Choose e = ⟨a,H, q⟩ ∈ en(C)
else
Choose e = ⟨a,H, q⟩ ∈ en(C) ∩A

end if
if label(a) ̸= ϵ then

hv = hv + 1
end if
Explore(C,D,A,hv)
if ∃J ∈ Alt(C,D ∪ {e} then

Explore(C,D ∪ {e},J \ C)
end if
Remove(e,C,D)

Algorithm 2 Extend(C,hv)

for e = ⟨e,H, q⟩ ∈ ex(C) do
(e′ = ⟨a′, H ′, q′⟩, found, type) = cutoff(e)
if found then
if label(a) = ϵ & hv < |H ′| & type = 1 then

livelock!
end if

else
U = U ∪ {e}

end if
end for=0

11

Algorithm 3 cutoff(e = ⟨a,H, q⟩)
for e′ = ⟨e′, H ′, q′⟩ ∈ U do

if e′ ∈ H & state(e′) = state(e) & |H ′| < |H| then
if ∃TerminalState ∈ H \H ′ then
raise exception: illegal infinite trace!

end if
return (e′, found = true, type = 1)

end if
if ¬(e′ ∈ H) & state(e) = state(e′) & #F (H

′) ≥ #F (H) then
return (e′, found = true, type = 2)

end if
end for
return (null, found = false)
=0

What has been mainly changed in our version of the exploration algorithm
are the Cutoff() and Extend() functions. For the Cutoff() function we modify the
condition presented in section 3 into the new one. The function Extend() adds
every new event enabled if neither a cutoff is detected nor a livelock is raised.
To detect these livelocks we add the counter hv presented at the beginning of
this section which incremented every time a visible event is picked in the main
procedure. Then a cutoff between two invisible events (in the same branch) is
detected and hv is smaller than the history of the representative, that means
we have a livelock here.

5 Conclusion and Future work

We have proposed an extended version of the Unfolding-based Dynamic Partial
Order Reduction with a refined definition of cutoff inspire from [2] to handle
the model checking of LTL. This new definition of cutoff allows us to capture
loops that are represented by events in different branches of the tree explored
by the exploration algorithm which was not possible with the original one. In
the future, we aim at applying this to an action-based Linear Temporal Logic
and implementing this UDPOR algorithm to experiment it and compare it with
state-of-the-art tools. Other works such as adapting the new algorithm to an-
other programming models like the one in [6] are considered.

6 References

1. Albert, E., Gomez-Zamalloa, M., Isabel, M., Rubio, A.: Constrained Dy-
namic Partial Order Reduction. In: 30th International Conference on
Computer Aided Verification, CAV’18, Oxford, UK. pp. 392–410 (July
2018). https://doi.org/10.1007/9

12

https://doi.org/10.1007/9

2. Aronis, S., Jonsson, B., Lang, M., Sagonas, K.: Optimal dynamic partial
order reduction with observers. In: Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’18. pp. 229–248. Springer
(2018). https://doi.org/10.1007/978-3-319-89963-314

3. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to
Model Checking. Monographs in Theoretical Computer Science. An
EATCS Series, Springer (2008). https://doi.org/10.1007/978-3-540-77426-6

4. Esparza, J., Heljanko, K.: A new unfolding approach to LTL model
checking. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 475–486. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45022-X

5. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model
checking software. In: 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’05, Long Beach, Califor-
nia, USA. pp. 110–121 (January 2005). https://doi.org/10.1145/

1040305.1040315.

6. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, Lecture Notes
in Computer Science, vol. 1032. Springer (1996). https://doi.org/10.
1007/3-540-60761-7

7. McMillan, K.L., “Using unfoldings to avoid the state explosion problem
in the verification of asynchronous circuits,” in Proceedings of the 4th
Workshop on Computer Aided Verification, Montreal, LNCS, Vol. 663,
1992, pp. 164-174.

8. Pham,T.A., Jéron T., Quinson M. (2019) Unfolding-based dynamic par-
tial order reduction of asynchronous distributed programs. In: Pérez JA,
Yoshida N (eds) Formal techniques for distributed objects, components,
and systems—39th IFIP WG 6.1 international conference, FORTE 2019,
held as part of the 14th international federated conference on distributed
computing techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June
17–21, 2019, Proceedings, Springer, Lecture Notes in Computer Science,
vol 11535, pp 224–241. https://doi.org/10.1007/978-3-030-21759-4_
13.

9. Rodriguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based
partial order reduction. In: 26th International Conference on Concurrency
Theory, CONCUR’15, Madrid, Spain. pp. 456–469 (September 2015).
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456.

10. Nguyen, H.T.T., Rodŕıguez, C., Sousa, M., Coti, C., Petrucci, L.: Quasi-
optimal partial order reduction. CoRR, abs/1802.03950 (2018)

13

https://doi.org/10.1007/978-3-319-89963-3 14
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1007/3-540-45022-X
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/978-3-030-21759-4_13
https://doi.org/10.1007/978-3-030-21759-4_13
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456

	Introduction
	Preliminaries
	Model Checking of LTL: the Automata Approach
	UDPOR

	Detecting illegal infinite trace
	A new Unfolding based partial order reduction approach to LTL Model Checking
	 Conclusion and Future work
	References

