

A BIJECTION BETWEEN EDGES OF THE TURÁN GRAPH AND IRREDUCIBLE ELEMENTS IN THE DOMINANCE ORDER LATTICE

NATHANAËL HASSLER

ABSTRACT. In this paper we build a bijection between the meet-irreducible elements of the lattice of the compositions of n with parts in $[1, p]$ equipped with the dominance order, and the edges of the (n, p) -Turán graph. Using this bijection, we then compute asymptotically the average value of some statistics on those meet-irreducible compositions.

1. INTRODUCTION

For two integers $n \geq 0$ and $p \geq 1$, we denote by $n \bmod p$ the remainder of the euclidean division of n by p . If a and b are two integers, we write $a \equiv b \bmod p$ if $a \bmod p = b \bmod p$. The (n, p) -Turán graph \mathcal{T}_n^p is the complete p -partite graph on n vertices, i.e. the graph with vertex set $V(\mathcal{T}_n^p) = \{1, \dots, n\}$, and $\{a, b\} \in E(\mathcal{T}_n^p)$ if and only if $a \not\equiv b \bmod p$, see Figure 1 for an example with $(n, p) = (8, 3)$. This graph is known for being the only one having the maximum number of edges on n vertices and being K_{p+1} -free, i.e. not having a complete induced subgraph on $p+1$ vertices, see e.g. [1]. Due to the structure of \mathcal{T}_n^p , one can see that its number of edges is given by

$$(1.1) \quad a_p(n) = \left(1 - \frac{1}{p}\right) \frac{n^2}{2} - \frac{(n \bmod p)(p - (n \bmod p))}{2p}.$$

We refer the reader to [2, 4] for some standard references about the Turán graph.

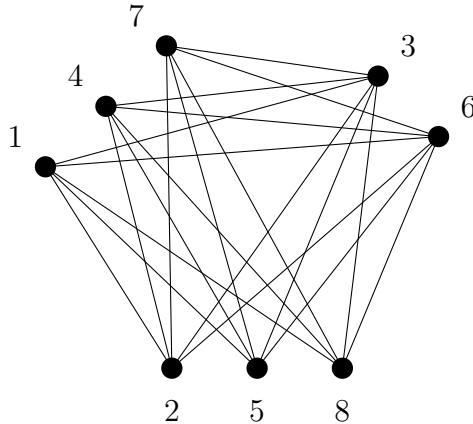


FIGURE 1. The $(8, 3)$ -Turán graph \mathcal{T}_8^3 .

A *composition* of $n \geq 1$ is a tuple (x_1, \dots, x_m) of positive integers such that $m \geq 1$ and $x_1 + \dots + x_m = n$. We denote by \mathbb{F}_n^p the set of compositions (x_1, \dots, x_m) of n such that for

all i , $1 \leq x_i \leq p$. \mathbb{F}_n^p is enumerated by the p -generalized Fibonacci sequence $(F_n^p)_{n \geq 0}$, defined for every $p \geq 2$ by

$$F_n^p = F_{n-1}^p + F_{n-2}^p + \dots + F_{n-p}^p$$

with initial conditions $F_n^p = 0$ if $n < 0$ and $F_0^p = 1$ (see [5]). The *dominance order* on the set of compositions of n is defined for two compositions $x = (x_1, \dots, x_m)$ and $y = (y_1, \dots, y_\ell)$ by

$$x \leq y \iff \text{for all } 1 \leq k \leq \min(m, \ell), \quad \sum_{i=1}^k x_i \leq \sum_{i=1}^k y_i.$$

This order has been first introduced and studied on integer partitions, see for instance [3]. The poset \mathbb{F}_n^p equipped with the dominance order forms a lattice, i.e. each pair of compositions $x, y \in \mathbb{F}_n^p$ admits a *meet* (greatest lower bound) $x \wedge y$, and a *join* (lowest upper bound) $x \vee y$. Moreover, this lattice is *distributive*, meaning that the operations meet and join are distributive relatively to the other. If $x, y \in \mathbb{F}_n^p$, we say that y *covers* x if $x < y$ and for all $z \in \mathbb{F}_n^p$, $x \leq z \leq y \Rightarrow z \in \{x, y\}$. We say equivalently that y is an *upper cover* of x , or x is a *lower cover* of y . An element $x \in \mathbb{F}_n^p$ is *meet-irreducible* if for all $y, z \in \mathbb{F}_n^p$, $x = y \wedge z \Rightarrow y = x$ or $z = x$. Similarly, an element $x \in \mathbb{F}_n^p$ is *join-irreducible* if for all $y, z \in \mathbb{F}_n^p$, $x = y \vee z \Rightarrow y = x$ or $z = x$. Since \mathbb{F}_n^p is a finite lattice, x is meet-irreducible (resp. join-irreducible) if and only if x has exactly one upper cover (resp. lower cover). See for instance [7] for the standard definitions of lattice theory. Let MI_n^p (resp. JI_n^p) be the set of meet-irreducible (resp. join-irreducible) elements in \mathbb{F}_n^p . See Figure 2 for an example of \mathbb{F}_n^p and MI_n^p with $(n, p) = (5, 3)$.

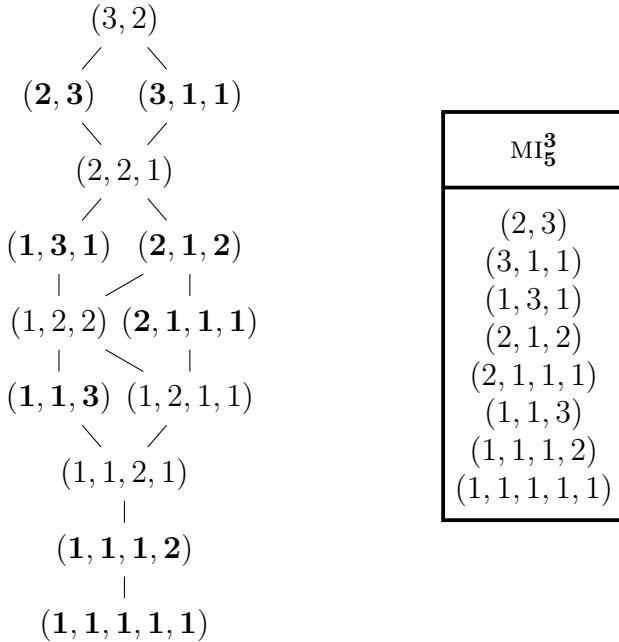


FIGURE 2. The lattice \mathbb{F}_5^3 and the set MI_5^3 of its meet-irreducible elements.

In [6] the authors gave the enumeration of many characteristic elements in \mathbb{F}_n^p , such as covering relations or intervals. In particular they proved that MI_n^p is enumerated by $a_p(n)$. As a consequence of Birkhoff's representation theorem, since \mathbb{F}_n^p is a finite distributive lattice,

$|\text{JI}_n^p| = |\text{MI}_n^p| = a_p(n)$. In Section 2, we build an explicit bijection between $E(\mathcal{T}_n^p)$ and MI_n^p , and then we show how this bijection can be adapted to JI_n^p . In Section 3 we use this bijection to compute asymptotically the average value of three statistics on MI_n^p .

2. THE BIJECTION

We start with the following lemma that counts the number of upper covers of a composition, and then characterizes the elements of MI_n^p . For $a, b \in [1, p]$, we say that a composition $x = (x_1, \dots, x_m)$ has a *consecutive pattern* ab if there exists $1 \leq i < m$ such that $x_i = a$ and $x_{i+1} = b$.

Lemma 2.1. *The number of upper covers of a composition $x \in \mathbb{F}_n^p$ is the number of consecutive patterns ab in x with $1 \leq a \leq p-1$ and $2 \leq b \leq p$, plus one if x has the suffix $i1$ for $1 \leq i \leq p-1$.*

Proof. Suppose that $x \in \mathbb{F}_n^p$ satisfies $x = (x_1, \dots, x_j, a, b, x_{j+1}, \dots, x_m)$ with $1 \leq a \leq p-1$ and $2 \leq b \leq p$. Then $z := (x_1, \dots, x_j, a+1, b-1, x_{j+1}, \dots, x_m)$ is an upper cover of x , and we say that z has the form (\star) . Similarly, if $x = (x_1, \dots, x_m, i, 1)$ with $1 \leq i \leq p-1$, then $z := (x_1, \dots, x_m, i+1)$ is an upper cover of x , and we say that z has the form $(\star\star)$. Conversely, suppose $x = (x_1, \dots, x_m) \in \mathbb{F}_n^p$, and let $y = (y_1, \dots, y_\ell) \in \mathbb{F}_n^p$ be such that $x < y$. To end the proof it suffices to prove that there exists $z \in \mathbb{F}_n^p$ with the form (\star) or $(\star\star)$ such that $x < z \leq y$. Let j be the smallest integer such that $x_j < y_j$. Then we have $x_j < p$.

Case 1: Suppose that $x_{j+1} > 1$. Then we set $z_j = x_j + 1$ and $z_{j+1} = x_{j+1} - 1$, and $z_i = x_i$ for $i \notin \{j, j+1\}$. Then z has the form (\star) , and $x < z \leq y$.

Case 2: Suppose that $x_{j+1} = x_{j+2} = \dots = x_m = 1$. Then we set $z_i = x_i$ if $i \leq m-2$, and $z_{m-1} = x_{m-1} + 1$. Note that we may have $m = j+1$. Then z has the form $(\star\star)$, and $x < z \leq y$.

Case 3: Suppose that $x_{j+1} = 1$ and there exists $j+1 < k \leq m$ such that $x_k > 1$. We consider the smallest such k , and we set $z_{k-1} = x_{k-1} + 1$ and $z_k = x_k - 1$, and $z_i = x_i$ for $i \notin \{k-1, k\}$. Then z has the form (\star) , and $x < z \leq y$.

Considering those three cases, the converse holds and the lemma too. \square

Remark 2.2. As a direct porism of Lemma 2.1, the number of lower covers of $x \in \mathbb{F}_n^p$ is the number of consecutive patterns ab in x with $2 \leq a \leq p$ and $1 \leq b \leq p-1$, plus one if x does not end by 1.

Now we give a recursive decomposition of $E(\mathcal{T}_n^p)$, and then we will provide a similar decomposition for MI_n^p . We have

$$(2.1) \quad E(\mathcal{T}_n^p) = E(\mathcal{T}_{n-1}^p) \cup \{\{a, n\} \subseteq [1, n] \mid a \neq n \pmod{p}\},$$

and

$$|\{1 \leq a \leq n \mid a \neq n \pmod{p}\}| = \left\lfloor \left(1 - \frac{1}{p}\right) n \right\rfloor.$$

In particular, the sequence $a_p(n)$ satisfies the recurrence relation

$$a_p(n) = a_p(n-1) + \left\lfloor \left(1 - \frac{1}{p}\right) n \right\rfloor.$$

In order to build our bijection naturally, we now give a similar decomposition of MI_n^p . Let $f : \text{MI}_{n-1}^p \longrightarrow \text{MI}_n^p$ defined for a composition $x = (x_1, \dots, x_m)$ by

$$f(x) = \begin{cases} (x_1, \dots, x_m + 1) & \text{if } 1 \leq x_m < p, \\ (x_1, \dots, x_m, 1) & \text{if } x_m = p. \end{cases}$$

Then it is not hard to check that f takes indeed its values in MI_n^p , and that f is injective. Moreover, if $f(x)$ ends by 1, then it ends by $p1$. Conversely, if $y = (y_1, \dots, y_\ell) \in \text{MI}_n^p$ does not end by $i1$ with $1 \leq i \leq p-1$, then $y = f(y_1, \dots, y_\ell - 1)$ if $y_\ell > 1$, and $y = f(y_1, \dots, y_{\ell-1})$ if $(y_{\ell-1}, y_\ell) = (p, 1)$. Consequently, we have

$$(2.2) \quad \begin{aligned} \text{MI}_n^p &= f(\text{MI}_{n-1}^p) \cup \{x \in \text{MI}_n^p \mid x \text{ ends by } i1 \text{ with } 1 \leq i \leq p-1\} \\ &= f(\text{MI}_{n-1}^p) \cup \{(\underbrace{p, \dots, p}_k, \underbrace{i, 1, \dots, 1}_m) \in \mathbb{F}_n^p \mid 1 \leq i \leq p-1, m \geq 1, k \geq 0\}. \end{aligned}$$

The last equality holds since by Lemma 2.1, if a composition in MI_n^p ends with $i1$ for some $1 \leq i \leq p-1$, this suffix produces one upper cover; thus such a composition avoids consecutive patterns ab with $1 \leq a \leq p-1$ and $2 \leq b \leq p$. By the injectivity of f , we have

$$|\text{MI}_n^p| = |\text{MI}_{n-1}^p| + |A_n^p|,$$

$$\text{with } A_n^p = \{(\underbrace{p, \dots, p}_k, \underbrace{i, 1, \dots, 1}_m) \in \mathbb{F}_n^p \mid 1 \leq i \leq p-1, m \geq 1, k \geq 0\}.$$

Lemma 2.3. *Given $n, p \geq 2$, we have $|A_n^p| = \left\lfloor \left(1 - \frac{1}{p}\right) n \right\rfloor$.*

Proof. For $x = (\underbrace{p, \dots, p}_k, \underbrace{i, 1, \dots, 1}_m) \in A_n^p$, let $g(x) = m$. Since x is a composition of n we have $n = kp + i + m$, so $g(x) \equiv (n - i) \pmod{p}$, and $g(x) \not\equiv n \pmod{p}$ since $i \not\equiv 0 \pmod{p}$. Conversely, if $1 \leq a \leq n$ with $a \not\equiv n \pmod{p}$, then $g(\underbrace{p, \dots, p}_{\lfloor \frac{n-a}{p} \rfloor}, (n-a) \pmod{p}, \underbrace{1, \dots, 1}_a) = a$.

This proves that g is a bijection between A_n^p and $\{1 \leq a \leq n \mid a \not\equiv n \pmod{p}\}$. Therefore,

$$|A_n^p| = |\{1 \leq a \leq n \mid a \not\equiv n \pmod{p}\}| = \left\lfloor \left(1 - \frac{1}{p}\right) n \right\rfloor.$$

□

Now for $n, p \geq 2$ we give a recursive bijection $\Psi_n^p : E(\mathcal{T}_n^p) \longrightarrow \text{MI}_n^p$ based on the decompositions from Eq. (2.1) and Eq. (2.2), and the bijection from Lemma 2.3. For $\{a, b\} \in E(\mathcal{T}_n^p)$ with $a < b$ we set

$$\Psi_n^p(a, b) = \begin{cases} f(\Psi_{n-1}^p(a, b)) & \text{if } b < n, \\ (\underbrace{p, \dots, p}_{\lfloor \frac{n-a}{p} \rfloor}, (n-a) \pmod{p}, \underbrace{1, \dots, 1}_a) & \text{if } b = n. \end{cases}$$

It follows from a direct induction that

$$(2.3) \quad \Psi_n^p(a, b) = (\underbrace{p, \dots, p}_{\lfloor \frac{b-a}{p} \rfloor}, (b-a) \pmod{p}, \underbrace{1, \dots, 1}_{a-1}, \underbrace{p, \dots, p}_{\lfloor \frac{n-b+1}{p} \rfloor}, (n-b+1) \pmod{p}).$$

For $x \in \text{MI}_n^p$, let $k_x \geq 0$, $1 \leq i_x \leq p-1$ and $m_x \geq 0$ maximum such that x starts with $\underbrace{p, \dots, p}_{k_x}, i_x, \underbrace{1, \dots, 1}_{m_x}$. Then we define $\Phi_n^p : \text{MI}_n^p \longrightarrow E(\mathcal{T}_n^p)$ by

$$\Phi_n^p(x) = \{m_x + \delta_x, pk_x + i_x + m_x + \delta_x\},$$

where

$$\delta_x = \begin{cases} 1 & \text{if } (x \text{ ends by } 1 \Rightarrow x \text{ ends by } p1), \\ 0 & \text{otherwise.} \end{cases}$$

Observe that Φ_n^p is well defined since k_x, i_x and m_x always exist for the elements of MI_n^p . Moreover, Φ_n^p takes its values in $E(\mathcal{T}_n^p)$ because $i_x \not\equiv 0 \pmod{p}$. With a direct verification, we deduce the following theorem.

Theorem 2.4. *For $n, p \geq 2$, Ψ_n^p and Φ_n^p are reciprocal bijections.*

$\{a, b\} \in E(\mathcal{T}_7^2)$	$\Psi_7^2(a, b) \in \text{MI}_7^2$	$\{a, b\} \in E(\mathcal{T}_6^3)$	$\Psi_6^3(a, b) \in \text{MI}_6^3$
$\{1, 2\}$	$(1, 2, 2, 2)$	$\{1, 2\}$	$(1, 3, 2)$
$\{1, 4\}$	$(2, 1, 2, 2)$	$\{1, 3\}$	$(2, 3, 1)$
$\{1, 6\}$	$(2, 2, 1, 2)$	$\{1, 5\}$	$(3, 1, 2)$
$\{2, 3\}$	$(1, 1, 2, 2, 1)$	$\{1, 6\}$	$(3, 2, 1)$
$\{2, 5\}$	$(2, 1, 1, 2, 1)$	$\{2, 3\}$	$(1, 1, 3, 1)$
$\{2, 7\}$	$(2, 2, 1, 1, 1)$	$\{2, 4\}$	$(2, 1, 3)$
$\{3, 4\}$	$(1, 1, 1, 2, 2)$	$\{2, 6\}$	$(3, 1, 1, 1)$
$\{3, 6\}$	$(2, 1, 1, 1, 2)$	$\{3, 4\}$	$(1, 1, 1, 3)$
$\{4, 5\}$	$(1, 1, 1, 1, 2, 1)$	$\{3, 5\}$	$(2, 1, 1, 2)$
$\{4, 7\}$	$(2, 1, 1, 1, 1, 1)$	$\{4, 5\}$	$(1, 1, 1, 1, 2)$
$\{5, 6\}$	$(1, 1, 1, 1, 1, 2)$	$\{4, 6\}$	$(2, 1, 1, 1, 1)$
$\{6, 7\}$	$(1, 1, 1, 1, 1, 1, 1)$	$\{5, 6\}$	$(1, 1, 1, 1, 1, 1)$

TABLE 1. Two examples of the bijection Ψ_n^p for $(n, p) = (7, 2)$ and $(6, 3)$.

Remark 2.5. By doing the same investigation for JI_n^p , we obtain that the following map is a bijection from $E(\mathcal{T}_n^p)$ to JI_n^p :

$$\tilde{\Psi}_n^p(a, b) = (\underbrace{1, \dots, 1}_{a-1}, (b-a) \bmod p + 1, \underbrace{p, \dots, p}_{\lfloor \frac{b-a}{p} \rfloor}, \underbrace{1, \dots, 1}_{n-b}).$$

Using Remark 2.2, we can check that it takes indeed its values in JI_n^p . To define its reciprocal, for $x \in \mathbb{F}_n^p$, let k_x (resp. m_x) be maximal such that x starts (resp. ends) with k_x (resp. m_x) consecutive 1s. The reciprocal of $\tilde{\Psi}_n^p$ is then defined by

$$\tilde{\Phi}_n^p(x) = \{k_x + 1, n - m_x\}.$$

For $x \in \text{JI}_n^p$, $n - k_x - m_x - 1 \not\equiv 0 \pmod{p}$, hence $\tilde{\Phi}_n^p$ takes its values in $E(\mathcal{T}_n^p)$.

3. SOME STATISTICS ON MI_n^p

The bijection Ψ_n^p from Section 2 allows us to express statistics on $\Psi_n^p(a, b)$ easily in terms of a and b . It therefore gives a method to compute the average value of statistics. In this section we give an illustration of this method on three statistics: the number of parts, the first part and the number of weak records. We start with a lemma computing some sums over $E(\mathcal{T}_n^p)$.

Lemma 3.1. *For a given $p \geq 2$ we have as $n \rightarrow \infty$*

$$\sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} a = \left(1 - \frac{1}{p}\right) \frac{n^3}{6} + O(n^2),$$

$$\sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} b = \left(1 - \frac{1}{p}\right) \frac{n^3}{3} + O(n^2).$$

Proof. First, let us compute the sum without the congruence constraint.

$$s(n) := \sum_{1 \leq a < b \leq n} a = \sum_{a=1}^{n-1} \sum_{b=a+1}^n a = \sum_{a=1}^{n-1} (n-a)a$$

$$= \frac{n^2(n-1)}{2} - \frac{n(n-1)(2n-1)}{6} = \frac{n(n-1)(n+1)}{6}.$$

Similarly,

$$S(n) := \sum_{1 \leq a < b \leq n} b = \sum_{b=2}^n \sum_{a=1}^{b-1} b = \sum_{b=2}^n b(b-1)$$

$$= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} = \frac{n(n-1)(n+1)}{3}.$$

Now if $0 \leq i \leq p-1$, let $\delta_i = 1$ if $i > n \pmod{p}$, and $\delta_i = 0$ otherwise. Then

$$\sum_{\substack{1 \leq a < b \leq n \\ a \equiv b \equiv i \pmod{p}}} a = \sum_{a=0}^{\lfloor n/p \rfloor - \delta_i - 1} \sum_{b=a+1}^{\lfloor n/p \rfloor - \delta_i} (pa + i) = p \cdot s(\lfloor n/p \rfloor) + O(n^2) = \frac{n^3}{6p^2} + O(n^2).$$

We deduce

$$\sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} a = s(n) - \sum_{i=0}^{p-1} \sum_{\substack{1 \leq a < b \leq n \\ a \equiv b \equiv i \pmod{p}}} a = \frac{n^3}{6} + O(n^2) - p \left(\frac{n^3}{6p^2} + O(n^2) \right) = \left(1 - \frac{1}{p}\right) \frac{n^3}{6} + O(n^2).$$

Similarly,

$$\sum_{\substack{1 \leq a < b \leq n \\ a \equiv b \equiv i \pmod{p}}} b = \sum_{b=1}^{\lfloor n/p \rfloor - \delta_i} \sum_{a=0}^{b-1} (pb + i) = p \cdot S(\lfloor n/p \rfloor) + O(n^2) = \frac{n^3}{3p^2} + O(n^2),$$

and so

$$\sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} b = S(n) - \sum_{i=0}^{p-1} \sum_{\substack{1 \leq a < b \leq n \\ a \equiv b \pmod{i}}} b = \frac{n^3}{3} + O(n^2) - p \left(\frac{n^3}{3p^2} + O(n^2) \right) = \left(1 - \frac{1}{p} \right) \frac{n^3}{3} + O(n^2).$$

□

3.1. The number of parts. For a composition $x = (x_1, \dots, x_m) \in \mathbb{F}_n^p$ we denote by $\text{parts}(x)$ its number of parts m .

Proposition 3.2. *The average number of parts of a composition in MI_n^p satisfies as $n \rightarrow \infty$*

$$\frac{1}{|\text{MI}_n^p|} \sum_{x \in \text{MI}_n^p} \text{parts}(x) \sim \left(1 + \frac{2}{p} \right) \frac{n}{3}.$$

Proof. From Eq. (2.3), for every $a \not\equiv b \pmod{p}$ we have

$$\begin{aligned} \text{parts}(\Psi_n^p(a, b)) &= \left\lfloor \frac{b-a}{p} \right\rfloor + 1 + a - 1 + \left\lfloor \frac{n-b+1}{p} \right\rfloor + \mathbb{1}_{b \equiv n+1 \pmod{p}} \\ &= \frac{n}{p} + \left(1 - \frac{1}{p} \right) a + O(1). \end{aligned}$$

The total number of parts in all compositions of MI_n^p is then

$$\begin{aligned} \sum_{x \in \text{MI}_n^p} \text{parts}(x) &= \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} \text{parts}(\Psi_n^p(a, b)) = \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} \left[\frac{n}{p} + \left(1 - \frac{1}{p} \right) a \right] + O(n^2) \\ &= a_p(n) \cdot \frac{n}{p} + \left(1 - \frac{1}{p} \right)^2 \frac{n^3}{6} + O(n^2), \end{aligned}$$

by Lemma 3.1. From Eq. (1.1), $a_p(n) = \left(1 - \frac{1}{p} \right) \frac{n^2}{2} + O(1)$, so we deduce

$$\begin{aligned} \frac{1}{|\text{MI}_n^p|} \sum_{x \in \text{MI}_n^p} \text{parts}(x) &= \frac{1}{a_p(n)} \left(a_p(n) \cdot \frac{n}{p} + \left(1 - \frac{1}{p} \right)^2 \frac{n^3}{6} + O(n^2) \right) \\ &= \frac{n}{p} + \left(1 - \frac{1}{p} \right) \frac{n}{3} + O(1) \\ &= \left(1 + \frac{2}{p} \right) \frac{n}{3} + O(1). \end{aligned}$$

□

3.2. The first part. For a composition $x = (x_1, \dots, x_m) \in \mathbb{F}_n^p$ we denote by $\text{first}(x)$ the value of its first part x_1 .

Proposition 3.3. *The average value of the statistic first on the compositions of MI_n^p satisfies as $n \rightarrow \infty$*

$$\frac{1}{|\text{MI}_n^p|} \sum_{x \in \text{MI}_n^p} \text{first}(x) = p \left(1 - \frac{p}{n} + \frac{p(p+1)}{3n^2} + O\left(\frac{1}{n^3}\right) \right).$$

Proof. From Eq. (2.3), for every $a \not\equiv b \pmod{p}$ we have

$$\mathbf{first}(\Psi_n^p(a, b)) = \begin{cases} p & \text{if } b - a \geq p \\ (b - a) \pmod{p} & \text{otherwise.} \end{cases}$$

The sum of $\mathbf{first}(x)$ over all compositions $x \in \text{MI}_n^p$ is then

$$\sum_{x \in \text{MI}_n^p} \mathbf{first}(x) = \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} \mathbf{first}(\Psi_n^p(a, b)) = \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b - a \geq p}} p + \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b - a < p}} (b - a) \pmod{p}.$$

Let us first compute the following sum when $n \geq p - 1$.

$$(3.1) \quad \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b - a < p}} 1 = \sum_{a=1}^{n-p+1} \sum_{b=a+1}^{a+p-1} 1 + \sum_{a=n-p+2}^{n-1} \sum_{b=a+1}^n 1 = \sum_{a=1}^{n-p+1} (p-1) + \sum_{a=n-p+2}^{n-1} (n-a)$$

$$(3.2) \quad = (n-p+1)(p-1) + \sum_{a=1}^{p-2} a = (n-p+1)(p-1) + \frac{(p-2)(p-1)}{2}.$$

We deduce

$$\sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b - a \geq p}} p = \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} p - \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b - a < p}} p = p \left(a_p(n) - (n-p+1)(p-1) - \frac{(p-2)(p-1)}{2} \right).$$

Now observe that if $1 \leq a < b \leq n$ with $b - a < p$, then $b - a = (b - a) \pmod{p}$. Then for $n \geq p - 1$ we have

$$\begin{aligned} \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b - a < p}} (b - a) \pmod{p} &= \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b - a < p}} (b - a) = \sum_{a=1}^{n-p+1} \sum_{b=a+1}^{a+p-1} (b - a) + \sum_{a=n-p+2}^{n-1} \sum_{b=a+1}^n (b - a) \\ &= \sum_{a=1}^{n-p+1} \left[\frac{(a+p)(a+p-1) - a(a+1)}{2} - (p-1)a \right] + \sum_{a=n-p+2}^{n-1} \left[\frac{n(n+1) - a(a+1)}{2} - (n-a)a \right] \\ &= \sum_{a=1}^{n-p+1} \frac{p(p-1)}{2} + \sum_{a=n-p+2}^{n-1} \left[\frac{(n-a)^2 + n - a}{2} \right] \\ &= \frac{p(p-1)}{2} \left(n - p + 1 + \frac{p-2}{3} \right). \end{aligned}$$

Finally,

$$\begin{aligned} \sum_{x \in \text{MI}_n^p} \mathbf{first}(x) &= p \left(a_p(n) - (n-p+1)(p-1) - \frac{(p-2)(p-1)}{2} \right) + \frac{p(p-1)}{2} \left(n - p + 1 + \frac{p-2}{3} \right) \\ &= p \left(a_p(n) - n \cdot \frac{p-1}{2} + \frac{(p-1)(p+1)}{6} \right). \end{aligned}$$

Using that $a_p(n) = \frac{(p-1)n^2}{2p} + O(1)$, we deduce

$$\frac{1}{|\text{MI}_n^p|} \sum_{x \in \text{MI}_n^p} \text{first}(x) = p \left(1 - \frac{p}{n} + \frac{p(p+1)}{3n^2} + O\left(\frac{1}{n^3}\right) \right).$$

□

3.3. The number of weak records. For $x = (x_1, \dots, x_m) \in \mathbb{F}_n^p$, a *weak record* is a position $1 \leq j \leq m$ such that $x_i \leq x_j$ for each $1 \leq i \leq j$. We denote by $\text{wrec}(x)$ the number of weak records of x .

Proposition 3.4. *The average number of weak records of a composition in MI_n^p satisfies as $n \rightarrow \infty$*

$$\frac{1}{|\text{MI}_n^p|} \sum_{x \in \text{MI}_n^p} \text{wrec}(x) \sim \frac{2n}{3p}.$$

Proof. From Eq. (2.3), we have that

$$\text{wrec}(\Psi_n^p(a, b)) = \left\lfloor \frac{b-a}{p} \right\rfloor + \left\lfloor \frac{n-b+1}{p} \right\rfloor$$

when $b-a \geq p$. We do not compute it in details for $b-a < p$ as we shall see the contribution of those pairs $\{a, b\}$ to the total number of weak records in MI_n^p is negligible. Indeed, we saw in Eq. (3.2) that the number of those pairs is $O(n)$, and since $\text{wrec}(\Psi_n^p(a, b)) \leq n$ for every pair $\{a, b\}$ we have that

$$\sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b-a < p}} \text{wrec}(\Psi_n^p(a, b)) = O(n^2).$$

Then,

$$\begin{aligned} \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} \text{wrec}(\Psi_n^p(a, b)) &= \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b-a \geq p}} \left(\left\lfloor \frac{b-a}{p} \right\rfloor + \left\lfloor \frac{n-b+1}{p} \right\rfloor \right) + O(n^2) \\ &= \frac{1}{p} \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b-a \geq p}} (n-a) + O(n^2). \end{aligned}$$

Using Eq. (3.2) and Lemma 3.1, we have

$$\sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p} \\ b-a \geq p}} a = \sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} a - O(n^2) = \frac{na_p(n)}{3} - O(n^2).$$

Finally,

$$\sum_{\substack{1 \leq a < b \leq n \\ a \not\equiv b \pmod{p}}} \text{wrec}(\Psi_n^p(a, b)) = \frac{1}{p} \left(na_p(n) - \frac{na_p(n)}{3} \right) + O(n^2) = \frac{2na_p(n)}{3p} + O(n^2),$$

which concludes. □

REFERENCES

- [1] M. Aigner, Turán's graph theorem. *Am. Math. Monthly*, 102 (1995), 808–816.
- [2] P. Turán, On an extremal problem in graph theory (in Hungarian). *Math. Fiz. Lapok*, 48 (1941), 436—452.
- [3] T. Brylawski, The lattice of integer partitions, *Discrete Mathematics*, 6-(3), 201-219 (1973).
- [4] B. Bollobás, *Extremal graph theory*, Academic Press, 1978.
- [5] S. Heubach and T. Mansour, Compositions of n with parts in a set. *Congressus Numerantium*, 168, 127-143 (2004).
- [6] J.-L. Baril and N. Hassler, Intervals in a family of Fibonacci lattices, <https://arxiv.org/abs/2411.17628>, (2025).
- [7] R.P. Stanley, *Enumerative Combinatorics, Volume 1*, Cambridge University Press, 1997.

UNIVERSITÉ BOURGOGNE EUROPE, LIB UR 7534, F-21000 DIJON, FRANCE

Email address: nathanael.hassler@ens-rennes.fr