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Abstract. In this paper we build a bijection between the meet-irreducible elements of the
lattice of the compositions of n with parts in [1, p] equipped with the dominance order, and
the edges of the (n, p)-Turán graph. Using this bijection, we then compute asymptotically
the average value of some statistics on those meet-irreducible compositions.

1. Introduction

For two integers n ≥ 0 and p ≥ 1, we denote by n mod p the remainder of the euclidean
division of n by p. If a and b are two integers, we write a ≡ b mod p if a mod p = b mod p.
The (n, p)-Turán graph T p

n is the complete p-partite graph on n vertices, i.e. the graph with
vertex set V (T p

n ) = {1, . . . , n}, and {a, b} ∈ E(T p
n ) if and only if a ̸≡ b mod p, see Figure 1

for an example with (n, p) = (8, 3). This graph is known for being the only one having the
maximum number of edges on n vertices and being Kp+1-free, i.e. not having a complete
induced subgraph on p+1 vertices, see e.g. [1]. Due to the structure of T p

n , one can see that
its number of edges is given by

(1.1) ap(n) =

(
1− 1

p

)
n2

2
− (n mod p)(p− (n mod p))

2p
.

We refer the reader to [2, 4] for some standard references about the Turán graph.
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Figure 1. The (8, 3)-Turán graph T 3
8 .

A composition of n ≥ 1 is a tuple (x1, . . . , xm) of positive integers such that m ≥ 1 and
x1 + . . .+ xm = n. We denote by Fp

n the set of compositions (x1, . . . , xm) of n such that for
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all i, 1 ≤ xi ≤ p. Fp
n is enumerated by the p-generalized Fibonacci sequence (F p

n)n≥0, defined
for every p ≥ 2 by

F p
n = F p

n−1 + F p
n−2 + . . .+ F p

n−p

with initial conditions F p
n = 0 if n < 0 and F p

0 = 1 (see [5]). The dominance order on the set
of compositions of n is defined for two compositions x = (x1, . . . , xm) and y = (y1, . . . , yℓ) by

x ≤ y ⇐⇒ for all 1 ≤ k ≤ min(m, ℓ),
k∑

i=1

xi ≤
k∑

i=1

yi.

This order has been first introduced and studied on integer partitions, see for instance [3].
The poset Fp

n equipped with the dominance order forms a lattice, i.e. each pair of com-
positions x, y ∈ Fp

n admits a meet (greatest lower bound) x ∧ y, and a join (lowest upper
bound) x ∨ y. Moreover, this lattice is distributive, meaning that the operations meet and
join are distributive relatively to the other. If x, y ∈ Fp

n, we say that y covers x if x < y
and for all z ∈ Fp

n, x ≤ z ≤ y ⇒ z ∈ {x, y}. We say equivalently that y is an upper cover
of x, or x is a lower cover of y. An element x ∈ Fp

n is meet-irreducible if for all y, z ∈ Fp
n,

x = y ∧ z ⇒ y = x or z = x. Similarly, an element x ∈ Fp
n is join-irreducible if for all

y, z ∈ Fp
n, x = y ∨ z ⇒ y = x or z = x. Since Fp

n is a finite lattice, x is meet-irreducible
(resp. join-irreducible) if and only if x has exactly one upper cover (resp. lower cover). See
for instance [7] for the standard definitions of lattice theory. Let mipn (resp. jipn) be the set
of meet-irreducible (resp. join-irreducible) elements in Fp

n. See Figure 2 for an example of
Fp
n and mipn with (n, p) = (5, 3).

(3, 2)

(2,3) (3,1,1)

(2, 2, 1)

(1,3,1) (2,1,2)

(1, 2, 2) (2,1,1,1)

(1,1,3) (1, 2, 1, 1)

(1, 1, 2, 1)

(1,1,1,2)

(1,1,1,1,1)

mi35

(2, 3)
(3, 1, 1)
(1, 3, 1)
(2, 1, 2)
(2, 1, 1, 1)
(1, 1, 3)
(1, 1, 1, 2)
(1, 1, 1, 1, 1)

Figure 2. The lattice F3
5 and the set mi35 of its meet-irreducible elements.

In [6] the authors gave the enumeration of many characteristic elements in Fp
n, such as

covering relations or intervals. In particular they proved that mipn is enumerated by ap(n). As
a consequence of Birkhoff’s representation theorem, since Fp

n is a finite distributive lattice,
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|jipn| = |mipn| = ap(n). In Section 2, we build an explicit bijection between E(T p
n ) and mipn,

and then we show how this bijection can be adapted to jipn. In Section 3 we use this bijection
to compute asymptotically the average value of three statistics on mipn.

2. The bijection

We start with the following lemma that counts the number of upper covers of a composi-
tion, and then characterizes the elements of mipn. For a, b ∈ [1, p], we say that a composition
x = (x1, . . . , xm) has a consecutive pattern ab if there exists 1 ≤ i < m such that xi = a and
xi+1 = b.

Lemma 2.1. The number of upper covers of a composition x ∈ Fp
n is the number of consec-

utive patterns ab in x with 1 ≤ a ≤ p − 1 and 2 ≤ b ≤ p, plus one if x has the suffix i1 for
1 ≤ i ≤ p− 1.

Proof. Suppose that x ∈ Fp
n satisfies x = (x1, . . . , xj, a, b, xj+1, . . . , xm) with 1 ≤ a ≤ p − 1

and 2 ≤ b ≤ p. Then z := (x1, . . . , xj, a + 1, b − 1, xj+1, . . . , xm) is an upper cover of x,
and we say that z has the form (⋆). Similarly, if x = (x1, . . . , xm, i, 1) with 1 ≤ i ≤ p − 1,
then z := (x1 . . . , xm, i + 1) is an upper cover of x, and we say that z has the form (⋆⋆).
Conversely, suppose x = (x1, . . . , xm) ∈ Fp

n, and let y = (y1, . . . , yℓ) ∈ Fp
n be such that x < y.

To end the proof it suffices to prove that there exists z ∈ Fp
n with the form (⋆) or (⋆⋆) such

that x < z ≤ y. Let j be the smallest integer such that xj < yj. Then we have xj < p.

Case 1: Suppose that xj+1 > 1. Then we set zj = xj + 1 and zj+1 = xj+1 − 1, and zi = xi for
i ̸∈ {j, j + 1}. Then z has the form (⋆), and x < z ≤ y.

Case 2: Suppose that xj+1 = xj+2 = . . . = xm = 1. Then we set zi = xi if i ≤ m − 2, and
zm−1 = xm−1 + 1. Note that we may have m = j + 1. Then z has the form (⋆⋆), and
x < z ≤ y.

Case 3: Suppose that xj+1 = 1 and there exists j+1 < k ≤ m such that xk > 1. We consider
the smallest such k, and we set zk−1 = xk−1 + 1 and zk = xk − 1, and zi = xi for
i ̸∈ {k − 1, k}. Then z has the form (⋆), and x < z ≤ y.

Considering those three cases, the converse holds and the lemma too. □

Remark 2.2. As a direct porism of Lemma 2.1, the number of lower covers of x ∈ Fp
n is the

number of consecutive patterns ab in x with 2 ≤ a ≤ p and 1 ≤ b ≤ p− 1, plus one if x does
not end by 1.

Now we give a recursive decomposition of E(T p
n ), and then we will provide a similar

decomposition for mipn. We have

(2.1) E(T p
n ) = E(T p

n−1) ∪ {{a, n} ⊆ [1, n] | a ̸= n mod p} ,

and

| {1 ≤ a ≤ n | a ̸= n mod p} | =
⌊(

1− 1

p

)
n

⌋
.

In particular, the sequence ap(n) satisfies the recurrence relation

ap(n) = ap(n− 1) +

⌊(
1− 1

p

)
n

⌋
.
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In order to build our bijection naturally, we now give a similar decomposition of mipn. Let
f : mipn−1 −→ mipn defined for a composition x = (x1, . . . , xm) by

f(x) =

{
(x1, . . . , xm + 1) if 1 ≤ xm < p,
(x1, . . . , xm, 1) if xm = p.

Then it is not hard to check that f takes indeed its values in mipn, and that f is injective.
Moreover, if f(x) ends by 1, then it ends by p1. Conversely, if y = (y1, . . . , yℓ) ∈ mipn does
not end by i1 with 1 ≤ i ≤ p−1, then y = f(y1, . . . , yℓ−1) if yℓ > 1, and y = f(y1, . . . , yℓ−1)
if (yℓ−1, yℓ) = (p, 1). Consequently, we have

(2.2)
mipn = f(mipn−1) ∪ {x ∈ mipn | x ends by i1 with 1 ≤ i ≤ p− 1}

= f(mipn−1) ∪ {(p, . . . , p︸ ︷︷ ︸
k

, i, 1, . . . , 1︸ ︷︷ ︸
m

) ∈ Fp
n | 1 ≤ i ≤ p− 1, m ≥ 1, k ≥ 0}.

The last equality holds since by Lemma 2.1, if a composition in mipn ends with i1 for some
1 ≤ i ≤ p−1, this suffix produces one upper cover; thus such a composition avoids consecutive
patterns ab with 1 ≤ a ≤ p− 1 and 2 ≤ b ≤ p. By the injectivity of f , we have

|mipn| = |mipn−1|+ |Ap
n|,

with Ap
n = {(p, . . . , p︸ ︷︷ ︸

k

, i, 1, . . . , 1︸ ︷︷ ︸
m

) ∈ Fp
n | 1 ≤ i ≤ p− 1, m ≥ 1, k ≥ 0}.

Lemma 2.3. Given n, p ≥ 2, we have |Ap
n| =

⌊(
1− 1

p

)
n
⌋
.

Proof. For x = (p, . . . , p︸ ︷︷ ︸
k

, i, 1, . . . , 1︸ ︷︷ ︸
m

) ∈ Ap
n, let g(x) = m. Since x is a composition of n we

have n = kp + i + m, so g(x) ≡ (n − i) mod p, and g(x) ̸≡ n mod p since i ̸≡ 0 mod p.
Conversely, if 1 ≤ a ≤ n with a ̸≡ n mod p, then g(p, . . . , p︸ ︷︷ ︸

⌊n−a
p ⌋

, (n − a) mod p, 1, . . . , 1︸ ︷︷ ︸
a

) = a.

This proves that g is a bijection between Ap
n and {1 ≤ a ≤ n | a ̸≡ n mod p}. Therefore,

|Ap
n| = |{1 ≤ a ≤ n | a ̸≡ n mod p}| =

⌊(
1− 1

p

)
n

⌋
.

□

Now for n, p ≥ 2 we give a recursive bijection Ψp
n : E(T p

n ) −→ mipn based on the decompo-
sitions from Eq. (2.1) and Eq. (2.2), and the bijection from Lemma 2.3. For {a, b} ∈ E(T p

n )
with a < b we set

Ψp
n(a, b) =


f(Ψp

n−1(a, b)) if b < n,
(p, . . . , p︸ ︷︷ ︸
⌊n−a

p ⌋

, (n− a) mod p, 1, . . . , 1︸ ︷︷ ︸
a

) if b = n.

It follows from a direct induction that

(2.3) Ψp
n(a, b) = (p, . . . , p︸ ︷︷ ︸

⌊ b−a
p ⌋

, (b− a) mod p, 1, . . . , 1︸ ︷︷ ︸
a−1

, p, . . . , p︸ ︷︷ ︸
⌊n−b+1

p ⌋

, (n− b+ 1) mod p).
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For x ∈ mipn, let kx ≥ 0, 1 ≤ ix ≤ p − 1 and mx ≥ 0 maximum such that x starts with
p, . . . , p︸ ︷︷ ︸

kx

, ix, 1 . . . , 1︸ ︷︷ ︸
mx

. Then we define Φp
n : mipn −→ E(T p

n ) by

Φp
n(x) = {mx + δx, pkx + ix +mx + δx},

where

δx =

{
1 if (x ends by 1 ⇒ x ends by p1),
0 otherwise.

Observe that Φp
n is well defined since kx, ix and mx always exist for the elements of mipn.

Moreover, Φp
n takes its values in E(T p

n ) because ix ̸≡ 0 mod p. With a direct verification, we
deduce the following theorem.

Theorem 2.4. For n, p ≥ 2, Ψp
n and Φp

n are reciprocal bijections.

{a, b} ∈ E(T 2
7 ) Ψ2

7(a, b) ∈ mi27
{1, 2} (1, 2, 2, 2)
{1, 4} (2, 1, 2, 2)
{1, 6} (2, 2, 1, 2)
{2, 3} (1, 1, 2, 2, 1)
{2, 5} (2, 1, 1, 2, 1)
{2, 7} (2, 2, 1, 1, 1)
{3, 4} (1, 1, 1, 2, 2)
{3, 6} (2, 1, 1, 1, 2)
{4, 5} (1, 1, 1, 1, 2, 1)
{4, 7} (2, 1, 1, 1, 1, 1)
{5, 6} (1, 1, 1, 1, 1, 2)
{6, 7} (1, 1, 1, 1, 1, 1, 1)

{a, b} ∈ E(T 3
6 ) Ψ3

6(a, b) ∈ mi36
{1, 2} (1, 3, 2)
{1, 3} (2, 3, 1)
{1, 5} (3, 1, 2)
{1, 6} (3, 2, 1)
{2, 3} (1, 1, 3, 1)
{2, 4} (2, 1, 3)
{2, 6} (3, 1, 1, 1)
{3, 4} (1, 1, 1, 3)
{3, 5} (2, 1, 1, 2)
{4, 5} (1, 1, 1, 1, 2)
{4, 6} (2, 1, 1, 1, 1)
{5, 6} (1, 1, 1, 1, 1, 1)

Table 1. Two examples of the bijection Ψp
n for (n, p) = (7, 2) and (6, 3).

Remark 2.5. By doing the same investigation for jipn, we obtain that the following map is
a bijection from E(T p

n ) to jipn:

Ψ̃p
n(a, b) = (1, . . . , 1︸ ︷︷ ︸

a−1

, (b− a) mod p+ 1, p, . . . , p︸ ︷︷ ︸
⌊ b−a

p ⌋

, 1, . . . , 1︸ ︷︷ ︸
n−b

).

Using Remark 2.2, we can check that it takes indeed its values in jipn. To define its reciprocal,
for x ∈ Fp

n, let kx (resp. mx) be maximal such that x starts (resp. ends) with kx (resp. mx)
consecutive 1s. The reciprocal of Ψ̃p

n is then defined by

Φ̃p
n(x) = {kx + 1, n−mx}.

For x ∈ jipn, n− kx −mx − 1 ̸≡ 0 mod p, hence Φ̃p
n takes its values in E(T p

n ).
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3. Some statistics on mipn

The bijection Ψp
n from Section 2 allows us to express statistics on Ψp

n(a, b) easily in terms
of a and b. It therefore gives a method to compute the average value of statistics. In this
section we give an illustration of this method on three statistics: the number of parts, the
first part and the number of weak records. We start with a lemma computing some sums
over E(T p

n ).

Lemma 3.1. For a given p ≥ 2 we have as n → ∞∑
1≤a<b≤n
a̸≡b mod p

a =

(
1− 1

p

)
n3

6
+O(n2),

∑
1≤a<b≤n
a̸≡b mod p

b =

(
1− 1

p

)
n3

3
+O(n2).

Proof. First, let us compute the sum without the congruence constraint.

s(n) :=
∑

1≤a<b≤n

a =
n−1∑
a=1

n∑
b=a+1

a =
n−1∑
a=1

(n− a)a

=
n2(n− 1)

2
− n(n− 1)(2n− 1)

6
=

n(n− 1)(n+ 1)

6
.

Similarly,

S(n) :=
∑

1≤a<b≤n

b =
n∑

b=2

b−1∑
a=1

b =
n∑

b=2

b(b− 1)

=
n(n+ 1)(2n+ 1)

6
− n(n+ 1)

2
=

n(n− 1)(n+ 1)

3
.

Now if 0 ≤ i ≤ p− 1, let δi = 1 if i > n mod p, and δi = 0 otherwise. Then

∑
1≤a<b≤n

a≡b≡i mod p

a =

⌊n/p⌋−δi−1∑
a=0

⌊n/p⌋−δi∑
b=a+1

(pa+ i) = p · s(⌊n/p⌋) +O(n2) =
n3

6p2
+O(n2).

We deduce∑
1≤a<b≤n
a̸≡b mod p

a = s(n)−
p−1∑
i=0

∑
1≤a<b≤n

a≡b≡i mod p

a =
n3

6
+O(n2)− p

(
n3

6p2
+O(n2)

)
=

(
1− 1

p

)
n3

6
+O(n2).

Similarly,

∑
1≤a<b≤n

a≡b≡i mod p

b =

⌊n/p⌋−δi∑
b=1

b−1∑
a=0

(pb+ i) = p · S(⌊n/p⌋) +O(n2) =
n3

3p2
+O(n2),
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and so∑
1≤a<b≤n
a̸≡b mod p

b = S(n)−
p−1∑
i=0

∑
1≤a<b≤n

a≡b≡i mod p

b =
n3

3
+O(n2)− p

(
n3

3p2
+O(n2)

)
=

(
1− 1

p

)
n3

3
+O(n2).

□

3.1. The number of parts. For a composition x = (x1, . . . , xm) ∈ Fp
n we denote by

parts(x) its number of parts m.

Proposition 3.2. The average number of parts of a composition in mipn satisfies as n → ∞
1

|mipn|
∑
x∈mipn

parts(x) ∼
(
1 +

2

p

)
n

3
.

Proof. From Eq. (2.3), for every a ̸≡ b mod p we have

parts(Ψp
n(a, b)) =

⌊
b− a

p

⌋
+ 1 + a− 1 +

⌊
n− b+ 1

p

⌋
+ 1b≡n+1 mod p

=
n

p
+

(
1− 1

p

)
a+O(1).

The total number of parts in all compositions of mipn is then∑
x∈mipn

parts(x) =
∑

1≤a<b≤n
a̸≡b mod p

parts(Ψp
n(a, b)) =

∑
1≤a<b≤n
a̸≡b mod p

[
n

p
+

(
1− 1

p

)
a

]
+O(n2)

= ap(n) ·
n

p
+

(
1− 1

p

)2
n3

6
+O(n2),

by Lemma 3.1. From Eq. (1.1), ap(n) =
(
1− 1

p

)
n2

2
+O(1), so we deduce

1

|mipn|
∑
x∈mipn

parts(x) =
1

ap(n)

(
ap(n) ·

n

p
+

(
1− 1

p

)2
n3

6
+O(n2)

)

=
n

p
+

(
1− 1

p

)
n

3
+O(1)

=

(
1 +

2

p

)
n

3
+O(1).

□

3.2. The first part. For a composition x = (x1, . . . , xm) ∈ Fp
n we denote by first(x) the

value of its first part x1.

Proposition 3.3. The average value of the statistic first on the compositions of mipn sat-
isfies as n → ∞

1

|mipn|
∑
x∈mipn

first(x) = p

(
1− p

n
+

p(p+ 1)

3n2
+O

(
1

n3

))
.
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Proof. From Eq. (2.3), for every a ̸≡ b mod p we have

first(Ψp
n(a, b)) =

{
p if b− a ≥ p

(b− a) mod p otherwise.

The sum of first(x) over all compositions x ∈ mipn is then∑
x∈mipn

first(x) =
∑

1≤a<b≤n
a̸≡b mod p

first(Ψp
n(a, b)) =

∑
1≤a<b≤n
a̸≡b mod p
b−a≥p

p+
∑

1≤a<b≤n
a̸≡b mod p
b−a<p

(b− a) mod p.

Let us first compute the following sum when n ≥ p− 1.∑
1≤a<b≤n
a̸≡b mod p
b−a<p

1 =

n−p+1∑
a=1

a+p−1∑
b=a+1

1 +
n−1∑

a=n−p+2

n∑
b=a+1

1 =

n−p+1∑
a=1

(p− 1) +
n−1∑

a=n−p+2

(n− a)(3.1)

= (n− p+ 1)(p− 1) +

p−2∑
a=1

a = (n− p+ 1)(p− 1) +
(p− 2)(p− 1)

2
.(3.2)

We deduce∑
1≤a<b≤n
a̸≡b mod p
b−a≥p

p =
∑

1≤a<b≤n
a̸≡b mod p

p−
∑

1≤a<b≤n
a̸≡b mod p
b−a<p

p = p

(
ap(n)− (n− p+ 1)(p− 1)− (p− 2)(p− 1)

2

)
.

Now observe that if 1 ≤ a < b ≤ n with b − a < p, then b − a = (b − a) mod p. Then for
n ≥ p− 1 we have∑
1≤a<b≤n
a̸≡b mod p
b−a<p

(b− a) mod p =
∑

1≤a<b≤n
a̸≡b mod p
b−a<p

(b− a) =

n−p+1∑
a=1

a+p−1∑
b=a+1

(b− a) +
n−1∑

a=n−p+2

n∑
b=a+1

(b− a)

=

n−p+1∑
a=1

[
(a+ p)(a+ p− 1)− a(a+ 1)

2
− (p− 1)a

]
+

n−1∑
a=n−p+2

[
n(n+ 1)− a(a+ 1)

2
− (n− a)a

]

=

n−p+1∑
a=1

p(p− 1)

2
+

n−1∑
a=n−p+2

[
(n− a)2 + n− a

2

]
=

p(p− 1)

2

(
n− p+ 1 +

p− 2

3

)
.

Finally,∑
x∈mipn

first(x) = p

(
ap(n)− (n− p+ 1)(p− 1)− (p− 2)(p− 1)

2

)
+

p(p− 1)

2

(
n− p+ 1 +

p− 2

3

)

= p

(
ap(n)− n · p− 1

2
+

(p− 1)(p+ 1)

6

)
.
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Using that ap(n) =
(p−1)n2

2p
+O(1), we deduce

1

|mipn|
∑
x∈mipn

first(x) = p

(
1− p

n
+

p(p+ 1)

3n2
+O

(
1

n3

))
.

□

3.3. The number of weak records. For x = (x1, . . . , xm) ∈ Fp
n, a weak record is a position

1 ≤ j ≤ m such that xi ≤ xj for each 1 ≤ i ≤ j. We denote by wrec(x) the number of weak
records of x.

Proposition 3.4. The average number of weak records of a composition in mipn satisfies as
n → ∞

1

|mipn|
∑
x∈mipn

wrec(x) ∼ 2n

3p
.

Proof. From Eq. (2.3), we have that

wrec(Ψp
n(a, b)) =

⌊
b− a

p

⌋
+

⌊
n− b+ 1

p

⌋
when b−a ≥ p. We do not compute it in details for b−a < p as we shall see the contribution
of those pairs {a, b} to the total number of weak records in mipn is negligible. Indeed, we saw
in Eq. (3.2) that the number of those pairs is O(n), and since wrec(Ψp

n(a, b)) ≤ n for every
pair {a, b} we have that ∑

1≤a<b≤n
a̸≡b mod p
b−a<p

wrec(Ψp
n(a, b)) = O(n2).

Then, ∑
1≤a<b≤n
a̸≡b mod p

wrec(Ψp
n(a, b)) =

∑
1≤a<b≤n
a̸≡b mod p
b−a≥p

(⌊
b− a

p

⌋
+

⌊
n− b+ 1

p

⌋)
+O(n2)

=
1

p

∑
1≤a<b≤n
a̸≡b mod p
b−a≥p

(n− a) +O(n2).

Using Eq. (3.2) and Lemma 3.1, we have∑
1≤a<b≤n
a̸≡b mod p
b−a≥p

a =
∑

1≤a<b≤n
a̸≡b mod p

a−O(n2) =
nap(n)

3
−O(n2).

Finally, ∑
1≤a<b≤n
a̸≡b mod p

wrec(Ψp
n(a, b)) =

1

p

(
nap(n)−

nap(n)

3

)
+O(n2) =

2nap(n)

3p
+O(n2),

which concludes. □
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