Laboratoire d'Informatique de Bourgogne & Universidad Nacional de Colombia

Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, José L. Ramìrez

Table of content

1 Definitions

2 Unrestricted zigzag knight's paths

- Generating function
- Bijection with pairs of compositions
- Step number

3 Bounded zigzag knight's paths

Grand zigzag knight's paths staying above a horizontal line

Grand zigzag knight's paths staying in a tube

Knight's moves

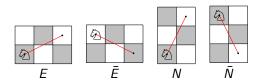


Figure – The four possible right-moves of a knight on a chessboard.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Knight's paths

Definition

A grand knight's path is

- \bullet a lattice path in $\mathbb{Z}^2,$
- starting at the origin,
- consisting of steps N = (1, 2), $\overline{N} = (1, -2)$, E = (2, 1), and $\overline{E} = (2, -1)$.

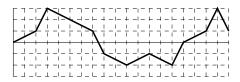


Figure – The grand knight's path $EN\bar{E}\bar{E}\bar{N}\bar{E}E\bar{E}NEN\bar{N}$.

Definition

A grand zigzag knight's path is

- a grand knight's path,
- $\ensuremath{\,\bullet\,}$ such that two consecutive steps cannot be in the same direction.

Equivalently, two consecutive steps cannot be NN, NE, $\overline{N}\overline{N}$, $\overline{N}\overline{E}$, EE, EN, $\overline{E}\overline{E}$, $\overline{E}\overline{N}$.

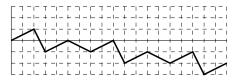


Figure – The grand zigzag knight's path ENEEENEE.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへの

The number of grand zigzag knight's paths ending at (n, k)

Let $Z_{n,k}$ be the set of grand zigzag knight's paths of size *n* ending at height *k*, and $Z_{n,k}^+$ (resp. $Z_{n,k}^-$) be the subset of $Z_{n,k}$ of paths starting with *E* or *N* (resp. \overline{E} or \overline{N}).

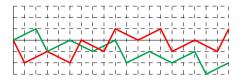


Figure – A path in $\mathbb{Z}_{19,-2}^+$, and a path in $\mathbb{Z}_{19,1}^-$.

(日) (四) (三) (三) (三)

Generating functions

Let

$$F(u,z) = \sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} |\mathcal{Z}_{n,k}^+| u^k z^n,$$

$$G(u,z) = \sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} |\mathcal{Z}_{n,k}^-| u^k z^n$$

$$H(u,z)=F(u,z)+G(u,z).$$

Functional equations

Theorem

 ${\it F}$ and ${\it G}$ satisfy the following equations

$$F(u,z) = \left(1 + \frac{z^3 u}{1-z}\right) f_0(z) + z u(z+u) (G(u,z)+1),$$

$$G(u,z) = -\left(\frac{z}{u^2} + \frac{z^2}{u} + \frac{z^3}{u(1-z)}\right) f_0(z) + \left(\frac{z}{u^2} + \frac{z^2}{u}\right) F(u,z),$$

with $f_0(z) = \sum_{n=0}^{+\infty} |\mathcal{Z}_{n,0}^+| z^n$.

Kernel method

The previous equations can be restated as follows :

$$K(u,z)F(u,z) = a(u,z)f_0(z) + b(u,z),$$

$$K(u,z)G(u,z) = c(u,z)f_0(z) + d(u,z),$$

with K(u, z) a polynomial that we call the **kernel** of the equation. The unknowns are in blue.

Kernel method

The previous equations can be restated as follows :

$$K(u,z)F(u,z) = a(u,z)f_0(z) + b(u,z),$$

$$K(u,z)G(u,z) = c(u,z)f_0(z) + d(u,z),$$

with K(u, z) a polynomial that we call the **kernel** of the equation. The unknowns are in blue. Let r(z) be a root of the kernel : K(r(z), z) = 0. Thus,

$$f_0(z) = -\frac{a(r(z),z)}{b(r(z),z)}.$$

The generating function

Theorem

$$H(u,z) = -\frac{u^2 + u(r(z) + z + z^2) + z^2 s(z)(2f_0(z) - 1)}{z^2(u - s(z))},$$

with

$$s(z) = r(z)^{-1} = \frac{1 - z^4 - z^2 + \sqrt{z^8 - 2z^6 - z^4 - 2z^2 + 1}}{2z^3},$$

and

$$f_0(z) = rac{r(z)(z-1)}{z^3(r(z)z^2+z-1)}.$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Example

k n	0	1	2	3	4	5	6	7	8	9	10	11	12
0	1	0	2	0	4	2	10	6	22	16	52	44	126
1	0	0	1	2	2	4	4	10	11	26	28	64	71
2	0	1	0	1	0	3	2	7	6	16	18	40	52
3	0	0	0	0	1	0	2	0	6	2	16	8	41
4	0	0	0	0	0	0	0	1	0	3	0	10	2

Table – The number of grand zigzag knight's paths from (0,0) to (n, k) for $(n, k) \in [\![0, 15]\!] \times [\![0, 4]\!]$.

Example

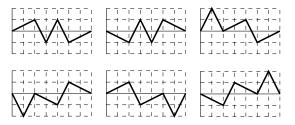


Figure – The 6 grand zigzag knight's paths of size 7 ending on the x-axis.

Average final height

Theorem

An asymptotic approximation for the expected final height of a grand zigzag knight's path of size n ending on or above the x-axis is

$$\frac{(1+\sqrt{5})\sqrt{7\sqrt{5}-15}}{2\sqrt{5}}\sqrt{\frac{n}{\pi}}$$

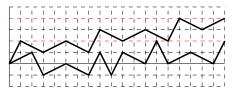


Figure – The final height of two grand zigzag knight's paths of size 19.

Pairs of compositions

Definition

Let $C_{n,m}$ be the set of ordered pairs (X, Y) such that

- X is a composition of n,
- Y is a composition of m,
- all parts are equal to 1 or 2,
- X and Y have the same number of parts.

Example:

Let X = (1, 2, 2, 1, 1) and Y = (2, 2, 1, 2, 1). Then $(X, Y) \in \mathcal{C}_{7,8}$.

Cardinal of $\overline{C_{n,m}}$

Lemma

If $n \leq m$, then

$$|\mathcal{C}_{m,n}| = |\mathcal{C}_{n,m}| = \sum_{i=0}^{n-\lfloor m/2 \rfloor} {n-i \choose i} {n-i \choose m-n+i}.$$

Bijection with pairs of compositions

Proposition

If $n, k \in \mathbb{N}$ with $n = k \mod 2$, then there is a bijection ϕ between $\mathcal{C}_{\frac{n-k}{2},\frac{n+k}{2}}$ and $\mathcal{Z}_{n,k}^+$, and a bijection ψ between $\mathcal{C}_{\frac{n-k}{2},\frac{n+k}{2}}$ and $\mathcal{Z}_{n,k}^-$.

Proof. Let $X = (x_1, \ldots, x_i)$ and $Y = (y_1, \ldots, y_i)$ such that $(X, Y) \in \mathcal{C}_{\frac{n-k}{2}, \frac{n+k}{2}}$. We define $\phi(X, Y)$ as the path $\phi(x_1, y_1) \cdots \phi(x_k, y_k)$, where

$$\phi(x_j, y_j) = \begin{cases} E\bar{E}, & \text{if } x_j = y_j = 2, \\ N\bar{N}, & \text{if } x_j = y_j = 1, \\ N\bar{E}, & \text{if } x_j = 1 \text{ and } y_j = 2, \\ E\bar{N}, & \text{if } x_j = 2 \text{ and } y_j = 1. \end{cases}$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Grand zigzag knight's paths Unrestricted zigzag knight's paths

└─ Bijection with pairs of compositions

Example

X = (2, 2, 2, 1, 1, 1, 1, 2, 1)Y = (1, 2, 1, 2, 2, 1, 2, 1, 2) $\phi(X, Y) = E\bar{N}E\bar{E}E\bar{N}N\bar{E}N\bar{E}N\bar{N}N\bar{E}E\bar{N}N\bar{E}$

Example

$$X = (2, 2, 2, 1, 1, 1, 1, 2, 1)$$
$$Y = (1, 2, 1, 2, 2, 1, 2, 1, 2)$$
$$\phi(X, Y) = E\bar{N} E\bar{E} E\bar{N} N\bar{E} N\bar{E} N\bar{N} N\bar{E} E\bar{N} N\bar{E}$$

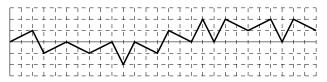


Figure – The path $\phi(X, Y)$ is a grand zigzag knight's path of size 27 and final height 1.

Grand zigzag knight's paths with *i* steps

For $n/2 \leq i \leq n$, let $\mathcal{Z}_{n,k}^i$ be the subset of $\mathcal{Z}_{n,k}$ consisting of paths with i steps. We define similarly $\mathcal{Z}_{n,k}^{i,+}$ and $\mathcal{Z}_{n,k}^{i,-}$.

Theorem For $n = k \mod 2$ and *i* even,

$$|\mathcal{Z}_{n,k}^{i,+}| = |\mathcal{Z}_{n,k}^{i,-}| = \binom{i/2}{\frac{n-i-k}{2}} \binom{i/2}{\frac{n-i+k}{2}}.$$

For $n \neq k \mod 2$ and $i \mod d$,

$$\begin{aligned} |\mathcal{Z}_{n,k}^{i,+}| &= \binom{\frac{i+1}{2}}{\frac{n-k-i}{2}+1} \binom{\frac{i-1}{2}}{\frac{n+k-i}{2}-1}, \\ |\mathcal{Z}_{n,k}^{i,-}| &= \binom{\frac{i-1}{2}}{\frac{n-k-i}{2}-1} \binom{\frac{i+1}{2}}{\frac{n+k-i}{2}+1}. \end{aligned}$$

Grand zigzag knight's paths Unrestricted zigzag knight's paths Step number

Closed form for the number of grand zigzag knight's paths

Corollary: If $n = k \mod 2$ with $(n, k) \neq (0, 0)$,

$$\mathcal{Z}_{n,k}| = 2 \sum_{\substack{i=0\\i \text{ even}}}^{n-k} \binom{i/2}{\frac{n-i-k}{2}} \binom{i/2}{\frac{n-i+k}{2}}.$$

If $n \neq k \mod 2$,

$$|\mathcal{Z}_{n,k}| = \sum_{\substack{i=0\\i \text{ odd}}}^{n-k+1} \left[\left(\frac{\frac{i+1}{2}}{\frac{n-k-i}{2}} + 1 \right) \left(\frac{\frac{i-1}{2}}{\frac{n+k-i}{2}} - 1 \right) + \left(\frac{\frac{i-1}{2}}{\frac{n-k-i}{2}} - 1 \right) \left(\frac{\frac{i+1}{2}}{\frac{n+k-i}{2}} + 1 \right) \right]$$

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへぐ

Grand zigzag knight's paths Unrestricted zigzag knight's paths Step number

Average number of steps

Theorem

An asymptotic approximation for the expected number of steps of a grand zigzag knight's path ending on the x-axis of size 2n is

$$\frac{1+\sqrt{5}}{2\sqrt{5}}(2n).$$

Bounded zigzag knight's paths

Grand zigzag knight's paths staying above a horizontal line

Grand zigzag knight's paths staying above a horizontal line

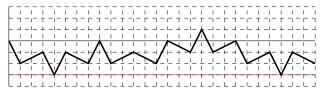


Figure – A grand zigzag knight's path staying above the line y = -3, with size 27, and ending at height -2.

Grand zigzag knight's paths └─ Bounded zigzag knight's paths └─ Grand zigzag knight's paths staving above a horizontal line

Bijection with pairs of compositions

When $n = k \mod 2$, there is a bijection between those paths ending at (n, k) and pairs of compositions $(X, Y) \in C_{\frac{n-k}{2}, \frac{n+k}{2}}$ such that for all j,

$$-m \leq \sum_{i=1}^{j} (y_i - x_i).$$

Generating functions

Theorem

The bivariate generating functions for the number of grand zigzag knight's paths staying above y = -m and ending with respectively an up-step and a down-step with respect to the size and the final height are

$$F_m(u,z) = -\frac{u(u^m(1+z^2u+zu^2)-r^{m-1}z(u+z)(z+rz^2+r^2))}{z^3(u-r)(u-s)},$$

$$G_m(u,z) = \frac{r^{m-1}(z+r^2+z^2r) - zu^{m-1}(1+zu)(1+z^2u+zu^2)}{z^3(u-r)(u-s)}$$

Bounded zigzag knight's paths

Grand zigzag knight's paths staying above a horizontal line

Probability that a path stays above a horizontal line

Proposition

For $m \ge 0$, the probability that a grand zigzag knight's path chosen uniformly at random among all grand zigzag knight's paths of size nstays above the line y = -m is asymptotically c_m/\sqrt{n} , with

$$c_m = \begin{cases} \frac{2+\sqrt{5}}{2}\sqrt{\frac{7\sqrt{5}-15}{\pi}}, & \text{if } m = 0, \\ \frac{4m+3-\sqrt{5}}{4(\sqrt{5}-2)}\sqrt{\frac{7\sqrt{5}-15}{\pi}}, & \text{if } m \ge 1. \end{cases}$$

Bounded zigzag knight's paths

Grand zigzag knight's paths staying in a tube

Grand zigzag knight's paths staying in a tube

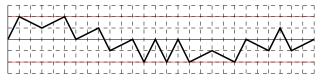


Figure – A grand zigzag knight's path staying between the lines y = -2 and y = +2, with size 27 and ending at height 0.

Grand zigzag knight's paths └─ Bounded zigzag knight's paths └─ Grand zigzag knight's paths staying in a tube

Bijection with pairs of compositions

When $n = k \mod 2$, there is a bijection between those paths ending at (n, k) and pairs of compositions $(X, Y) \in C_{\frac{n-k}{2}, \frac{n+k}{2}}$ such that for all j,

$$\left|\sum_{i=1}^{j}(y_i-x_i)\right|\leq m.$$

Generating function

Theorem

The generating functions $F_{m,m}(u, z)$ and $G_{m,m}(u, z)$ counting the number of grand zigzag knight's paths staying between y = -m and y = +m with respect to the size and the final height are given by :

$$F_{m,m}(u,z) = -\frac{(z(\mathbb{1}_{[m=1]} - f_{-m+1})u^{2m+1} - z^2(u+z)f_{-m+1} + u^m(1+z^2u+zu^2))u}{z^3(u-r)(u-s)},$$

$$G_{m,m}(u,z) = -\frac{z(1+zu)(\mathbb{1}_{[m=1]}-f_{-m+1})u^{2m+1}-uf_{-m+1}+u^{m}(1+zu)(1+z^{2}u+zu^{2})}{z^{2}(u-r)(u-s)}$$

Grand zigzag knight's paths Bounded zigzag knight's paths Grand zigzag knight's paths staving in a tube

A bijection in a small case

Proposition

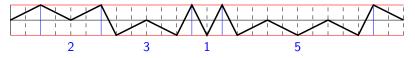
There is an explicit bijection Φ between grand zigzag knight's paths from (0,0) to (2*n*+4,0), starting with *E* and staying between y = -1 and y = 1 and compositions of *n* with parts in {2,1,3,5,7,9,11...}.

Proof. Indeed, such a path can be uniquely decomposed as $EP\bar{E}$ with **P** of size 2n and having its steps in $\{\bar{E}E\} \cup \bigcup_{k\geq 0} \{\bar{N}(E\bar{E})^k N\}$. If $\mathbf{P} = S_1 \cdots S_j$, then we set $\Phi(EP\bar{E}) = (\Phi(S_1), \dots, \Phi(S_j))$ with $\Phi(\bar{E}E) = 2$ and $\Phi(\bar{N}(E\bar{E})^k N) = 2k + 1$.

Bounded zigzag knight's paths

Grand zigzag knight's paths staying in a tube

Example



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Figure – The path $E\overline{E}E\overline{N}E\overline{E}N\overline{N}N\overline{N}E\overline{E}E\overline{E}N\overline{E}$ of size $26 = 2 \times 11 + 4$ is mapped to the composition (2, 3, 1, 5) of 11.

Bounded zigzag knight's paths

Grand zigzag knight's paths staying in a tube

Example

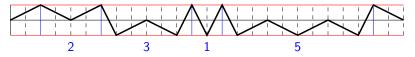


Figure – The path $E\overline{E}E\overline{N}E\overline{E}N\overline{N}N\overline{N}E\overline{E}E\overline{E}N\overline{E}$ of size $26 = 2 \times 11 + 4$ is mapped to the composition (2, 3, 1, 5) of 11.

Thank you for your attention !