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1. Notation

1.1. Half-factorial monoids. Let H be a monoid, that is a commutative cancellative semigroup
with identity element 1H ∈ H. The subgroup of units (invertible elements) of H is denoted by H×.
An element a ∈ H\H× is called an atom (or irreducible) if a has no non-trivial divisor, i.e. a = bc,
b, c ∈ H implies b ∈ H× or c ∈ H×. Let A(H) be the set of atoms of H. Let a ∈ H. If a = u1 . . . ul
with u1, . . . , ul ∈ A(H) we say that this is a factorization of length l of a. We define the set of
lengths of a ∈ H\H×:

LH(a) := {l ∈ N | a has a factorization of length l} ⊂ N.

If a ∈ H× we set LH(a) = {0}. We may also write L(a) when it is clear.

Definition 1.1. A monoid H is called half-factorial if |LH(a)| = 1 for every a ∈ H. Equivalently,
H is half-factorial if each element a ∈ H\H× has a factorization into atoms and all factorizations
of a have the same length.

1.2. Finite abelian groups. Let G be a finite abelian group. We will only use additive notation.
For a subset G0 ⊂ G, resp. elements e1, . . . , er ∈ G, we denote by ⟨G0⟩, resp. ⟨e1, . . . , er⟩, the
subgroup generated by G0, resp. e1, . . . , er. For g ∈ G we denote by ord(g) the order of g. For
n ∈ N, let Cn denote the cyclic group with n elements. For a prime p and an integer r ∈ N, we call
an elementary p-group of rank r any group isomorphic to Cr

p .
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1.3. Sequences and block monoid. Let G be a finite abelian group, and G0 ⊂ G. We denote
by F(G0) the free abelian monoid generated by G0, that is the set of commutative formal products

F(G0) = {
∏
g∈G0

gvg | vg ∈ N}.

An element S ∈ F(G0) is called a sequence in G0. A divisor of S in F(G0) is called a subsequence of

S. For a sequence S ∈ F(G0), there are unique integers vg(S), g ∈ G0 such that S =
∏

g∈G0
gvg(S).

We denote by

• |S| =
∑

g∈G0
vg(S) the length of S,

• σ(S) =
∑

g∈G0
vg(S)g its sum,

• k(S) =
∑

g∈G0

vg(S)
ord(g) its cross number.

Then, | · | : F(G0) → N, σ : F(G0) → G and k : F(G0) → Q≥0 are monoid homomorphisms. The
kernel of σ is called the block monoid over G0. We denote it by B(G0), and we denote the set of its
atoms by A(G0) for conciseness. The elements of A(G0) are simply the zero-sum sequences that do
not have a proper zero-sum subsequence. It is clear that every element in B(G0) has a factorization
into atoms.

Definition 1.2. Let G be a finite abelian group. A subset G0 ⊂ G is called a half-factorial set if
its block monoid B(G0) is a half-factorial monoid. We denote by µ(G) the maximum cardinality of
a half-factorial set in G:

µ(G) := max{|G0| | G0 ⊂ G is half-factorial}.

2. Results on half-factorial sets

2.1. General results. Let us first prove a very useful characterization of half-factorial sets, due
to L. Skula [6] and A. Zaks.

Theorem 2.1. A subset G0 ⊂ G is a half-factorial set if and only if k(A) = 1 for every A ∈ A(G0).

Proof. Suppose that k(A) = 1 for every A ∈ A(G0). Let S ∈ B(G0) and S =
∏n

i=1 Ui =
∏m

i=1 U
′
i

be two factorizations of S into atoms, Ui, U
′
i ∈ A(G0). Then

k(S) =
n∑

i=1

k(Ui)︸ ︷︷ ︸
=1

=
m∑
i=1

k(U ′
i)︸ ︷︷ ︸

=1

.

Thus n = m and G0 is half-factorial.
Conversely, assume G0 is half-factorial. Let A ∈ A(G0). We set G0 = {g1, . . . , gr}, m =∏r

i=1 ord(gi) and mj =
m

ord(gj)
vgj (A) for 1 ≤ j ≤ r. Note that the sequences g

ord(gi)
i , for 1 ≤ i ≤ r,

belong to A(G0). Then

Am =

 r∏
j=1

g
vgj (A)

j

m

=

r∏
j=1

(
g
ord(gj)
j

)mj

.

But A ∈ A(G0) and g
ord(gj)
j ∈ A(G0), so we have two factorizations of the same block into atoms.

Since G0 is half-factorial, we have m =
∑r

j=1mj , and dividing by m we get

r∑
j=1

vgj (A)

ord(gj)
= k(A) = 1.

□
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2.2. Elementary p-groups. A. Geroldinger and J. Kacorowski determined the exact value of µ(G)
when G is a elementary p-group with even rank [9]. Then, A. Plagne and W. Schmid determined
the exact value of µ(G) for any elementary p-group, as well as the structure of half-factorial sets of
maximal cardinality [7].

Theorem 2.2 ([7]). Let G be an elementary p-group of rank r. Then,

µ(G) =

{
2 + r−1

2 p if r is odd,
1 + r

2p if r is even.

We only state a weaker version of [7, Theorem 1.2].

Theorem 2.3 ([7]). Let G be an elementary p-group of rank r, and G0 ⊂ G a half-factorial set
with |G0| = µ(G). Then there exists a basis {f1, . . . , fr} ⊂ G such that

G0 =

⌊ r
2⌋⋃

i=1

{jf2i−1 + (p+ 1− j)f2i | j ∈ [1, p]} ∪ {fr, 0}.

3. The constant ψk(G) for elementary p-groups with even rank

3.1. Definition and useful results. Throughout this section, G denotes a finite abelian group
with |G| ≥ 3. For a subset G0 ⊂ G and a sequence S ∈ F(G\G0) we set

Ω(G0, S) = SF(G0) ∩ B(G) = {B ∈ B(G) | vg(B) = vg(S) for all g ∈ G\G0}.

Let also Gk = {B ∈ B(G0) | |L(B)| ≤ k} be the set of blocks that have at most k different lengths
of factorization. Now we are ready for the central definition of this section.

Definition 3.1. Let k ∈ N. Then

ψk(G) = max{|S| | G0 ⊂ G half-factorial with |G0| = µ(G) and

S ∈ F(G\G0) with ∅ ≠ Ω(G0, S) ⊂ Gk}.

Now let us prove a Lemma from [1] which will be very useful. First, we recall a classic result of
additive combinatorics.

Lemma 3.2. Let A,B ⊂ R be finite sets of real numbers. Let A+B = {a+ b | a ∈ A and b ∈ B}.
Then |A+B| ≥ |A|+ |B| − 1.

Proof. Suppose A = {a1, . . . , an} and B = {b1, . . . , bm} with a1 < a2 < . . . < an and b1 < b2 <
. . . < bm. Then we have the following inequalities:

a1 + b1 < a1 + b2 < . . . < a1 + bm < a2 + bm < . . . < an + bm

and all those numbers belong to A+B. There are |A|+|B|−1 of them, so |A+B| ≥ |A|+|B|−1. □

Lemma 3.3 ([1], Lemma 4.1). Let ∅ ≠ G0 ⊂ G and S, S′ ∈ F(G\G0). Let k, l ∈ N be such that
Ω(G0, S) ̸⊂ Gk and Ω(G0, S

′) ̸⊂ Gl. Then

Ω(G0, SS
′) ̸⊂ Gk+l.

Proof. Let B ∈ Ω(G0, S) with |L(B)| ≥ k + 1 and B′ ∈ Ω(G0, S
′) with |L(B′)| ≥ l + 1. Then

BB′ ∈ Ω(G0, SS
′), and L(B) + L(B′) ⊂ L(BB′), so by Lemma 3.2,

|L(BB′)| ≥ |L(B) + L(B′)| ≥ |L(B)|+ |L(B′)| − 1 ≥ k + l + 1.

Thus Ω(G0, SS
′) ̸⊂ Gk+l. □
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From now until the end of Section 3, we assume that G is an elementary p-group with even
rank 2r. By Theorem 2.3, all half-factorial subsets of G are equal up to automorphisms of the
group. Thus it suffices to investigate Ω(G0, ·) for one fixed half-factorial subset G0 ⊂ G of maximal
cardinality. The case p = 2 has been completely solved in [2], so we assume p ≥ 3. We fix a basis
{e1, e′1, . . . , er, e′r} of G and a half-factorial set

G0 = {0} ∪
r⋃

i=1

{jei + e′i | j ∈ [0, p− 1]}

such that |G0| = µ(G). Note that we made the following change of basis in comparison to Theorem
2.3: e′i = f2i and ei = f2i−1 − f2i for 1 ≤ i ≤ r. For 1 ≤ i ≤ r, let πi denote the projection on ⟨ei⟩,
π′i the projection on ⟨e′i⟩ and Gi

0 = (πi + π′i)(G0) = {0} ∪ {jei + e′i | j ∈ [0, p− 1]}. Let us conclude
this subsection with a crucial result [2, Proposition 4.4] for finding upper bounds on ψk(G).

Proposition 3.4. Let p ≥ 3. Then Ω(G0, S) ̸⊂ G1 for each of the following choices of S ∈
F(G\G0).

(1) Let S = g with g ∈ G\(⟨e1, . . . , er⟩+
∑r

i=1G
i
0).

(2) Let S ∈ F((⟨e1, . . . , er⟩ +
∑r

i=1G
i
0)\
∑r

i=1G
i
0) such that (πm + π′m)(S) ∈ A(⟨em⟩\{0}) for

some m ∈ [1, r].
(3) Let S = gh with g, h ∈ ⟨e1, . . . , er⟩ +

∑r
i=1G

i
0 such that π′j(g) = π′j(h) = e′j and π′m(g) =

π′m(h) = e′m for distinct j,m ∈ [1, r].
(4) Let S =

∏s
j=1 gj ∈ F(⟨e1, . . . , er⟩+

∑r
i=1G

i
0) with s ≥ 3 and Ij = {i ∈ [1, r] | π′i(gj) = e′i}

such that for every J ⊂ [1, r] with |J | ≥ 2

|
⋂
j∈J

Ij | =
{

1 if J = {j, j′} and j − j′ = ±1 mod s
0 otherwise.

3.2. Alternative proof of Theorem 4.5 using hypergraphs.

Proposition 3.5 ([3], 2.1 and [4], §2, Proposition 5). A hypergraph H = (Ei)i∈I is cycle-free if
and only if for every non-empty subset J ⊂ I, the following inequality holds:

|J | >
∑
i∈J

|Ei| − |
⋃
i∈J

Ei|.

Proof. Suppose H has a cycle v1E1v2E2 . . . vsEs. Then {v1, . . . , vs} ⊂
⋃

i∈[1,s]Ei and each vi is

counted at least twice in the sum
∑

i∈[1,s] |Ei|. Thus∑
i∈[1,s]

|Ei| − |
s⋃

i=1

Ei| ≥ s.

Suppose H is cycle-free. Then any sub-hypergraph (
⋃

i∈J Ei, (Ei)i∈J) with J ⊂ I is cycle-free too.
Consider G(J) the bipartite graph with vertex set

⋃
i∈J Ei ∪ {Ei | i ∈ J} and such that {v,Ei} is

an edge if and only if v ∈ Ei, with v ∈
⋃

i∈J Ei, i ∈ J . Then (
⋃

i∈J Ei, (Ei)i∈J) is cycle-free if and
only if G(J) is a forest. But G(J) has |

⋃
i∈J Ei| + |J | vertices,

∑
i∈J |Ei| edges, and since it is a

forest, we have ∑
i∈J

|Ei| = |J |+ |
⋃
i∈J

Ei| − p

with p ≥ 1 its number of connected components. In the end, we have

|J | >
∑
i∈J

|Ei| − |
⋃
i∈J

Ei|.

□
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Corollary 3.6. Let H be a hypergraph on r vertices. If H has at least r edges, then H has a cycle.

Proof. Suppose H is cycle-free and consider J ⊂ I such that |J | = r. By Proposition 3.5 we have

r >
∑
i∈J

|Ei|︸︷︷︸
≥2

− |
⋃
i∈J

Ei|︸ ︷︷ ︸
≤r

≥ 2r − r = r

which is a contradiction. □

Theorem 3.7 ([2], Theorem 4.5). Let p ≥ 3, k ∈ N and G be an elementary p-group with even
rank 2r. Then

ψk(G) ≤ rp− 1 + (k − 1)max{p, r}.

Proof. We proceed as in [2] for the first 3 steps, and we give an argument using hypergraphs for Step

4. Let us recall some notation. At this point we have S =
∏l

i=1 gi ∈ F(⟨e1, . . . , er⟩+
∑r

i=1G
i
0) with

l ≥ rp, S′|S the subsequence consisting of the elements g|S such that there exists some jg ∈ [1, r]
such that (πjg + π′jg)(g) ∈ ⟨ejg⟩\{0}. We set T = S′−1S and assume |T | ≥ r. Furthermore,

for g|T let Ig = {i ∈ [1, r] | π′i(g) = e′i} and assume that gh|T ⇒ |Ig ∩ Ih| ≤ 1. Now consider
the hypergraph ([1, r], (Ig)g|T ). By our assumptions, this hypergraph has at least r edges so by
Corollary 3.6, it contains a cycle. Let gj , j = 1, . . . , s, be the indexes of the edges of this cycle.
Since gh|T ⇒ |Ig ∩ Ih| ≤ 1, we have also |Igi ∩ Igj | = 1 if i− j = ±1 mod s. However we may have
pairs i, j with i − j ̸= ±1 mod s such that |Igi ∩ Igj | = 1. This means that we can find a shorter
cycle in the hypergraph, by omitting the edges Igi+1 , . . . , Igj−1 . We can repeat this process until we
get a cycle with no proper shorter cycle, i.e. elements g′j , 1 ≤ j ≤ s′ such that r ≥ s ≥ s′ ≥ 3 and

for every J ⊂ [1, s′] with |J | ≥ 2,

|
⋂
j∈J

Ig′j | =
{

1 if J = {j, j′} and j − j′ = ±1 mod s′

0 otherwise

Note that we have indeed s′ ≥ 3 because the condition gh|T ⇒ |Ig ∩ Ih| ≤ 1 implies that a cycle
in the hypergraph cannot have length 2. Finally, we got exactly the condition we need to apply
Proposition 3.4 and conclude. □

3.3. Upper bound on ψk(G) depending on p(k). Let us introduce some constants from extremal
graph theory, that we will connect to our problem to get an upper bound on ψk(G).

Definition 3.8. Let k, n ∈ N.
(1) p(k) denotes the smallest integer l with the following property: every graph with v vertices,

for some v ∈ N, and v + l edges contains at least k edge disjoint cycles.
(2) p(k, n) denotes the smallest integer l with the following property: every graph with n vertices

and n+ l edges contains at least k edge disjoint cycles.

By definition, p(k, n) ≤ p(k) for any k, n ∈ N, and p(k, n) ≤ p(k + 1, n).

Definition 3.9. Let S =
∏l

j=1 gj ∈ F(G\G0) and for 1 ≤ j ≤ l, Ij = {i ∈ [1, r] | π′i(gj) = e′i}. The
associated hypergraph of S is the hypergraph with vertex set [1, r] and edges (Ij)1≤j≤l. An associated
graph of S is a graph ([1, r], (Ej)1≤j≤l) such that for all 1 ≤ j ≤ l, |Ej | = 2 and Ej ⊆ Ij.

Remark 3.10. To make this definition rigorous, we need the sequence S to be such that |Ij | ≥ 2
for all j. We will verify this condition each time we need to consider an associated graph.
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Definition 3.11. Let Γ = (V,E) be a hypergraph. We call a hypercycle of length s a set of edges
(Ej)j∈[1,s] ⊆ E such that for all J ⊂ [1, s] with |J | ≥ 2,

|
⋂
j∈J

Ej | =
{

1 if J = {j, j′} and j − j′ = ±1 mod s
0 otherwise.

Remark 3.12. This definition is not the same as the usual definition of a hypercycle we can find
in hypergraphs literature.

Lemma 3.13. Let T ∈ F(⟨e1, . . . , er⟩+
∑r

i=1G
i
0) such that

(1) |Ig| ≥ 2 for all g|T ;
(2) |T | ≥ r + p(k);
(3) if gh|T then |Ig ∩ Ih| ≤ 1.

Then the associated hypergraph of T has k edge disjoint hypercycles of length at least 3.

Proof. Note that (3) implies that any hypercycle in the associated hypergraph has a length of at
least 3. Now, (1) allows us to consider an associated graph ([1, r], (Eg)g|T ) of T , and (2) implies
that this graph has k edge disjoint cycles (in the usual sense). Those cycles induce k cycles in
the associated hypergraph (not necessarily hypercycles), and since there is a bijection between the
edges of the associated graph and the ones of the associated hypergraph, they are edge disjoint in
the hypergraph. Let Eg1 , . . . , Egs be the edges of such a cycle, so that |Egi ∩Egj | = 1 if i− j = ±1
mod s, and |Egi ∩Egj | = 0 otherwise. Since for all g|T , Eg ⊆ Ig, by (3) we have also |Igi ∩Igj | = 1 if
i− j = ±1 mod s. However we may have pairs i, j with i− j ̸= ±1 mod s such that |Igi ∩Igj | = 1.
This means that we can find a shorter cycle in the hypergraph, by omitting the edges Igi+1 , . . . , Igj−1 .
We can repeat this process until we get a cycle with no proper shorter cycle. By doing this for each
of the k edge disjoint cycles, we finally get k edge disjoint hypercycles.

□

Lemma 3.14. Let S =
∏s

i=1 gi ∈ F(⟨e1, . . . , er⟩ +
∑r

i=1G
i
0) such that the associated hypergraph

has k edge disjoint hypercycles of length at least 3. Then Ω(G0, S) ̸⊂ Gk.

Proof. We proceed by induction on k. The case k = 1 is exactly (4) in Proposition 3.4, we do
not recall it here. Let k ≥ 2 and let us assume the statement holds for all 1 ≤ k′ < k. Let
S =

∏l
i=1 gi ∈ F(⟨e1, . . . , er⟩ +

∑r
i=1G

i
0) such that the associated hypergraph has k edge disjoint

hypercycles. Let (Ic)c∈C be the edges of such a hypercycle. Then S = S′S′′ with S′ =
∏

c∈C gc and

S′′ = S′−1S. We have that the associated hypergraph of S′′ has k − 1 edge disjoint hypercycles
of length at least 3. By the induction hypothesis, Ω(G0, S

′) ̸⊂ G1 and Ω(G0, S
′′) ̸⊂ Gk−1, so by

Lemma 3.3, Ω(G0, S) ̸⊂ Gk. □

Theorem 3.15. ψk(G) ≤ (k − 1 + r)p− 1 + p(k).

Proof. We proceed by induction on k, as in [2, Theorem 4.5]. Note that the case k = 1 has already
been done in the proof of this theorem, we do not recall it here. Let k ≥ 2 and assume that
ψk−1(G) ≤ (k − 2 + r)p− 1 + p(k − 1). Let S ∈ F(G\G0) such that |S| = (k − 1 + r)p+ p(k). We
want to prove that Ω(G0, S) ̸⊂ Gk.
Step 1: Suppose there exists some g|S such that g ∈ G\(⟨e1, . . . , er⟩ +

∑r
i=1G

i
0). We know by

Proposition 3.4 that Ω(G0, g) ̸⊂ G1. Consider R = g−1S. Then |R| = (k − 1 + r)p + p(k) −
1 ≥ (k − 2 + r)p + p(k − 1) (because p ≥ 2 and p(k) is increasing). By induction hypothesis,
Ω(G0, R) ̸⊂ Gk−1, so by Lemma 3.3, we have Ω(G0, S) ̸⊂ Gk. Now we assume that for all g|S,
g ∈ ⟨e1, . . . , er⟩+

∑r
i=1G

i
0.

Step 2: Consider S′|S the subsequence consisting of the elements g|S such that there exists some

jg ∈ [1, r] with (πjg + π′jg)(g) ∈ ⟨ejg⟩\{0}. Suppose |S′| ≥ r(p − 1) + 1. Then by the pigeonhole
6



principle, there is some m ∈ [1, r] and a subsequence S′′|S′ such that |S′′| ≥ p and (πm+π′m)(S′′) ∈
F(⟨em⟩\{0}). Since ⟨em⟩ ∼= Cp and D(Cp) = p, there exists some A|S′′ such that (πm + π′m)(A) ∈
A(⟨em⟩\{0}) (with |A| ≤ p). By Proposition 3.4 this implies that Ω(G0, A) ̸⊂ G1. We set R = A−1S,
so |R| ≥ |S| − p = (k − 2 + r)p− 1 + p(k) ≥ (k − 2 + r)p− 1 + p(k − 1). By induction hypothesis
we get Ω(G0, R) ̸⊂ Gk−1 and by Lemma 3.3, Ω(G0, S) ̸⊂ Gk. Now we assume that |S′| ≤ r(p− 1).
Step 3: Let T = S′−1S and for each g|T , Ig := {i ∈ [1, r] | π′i(g) = e′i}. By definition of T , every g|T
can be written g =

∑r
i=1 aiei + bie

′
i with ai ∈ [0, p− 1], bi ∈ {0, 1} and bi = 0 ⇒ ai = 0. It follows

that |Ig| ≥ 2 for all g|T . Suppose there exist g, h|T such that |Ig ∩ Ih| ≥ 2. By Proposition 3.4,
Ω(G0, gh) ̸⊂ G1. We set R = (gh)−1S, so that |R| = (k−1+r)p+p(k)−2 ≥ (k−2+r)p+p(k−1). We
can apply the induction hypothesis on R, and again by Lemma 3.3 we conclude that Ω(G0, S) ̸⊂ Gk.
Thus we assume if gh|T then |Ig ∩ Ih| ≤ 1.
Step 4: At this point, T satisfies the hypotheses of Lemma 3.13. Indeed, (1) and (3) are clear and

(2) holds because |T | = |S| − |S′| ≥ (k − 1 + r)p + p(k) − r(p − 1) ≥ r + p(k). Thus Lemma 3.13
and Lemma 3.14 provide the result. □

Remark 3.16. This proof does not give the best bound possible, which is investigated in the next
section. However, with the lower bound given by [2, Theorem 4.5], we get

(k − 1 + r)p− 1 ≤ ψk(G) ≤ (k − 1 + r)p− 1 + p(k).

Hence the gap between those bounds depends only on k, and not on G.

3.4. Improving this bound. The bound in Theorem 3.15 is not optimal. Indeed it suffices to
see that the last inequality in Step 4 of the proof is not tight. In this section we investigate the
best bound we can get with our argument, and deduce the exact value of ψk(G) in some cases.
First, note we can replace p(k) by p(k, r), which is smaller in some cases, since all our graphs have
r vertices.

Theorem 3.17.

ψk(G) ≤ rp− 1 + max
j=0,...,k−1

{pj + p(k − j, r)}.

Proof. Let φk(G) = maxj=0,...,k−1{pj + p(k − j, r)}. Note that if k ≥ 2, we have

(3.1) φk(G) = max{p(k, r), p+ φk−1(G)}.

In particular φk(G) is increasing. We proceed as in the proof of Theorem 3.15 by induction on k.
Once again, the case k = 1 has been done in [2, Theorem 4.5] (φ1(G) = 0), and we do not recall
it here. Let k ≥ 2 and assume that ψk−1(G) ≤ rp − 1 + φk−1(G). Let S ∈ F(G\G0) such that
|S| = rp+ φk(G). We want to prove that Ω(G0, S) ̸⊂ Gk.
Step 1: Suppose there exists some g|S such that g ∈ G\(⟨e1, . . . , er⟩ +

∑r
i=1G

i
0). We know by

Proposition 3.4 that Ω(G0, g) ̸⊂ G1. Consider R = g−1S. Then |R| = rp − 1 + φk(G) > rp − 1 +
φk−1(G), and by induction hypothesis, Ω(G0, R) ̸⊂ Gk−1. By Lemma 3.3, Ω(G0, S) ̸⊂ Gk.
Step 2: Consider S′|S as in the proof of Theorem 3.15 and suppose |S′| ≥ r(p − 1) + 1. As in
the previous proof and using Proposition 3.4, we can find an atom A|S such that |A| ≤ p and
Ω(G0, A) ̸⊂ G1. We set R = A−1S, and we have |R| ≥ |S| − p = rp+φk(G)− p > rp− 1+φk−1(G)
by (3.1). By induction hypothesis, and Lemma 3.3 we have Ω(G0, S) ̸⊂ Gk. Now we assume
|S′| ≤ r(p− 1), and that S′ has no zerosum subsequence.
Step 3: We define T and the sets Ig as in the previous proof. Likewise, |Ig| ≥ 2 for all g|T . Similarly,

if there exist g, h|T such that |Ig∩Ih| ≥ 2 we set R = (gh)−1S. Then |R| = |S|−2 > rp−1+φk−1(G)
by (3.1), since p > 3, and the induction hypothesis, together with Proposition 3.4 and Lemma 3.3
imply Ω(G0, S) ̸⊂ Gk. Now we assume that if gh|T then |Ig ∩ Ih| ≤ 1.
Step 4: At this point T clearly satisfies the hypotheses (1) and (3) of Lemma 3.13. And (2) holds
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because |T | = |S| − |S′| ≥ rp + φk(G) − r(p − 1) ≥ r + p(k, r) by (3.1). Then Lemma 3.13 and
Lemma 3.14 provide the result. □

Now we will apply this refined bound to compute the exact value of ψk(G) in some cases. Indeed,
we know p(k) for small values of k.

Theorem 3.18 ([5], Chap. III.3, Theorem 3.5). (i) p(1) = 0.
(ii) p(2) = 4.
(iii) p(3) = 10.
(iv) p(4) = 18.

Corollary 3.19. Let p ≥ 3, and G be an elementary p-group with even rank 2r. Then

(1) ψ1(G) = rp− 1.
(2) ψ2(G) = (r + 1)p− 1 if p ≥ 5, and ψ2(G) ∈ {3r + 2, 3r + 3} if p = 3.
(3) ψ3(G) = (r + 2)p− 1 if p ≥ 5, and ψ3(G) ∈ [3r + 5, 3r + 9] if p = 3.
(4) ψ4(G) = (r+3)p−1 if p ≥ 7, ψ4(G) ∈ [3r+8, 3r+17] if p = 3, and ψ4(G) ∈ [5r+14, 5r+17]

if p = 5.

Proof. We use the lower bound in [2, Theorem 4.5], and the upper bound of Theorem 3.17 that we
can compute thanks to the values of Corollary 3.18 (and obviously the fact that p(k, r) ≤ p(k)). □

3.5. ψ2(G) for 3-elementary groups with even rank. As we can see in Corollary 3.19, our
bounds are not good enough for small values of p. In this section we investigate the exact value of
ψ2(G) when p = 3. We already know that ψ2(G) ∈ {3r + 2, 3r + 3}. Throughout this section, G is
a 3-elementary group with rank 2r.

Lemma 3.20. If r ≤ 5, then ψ2(G) = 3r + 2.

Proof. For r ≤ 3, this is just the particular case of [2, Theorem 4.5]. For r ∈ {4, 5}, it suffices to note
that p(2, 4) = p(2, 5) = 3, and then Theorem 3.17 gives the desired upper bound ψ2(G) ≤ 3r+2. □

Lemma 3.21. ψ2(C
12
3 ) = 20.

Proof. We already know that ψ2(C
12
3 ) ≥ 20. For the upper bound, we proceed as in the proof

of Theorem 3.15. Let S ∈ F(G\G0) such that |S| = 21. We want to prove that Ω(G0, S) ̸⊂ G2.
Everything is similar until Step 4.
Step 4: At this point, T satisfies hypotheses (1) and (3) of Lemma 3.13. Since |S| = 21 and

|S′| ≤ 12, we know that |T | ≥ 9. If |T | ≥ 10 = 6 + p(2, 6), then we can conclude as in Theorem
3.15. Now we assume |T | = 9, and thus |S′| = 12.
Step 5: It is known [5, Chap III.3, Theorem 3.5] that the complete bipartite graph K3,3 is the only
graph with 6 vertices and 9 edges not containing two edge disjoint cycles. Thus any hypergraph
with 6 vertices and 9 edges not containing two edge disjoint hypercycles has K3,3 as an associated
graph. However, note that adding one vertex to any edge of K3,3 creates necessarily two edge
disjoint hypercycles. So K3,3 is also the only hypergraph without two edge disjoint hypercycles.
So we can assume the associated hypergraph of T is K3,3. Without loss of generality we assume
that the disjoint vertices sets of K3,3 are {1, 2, 3} and {4, 5, 6}. So there exist x1, . . . , x6 ∈ {0, 2}
and elements bi,j ∈ ⟨e1, . . . , e6⟩, for (i, j) ∈ {1, 2, 3} × {4, 5, 6} such that

S′ =

6∏
i=1

exi
i (2ei)

2−xi

and
T =

∏
(i,j)∈{1,2,3}×{4,5,6}

(bi,j + e′i + e′j).
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We will construct a sequence B ∈ Ω(G0, S) such that |L(B)| ≥ 3. We do it only in the particular
case where xi = 2 for all 1 ≤ i ≤ 6 and bi,j = 0 for all (i, j) ∈ {1, 2, 3} × {4, 5, 6}, but we can make
similar constructions for the general case. We set

B = S

6∏
i=1

(ei + e′i)e
′2
i .

Here are three factorizations of B in atoms, of length respectively 4, 5 and 7:

B =[(e′1 + e′4)(e
′
4 + e′2)(e

′
2 + e′5)(e

′
5 + e′1)e

2
1(e1 + e′1)e

2
2(e2 + e′2)e

2
4(e4 + e′4)e

2
5(e5 + e′5)]

[(e′1 + e′6)(e
′
2 + e′6)(e

′
3 + e′6)e

′2
1 e

′2
2 e

′2
3 ]

[(e′3 + e′4)(e
′
3 + e′5)e

2
3(e3 + e′3)e

′2
4 e

′2
5 ]

[e26(e6 + e′6)e
′2
6 ]

=[(e′1 + e′4)(e
′
4 + e′2)(e

′
2 + e′5)(e

′
5 + e′1)(e

′
3 + e′5)(e

′
3 + e′6)(e

′
2 + e′6)

e21(e1 + e′1)e
2
4(e4 + e′4)e

2
3(e3 + e′3)e

2
6(e6 + e′6)]

[e22(e2 + e′2)e
′2
2 ]

[e25(e5 + e′5)e
′2
5 ]

[(e′1 + e′6)e
′2
1 e

′2
6 ]

[(e′3 + e′4)e
′2
3 e

′2
4 ]

=T
6∏

i=1

[e2i (ei + e′i)e
′2
i ].

This proves that |L(B)| ≥ 3 and finishes the proof. □

Theorem 3.22. For all r ≥ 1, ψ2(C
2r
3 ) = 3r + 2.

Proof. We proceed as in Lemma 3.21, we already know that ψ2(C
2r
3 ) ≥ 3r + 2. Let S ∈ F(G\G0)

such that |S| = 3r + 3. We want to prove that Ω(G0, S) ̸⊂ G2.
Step 4: At this point, T satisfies hypotheses (1) and (3) of Lemma 3.13. Since |S| = 3r + 3 and

|S′| ≥ 2r, we know that |T | ≥ r + 3. If |T | ≥ r + 4 = r + p(2, r), then we can conclude as in
Theorem 3.15. Now we assume |T | = r + 3, and thus |S′| = 2r.
Step 5: By definition of S′, there exist x1, . . . , xr ∈ {0, 2} such that

S′ =
r∏

i=1

exi
i (2ei)

2−xi .

Again by [5, Chap III.3, Theorem 3.5], and a similar argument as in Lemma 3.21, subdivisions of
K3,3 are the only hypergraphs with r vertices and r + 3 edges not containing two edge disjoint
hypercycles. Thus we can assume that T is of the form

T =
∏

(i,j)∈{1,2,3}×{4,5,6}

mi,j∏
m=1

(bmi,j + e′lmi,j + e′
lm+1
i,j

)

where for all (i, j) ∈ {1, 2, 3} × {4, 5, 6}, mi,j ≥ 1, for all 2 ≤ m ≤ mi,j − 1, lm+1
i,j = lmi,j + 1 with

l1i,j = i and l
mi,j+1
i,j = j, bmi,j ∈ ⟨e1, . . . , er⟩ and

∑
(i,j)∈{1,2,3}×{4,5,6}mi,j = r + 3. Once again we will
9



do the construction only for xi = 2 for all i and bmi,j = 0 for all (i, j) and m. We set

B = S

6∏
i=1

e′2i

r∏
i=1

(ei + e′i).

Here are three factorizations of B into atoms of length respectively 4,5 and 7:

B =

[ ∏
(i,j)∈{1,2}×{4,5}

( mi,j∏
m=1

(e′lmi,j + e′
lm+1
i,j

)

mi,j∏
m=2

e2lmi,j (el
m
i,j

+ e′lmi,j )

) ∏
i∈{1,2,4,5}

e2i (ei + e′i)

]
[
e′21 e

′2
2 e

′2
3

∏
(i,j)∈{1,2,3}×{6}

mi,j∏
m=1

(e′lmi,j + e′
lm+1
i,j

)

mi,j∏
m=2

e2lmi,j (el
m
i,j

+ e′lmi,j )

]
[
e′24 e

′2
5 e

2
3(e3 + e′3)

∏
(i,j)∈{3}×{4,5}

mi,j∏
m=1

(e′lmi,j + e′
lm+1
i,j

)

mi,j∏
m=1

e2lmi,j (el
m
i,j

+ e′lmi,j )

]
[e26(e6 + e′6)e

′2
6 ]

=

[ ∏
(i,j)/∈{(1,6),(3,4)}

( mi,j∏
m=1

(e′lmi,j + e′
lm+1
i,j

)

mi,j∏
m=2

e2lmi,j (el
m
i,j

+ e′lmi,j )

) ∏
i∈{1,3,4,6}

e2i (ei + e′i)

]
[e22(e2 + e′2)e

′2
2 ]

[e25(e5 + e′5)e
′2
5 ][

e′1e
′
6

m1,6∏
m=1

(e′lm1,6 + e′
lm+1
1,6

)

m1,6∏
m=2

e2lm1,6(el
m
1,6

+ e′lm1,6)

]
[
e′3e

′
4

m3,4∏
m=1

(e′lm3,4 + e′
lm+1
3,4

)

m1,6∏
m=2

e2lm3,4(el
m
3,4

+ e′lm3,4)

]

=

[ ∏
(i,j)∈{1,2,3}×{4,5,6}

mi,j∏
m=1

(e′lmi,j + e′
lm+1
i,j

)

mi,j∏
m=2

e2lmi,j (el
m
i,j

+ e′lmi,j )

]
6∏

i=1

[e2i (ei + e′i)e
′2
i ].

This proves that |L(B)| ≥ 3 and finishes the proof. □

4. The constant ψk(G) for elementary p-groups with odd rank

Let p ≥ 3 andG be an elementary p-group with odd rank 2r+1. By Theorem 2.3, all half-factorial
sets of G are equal up to automorphisms of the group. Thus it suffices to investigate Ω(G0, ·) for
one fixed half-factorial subset G0 ⊂ G of maximal cardinality. We fix a basis {e1, e′1, . . . , er, e′r, f}
of G and a half-factorial set

G0 = {0, f} ∪
r⋃

i=1

{jei + e′i | j ∈ [0, p− 1]}

such that |G0| = µ(G). Note that we made the following change of basis in comparison with
Theorem 2.3: e′i = f2i and ei = f2i−1−f2i for 1 ≤ i ≤ r and f = f2r+1. For 1 ≤ i ≤ r, let πi denote
the projection on ⟨ei⟩, π′i the projection on ⟨e′i⟩ and Gi

0 = (πi + π′i)(G0) = {0} ∪ {jei + e′i | j ∈
[0, p− 1]}. Let also πf denote the projection on ⟨f⟩.
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Lemma 4.1. Let g = cf+
∑r

i=1 aiei+bie
′
i ∈ G\G0, with ai, bi, c ∈ [0, p−1] and A ∈ Ω(G0, g)∩A(G).

Then

k(A) =
1

p
+ |I1|

p− 1

p
+ |I2|+ |I3| −

cg
p

+mA +
p− c

p
δc ̸=0

where I1 = {i ∈ [1, r] | bi = 1}, I2 = {i ∈ [1, r] | bi = 0 and ai ̸= 0}, I3 = {i ∈ [1, r] | bi ̸∈ [0, 1]},
cg =

∑
i∈I3 bi and mA ∈ [0, |I3|]. Moreover,

|k(Ω(G0, g) ∩ A(G))| = 1 + |{i ∈ [1, r] | bi ̸∈ [0, 1]}|

Proof. Let B ∈ Ω(G0, g). Then B = g0vfw
∏r

i=1 Si with v, w ∈ N and Si ∈ F(Gi
0\{0}). Then

B ∈ A(G) if and only if v = 0, (cf)fw is an atom and (aiei + bie
′
i)Si is an atom for each 1 ≤ i ≤ r.

For each 1 ≤ i ≤ r, let gi = (πi + π′i)(g) = aiei + bie
′
i and Fi ∈ F(Gi

0) such that A = gfw
∏r

i=1 Fi.
Note that (cf)fw is an atom if and only if c ̸= 0 and c+w = p or c = w = 0. This last observation,
together with the same investigation as in [2, Lemma 4.2], leads to

k(A) =
1

ord(g)
+

r∑
i=1

k(Fi) +
w

ord(f)
=

1

p
+ |I1|

p− 1

p
+ |I2|+ |I3| −

cg
p

+ |I4|+
p− c

p
δc̸=0

with I4 = {i ∈ I3 | k(Fi) = 2p − bi}. Every quantity in this equality is fixed with g except
|I4| ∈ [0, |I3|] which can take at most 1+ |I3| different values. Thus |k(Ω(G0, g)∩A(G))| ≤ 1+ |I3|.
To prove the remaining part, it suffices to consider the same sequences as in [2, Lemma 4.2], and
the sequence fp−c if c ̸= 0, or the empty sequence if c = 0 for the last component. □

Proposition 4.2. Ω(G0, S) ̸⊂ G1 for each of the following choices of S ∈ F(G\G0):

(1) Let S = g with g ∈ G\(⟨e1, . . . , er, f⟩+
∑r

i=1G
i
0).

(2) Let S ∈ F((⟨e1, . . . , er, f⟩+
∑r

i=1G
i
0)\(⟨f⟩+

∑r
i=1G

i
0)) such that (πm+π′m)(S) ∈ A(⟨em⟩\{0})

for some m ∈ [1, r].
(3) Let S = gh with g, h ∈ ⟨e1, . . . , er, f⟩+

∑r
i=1G

i
0 such that π′j(g) = π′j(h) = e′j and π′m(g) =

π′m(h) = e′m for distinct j,m ∈ [1, r].
(4) Let S =

∏s
j=1 gj ∈ F(⟨e1, . . . , er, f⟩+

∑r
i=1G

i
0) with s ≥ 3 and Ij = {i ∈ [1, r] | π′i(gj) = e′i}

such that for every J ⊂ [1, r] with |J | ≥ 2

|
⋂
j∈J

Ij | =
{

1 if J = {j, j′} and j − j′ = ±1 mod s
0 otherwise.

Proof. 1. By Lemma 4.1, we have

|k(Ω(G0, g) ∩ A(G))| > 1

since {g = cf +
∑r

i=1 aiei + bie
′
i | bi ∈ [0, 1] for all i} = ⟨e1, . . . , er, f⟩+

∑r
i=1G

i
0.

2. Let S =
∏l

j=1 gj . We have that for each j ∈ [1, l] there exists some atom Aj ∈ Ω(G0, gj). By

Lemma 4.1 (we can investigate component by component), we get Aj = gjFjF
′
j with Fj ∈ F(Gm

0 ),

F ′
j ∈ F(G0\Gm

0 ) and |Fj | = p, since π′m(gj) = 0 and πm(gj) ̸= 0. We consider the block B =∏l
i=1Aj ∈ Ω(G0, S). Clearly l ∈ L(B). Since σ((πm + π′m)(S)) = 0 we have σ(

∏l
j=1 Fj) = 0. Since

Fj ∈ F(Gm
0 ) and Gm

0 is half-factorial, {l} = L(
∏l

j=1 Fj). Consequently, B = (
∏l

j=1 Fj)(
∏l

j=1 gjF
′
j)

and l + L(
∏l

j=1 gjF
′
j) ⊂ L(B). Clearly,

∏l
j=1 gjF

′
j ̸= 1 so L(

∏l
j=1 gjF

′
j) ̸= {0}, which implies

|L(B)| > 1.
3. As in [2, Proposition 4.4 (3)], it suffices to show that there exist atoms A,A′ ∈ Ω(G0, S)
with k(A) ̸= k(A′). The same constructions as in the proof work, the only difference is that
g1, h1 ∈ ⟨e3, e′3, . . . , er, e′r, f⟩.
4. Similarly, the same constructions as in [2, Proposition 4.4 (4)] work, by setting F ∈ F(G0)
zero-sumfree such that σ(F ) = −

∑r
m=s+1(πm + π′m)(σ(S))− πf (σ(S)). □
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To generalize Theorem 3.17, we need some more results, because it is unclear that |Ig| ≥ 2
for all g|T at the end of Step 3. Now we investigate elements g such that |Ig| ∈ {0, 1}, namely
g ∈ ⟨f⟩\{0} + G0\{f}. The following lemma is about elements g ∈ ⟨f⟩\{0}, namely those such
that |Ig| = 0.

Lemma 4.3. Let S ∈ F(⟨f⟩\{0, f}) be such that |S| ≥ (p− 1)(p− 2) + 1. Then Ω(G0, S) ̸⊂ G1.

Proof. By the pigeonhole principle, there exists some c ∈ [2, p − 1] such that (cf)p|S. Note that
{(cf)p, fp, fp−c(cf)} ⊂ A(G). Then, (fp−c(cf))p = (fp)p−c(cf)p ∈ Ω(G0, (cf)

p) are two factoriza-
tions of the same sequence, of length respectively p and p− c+1, which are different by hypothesis
on c. So Ω(G0, (cf)

p) ̸⊂ G1 and Ω(G0, S) ̸⊂ G1. □

Corollary 4.4. ψ1(Cp) ≤ (p− 1)(p− 2).

Corollary 4.5. ψk(Cp) ≤ k(p− 1)(p− 2) + k − 1

Proof. By induction on k, using Corollary 4.4 and [2, Lemma 3.2]. □

Remark 4.6. In [2, Corollary 4.9], the lower bound ψk(Cp) ≥ pk− 1+ p−1
2 if p ≥ 5 and ψk(C3) =

3k − 1 is given. There is a big gap between this lower bound and the upper bound of Corollary 4.5.

Now the sequences S with elements g such that |Ig| = 1 (and possibly |Ig| = 0 too) remain.

Lemma 4.7. Let S ∈ F((⟨f⟩+G0)\G0) be such that there exist c ∈ [2, p−1] and gj ∈ G0, 1 ≤ j ≤ p
with |{i ∈ [1, r] | ∃j, π′i(gj) = e′i}| = p such that

∏p
j=1(cf + gj)|S. Then Ω(G0, S) ̸⊂ G1.

Proof. The same proof as in Lemma 4.3 works:

p∏
j=1

[(cf + gj)g
p−1
j fp−c] = (fp)p−c

p∏
j=1

(cf + gj)g
p−1
j ∈ Ω

G0,

p∏
j=1

(cf + gj)


are two factorizations of the same sequence, of length respectively p and p−c+1, which are different
by hypothesis on c. Indeed,

∏p
j=1(cf + gj)g

p−1
j is an atom because all the gjs live on a different

component. □

Remark 4.8. The hypothesis is close to the condition |S| ≥ (p − 1)(p − 2) + 1, but we need the
gjs to live on different components, otherwise the length of the second factorization can increase.
In particular we need r ≥ p. Also, this result does not consider elements of the form f + g, with
g ∈ G0, which are new in comparison with Lemma 4.3.
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