
THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ECOLE DOCTORALE

DE MATHEMATIQUES ET INFORMATIQUE

SPÉCIALITÉ : INFORMATIQUE

Par Paul BASTIDE

Structures locales en combinatoire : reconstruction, saturation,
dispersion et universalité.

Sous la direction de : Marthe BONAMY
Co-directrice : Carla Groenland

Soutenue le 26 Juin 2025

Membres du jury :

Mme. Marthe Bonamy Chargée de Recherche Université de Bordeaux Directrice
Mme. Mireille Bousquet-Mélou Directrice de Recherche Université de Bordeaux Présidente
Mme. Carla Groenland Professeure assistante Technische Universiteit Delft Co-directrice
M. Gwenaël Joret Professeur Université Libre de Bruxelles Rapporteur
M. Imre Leader Professeur University of Cambridge Rapporteur
M. Frédéric Magniez Directeur de Recherche IRIF Examinateur
M. Pawel Pralat Professeur Toronto Metropolitan University Rapporteur
Mme. Dana Ron Professeure Tel Aviv University Examinatrice

Structures locales en combinatoire: reconstruction, saturation, dispersion et universalité.

Résumé : Cette thèse explore les structures locales en combinatoire. Elle se concentre sur l’influence de
sous-structures locales sur les propriétés globales des objets étudiés. Elle est divisée en quatre parties, chacune
examinant un problème different sous le prisme de leur sous-structures locales: la reconstruction via oracle de
distance, la saturation de posets, la dispersion pour les plongements, et les structures universelles.

Dans le chapitre consacré à la reconstruction par oracle de distance, on cherche à reconstruire un graphe
inconnu à l’aide d’informations locales. On suppose uniquement l’accès à un oracle fournissant la distance
d’un plus court chemin entre deux sommets choisis. Le problème est étudié pour différentes classes de graphes
et nous améliorons à la fois les meilleures bornes inférieures et/ou supérieures connues. En particulier, dans
ce manuscrit nous proposons un algorithme optimal pour la reconstruction des arbres et un algorithme
quasi-optimal pour la reconstruction des graphes sans longs cycles induits.

Dans un second temps, nous étudions la saturation de posets, introduite par Katona et Tarjan en 1981.
Ce concept généralise les travaux de Turán en théorie extrémale des graphes. Une famille est P -saturée si
elle est maximale et qu’elle évite toute sous-structure localement isomorphe à P (c’est-à-dire qu’elle évite P
comme sous-poset induit). Nous nous intéressons au "nombre de saturation" d’un poset P , défini comme
la taille minimale d’une famille P -saturée incluse dans l’hypercube de dimension n. Malgré des avancées
significatives sur ce problème ces dernières années, le nombre de saturation n’est connu exactement que pour
de petits posets, et il reste largement incompris. Dans cette thèse, nous explicitons, grâce à une généralisation
d’un lemme de Lehman et Ron, la valeure exacte du nombre de saturation de l’antichaîne de taille k. Nous
établissons également la première borne supérieure générale sur les valeurs possible du nombre de saturation
pour tout poset P .

Dans le chapitre sur les “plongements dispersés”, nous étudions la répartition des arbres couvrants dans
les graphes denses. À première vue, ce sujet peut sembler éloigné de l’axe globale de la thèse, les structures
locales, puisqu’une structure “couvrante” est par définition globale. Cependant, la technique clé que nous
développons dans ce manuscrit pour construire ces structures couvrantes repose sur une subdivision en
plusieurs sous-structures locales. Grâce à cette nouvelle méthode, nous obtenons une démonstration plus
simple et plus flexible de l’existence de "plongements dispersés" pour les arbres de degré borné. En particulier,
notre approche ne fait pas appel au lemme de régularité de Szemerédi.

Enfin, nous étudions les structures universelles. Étant donné une famille F d’objets combinatoires et un
entier n, un autre objet U est dit universel s’il contient chaque élément de F de taille n comme sous-structure
locale. On appelle une telle structure “fidèle” lorsque U appartient également à F. Dans ce chapitre, on
s’intéresse à la taille minimale des graphes universels "fidèles" pour les classes de graphes closes par mineurs
ainsi qu’à la taille de posets universels pour la famille contenant tous les posets.
Mots-clés : Reconstruction, Saturation, Structures locales, Dispersion, Universel

LaBRI
UMR 5800 Université, 33000 Bordeaux, France.

Local structure in combinatorics: reconstruction, saturation, spreadness and universality

Abstract: This thesis explores local structures in combinatorics, focusing on understanding how local
configurations influence the global properties and structures of combinatorial objects. This thesis is divided
into four parts, each investigating different problems related to local structures: distance reconstruction, poset
saturation, spread embedding, and universal structures.

In the chapter related to distance reconstruction, we seek to reconstruct an unknown graph using local
information. We only have access to an oracle providing the shortest path distances between pairs of vertices.
We study this problem for different classes of graphs, improving both the best-known lower bounds and
upper bounds in various cases. In particular, we provide an optimal algorithm for reconstructing trees and a
near-optimal algorithm for reconstructing graphs without long induced cycles.

Then, we study poset saturation, introduced by Katona and Tarjan in 1981. This concept extends
Turán’s seminal work in extremal graph theory. A P -saturated family is a maximal family that avoids any
substructure locally isomorphic to P (i.e., avoids P as an induced subposet). We study the saturation number
of a poset P , defined as the minimum size of a P -saturated family included in the hypercube of dimension
n. Despite substantial work on this problem in recent years, the saturation number is only known exactly
for small posets, and its possible behaviors are still largely unknown. In this thesis, we will show that an
extension of a lemma from Lehman and Ron allows us to compute exactly the saturation number of the
antichain of size k. We also prove the first general upper bound on the possible behavior of the saturation
number for any poset P .

In the chapter on spreadness, we study the distribution of spanning trees in dense graphs. It might seem,
at first, far from local, as a “spanning” structure is by definition global, but the key technique we developed to
construct these global spanning structures goes through the subdivision into multiple local substructures. Via
this novel method, we are able to give a simpler and more flexible proof of the existence of spread embeddings
for bounded-degree trees. In particular, our approach does not use Szemerédi’s Regularity Lemma.

Finally, we study universal structures. Given a family F of combinatorial objects and an integer n, another
object U is said to be universal if it contains every element of F of size n as a local substructure. We call
such a structure "faithful" when U is also part of F . In this chapter, we study the minimum size of faithful
universal graphs for minor-closed classes of graphs as well as the size of universal posets for the family of all
posets.
Keywords: Reconstruction, Saturation, Structures locales, Dispersion, Universel

LaBRI
UMR 5800 Université, 33000 Bordeaux, France.

Acknowledgements

J’ai toujours détesté les analyses de cas trop longues. Si je ne veux pas faire de ces remer-

ciements une liste de noms, c’est en partie pour cela, mais surtout car j’aimerais remercier

tous les gens qui se sentent concernés par les quelques mots ci-dessous. Si je n’écris aucun

nom, j’espère—peut-être naïvement—que personne ne se sentira oublié·e. Donc, pour tous

ceux qui lisent ces mots, merci.

Firstly, I would like to sincerely thank the members of my jury for having taken the time

to read my thesis and for their thoughtful questions, comments, and advice.

I would like to thank my advisors. Even though I know both of you are fluent French

speakers, I still feel somewhat uncomfortable speaking in French with one of you, so I will

continue in English. Even in French, it would be hard to express just how grateful I am

and how lucky I feel to have had you both as advisors. The literal meaning of encadrer in

French is "to frame", which poorly captures the role you’ve both played over the past three

years. You have always given me all the freedom I could have wished for, while being there

whenever I needed help and advice, always selflessly looking out for what was best for me.

Thank you for your guidance, your patience, and all your time.

J’aimerais aussi remercier les deux membres de mon comité de suivi de thèse ainsi que

mon « troisième » encadrant, qui m’ont suivi du début jusqu’à la fin de cette thèse et ont

souvent pris de leur temps pour me donner leurs conseils.

Thanks to every one of my co-authors. I met so many incredible people through re-

search—people I laughed with, people I climbed with, people I played “le jeu des robots”

with, people I hiked with. Surprisingly, sharing a two-person tent with two other people

for five days creates a strong bond. Thank you all for those moments.

Merci à mes grands frères et grandes sœurs de thèse, pour vos conseils et votre bienveil-

lance. Merci à monmentor d’escalade, c’est encore souvent vers toi que je me tourne lorsque

j’ai besoin d’un conseil. Merci à mes petits frères, parce qu’ils sont géniaux, tout simple-

ment. Merci aussi d’avoir trouvé des références en allemand pour résoudre mes problèmes

d’arithmétique.

During those three years, I had two homes: one in Bureau 267 and one in HB.04.250. I

moved back and forth quite a lot, and living this rootless life was sometimes challenging.

But each time I returned, you made it feel like I had never left.

Aux habitants du Bureau 267, merci. J’en connais une depuis six ans, bien avant le début

de notre thèse. J’aimerais te remercier, pour avoir été là quand j’avais besoin de discuter,

pour ta gentillesse et ta franchise. Le grand Bordelais cinéphile, sache que tu es une personne

rare. Le bureau n’aurait définitivement pas été pareil si tu n’avais pas été là, tous les matins

lorsque j’ouvrais la porte. Je pense que le poster de Zizou est officiellement la meilleure

blague de ma thèse. Merci aussi au doyen du bureau, qui balançait ses cartes One Piece

4

aussi vite que ses blagues. Merci de nous avoir acceptés et accueillis dans ton antre en

première année. Et enfin, merci à la dernière arrivée, avec son sourire et sa bonne humeur

contagieuse !

To the inhabitants of HB.04.250, thank you. As multicultural as this office might be, it

always felt like home. Thank you for all the dinners we shared and every sports evening.

Thanks to our office, I gained a climbing partner, two Chinese teachers, a fellow banana

bread enjoyer, and even a bike savior. Let’s make sure to share another dinner next time I’m

around Delft!

Merci à tous mes amis, pour votre justesse, votre intelligence, votre gentillesse, et tous

vos conseils. J’ai beaucoup grandi pendant ces trois ans, et c’est majoritairement grâce à

vous. Merci en particulier, aux ames charitables, qui m’ont accompagné grimper, en voitures

comme à vélo.

Et enfin, merci à ma famille, à mes parents qui m’ont toujours soutenu, à mes grands-

parents qui m’ont toujours nourri, et à ma sœur qui m’a toujours secoué aux moments où

j’en avais le plus besoin. Tu es la meilleure docteure de notre famille — et je suis fier de toi.

To the calm in the storm, and the wind that kept me moving.

5

Contents

Introduction 9
Extended introduction in english . 9

Introduction étendue en français . 14

Preliminaries 19
Graphs and operations . 19

Algorithmic complexity . 20

Graph parameters . 21

Partially ordered sets . 22

1 Overview of the results 25
1.1 Distance reconstruction . 25

1.2 Poset saturation . 26

1.3 Spread embedding of trees in dense graphs 28

1.4 Faithful universal graphs and posets . 29

1.5 Result not included in this thesis . 29

2 Graph Reconstruction via distance oracle 31
2.1 Introduction . 32

2.2 Preliminaries . 38

2.3 From reconstructing trees to reconstructing k-chordal graphs 41

2.3.1 Distance reconstruction for trees . 41

2.3.2 Distance reconstruction for k-chordal graphs 45

2.4 Reconstruction in G(n, p) . 50

2.4.1 Proof of Theorem 2.12 . 51

2.5 Query complexity lower bounds . 60

2.5.1 Reconstructing functions from the coordinate oracle 60

2.5.2 Reconstructing functions from the word oracle 64

6

2.5.3 Reducing tree reconstruction to function reconstruction 65

2.5.4 Randomised lower bounds for related models 67

2.5.5 Lower bound for reconstructing a Voronoi cell locally 71

2.6 Conclusion and perspectives . 75

3 Partial ordered set saturation and parameters 78
3.1 Introduction . 78

3.2 Preliminaries . 85

3.3 A universal upper bound through cubewidth 87

3.3.1 A universal upper bound . 87

3.3.2 Cubewidth . 88

3.4 Antichain saturation through Lehman and Ron’s lemma 91

3.4.1 A generalisation of Lehman and Ron’s lemma 91

3.4.2 Overview of the proof of Theorem 3.8 99

3.5 Conclusion and perspectives . 105

4 Spread embedding in graphs of high minimum degree 107
4.1 Introduction . 107

4.2 Preliminaries . 109

4.2.1 Tree-splittings . 110

4.2.2 Probabilistic results . 110

4.2.3 Good spread with high minimum degree 111

4.3 Proof of Theorem 4.3 . 112

4.3.1 Overview . 112

4.3.2 Spread distributions on star matchings 114

4.3.3 Proof of Theorem 4.3 . 114

4.4 Conclusion and perspectives . 118

5 Faithful universal structures 120
5.1 Introduction . 120

5.2 Preliminaries . 125

5.3 Faithful universal graphs for minor-closed classes 126

5.3.1 Kt-minors in grid with jumps . 127

5.3.2 Creating the jumps . 128

5.4 Strongly-universal poset . 134

5.5 Conclusion and perspectives . 139

7

6 Overall Conclusion and Perspectives 141
6.1 Distance reconstruction . 141

6.2 Poset induced saturation . 142

6.3 Spread embeddings . 142

6.4 Faithful universal graphs and posets . 143

8

Introduction

This chapter provides a broad introduction to the topics covered in this thesis, along with

brief motivations for their study. It is available both in English and in French.

Extended introduction in english

A graph G consists of a set V (G) of abstract objects called vertices and a set E(G) of one-
to-one “connections” between those vertices denoted by pairs of elements in V (G). This
simple mathematical structure can help describe a wide range of real-life situations. For

example, we can consider the graph G associated with a social network where the vertices

represent the registered people and the edges represent the “friend” relationship. Once we

have constructed this mathematical object, we can translate concrete questions about the

social network into graph-theoretic questions about G. Suppose you want to find out who

form your largest “friend group”. This would correspond to identifying the largest set of

vertices that are all connected by edges and include the vertex representing you.

But the versatility of graphs extends far beyond network representation. The LATEX com-

piler I’m using right now to write this manuscript relies on graphs to allocate variables to

registers. The route I’ll take home later, after a productive day of writing, was designed

using graphs. And when I finally get home and decide to unwind in the evening, browsing

through movie options on my favourite streaming platform—that, too, will be optimised

using graphs.

Graph theory is one of the oldest branches of Combinatorics, itself a branch of mathe-

matics. While no official definition of Combinatorics has been universally accepted, we will

describe it here as the study of discrete structures through enumeration, construction, op-

timisation, and analysis. This manuscript studies various problems in Combinatorics often

related to graph theory. We will now give a broad introduction to the four terms forming

the title of this thesis: Reconstruction, Saturation, Spreadness and Universality.

9

Reconstruction Have you ever wondered what the best questions to ask in the board

game Guess Who? are? For those unfortunate few who missed out on this childhood clas-

sic, Guess Who? is a two-player game in which players take turns asking yes/no questions

to deduce the identity of the character chosen by their opponent. This game serves as a

perfect example of a reconstruction problem in combinatorics. We begin with a large set

of characters, one of which has been secretly and perhaps even maliciously selected by our

opponent. Our goal is to determine, or in mathematical terms, reconstruct, which character

was chosen. To achieve this, we can only ask restricted yes/no questions – queries – that

provide partial information about the character’s identity. The challenge is that our oppo-

nent is trying to do the same, and we are effectively racing against them. Each question

comes at a cost, and the objective is to deduce the answer faster than our opponent, that is,

using as few questions as possible.

If you are a mathematician – or just someone who enjoys ruining fun with logic – you

might come up with an arguably optimal strategy forGuess Who?, ensuring that, if the game

starts with n possible characters, you can always guess your opponent’s character in at most

⌈log2 n⌉ questions. Moreover, this is optimal; if you ask strictly fewer questions, there will

always exist two characters that you cannot distinguish.

Mathematicians are working to prove analogous results for more complex reconstruc-

tion problems. For example, one topic of this manuscript is the study of how many queries

are required to reconstruct phylogenetic trees, using DNA-sequence distance comparisons

instead of yes/no questions. A better understanding of this process could lead to significant

savings of both time and cost in phylogenetic research.

Reconstruction questions generally fall into two categories: existence and optimisation.

Existence questions ask whether an object can be uniquely reconstructed, even with an un-

limited number of queries. If reconstruction is possible, the natural follow-up is an optimi-

sation question: what is the minimum number of queries needed to determine the object

uniquely?

One of the oldest and most famous graph reconstruction problems is an existence ques-

tion, often referred to as the Graph Reconstruction Conjecture formulated by Stanisław Ulam

and Paul Kelly independently in the late 1950s [113, 179]. It asks whether a simple, finite

graph G with at least three vertices can be uniquely determined (up to isomorphism) by its

“deck”, defined as the multiset of subgraphs of the form G \ v for every vertex v ∈ V (G).
Despite substantial effort from the research community and positive answers for restricted

graph classes—see the following survey by Harary [88]—the problem is still open for general

graphs.

Another long-standing problem, in the optimisation category, is the evasiveness conjec-

ture also known as the Aanderaa–Karp–Rosenberg conjecture, named after the three re-

searchers who introduced the conjecture around 1973 [163]. This problem extends well

10

beyond graph theory, but we will focus on its original graph-theoretic formulation here.

The hidden object is the edge set of a graph G, and the questions we are allowed to ask,

called edge queries, are of the form: Given u, v ∈ V (G), “Is there an edge between u and

v in G?”. A graph class G is called monotone if, for any G ∈ G, every graph H obtained

from G by removing edges also belongs to G. The conjecture states that for any nontrivial
1

monotone n-vertex graph class G, determining whether a givenG belongs to G requires

(
n
2

)
edge queries in the worst case. Informally, this means that any algorithm must check all

possible pairs of vertices before deciding whetherG ∈ G. The conjecture remains open and

has only been proven for n a prime power by Kahn, Saks and Sturtevant [104] in 1984.

Saturation Suppose that you are tasked with designing a computer network for a com-

pany with the following two requirements. The first is to use as few communication links

as possible, and the second is that specific computers must not be able to communicate di-

rectly for security reasons. If we represent the computers as vertices of a graph and the

communication links as edges, the company’s request translates into solving a saturation

problem. More generally, a saturation problem involves finding a combinatorial structure

that maximises or minimises a global cost function—in our example, the number of links—

while satisfying local constraints, in our example, the forbidden links.

Many fundamental problems in combinatorics have been, or can be, framed as saturation

problems. For example, in structural graph theory, critical graphs, introduced around 1950

by G. A. Dirac, are saturated structures that have been extensively studied
2
to understand

the behaviour of the chromatic number. In extremal combinatorics, multiple foundational

results emerge from the study of H-saturated graphs, and date back more than a century

ago, starting with Mantel’s works on triangle-free graphs [135] and continuing with the

highly celebrated Turán’s theorem [178] and Erdős, Hajnal, and Moon’s theorem [68]. An

H-saturated graph is a graph G such that H is not a subgraph of G but adding any edge to

G creates a copy ofH inG. Thanks to the two theorems cited above and an extensive effort

of the research community — see the dynamic survey of Faudree, Faudree and Schmitt [71]

— we now possess a deep comprehension of the edge counts in H-saturated graphs.

Recently, researchers have begun investigating variants and generalisations of H-satu-

rated graphs. In particular, there has been growing interest in the behaviour of H-induced-

saturated graphs, where the constraint of containing H as a subgraph is replaced by the

requirement that H appears as an induced subgraph. This modification significantly in-

creases the complexity of the problem, and for most graphs, the very existence of such

saturated structures remains unknown [137, 32, 16]. In this thesis, we study saturation in

partially ordered sets. Given a poset P , we investigate the minimal size of a P -saturated

1
We exclude the empty class and the class containing all graphs.

2
We refer the reader to the recent book by Stiebitz, Schweser, and Toft [173] for a survey on the subject.

11

family F ⊆ 2[n], defined as a family F that does not contain P as an induced subposet,

but for every X ∈ 2[n] \ F , the family F ∪ {X} does. This line of research traces back

to a 1981 result of Katona and Tarjan [112] and was later formalised by Gerbner, Keszegh,

Lemons, Palmer, P’alv"olgyi, and Patk’os [82] for the non-induced version and by Ferrara,

Kay, Kramer, Martin, Reiniger, Smith, and Sullivan [73] in the induced case.

Spreadness In the previous paragraph, we discussed the task of designing networks un-

der constraints. Once a proposed network has been constructed, a natural next step is to as-

sess its robustness. The concept of robustness is difficult to formalise precisely; however, one

intuitive approach is to analyze how the network would behave when some communication

links are destroyed and whether the original required structure would remain. Spreadness

is a mathematical tool that allows us to study this phenomenon. Simply put, proving that a

substructure admits a spread embedding ensures that random disturbances to the network

are highly unlikely to compromise the substructure in question.

In addition to the motivation presented above, our study is rooted in a well-established

area of extremal combinatorics: the investigation of minimum-degree thresholds for graph

properties. This research theme can be traced back to Dirac’s seminal result in 1952 [63],

which states that any n-vertex graph with a minimum degree of at least n/2 is Hamilto-

nian. Over the past seventy years, researchers have made significant efforts to strengthen

this theorem, leading to two main research directions: enumeration and robustness results.

Enumeration results provide lower bounds on the number of copies of the target structure

[165, 58], while robustness results, as discussed above, investigate how many edges can be

removed from the host graph while still preserving the target property [125, 174].

The recent breakthrough proof of the Kahn-Kalai conjecture [149] has sparked signifi-

cant interest in developing “spread” versions of Dirac-type theorems [14, 101, 105, 114, 153,

30], as these would directly lead to enumeration and robustness results, merging two re-

search threads that have largely been explored separately until now. In this manuscript we

will study spread embedding for bounded degree trees.

Universality During the rapid expansion of the processing chip market, some manufac-

turers aimed to design configurable chips—single chips that could be adapted into multiple

different configurations by selectively removing connectors or components. To achieve this,

they designed what mathematicians and computer scientists call a universal graph: a graph

that contains every member of a targeted family of graphs as a subgraph. The problem of

designing configurable chips has drawn significant attention to universal structures within

the computer science community over the past few decades. However, such structures have

12

been extensively studied by mathematicians for more than seventy years [75, 99, 155]
3
. In

particular, the search for universal posets played a foundational role in the development of

category theory [92]. In graph theory, the Rado graph, the first discovered universal struc-

ture for the class of all countable graphs [155], has led to numerous discoveries in multiple

fields of combinatorics, as explained in the following surveys [43, 44].

In the context of chip design, the configurable chip has the same physical constraints as

the different chips it is supposed to emulate. In graph-theoretic terms, this implies that the

underlying (universal) graph should be what we will refer to in this manuscript as “faithful,”

meaning that the universal graph itself belongs to the class it aims to represent. For instance,

if all graphs underlying the different chips must be planar, then the configurable chip’s

graph must also be planar. Surprisingly, the study of “faithful” universal graphs for infinite

countable structures has a rich history of important results [148, 93] in mathematics
3
. On

the contrary, the main techniques developed by mathematicians and computer scientists

for constructing finite universal graphs often yield graphs that are far from faithful. In

Chapter 5, we investigate the problem of designing faithful or near-faithful structures in a

finite setting.

3
See Section 5.1 for additional references.

13

Introduction étendue en français

Un graphe G est constitué d’un ensemble d’objets abstraits V (G) appelés sommets et d’un

ensemble de “connexions” entre ces sommets, noté E(G), qui représentent des paires d’élé-
ments de V (G). Cette structure mathématique simple permet de modéliser une grande

variété de situations réelles. Par exemple, on peut considérer le graphe G associé à un

réseau social, où les sommets représentent les personnes inscrites et les arêtes représentent

la relation “d’ami”. Une fois cet objet mathématique construit, on peut traduire des questions

concrètes sur le réseau social dans le language de la théorie des graphes. Supposons que

vous vouliez savoir qui forme votre plus grand groupe d’amis. Cela reviendrait à identifier

le plus grand ensemble de sommets de G, tous reliés entre eux et incluant le sommet qui

vous représente.

Mais la polyvalence des graphes va bien au-delà de leur utilisation pour représenter des

réseaux sociaux. Le compilateur LATEXque j’utilise en ce moment pour rédiger ce manuscrit

s’appuie sur la theory des graphes pour allouer des variables aux registres de mon ordina-

teur. L’itinéraire que je prendrai pour rentrer chez moi ce soir, après une journée productive

passée à l’écriture de cette thèse, a été conçu grâce à la théorie des graphes. Et lorsque je

serai enfin chez moi, que j’essayerai de me détendre devant un film sur ma plateforme de

streaming préférée, ce sera encore un algorithme optimisé grâce à la théorie des graphes

qui déterminera les recommendations qui me seront proposées.

La théorie des graphes est l’une des branches les plus anciennes de la combinatoire, elle-

même une branche des mathématiques. Bien qu’il n’existe pas de définition universellement

acceptée de la combinatoire, nous la décrirons ici comme l’étude des structures finies à

travers leur énumération, leur construction, leur optimisation et leur analyse. Ce manuscrit

explore divers problèmes en combinatoire, le plus souvent liés à la théorie des graphes. Com-

mençons par présenter les quatre notions qui forment le titre de cette thèse : Reconstruction,

Saturation, Dispersion et Universalité.

Reconstruction Vous êtes-vous déjà demandé quelles sont les meilleures questions que

l’on puisse poser durant une partie du jeu de sociétéQui est-ce ? ? Pour ceux qui n’ont pas eu

la chance de jouer à ce classique de l’enfance, Qui est-ce ? est un jeu à deux joueurs où cha-

cun pose à tour de rôle des questions fermées (oui/non) pour deviner le personnage choisi

par son adversaire. Ce jeu illustre parfaitement un problème de reconstruction en combina-

toire. On commence avec un grand ensemble de personnages, dont l’un a été secrètement,

voire malicieusement, sélectionné par notre adversaire. L’objectif est de déterminer, ou en

termes mathématiques, reconstruire, quel personnage a été choisi. Pour y parvenir, nous

ne pouvons poser que des questions fermées—requêtes—qui fournissent des indices partiels

sur l’identité du personnage. La difficulté réside dans le fait que notre adversaire poursuit le

14

même objectif, et que nous sommes engagés dans une course pour identifier le personnage

adversaire en premier. Chaque question ayant un coût, le but est de découvrir la réponse

avant notre adversaire, et donc en posant le moins de questions possible.

Si vous êtes mathématicien — ou simplement si vous êtes quelqu’un qui aime gâcher

une partie de jeu de société en utilisant de la logique — vous pourriez élaborer une stratégie

optimale pour Qui est-ce ?, garantissant que, si le jeu commence avec n personnages possi-

bles, vous pourrez toujours deviner celui de votre adversaire en au plus ⌈log2 n⌉ questions.
De plus, ce résultat est optimal : si vous posez strictement moins de questions, il pourrait

exister deux personnages indistinguable.

Les questions de reconstruction sont généralement classées en deux catégories : existence

et optimisation. Les questions d’existence cherchent à savoir si un objet peut être reconstruit

de manière unique, même avec un nombre illimité de requêtes. Si la réponse à la question

d’existence est positive, la question naturelle qui suit est une question d’optimisation : quel

est le nombre minimal de requêtes nécessaires pour déterminer l’objet de manière unique ?

L’un des problèmes les plus anciens et les plus célèbres de reconstruction de graphes

est une question d’existence, souvent appelée la Graph Reconstruction Conjecture, formulée

par Stanisław-Ulam vers 1941. Elle demande si tout graphe simple et fini G ayant au moins

trois sommets peut être déterminé de manière unique (à isomorphisme près) à partir de son

“deck”, défini comme la multiensembles des sous-graphes obtenus en retirant un sommet v
deG pour chaque v ∈ V (G). Malgré des efforts considérables de la communauté scientifique

et des réponses positives pour certaines classes de graphes, le problème reste ouvert.

Un autre problème fondamental, appartenant à la catégorie des questions d’optimisation,

est l’Evasivness Conjecture, aussi connue comme conjecture d’Aanderaa–Karp-Rosenberg,

du nom des trois chercheurs l’ayant introduite autour de 1973 [163]. Ce problème dépasse

le cadre de la théorie des graphes, mais nous nous concentrerons ici sur sa formulation

en termes de graphes. On cherche à reconstruire l’ensemble des arêtes d’un graphe G,
en utilisant uniquement des questions appelées requêtes d’arêtes, sont de la forme : étant

donnés u, v ∈ V (G), “Existe-t-il une arête entre u et v dans G ?” Une classe de graphes

G est dite monotone si, pour tout G ∈ G, tout graphe H obtenu en ajoutant des arêtes à G
appartient aussi à G. L’Evasivness Conjecture affirme que, pour toute classe de graphes G sur

n sommets qui n’est ni vide ni triviale
4
, déterminer si un graphe G appartient à G nécessite(

n
2

)
requêtes d’arêtes dans le pire des cas. Intuitivement, cela signifie qu’un algorithme

doit vérifier toutes les paires possibles de sommets avant de pouvoir décider si G ∈ G. La
conjecture reste ouverte à ce jour et n’a été démontrée que lorsque n premier par Rivest et

Vuillemin en 1976.

4
On exclut la classe vide et la classe contenant tous les graphes.

15

Saturation Supposons que vous deviez concevoir un réseau informatique pour une en-

treprise en respectant deux exigences. La première est d’utiliser le moins de connexions

possible, et la seconde est que certains ordinateurs ne doivent pas pouvoir communiquer

directement pour des raisons de sécurité. Si nous représentons les ordinateurs par des som-

mets d’un graphe et les connexions par des arêtes, la demande de l’entreprise revient à

résoudre un problème de saturation. De manière plus générale, un problème de saturation

consiste à trouver une structure combinatoire qui maximise ou minimise une fonction de

coût globale — dans notre exemple, le nombre de connexions — tout en respectant des con-

traintes locales, ici les connexions interdites.

De nombreux problèmes fondamentaux en combinatoire ont été ou peuvent être for-

mulés sous forme de problèmes de saturation. Par exemple, en théorie structurelle des

graphes, les graphes critiques, introduits vers 1950 par G. A. Dirac, sont des structures sat-

urées qui ont été largement étudiées
5
afin demieux comprendre le comportement du nombre

chromatique. En combinatoire extrémale, plusieurs résultats fondamentaux découlent de

l’étude des graphesH-saturés, dont l’histoire remonte à plus d’un siècle, en commençant par

les travaux de Mantel sur les graphes sans triangles [135], et se poursuivant avec le célèbre

théorème de Turán [178] et tout autant célèbre théorème d’Erdős, Hajnal et Moon [68].

Un graphe H-saturé est un graphe G qui ne contient pas H comme sous-graphe, mais où

l’ajout de toute arête àG entraîne l’apparition d’une copie deH . Grâce aux deux théorèmes

mentionnés ci-dessus et aux efforts considérables de la communauté scientifique — voir le

“dynamic survey” de Faudree, Faudree et Schmitt [71] — nous disposons aujourd’hui d’une

compréhension approfondie du nombre d’arêtes dans les graphes H-saturés.

Récemment, les chercheurs ont commencé à explorer des variantes et des généralisa-

tions des graphes H-saturés. En particulier, il existe un intérêt croissant pour l’étude des

graphesH-induit-saturés, où la contrainte d’interdireH comme sous-graphe est remplacée

par l’interdiction deH comme sous-graphe induit. Cette modification rend le problème net-

tement plus complexe, et pour la plupart des graphes, l’existence même de telles structures

saturées reste inconnue [137, 32, 16].

Dans cette thèse, nous étudions la saturation dans les ensembles ordonnés partiellement.

Étant donné un poset P , nous cherchons à déterminer la taille minimale d’une famille P -
saturée F ⊆ 2[n], définie comme une famille F qui ne contient pas P comme sous-poset

induit, mais telle que pour tout X ∈ 2[n] \ F , la famille F ∪ X en contienne une copie

induite de P . Cet axe de recherche a été initié pare un résultat datant de 1981 de Katona

et Tarjan [112] et a été ensuite formalisée dans la terminologie que l’on utilise aujourd’hui

par Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi et Patkós [82] pour la version non induite,

puis par Ferrara, Kay, Kramer, Martin, Reiniger, Smith et Sullivan [73] dans le cas induit.

5
Nous renvoyons le lecteur au livre récent de Stiebitz, Schweser et Toft [173] pour un aperçu du sujet.

16

Dispersion Dans le paragraphe précédent, nous avons utilisé l’exemple de la conception

d’un réseaux de communication sous contraintes de sécurtiés. Une fois un tel réseau con-

struit, l’étape suivante naturelle consiste à évaluer sa robustesse. La robustesse est un con-

cept difficile à formaliser précisément ; cependant, intuitivement, analyser le comportement

du réseau en cas de destruction de certaines connexions et à vérifier si la structure requise

initialement est préservée, permet de juger de sa robustesse. La notion de dispersion est un

outil mathématique permettant d’étudier ce phénomène. Plus précisément, prouver qu’une

sous-structure admet un plongement dispersé garantit que des perturbations aléatoires du

réseau ont très peu de chances de compromettre la sous-structure en question.

En plus de la motivation présentée ci-dessus, l’étude réalisé dans cette thèse s’inscrit

dans une branche bien établi de la combinatoire extrémale : l’étude des seuils de degré min-

imal assurant certaines propriétés des graphes. Ce thème de recherche remonte au résultat

de Dirac en 1952 [63], qui établit que tout graphe à n sommets dont le degré minimal est

au moins n/2 est hamiltonien. Depuis plus de soixante-dix ans, de nombreux chercheurs

ont cherché à enforcer et généraliser ce théorème, menant à deux grandes directions de

recherche : les résultats d’énumération et de robustesse. Les résultats d’énumération four-

nissent des bornes inférieures sur le nombre de copies de la structure cible [165, 58], tandis

que les résultats de robustesse, comme mentionné ci-dessus, étudient combien d’arêtes peu-

vent être supprimées du graphe tout en préservant la propriété étudiée [125, 174].

L’avancement récent sur la conjecture de Kahn-Kalai [149] a suscité un intérêt crois-

sant pour le développement de versions “dispersées” des théorèmes de type Dirac [14, 101,

105, 114, 153, 30], car ces résultats permettraient d’obtenir simultanément des conclusions

d’énumération et de robustesse, réunissant ainsi deux axes de recherche jusqu’ici largement

explorés séparément. Dans ce manuscrit, nous étudions les plongements dispersés dans les

graphes denses, pour les arbres de degré borné.

Universalité Lors de l’essor rapide du marché des processeurs, certains fabricants ont

cherché à concevoir des puces reconfigurables — des circuits uniques pouvant être adap-

tés à différentes configurations en supprimant sélectivement certains connecteurs ou com-

posants. Pour cela, ils ont conçu ce que les mathématiciens et informaticiens appellent un

graphe universel : un graphe qui contient chaque élément d’une famille cible comme sous-

graphe. Le problème de la conception de puces configurables a suscité un grand intérêt pour

les structures universelles dans la communauté informatique au cours des dernières décen-

nies. Cependant, de telles structures ont été étudiées par les mathématiciens depuis plus

de soixante-dix ans [75, 99, 155]
6
. En particulier, la recherche de posets universels a joué

un rôle fondateur dans le développement de la théorie des catégories [92]. En théorie des

graphes, le graphe de Rado, l’une des premières structures universelles découvertes pour la

6
Voir Section 5.1 pour des références supplémentaires.

17

classe de tous les graphes dénombrables, a conduit à de nombreuses avancées dans plusieurs

domaines de la combinatoire, comme expliqué dans les surveys suivants [43, 44].

Dans le cadre de la conception de puces, la puce reconfigurable est soumise aux mêmes

contraintes physiques que les puces qu’elle est censée émuler. En termes de théorie des

graphes, cela signifie que le graphe sous-jacent (universel) doit être ce que nous appellerons

dans cemanuscrit un graphe “fidèle”, c’est-à-dire un graphe appartenant lui-même à la classe

qu’il vise à représenter. Par exemple, si toutes les puces doivent être basées sur des graphes

planaires, alors le graphe de la puce reconfigurable doit aussi être planaire. De manière sur-

prenante, l’étude des graphes universels fidèles pour les structures infinies dénombrables

possède une riche histoire et plusieurs résultats importants [148, 93]
6
en mathématiques.

En revanche, les principales techniques développées par les mathématiciens et informati-

ciens pour la construction de graphes universels finis produisent souvent des graphes très

éloignés d’une structure fidèle. Dans Chapter 5, nous étudions le problème de la conception

de structures fidèles ou quasi-fidèles dans un cadre fini.

18

Preliminaries

This section outlines the basic notations and tools utilised throughout this manuscript,

most of which are standard within the fields of combinatorics and graph theory.

Graphs and operations
For n ∈ N∗

, let [n] denote the set {1, 2, . . . , n}. For a set A let 2A denote the power set of A
and, form∈N, let

(
A
m

)
denote the set

{
a ∈ 2A

∣∣ |a| = m
}
. Similarly

(
A
⩽m

)
=
{
a ∈ 2A

∣∣ |a| ⩽ m
}
.

A graphG= (V (G), E(G)) consists of a set of vertices V (G) and a set of edgesE(G)⊆(
V (G)
2

)
. For two distinct vertices u, v ∈ V (G), we often write the edge {u, v} as uv. If

uv ∈ E(G), we say that u and v are neighbours. The open neighbourhood of a vertex v,
denoted N(v), is the set of all neighbours of v, and its size |N(v)| is called the degree of v.
The closed neighbourhood, denoted N [v], is defined as N [v] := N(v) ∪ {v}.

A path of length ℓ between vertices u and v in G is a sequence of distinct vertices

u,w1, w2, . . . , wℓ−1, v such that uw1, w1w2, . . . , wℓ−2wℓ−1, wℓ−1v ∈ E(G). The distance be-
tween two vertices u, v, denoted dG(u, v), is defined as:

• dG(u, v) = 0 if u = v,

• The length of a shortest path from u to v if such a path exists,

• dG(u, v) = +∞ if no path exists between u and v.

A graph is called connected if dG(u, v) <∞ for all u, v ∈ V (G) and disconnected otherwise.

For k ⩾ 1, the k-neighbourhood of a vertex v is defined as

Nk(v) = {u ∈ V (G) | dG(u, v) = k},

and the ball of radius k around v is defined as

N⩽k(v) = {u ∈ V (G) | dG(u, v) ⩽ k}.

19

Graph Subgraph Induced subgraph Minor

Figure 1: Example of a graph (left) and substructures of this graph.

Given a graph G = (V (G), E(G)), H is called a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). The graph H is called an induced subgraph if for any two vertices u, v ∈
V (H), uv ∈ E(H) ⇔ uv ∈ E(G). Note that an induced subgraph H of G is completely

defined by G and the subset of vertices V (H) ⊆ V (G), in particular, we can define the

graph induced on some vertex set S ⊆ V (G), denoted G[S] as the only induced subgraph

of G which satisfies V (H) = S. Similarly, we define G \ S := G[V (G) \ S]. Given two

graphs G0 and G1 the disjoint union of G and H is the graph G0 + G1 = ({(0, u) | u ∈
V (G)} ∪ {(1, u) | u ∈ V (H)}, {(i, u)(i, v) | uv ∈ E(Gi)}).

A minor of a graph G is a graph obtained by deleting some vertices and edges, and

contracting edges. The contraction operation of uv ∈E(G) consists in replacing the vertices
u and v by a new vertex with neighbourhoodN(u)∪N(v). See Fig. 1 for an example of the

different graph operations described.

For some recurring graphs, we introduce names and notation. The graph consisting only

of a path of length n, is denoted Pn. The complete graph or clique on n vertices, denoted

Kn, is the only graph containing all

(
n
2

)
possible edges. The cycle on n vertices, denoted

Cn, is the graph obtained from a path Pn defined by the sequence u1, . . . , un when we add

the edge unu1. A tree is a connected graph that does not contain any cycle as an induced

subgraph, and the disjoint union of an arbitrary number of trees is called a forest. See Fig. 2.

Algorithmic complexity

When studying complexity, or asymptotic behaviours, we often use the Bachmann-Landau

notation, also known as asymptotic notation: o,O,Θ,∼,Ω, ω. Given a parameter ∆ ∈ N,
we write f(n,∆) = o∆(g(n)) if for every fixed ∆ ∈ N, f(n,∆) = o(g(n)) as n → +∞.

We define similarly O∆,Θ∆,∼∆,Ω∆, ω∆ and we omit the assumption on the growth of the

asymptotic variable, here “n→ +∞”, when clear from the context.

When studying randomised algorithms, the randomised query complexity is defined as

the maximum, taken over all hidden graphs G, of the expected number of queries made by

20

C9K9 A tree

Figure 2: From left to right, a representation ofK9, C9, and a tree.

the algorithm. We sometimes write that an event E(n), which depends on some parameter

n holds, with high probability, abbreviated to w.h.p., whenE(n) = 1−o(1)when n→ +∞.

Throughout this manuscript, we use standard notation for probability. We refer the

reader to [37] for further details on these notations and their standard applications in ran-

dom graphs. The following concentration bound, due to Chernoff, is particularly useful

throughout this work.

Lemma 0.1 (Chernoff’s bound [52]). Given n independent random variables X1, . . . , Xn

taking values in {0, 1}, let us denote by µ = E[
∑n

i=1Xi]. Then for any 0 < δ < 1,

P

(∣∣∣∣∣
n∑

i=1

Xi − µ

∣∣∣∣∣ ⩾ δµ

)
⩽ 2e−δ2µ/3.

Also for any δ ⩾ 0,

P

(
n∑

i=1

Xi ⩾ (1 + δ)µ

)
⩽ e−δ2µ/(2+δ).

Graph parameters
In the early 1980s Robertson and Seymour revolutionised structural graph theory. As part

of their Graph Minors project, which consists of more than 20 papers published between

1983 [160] and 2010 [159], they established the concept of treewidth [158] to characterise

how “tree-like” a graph is, providing a measure of its structural complexity.

Wewill now give the definition of different, extensively studied, graph parameterswhich

are mentioned in this manuscript. When these parameters form an important part of a

statement or a proof mentioned in this manuscript, they will also be recalled in the specific

preliminaries of the chapter.

21

A tree decomposition of a graph G is a tuple (T, (Bt)t∈V (T)) where T is a tree and Bt is

a subset of V (G) for every t ∈ V (T), for which the following conditions hold.

• For every v ∈ V (G), the set of t ∈ V (T) such that v ∈ Bt, is non-empty and induces

a subtree of T .

• For every uv ∈ E(G), there exists a t ∈ V (T) such that {u, v} ⊆ Bt.

We say that a tree decomposition is trivial if T has a single vertex. The width of a tree

decomposition (T, (Bt)t∈V (T)) is the maximum of |Bt| over t ∈ V (T).
The treewidth of a graphG, denoted tw(G), is the minimum over all tree decompositions

(T, (Bt)t∈V (T)) of G, of the width of (T, (Bt)t∈V (T)).
The pathwidth of a graphG denoted pw(G), is theminimumover all tree decompositions

(P, (Bt)t∈V (P)) of G where P is restricted to be a path, of the width of (P, (Bt)t∈V (P)).
The treelength of a graph G (denoted tl(G)) is the minimal integer k for which there

exists a tree decomposition (T, (Bt)t∈V (T)) of G such that dG(u, v) ⩽ k for every pair of

vertices u, v that share a bag (i.e. u, v ∈ Bt for some t ∈ V (T)).

The treedepth of a graph G, denoted td(G) can be defined recursively as follows,

td(G)=


1, if |G| = 1;

1 + minv∈V (G) td(G \ {v}), if G is connected and |G| ⩾ 2;

maxi td(Gi), otherwise, for {Gi}i the set of connected components of G.

Finally, the bandwidth of a n-vertex graph G, is the minimum over all total orders on

V (G) = {v1, . . . , vn} of the maximum of |i− j| for vivj ∈ E(G).

Partially ordered sets
In Chapter 3 and Chapter 5, we study partially ordered sets, also referred to as posets. They

are defined as a pair (P,≼), where P is a set of elements and ≼ is a partial order on P ,
meaning ≼ is a binary relation over P satisfying the following three properties: for any

three elements a, b, c ∈ P :

• Reflexivity: a ≼ a.

• Antisymmetry: If a ≼ b and b ≼ a then a = b

• Transitivity: If a ≼ b and b ≼ c then a ≼ c.

22

comparability graph cover graph Hasse diagram

Figure 3: Different representation of (2[3],⊆), from left to right, its comparability graph,

cover graph and Hasse diagram.

Similarly to⩽ and<, we denote by≺ the strict partial order relation associated with≼.

Formally, we define≺=≼ \IP , where IP = {(p, p) | p ∈ P} represents the identity relation.
A poset can be seen as a special case of a graph, wherewe add an orientation to the edges.

Given a poset (P,≼), the comparability graph of P isG = (V (G), E(G)), where V (G) = P
is the set of vertices of G, and E(G) ⊆ V × V represents the oriented edges of G. These
edges are given byE(G) = {(a, b) ∈ P ×P | a≼ b}. We also define another oriented graph

called the cover graph of (P,≼) as the graphH = (V (H), E(H))with V (H) = P andE(H)
represents the “immediate relation” of≼, that is the relation a≼ b such that there is no c∈ P
with a≼ c≼ b, formallyE(H) = {(a, b)∈ P×P | a≼ b ∧(∀c∈ P, a ̸≼ c∨c ̸≼ b)}. We often

use the cover graph to represent a poset P . This representation, called the Hasse diagram

of P , is obtained by drawing the cover graph of P such that each edge is oriented from the

lower to the upper vertex. See Fig. 3.

One of themost studied posets, also central to some results presented in this thesis, is the

hypercube, also called the Boolean lattice. The hypercube of dimension n, denoted (2[n],⊆)
and sometimes simply written as Qn, consists of the power set of [n] ordered by inclusion.

For any i ∈ [n], the layer i of 2[n] is denoted
(
[n]
i

)
.

A chain C ⊆ 2[n] is a set system consisting of pairwise comparable elements,i.e.,X ⊆ Y
or Y ⊆ X for all X, Y ∈ C . An antichain is a set system consisting of elements that are

pairwise incomparable.

We say a chain C in 2[n] starts inR and ends in S if the smallest element of C is inR and

the largest element ofC is in S. We say a chainC1 ⊆ · · · ⊆ Cm is skipless if |Ci+1|= |Ci|+1
for all i ∈ [m− 1] i.e. the chain does not ‘skip’ over any layers.

23

A chain decomposition of a set systemF ⊆ 2[n] is a collection of disjoint chainsC1, . . . , Cm ⊆
F such that F = ∪m

i=1C
i
, that is, for each X ∈ F , there is exactly one i ∈ [m] such that Ci

contains the set X . The size of the chain decomposition is the number of chains m. The

following theorem, known as Dilworth’s theorem, is a fundamental result on posets.

Theorem 0.2 (Dilworth [61]). Let n be an integer and F ⊆ 2[n], then the size of the largest

antichain in F is equal to the minimum size of a chain decomposition of F .

Another well-known structural result in the area, often referred to as the symmetric

chain decomposition (see [6, 86]) can be stated as follows.

Lemma 0.3. There is a skipless chain decomposition of 2[n] into
(

[n]
⌊n/2⌋

)
chains. In particular,

there is a matching of size

(
n
s

)
from

(
[n]
s

)
to

(
[n]
r

)
whenever s < r ⩽ ⌈n/2⌉ or s > r ⩾ ⌊n/2⌋.

24

Chapter 1

Overview of the results

This chapter summarises themain results presented in this thesis. It is intended for readers

familiar with combinatorial and graph theory notions. Further formal definitions are

given in each of the relevant chapters. It should be considered a roadmap of the thesis

rather than an introduction to the cited results.

1.1 Distance reconstruction
In Chapter 2, we study the following reconstruction problem: our input is a graph G =
(V,E) where V is known and E is hidden. We are given access to an oracle that takes as

input two vertices u, v ∈ V and outputs dG(u, v). The goal is to reconstruct the edge set of

G completely. We say that an algorithm reconstructs a class of graphs G if the output of the

sequence of queries made by the algorithm uniquely identifies G ∈ G.
In joint work with Carla Groenland we proved the following three theorems, presented

in Section 2.3.

Theorem2.8 ([25]). There exists a deterministic algorithm to reconstruct the class of connected

n-vertex chordal graphs of maximum degree at most∆ ⩽
√
log n using O(∆n log n) distance

queries.

We extend the previous algorithm to k-chordal graphs, i.e., graphs that exclude Cr as an

induced subgraph for every r ⩾ k.

Theorem2.9 ([25]). There exists a deterministic algorithm to reconstruct the class of connected

k-chordal graphs of maximum degree at most ∆ on n vertices using O∆,k(n log n) queries.

25

For the more restricted class of bounded degree trees, we obtain the following result.

Theorem 2.10 ([25]). There exists a deterministic algorithm to reconstruct the class of trees

of maximum degree at most ∆ on n vertices using ∆n log∆ n+ (∆ + 2)n queries.

We also improved the best-known lower bound for distance reconstruction of bounded

degree graphs. The following theorem is the main consequence of our work. In particular, it

implies that the three theorems above have an optimal dependency on n, and Theorem 2.10

also has an optimal dependency on∆; it is therefore optimal up to a O(1)-factor. Nonethe-
less, in Section 2.5, we developed a more general statement, applicable to a broad range of

reconstruction setups.

Theorem 2.14 ([25]). Let ∆ ⩾ 2 and n = 2c∆k
be integers, where c ∈ [1,∆) and k ⩾

50(c ln c + 3) is an integer. Then, any randomised algorithm requires at least
1
50
∆n log∆ n

queries in expectation to reconstruct n-vertex trees of maximum degree ∆+ 1.

In a sole-author paper, I studied the average complexity of reconstructing a graph sam-

pled from a distributionD over the set of graphs on n vertices. In this case, a graphG∼D is

said to be reconstructed if the sequence of queries done by the algorithm uniquely identifies

G, not only among a family of graphs G, but also among all graphs on n vertices. The query

complexity is computed as the expected number of queries made by the algorithm when the

input G is sampled from the distribution D.

Theorem 2.12 ([19]). For any ε ⩾ 0, and every n ∈ N, for every 2000 logn
n

⩽ p ⩽ n− 1
2
−ε
, there

exists an algorithm that reconstructs G ∼ G(n, p) using O(∆2n log n) queries in expectation,

where ∆ = (n− 1)p is the expected average degree of G.

1.2 Poset saturation
In Chapter 3, we study the problem of saturation in the hypercube. Let us denote by 2[n] the
set containing all subsets of {1, . . . , n}. Formally, a family F ⊆ 2[n] is called P -saturated in
2[n] if F satisfies the following two conditions:

• P is not an induced subposet of F ,

• for any x ∈ 2[n] \ F , F ∪ {x} contains P as an induced subposet.

Given a poset P and an integer n, we are interested in the saturation number of P ,
denoted sat*(n, P), which is defined as the minimum size of a P -saturated family in 2[n].

In joint work with Carla Groenland, Hugo Jacob, and Tom Johnston [28], we managed

to pinpoint the saturation number of the antichain of size k (denoted Ak). This is the first

26

infinite family of posets for which the saturation number is computed exactly, and it answers

positively to two conjectures [73, 15]. Our proof proceeds via a generalisation of a theorem

from Lehman and Ron [128], which is of independent interest. These results are presented

in Section 3.4.

A chain C1 ⊆ C2 ⊆ . . . ⊆ Cr ⊆ [n] is skipless if it satisfies the property |Ci+1| = |Ci|+1
for all i ∈ [r − 1].

Theorem 3.10 ([28]). Suppose that F ⊆ 2[n] admits a chain decomposition into m chains.

Then there exist disjoint skipless chains C1, . . . , Cm ⊆ 2[n] such that F ⊆ ⋃m
i=1C

i
.

The following corollary, already answering both conjectures, can be derived from The-

orem 3.10.

Corollary 3.11 ([28]). There exist constants c1, c2 > 0 such that for all k⩾ 4 and n sufficiently

large,

n(k − 1)− c1k log k ⩽ sat*(n, k) ⩽ n(k − 1)− c2k log k.

With substantiallymore effort it is possible to pinpoint precisely the value of sat*(n,Ak).
We obtain the following theorem.

Theorem 3.8 ([28]). Let n, k ⩾ 4 be integers and let ℓ and c0, . . . , c⌊ℓ/2⌋ be as defined above.
If n < ℓ, then sat*(n, k) = 2n. If n ⩾ ℓ, then

sat*(n, k) ⩾ 2

⌊ℓ/2⌋∑
t=0

ct + (k − 1)(n− 1− 2⌊ℓ/2⌋).

Moreover, equality holds when n ⩾ 2ℓ+ 1.

By combining a published joint work with Carla Groenland, Maria-Romina Ivan and

Tom Johnston [27], as well as an ongoing joint work with Jędrzej Hodor, Hoang La and

William T. Trotter, we obtain the first general bounds for the function sat*. Little is known
about the possible behavior of this function. Prior to our work, no non-trivial upper bounds

were known.

Theorem3.15 ([27]). For any fixed posetP and anyn∈N, sat∗(n, P) =O(nc), where c⩽ |P |
is a constant depending on P only.

To prove Theorem 3.15, we introduce two new key notions, “cube-height” and “cube-

width”. Intuitively, for a poset P , the “cube-height” is the least k such that, for some n, we
can embed P into the first k + 1 layers of Qn, while the “cube-width” is the smallest n that

makes such a “small height” embedding possible.

27

Definition. For a poset P , the cube-height h*(P) is the minimum h∗ ∈ N for which there

exists n ∈ N such that

(
[n]
⩽h∗

)
contains an induced copy of P .

Definition. For a poset P , the cube-width w*(P) is the minimum w∗ ∈ N such that there

exists an induced copy of P in

(
[w∗]

⩽h*(P)

)
.

In the proof of Theorem 3.15 we bound this constant c by w*(P), to obtain the result as

stated, we also prove the following theorem.

Theorem 3.19. For any poset P , w*(P) ⩽ |P |.

1.3 Spread embedding of trees in dense graphs

In Chapter 4 we study spreads embedding. Given two graphs G and H an embedding of H
in G is an injection φ : V (H) → E(G) such that for any uv ∈ E(H), φ(u)φ(v) ∈ E(G).

Definition ([154]). Let G and H be finite graphs, and let µ be a probability distribution over

embeddings of H into G. For q ∈ [0, 1], we say that µ is q-spread if for every two sequences of
distinct vertices x1, . . . , xs ∈ X and y1, . . . , ys ∈ Y ,

µ ({φ : φ(xi) = yi for all i ∈ [s]}) ⩽ qs.

The concept of spreadness has been recently introduced in order to generalise robustness

and counting results on Dirac’s thresholds, more details about this motivation is given in

Section 4.1. The main result of Chapter 4, joint work with Clément Legrand-Duchesne and

Alp Müyesser [30] is a new proof of the following theorem.

Theorem 4.3 (Pham, Sah, Sahwney, Simkin [154, 30]). For every ∆ ∈ N and α > 0, there
exists n0, C ∈ N such that the following holds for all n ⩾ n0. If G is an n-vertex graph with

δ(G) ⩾ (1 + α)n
2
, and T is a n-vertex tree with ∆(T) ⩽ ∆, there exists a (C/n)-spread dis-

tribution on embeddings of T onto G.

Contrary to the original proof by Pham, Sah, Sahwney and Simkin [154], the proof pre-

sented in this manuscript avoids the use of Szemerédi’s regularity lemma, leading to im-

proved constants. The newly developed techniques are flexible and may be of interest for

future research on spread embeddings.

28

1.4 Faithful universal graphs and posets
In Chapter 5, we investigate "faithful" universal structures, which can be intuitively under-

stood as universal structures that satisfy the properties of the class they aim to represent.

In the infinite setting, such structures have been studied for several decades
1
. For instance,

the question of whether there exists a countable planar graph that contains every count-

able planar graph was posed by Ulam and resolved by Pach in 1981 [148]. This result was

recently strengthened by Huynh, Mohar, Šámal, Thomassen, and Wood [93], who demon-

strated that any countable graph G that contains every countable planar graph must also

contain the infinite countable clique as a minor. In joint work with Louis Esperet, Carla

Groenland, Claire Hilaire, Clément Rambaud and Alexandra Wesolek, we extend the study

of "faithful" structures to the finite setting and establish the following finite analogue of the

result from [93].

Theorem 5.4. There is a polynomial function f5.4 : N>0 → N>0 such that the following holds.

Let t, ℓ ⩾ 2 be integers. If U is aKt-minor-free graph containing every ℓ× ℓ triangulated grid
as subgraph, then

|V (U)| ⩾ 2
1

f5.4(t)
·ℓ
.

In particular, for every integer t ⩾ 5 there exists a constant Ct > 0 such that for every integer

n ⩾ 2, everyKt-minor-free graph containing every n-vertex planar graph as subgraph has at

least 2Ct
√
n
vertices.

Together with Carla Groenland and Rajko Nenadov, we studied also “faithful” universal

structures for the class of all posets on n elements. Specifically, we considered the following

natural question: “What is the minimum size of a poset U that contains every poset on n
elements as an induced subposet?” Unlike the case of planar graphs mentioned above, we

cannot expect U to have polynomial size, as the number of distinct posets on n elements

is of order 2(1/4+o(1))n2
, which implies a lower bound of 2(1/4+o(1))n

on the size of U . To

our knowledge, the best known upper bound prior to our work was 2n, achieved by the

hypercube of dimension n.

Theorem 5.8. For any n ∈ N, there exists a poset Un containing all n-element posets as an

induced subposet, and |Un| ⩽ 2
2
3
n+O(

√
n)
.

1.5 Result not included in this thesis
In addition to the projects presented in this manuscript, I have also worked on other topics

in Combinatorics and Theoretical Computer Science. I have studied problems in distributed

1
See Section 5.1 for additional references.

29

algorithms from a puremathematics perspective, using simplicial topology to extend ameta-

theorem in the field [23] and probability theory to investigate a self-stabilising clock syn-

chronisation problem [24]. I have also explored other graph reconstruction models than

the distance reconstruction model presented in this thesis [21] and applied structural graph

theory to analyse graph parameters such as the burning number [20] and path eccentricity

[29].

30

Chapter 2

Graph Reconstruction via distance
oracle

This chapter focuses on graph reconstruction via distance oracle queries. The work pre-

sented is based mainly on published results, co-authored with Carla Groenland [25, 26]

and a sole-author result [19].

How can we determine the structure of a decentralised network (such as the Internet or

sensor networks) with minimal overhead? Such reconstruction problems have been exten-

sively studied (e.g. [31, 64, 140, 141, 161, 25, 126]). The vertices of the network are distinct

networks (autonomous systems) and the edges represent peering relations (voluntary in-

terconnection). Tools such as traceroute (also called tracert) are used to record the route

through the Internet from one network to another.

Due to privacy and security concerns, the full path information may not always be avail-

able and only delayed information may be given. A ping-pong protocol is one of the most

basic tools in a peer-to-peer or Internet network. It is a two-node protocol where one node

sends a dummy message to the second one. Once the message is received, the second node

directly responds with a dummy message to the first node. The goal of this process is to

compute the time between the departure of the first message and the arrival of the second

one. From this, the first node can deduce an estimate of the distance between itself and the

second node in the network. In this chapter, we are interested in the following question:

how fast can you reconstruct a hidden network only using a ping-pong protocol? This

question arises naturally not only from computer networks problems but also appears in

phylogenetics [90, 182, 117] and in machine learning [170] where it has major applications.

31

2.1 Introduction
The distance query model In order to capture this kind of ping-pong protocol, the

distance query model has been introduced [31]. In this framework, only the vertex set V of

a hidden graphG= (V,E) is known and the aim is to reconstruct the edge setE via distance

queries to an oracle. For a pair of vertices (u, v) ∈ V 2
, the oracle answers the shortest path

distance between u and v in G and the algorithm can select the next query based on the

responses of earlier queries. If there is a unique graph consistent with the query responses,

the graph has been reconstructed. We denote byQueryG(u, v) the query to our oracle that

answers dG(u, v). We also slightly abuse notation and denote by QueryG(A,B) the set of
queries {QueryG(a, b) | (a, b) ∈ A×B}.

For a graph class G of connected graphs, we say that an algorithm reconstructs the

graphs in the class if for every graph G ∈ G, the distance profile obtained from the queries

uniquely identifies G within G. The query complexity is the maximum number of queries

that the algorithm takes on an input graph from G. For a randomised algorithm, the query

complexity is defined by the maximum over all inputs of the expected number of queries

(with respect to the randomness in the algorithm).

The first observation about our oracle is that by querying the distance between every

pair (u, v) of vertices inG, we can fully reconstruct the edge set asE= {{u, v} | d(u, v)= 1}.
Proposition 2.1 (Folklore). The class of alln-vertex graphs can be reconstructed in

(
n
2

)
queries.

This implies a trivial upper bound of O(|V |2) on the query complexity. Unfortunately,

this upper bound is tight in general. For example, the clique Kn is indistinguishable from

Kn minus an edge {u, v}: every query answer is the same for both graphs, except for the

pair (u, v). Thus, any algorithm must make at least Ω(|V |2) queries to reconstruct these

graphs. This trivial upper bound happens to be tight even on sparse graphs such as trees.

For example, to distinguish between the two trees represented in Fig. 2.1 Θ(n2) queries are
needed).

Proposition 2.2 ([156]). Any algorithm reconstructing the class of all n-vertex trees uses

Ω(n2) queries.

Kannan, Mathieu, and Zhou [140, 108] showed that the core issue in both of the trivial

upper bounds mentioned above is, in fact, the presence of high-degree vertices. To establish

this result, they designed an efficient randomised algorithm capable of reconstructing all

connected graphs of bounded degree and, for the first time, proved a non-trivial complexity

upper bound for a large class of graphs. Note that the assumption of connectedness is also

natural, as the empty graph on n vertices requiresΩ(n2) to be distinguished from the graphs

containing one edge and n − 2 isolated vertices. For the rest of this chapter, unless stated

otherwise, we always assume graphs to be connected.

32

Figure 2.1: The two depicted trees are difficult to distinguish: only three pairs of distances

differ.

Theorem 2.3 ([140, 108]). There exists an algorithm reconstructing the class of connected

n-vertex graphs of maximum degree ∆ using O(∆4n3/2 polylog n) queries.

Despite active research in the last decade, [161, 25, 26, 126] the algorithm developed by

Kannan, Mathieu and Zhou remains the most efficient known solution to the problem of

reconstructing bounded degree graphs.

We will now give an overview of the proof of Theorem 2.3. Its main insight lies in clev-

erly translating a result from Thorup and Zwick about compact routing [177] into a distance

query algorithm. To understand this result, we need to define the following concept. The

Voronoi cell of s ∈ S ⊆ V (G) in a graph G is defined as:

VorG(s, S) = {u ∈ V (G) | dG(u, s) = dG(u, S)}.
In [177], Thorup and Zwick proved that for any r ∈ N an algorithm could efficiently

compute a set {s1, . . . , sr} ⊆ V (G) of centers such that the sizes of their Voronoi cells were

roughly balanced. Mathematically {s1, . . . , sr} satisfy, for every i ∈ [r], |VorG(si, S)| ⩽
n
r
∆ log n. Mathieu, Kannan and Zhou proved that Thorup’s algorithm can be implemented

efficiently using distance queries [140, 108].

Lemma 2.4 ([140, 108]). There exists a randomised algorithm R that takes as input a hidden

connected graphG on n-vertex and an integer r ∈ [n]. Let∆ denote the maximum degree ofG
then R outputs a set of centers S := {s1, . . . , sr} and the neighbourhood of their Voronoi cells
{N [VorG(si, S)] | i ∈ [r]}, satisfying

∀i ∈ [r], |VorG(si, S)| ⩽
n

r
∆ log n.

Moreover, R uses O(∆rn polylog n) queries w.h.p..

Theorem 2.3 is then easily derived from Lemma 2.4.

33

Proof of Theorem 2.3. First, execute Lemma 2.4with r= ⌈√n⌉, and recoverCi =N [VorG(si, S)]
for all i ∈ [r]. Note that for every edge uv ∈ E(G), there exists i ∈ [r] such that u, v ∈ Ci.

Therefore the naive algorithm which consists of, for all i ∈ [⌈√n⌉], querying all pairs of

elements in Ci (i.e. Query(Ci, Ci)), reconstructs G completely. Moreover,

|Ci| = |N [VorG(si, S)]| ⩽ (∆ + 1)|VorG(si, S)| ⩽ 2
n

r
∆2 log n ⩽ 2

√
n∆2 log n.

The query complexity of the algorithm is

⌈√n⌉
(
2
√
n∆2 log n

)2
+∆n3/2 polylog n = O(∆4n polylog n),

where the first term of the sum comes from askingQuery(Ci, Ci) for all i ∈ [⌈√n⌉] and the
second one corresponds to the execution of Lemma 2.4.

Around Theorem 2.3 To further improve upon the algorithm presented in Theorem 2.3,

it would be natural to consider a more subtle approach than the brute-force method in order

to reconstruct the edges in a given cell Ci. Certainly, a more sophisticated algorithm could

outperform the naive approach of askingQuery(Ci, Ci) to reconstruct the edges within Ci.

In this direction, Kannan, Mathieu and Zhou [108] conjectured the following:

Conjecture 2.5. For any ∆ ∈ N there exists an algorithm A that reconstructs the class of all

connected n-vertex graphs of maximum degree ∆ using O∆(n polylog n) queries w.h.p..

Unfortunately, more than ten years later, Theorem 2.3 remains the best-known algo-

rithm. One of the reasons for this is the difficulty of reconstructing each Voronoi cell in-

dependently. Surprisingly, it can be shown that if we restrict ourselves to querying only

pairs of vertices within Ci, the trivial upper bound of Θ(|Ci|2) queries is optimal up to a

polylogarithmic factor.

In order to formalise the previous statement, let us introduce the concept of partial or-

acles.

Definition 2.6. Given a graph G and a subset of the vertices X ⊆ V (G) the partial oracle
QueryG|X is the restriction of QueryG to the set X ×X .

The following theorem exhibits a class of graphs, and a given Voronoi cell X ⊆ V (G),
such that reconstructing X fromQueryG|X requires Θ(|X|2/ log2 |X|), this is a joint work
with Carla Groenland.

Theorem 2.7. For any n ∈ N, there exists a family of graphs G, all on the same vertex set

V := X ⊔ Y , and there exists x ∈ V and S ⊆ V satisfying the following properties, for any

G,G′ ∈ G:

34

• G has maximum degree 5,

• X = VorG(x, S),

• G[Y] = G′[Y],

• |V | = Θ(n2) and |X| = Θ(n log n).

Moreover, any randomised reconstruction algorithm using the partial oracle QueryG|X , taking

as input a graph G ∈ G, uses Ω(n2) queries to uniquely reconstruct G[X] in expectation.

Reconstructing k-chordal graphs Theorem 2.7 tells us that new insights are necessary

to break through the n3/2+o(1)) upper bound. In an attempt to develop new techniques for

reconstructing graphs from distance queries, researchers have sought to design efficient al-

gorithms that match the query complexity ofO(n polylog n) proposed in Conjecture 2.5 for

subclasses of graphs with bounded degree [108, 141, 161]. For example, Kannan, Mathieu,

and Zhou [108] designed a randomised algorithm for reconstructing the class of n-vertex
chordal graphs with maximum degree ∆, using O(4∆∆3n log2 n) queries with high prob-

ability. This randomised complexity was later improved by Rong, Li, Yang, and Wang to

O(∆2n log2 n) queries with high probability [161]. We present the first deterministic al-

gorithm for reconstructing graph classes. Applying our technique to chordal graphs with

maximum degree ∆ leads to the following result.

Theorem 2.8. There exists a deterministic algorithm to reconstruct the class of connected n-
vertex chordal graphs of maximum degree at most ∆ ⩽

√
log n using O(∆n log n) distance

queries.

Our technique allows us to design efficient algorithms for a more general class of graphs,

namely k-chordal graphs, graphs that exclude Cr as an induced subgraph for every r ⩾ k.

Theorem 2.9. There exists a deterministic algorithm to reconstruct the class of connected k-
chordal graphs of maximum degree at most ∆ on n vertices using O∆,k(n log n) queries.

In the more restricted class of bounded degree trees we obtain the following result.

Theorem 2.10. There exists a deterministic algorithm to reconstruct the class of trees of max-

imum degree at most ∆ on n vertices using ∆n log∆ n+ (∆ + 2)n queries.

We would like to mention here that, in the light of a lower bound result mentioned later

(see Theorem 2.14), the three results presented above have an optimal dependence onn, even
among randomised algorithms. Moreover, Theorem 2.10 also has an optimal dependence on

∆, and Theorem 2.8 is optimal up to a O(log∆)-factor.

35

By combining the intuition from the previous result with the techniques developed in

[108], we are able to prove the following result. The treelength of a graph is defined formally

in Section 2.2, intuitively, G has treelength k if every subgraph of G admits a
1
2
balanced

separator that is local (i.e. the maximum distance inG between two vertices of the separator

is k). In particular, k-chordal graphs have treelength at most k.

Theorem 2.11. For any ∆, n, k ⩾ 0, there exists a randomised algorithm that reconstructs

the class of connected n-vertex graphs of maximum degree at most∆ and treelength at most k
using O∆,k(n log

2 n) distance queries in expectation.

The proof of Theorem 2.11 is omitted from this manuscript, but can be find in [26].

Reconstructing random graphs Mathieu and Zhou [141] initiated the study of the com-

plexity of distance reconstruction on random graphs [126, 19, 172] by showing that ran-

dom∆-regular graphs (where∆ is a constant) can be reconstructed using only O(n log2 n)
queries in expectation. The algorithm they used is simple and natural, but the complexity

analysis requires a deep understanding of the structural properties of random ∆-regular

graphs. In [141], the authors mentioned that their algorithm could potentially lead to

O(n polylog n) query upper bounds in different randomised settings, including G(n, p) for
values of p close to the connectivity threshold.

Recently, Krivelevich and Zhukovskii [126] studied the query complexity of reconstruct-

ing G ∼ G(n, p) for large values of p ⩾ n−1+ε
and derived tight bounds for p outside of

some threshold points around which the diameter increases, explicitly: p = n− k
k+1

+o(1)
for

k ∈ N ∪ {∞}. In this range, they managed to pinpoint precisely the complexity to be

Θ(n4−dp2−d) queries with high probability, where d is the diameter of G. For these val-

ues of p, the diameter is known to be a fixed constant independent of n w.h.p.. They

also studied this problem in the case of a non-adaptive algorithm,
1
and proved a bound

of Θ(n4−dp2−d log n) queries outside of the diameter increase threshold points mentionned

above. The authors asked if their result could be further extended to values of p outside

of these threshold windows. In particular, the range around the connectivity threshold

p = Θ
(
logn
n

)
is outside of the scope of their proof. Independently from Krivelevich and

Zhukovskii [126], we studied the complexity of reconstructingG ∼ G(n, p), and proved the
following theorem.

Theorem 2.12. For any ε ⩾ 0, and every n ∈ N, for every 2000 logn
n

⩽ p ⩽ n− 1
2
−ε
, there exists

an algorithm that reconstructsG ∼ G(n, p) using O(∆2n log n) queries in expectation, where
∆ = (n− 1)p is the expected average degree of G.

1
an algorithm where queries can be seen as simultaneous and do not depend on each other’s answers.

36

Theorem 2.12 covers a large continuous range of values of p. Our result compares to

the result proved by Krivelevich and Zhukovskii [126]. When p is close to the thresh-

olds p = n− k
k+1

+o(1)
we obtain the same complexity, up to a no(1)

factor. However, Kriv-

elevich and Zhukovskii proved tighter bounds when p is away from this threshold and k
is a constant. In contrast to [126], Theorem 2.12 is designed to address very small values

of p, particularly those close to the connectivity threshold (around Θ(log n/n)). In this

regime, its query complexity is only a factor O(∆/ log log n) away from the lower bound

of Ω(∆n log n/ log log n), which can be derived by a result of Kannan, Mathieu, and Zhou

[108]. Therefore Theorem 2.12 applied to p ∈ [2000 logn
n

, log
2 n
n

] partially answers the ques-

tion of Krivelevich and Zhukovskii [126] regarding extending their bounds outside the range

p≫ log2 n/n. It also confirms the intuition of Mathieu and Zhou, mentioned in [141] that

their algorithm could potentially be applied to this range of p.

Corollary 2.13. For every n ∈ N, for p ∈ [2000 logn
n

, log
2 n
n

] there exists an algorithm that re-

constructs G ∼ G(n, p) using O(n log5 n) queries in expectation.

Lower bound Very few results are known about query complexity lower bounds. Prior

to the work we present now, the best lower bound for reconstructing bounded degree

graphs was proved in [107] using an information-theoretic argument. They showed that

Ω∆(n log n/ log log n) queries are needed to reconstruct n-vertex trees of maximum degree

∆. Let us consider∆= 10 to sketch the idea of the proof. We use that the class C of n-vertex
graphs of maximum degree 10 and diameter at most log n has size Ω(2n logn). For any algo-
rithm distinguishing graphs from C inN queries, no two distinct graphs from C can get the

same responses to the firstN queries. The diameter condition ensures that (for graphs in C)
every query answer is an element of {0, . . . , ⌊log n⌋} and therefore can be encoded using at

most log(log n + 1) bits. Concatenating the answers to the first N queries, and using that

the number of possible strings needs to be at least the number of graphs in the class, we

find 2N log(logn+1) = Ω(2n logn). This implies N = Ω(n log n/ log log n).
Improving on such an information-theoretic lower bound is often difficult. More gen-

erally, randomised query complexity is infamously difficult to pinpoint: for example, state-

of-the-art results are also far from tight bounds for the recursive majority function [85, 129,

134]. In the setting of the evasiveness conjecture, the oracle can answer adjacency queries

(“given u, v, is {u, v} ∈ E?”) instead of distance queries. It has been shown already in 1975

[157] that for any fixed non-trivial monotone graph property of the graph (such as “Does

G have a triangle”) any deterministic algorithm needs Θ(n2) on n-vertex graphs. At the

same time, the best randomised query lower bound Ω(n4/3(log n)1/3) from [46] is far from

the best upper bound of O(n2). Even seemingly simple questions such as estimating the

average degree of a graph using vertex degree queries requires new probabilistic tools to

37

achieve tight bounds [72, 84].

For n-vertex trees of maximum degree ∆, we achieve the correct dependency on n and

∆ for both the randomised and deterministic query complexity using distance queries.

Theorem 2.14. Let ∆ ⩾ 2 and n = 2c∆k
be integers, where c ∈ [1,∆) and k ⩾ 50(c ln c +

3) is an integer. Then, any randomised algorithm requires at least
1
50
∆n log∆ n queries in

expectation to reconstruct n-vertex trees of maximum degree ∆+ 1.

We give more details about this lower bound in Section 2.5, where we also prove a more

general statement that allows us to derive bounds not only for the distance reconstruction

model but also for many othermodels arising from phylogenetic reconstruction and beyond.

Note that, in Theorem 2.14, for any n ⩾ 2, there is a unique (c, k) ∈ [1,∆) × Z⩾0 with

n/2 = c∆k
thus the only assumption in our lower bound is that n is sufficiently large com-

pared to∆. Our result allows∆ to grow slowlywithn (e.g. ∆=O((log n)α)withα∈ (0, 1)).
Moreover, we allow ∆ to be larger for specific values of n (e.g. O(n1/150) for c = 1). We

made no attempt to optimise the constant.

As mentioned before, Theorem 2.14 ensures that Theorem 2.10 is optimal up to a O(1)
factor. It also ensures that Theorem 2.8 is optimal up to a factor O(log∆) and Theorem 2.9

is optimal up to a factor O∆,k(1). In particular, the asymptotic dependence on n is tight for

the three theorems.

Roadmap In Section 2.2 we set up our notations formally and give the relevant defini-

tions and tools used throughout the chapter. In Section 2.3, we present our method to design

new deterministic algorithms, proving Theorem 2.9 and Theorem 2.10, the proof of Theo-

rem 2.8 is omitted from this manuscript but can be found in [25]. In Section 2.4 we discuss

our upper bound on the query complexity in the binomial random graph setting, proving

Theorem 2.12. In Section 2.5, we prove the randomised lower bound stated in Theorem 2.14

and discuss the implication of this bound in the distance reconstruction model and beyond.

2.2 Preliminaries

This section aims to introduce the notation and terminology used in this chapter. We will

design and analyse algorithms from a structural and a probabilistic perspective. Therefore,

these preliminaries are divided into three parts. The first part introduces our notations for

the distance oracle. The second part defines the class of graphs which is the main focus of

our algorithms, while the third part discusses the probabilistic notions useful to this chapter.

38

Query complexity In reconstruction problems, an unknown combinatorial object can

only be accessed through a restricted oracle. The goal is to determine properties of the

object or even identify it completely using an efficient algorithm. Unlike traditional algo-

rithms, where efficiency is typically measured by the number of basic instructions executed,

reconstruction algorithms assume that computation is cheap while queries to the oracle are

expensive, aligning with most real-world applications. Consequently, instead of computa-

tional cost, we focus on the query complexity, which is defined as the number of queries

made to the oracle. Similar to traditional complexity measures, we define the query com-

plexity of a deterministic algorithm as the maximum number of queries it makes over all

possible hidden graphs G.

Distance reconstruction We recall the notation we use for our oracle in this chapter. We

denote byQueryG(u, v) the query to the oracle that answers the shortest distance between
the vertices u and v inG. We also slightly abuse notation and denote byQueryG(A,B) the

set of queries {QueryG(a, b) | (a, b) ∈A×B} and for F ⊆
(
V (G)
2

)
,Query(F) denote the set

of queries {Query(u, v)|{u, v} ∈ F}. We denote by dG the distance function of the graph

G.

Tree decompositions and chordal graphs A tree decomposition of a graph G is a tuple

(T, (Bt)t∈V (T)) where T is a tree and Bt is a subset of V (G) for every t ∈ V (T), for which
the following conditions hold.

• For every v ∈ V (G), the set of t ∈ V (T) such that v ∈ Bt, is non-empty and induces

a subtree of T .

• For every uv ∈ E(G), there exists a t ∈ V (T) such that {u, v} ⊆ Bt.

This notion was introduced by [158], and we say that a tree decomposition is trivial if T has

a unique vertex.

The treelength of a graph G (denoted tl(G)) is the minimal integer k for which there

exists a tree decomposition (T, (Bt)t∈V (T)) of G such that dG(u, v) ⩽ k for every pair of

vertices u, v that share a bag (i.e. u, v ∈ Bt for some t ∈ V (T)). We refer the reader to [65]

for a detailed overview of the class of bounded treelength graphs.

Tree decompositions are linked with the notion of balanced separator. For β ∈ (0, 1), a
β-balanced separator of a graphG= (V,E) for a vertex setA⊆ V is a set S of vertices such

that the connected components of G[A \ S] are of size at most β|A|.

Theorem 2.15. [158] For any graphG and any non trivial tree decomposition (T, (Bt)t∈V (T))
of G, there exist and edge e := tt′ ∈ E(T) such that, Bt ∩Bt′ is a

1
2
-balanced separator of G.

39

In this chapter, we will be studying chordal graphs. This class of graphs has multiple

equivalent definitions. One definition states that a graph G is chordal if it is maximal for

some tree decomposition (T, (Bt)t∈V (T)) (i.e. all edges authorised by (T, (Bt)t∈V (T)) are
present: for all t ∈ T , ∀u, v ∈ Bt with u ̸= v we have uv ∈ E(G)). Alternatively, chordal
graphs can be more simply defined as the class of graphs that excludes C4,. . . ,Ck for any

k ⩾ 3 as an induced subgraph. This second definition admits a natural generalisation.

Definition 2.16. For any k ∈ N, a graph G is said to be k-chordal if it excludes Cℓ as an

induced subgraph for every ℓ ⩾ k.

The class of k-chordal graphs has been extensively studied from a structural point of

view. In particular, the following structural result will prove useful throughout the chapter.

Lemma 2.17 ([123]). For any k ∈ N, any k-chordal graph has treelength at most k.

Random graphs For n ∈ N and p ∈ [0, 1], we denote by Bin(n, p) the binomial distribu-

tion of parameter n and p and by B(p) the Bernoulli distribution of parameter p. We denote

by G(n, p) the Erdős-Réniy model, that is, a random distribution over graphs on the vertex

set [n] where each edge is present independently of each other with probability p. The fol-
lowing results are standard, and the reader is invited to learn more about random graphs in

[37].

Lemma 2.18. For every n ∈ N, for p ⩾ 2000 logn
n

, letG ∼ G(n, p). Then, G has max degree at

most
3
2
p(n− 1) and min degree at least

1
2
p(n− 1) with probability 1− o(n−1).

Proof. Fix a vertex u ∈ V (G), the degree of u is the sum of the independent {0, 1} variables
(Xv)v∈V (G)\{u} defined by Xv = 1 if and only if uv ∈ E(G). Note that Xv ∼ B(p) for all v.
We apply Chernoff’s bound with δ = 1

2
and µ = p(n− 1).

P

∣∣∣∣∣∣
∑

v∈V (G)\{u}

Xv − p(n− 1)

∣∣∣∣∣∣ ⩾ 1

2
p(n− 1)

 ⩽ 2e−p(n−1)/12 = o(n−2),

where the last inequality comes from p ⩾ 2000 log n/n. It now suffices to take a union

bound over all vertices to conclude.

Lemma 2.19. For n ∈ N, for any ∆ > 0, any p ⩽ 1
n∆

and G ∼ G(n, p), the number of non-

isolated vertices in G is at most 4n/∆ with probability at least 1− 2e−n/(3∆)
.

Proof. LetXp denote the randomvariable counting the number of isolated vertices inG(n, p).
Note that X 1

n∆
stochastically dominates Xp for p ⩽ 1

n∆
(i.e for any x ∈ R, P[X 1

n∆
⩾ x] ⩾

P[Xp ⩾ x]). Therefore we will only focus on p = 1
n∆

for the sake of this proof.

40

Note that an edge in G creates at most two non-isolated vertices, therefore the number

of non-isolated is at most twice the number of edges of G. Moreover we have E[|E(G)|] =
p
(
n
2

)
⩽ n2

. We bound the number of edges of G using Chernoff’s bound (Lemma 0.1) with

δ = 1 and µ = p
(
n
2

)
.

P
(
||E(G)| − µ| ⩾ n

∆

)
⩽ e−

n
3∆

which, using the remark above, directly implies the lemma statement.

2.3 Fromreconstructing trees to reconstructing k-chordal
graphs

This section presents deterministic algorithms for reconstructing classes of graphs. We will

first present, in Section 2.3.1, an algorithm that reconstruct the class of bounded degree

trees, as it encapsulates most of the algorithmic ideas developed in this section, while being

fairly simple. In Section 2.3.2 we generalise the techniques used for trees to a much larger

class of graphs, namely k-chordal graphs.
In this section Nk

G(u) (resp. N
⩽k
G (u)) denote the set of vertices at distance exactly k

(resp. at most k) from u ∈ V (G). We omit the subscript G when G is clear from context.

2.3.1 Distance reconstruction for trees
Theorem 2.10 ([25]). There exists a deterministic algorithm to reconstruct the class of trees

of maximum degree at most ∆ on n vertices using ∆n log∆ n+ (∆ + 2)n queries.

Proof. Let T be a tree on n vertices, and let∆ be the maximum degree of T . Our algorithm
starts as follows. We pick an arbitrary vertex v0 ∈ V (T) and will consider (for the analysis)
the input tree T as rooted in v0. We call Query(v0, V (T)). We define the ith layer of T as

Li = {v ∈ V (T) | d(v0, v) = i}. We proceed to reconstruct the graph induced by the first i
layers by induction on i.

Note that T [L0] = ({v0}, ∅) is immediately reconstructed. We fix an integer i ⩾ 1 and

assume that the first i− 1 layers are fully reconstructed (i.e we discovered all the edges and
non-edges of T [L0 ∪ · · · ∪ Li−1]). Let T

′ = T [L0 ∪ · · · ∪ Li−1] be the already reconstructed

subtree. We show how to reconstruct the edges between the (i − 1)th layer and the ith

layer. Note that this suffices to reconstructs all the edges (since in a tree, edges can only be

between consecutive layers).

Choose an arbitrary vertex v ∈ Li. We first show that we can find the parent of v in Li−1

using O(∆ log n) queries and then describe how to shave off an additional (log∆)-factor.

41

The procedure goes as follows. Let T1 = T ′
. As T is a tree, it admits a

1
2
-balanced

separator of size 1. Let s1 be a vertex for which {s1} forms such a separator. We ask first

Query(v,N [s1]), where the neighbourhood is taken in T1. As T is a tree, there is a unique

path between any two vertices. So for w ∈ N(s1), the distance d(v, w) = d(v, s1) − 1 if w
lies on the shortest path from v to s1 and d(v, s1) + 1 otherwise. From this, we can infer

the neighbour x of s1 that is the closest to v as the one for which the answer is smallest (or

find that s1 is adjacent to v and finish). Moreover, the unique path from s1 to v lives in the

connected component T2 of T1 \ {s1} that contains x. In particular, T2 contains the parent
of v (see Fig. 2.2).

v0

x
s1

T ′

T2

v

Figure 2.2: The subtree T2 contains the neighbour of v on a shortest path to s1 and so

contains the parent of v.

We can repeat this process and construct two sequences (Tj)j∈N and (sj)j∈N, where Tj+1

is the connected component of Tj \{sj} containing the parent of v and sj ∈ V (Tj) is chosen
so that {sj} is a

1
2
-balanced separator of Tj . Once Tℓ contains less than ∆ + 1 vertices for

some ℓ or the vertex sℓ is identified as the parent of v, we finish the process
2
. By definition

of
1
2
-balanced separator,

∀j ∈ [ℓ− 1], |Tj+1| ⩽ |Tj|/2 and thus ℓ ⩽ log n.

If the process finished because Tℓ has at most∆ vertices, we use at most∆ additional queries

via Query(Tℓ, v). We infer the parent of v from the result. For each j ⩽ ℓ, we use at most

∆+ 1 queries to reconstruct Tj+1 from Tj . Hence we use O(∆ log n) queries in total.

Taking a closer look at the process, at any step j, we can choose the order on the queries

Query(v, w) for w ∈ N(sj) and may not need to perform all the queries. Given a subtree S
of T ′

on s⩾ 1 vertices that contains the parent of v, we now show how to find the parent of v

2
If desired, we may define Tj = Tℓ and sj = sℓ for all j ⩾ ℓ.

42

in f(s) =∆ log∆ s+∆+1 queries (giving the desired improvement of a (log∆)-factor). If S
has at most∆+1 vertices, we may simplyQuery(v, S) and deduce the answer. Otherwise,
let s ∈ S be a

1
2
-balanced separator for S. This has at least two neighbours since S has at

least ∆ + 1 vertices. We order the connected components of S \ {s} by decreasing size,

and ask the queries in the same order: we start with Query(v, w1) for w1 the neighbour of

s which is in the largest component, then proceed to the neighbour of the second largest

component etcetera. We terminate when we find two different distances or queried all the

neighbours. In particular, we never performQuery(v, s).

• If d(v, w) for w ∈ N(s) are all the same then s is the parent of v. We terminate and

recognise s as the parent of v. We used at most ∆ ⩽ f(s) queries.

• If we discover that d(v, w) < d(v, w′) for some w,w′ ∈ N(s), then s is not the parent
of v. In fact, w is the vertex from N [s] closest to v and we recursively perform the

same procedure to the subtree S ′
of S\{s} that containsw. Note that S ′

must contain

the parent of v.

If we query 2 neighbours of s before detecting the component containing the parent of v,
our next subtree S ′

satisfies |S ′| ⩽ |S|/2 since {s} is a balanced separator. If we query

m ⩾ 3 neighbours of s before detecting the component containing the parent of v, our next
subtree S ′

satisfies |S ′| ⩽ |S|/m since there are m − 1 components of S \ {s} that are at

least as large. Either way, we decrease the size of the tree by a factor at least x if we perform
x queries, where x ∈ {2, . . . ,∆}.

We show by induction on s that the procedure described above uses at most f(s) =
∆ log∆ s + ∆ + 1 queries. The claim is true when s ⩽ ∆ + 1. By the discussion above,

for s ⩾ ∆ + 2, the process either finishes in ∆ queries or uses x + f(s′) queries for some

s′ ⩽ s/x and x ∈ {2, . . . ,∆}. It thus suffices to show that

f(s/x) + x ⩽ f(s) for all x ∈ {2, . . . ,∆}.

By definition, f(s)− f(s/x) = ∆ log∆ x. We show that ∆ log∆ x ⩾ x for all x ∈ [2,∆]. By
analysing the derivative of ∆ log∆ x − x on the (real) interval x ∈ [2,∆], we find that the

minimum is achieved at x = ∆, as desired.

With the improved procedure, we can reconstruct the edge from Lj−1 to v in at most

∆ log∆ n + ∆ + 1 queries. Repeating the same strategy to reconstruct the parent of every

vertex, we obtain the edge set of T in at most

(n− 1) + (n− 1)(∆ log∆ n+ (∆ + 1)) ⩽ ∆n log∆ n+ (∆ + 2)n

queries.

43

Note that even though we will show in Section 2.5 that we cannot achieve a better de-

pendency in (n,∆) using randomisation, we can improve the average query complexity by

almost a factor of 2.

Theorem 2.20. For any ∆ ⩾ 4, there exists a randomised algorithm for reconstructing n-
vertex trees of maximum degree at most∆ using

(
1
2
∆/ log(∆)

)
n log2 n+ (∆+ 2+ log2 n)n

queries in expectation.

Proof. The algorithm works similarly to the algorithm from Theorem 2.10. We define the

same layers and inductively reconstruct the graph induced on the first i layers. We find the

parent of a vertex v ∈ Li via a similar sequence of separators s1, . . . , sj and trees T1 ⊇ T2 ⊇
· · · ⊇ Tj . The key difference is that when we wish to learn the vertex in N [sj] closest to v,
then we performQuery(v, w) for w ∈ N [sj] in an order that is chosen at random. Suppose

that |Tj| = b.

Claim 2.21. Let T be a tree and let t ∈ V (T). Let a1, . . . , ak be the sizes of the components

of T \ {t} and let v1, . . . , vk denote the neighbours of sj in these components. There is a

random order on v1, . . . , vk such that the expected number of vertices placed before vi is at
most

1
2

1
ai

∑k
j=1 aj for all i ∈ [k].

Proof. We generate the order by independently samplingXi ∼U [0, ai] uniformly at random

for all i ∈ [k], where [0, ai] denotes the set of real numbers between 0 and ai. Almost surely,

Xπ(1) > · · · >Xπ(k) for some permutation π on the support [k] and this gives us our desired
random order.

We prove that the expected number of vertices placed before v1 is at most
1
2
a2+···+ak

a1
and

then the remaining cases will follow by symmetry. Let I(x1) denote the number of vertices

placed before v1 given that X1 = x1, i.e. the number of i ∈ {2, . . . , k} such that Xi > x1:

I(x1) =
k∑

i=2

Bern

(
max

(
ai − x1
ai

, 0

))
.

A Bernoulli random variable with probability p has expectation p. The expected number of

vertices placed before v1 is hence

1

a1

∫ a1

0

E[I(x1)]dx1 =
k∑

i=2

1

a1

∫
min(a1,ai)

0

1− x1
ai
dx1.

We now show for all i ∈ [2, k] that the ith summand is at most
1
2
ai
a1
, which implies that the

number of vertices placed before v1 is indeed at most
1
2
a2+···+ak

a1
. We compute

1

a1

∫
min(a1,ai)

0

1− x1
ai
dx1 =

min(a1, ai)

a1

(
1− min(a1, ai)

2ai

)
.

44

When ai ⩽ a1, the expression simplifies to
ai
a1

1
2
as desired. When ai ⩾ a1, the expression

simplifies to 1− 1
2
a1
ai

which is at most
1
2
ai
a1

since

a1ai ⩽
1

2
a2i +

1

2
a21.

By the claim, if the parent of v is in a component Tj+1 of Tj −sj of size a, then we query

at most
1
2
(b − a)/a vertices in expectation before we query the neighbour of sj in Tj+1.

This means that for a size reduction of x = b/a, we perform approximately
1
2
x queries in

expectation, compared to x in our deterministic algorithm. Using linearity of expectation,

we will repeat a similar calculation to the one done in the proof of Theorem 2.10.

We show that we reconstruct the edge to the parent of v using at most
1
2
∆ log∆ n +

∆ + 1 + log2 n queries in expectation. We show that once we have identified a subtree Tj
containing the parent of v with |Tj| = b, we use at most ∆ log∆ b+∆+ 1 + log2 b queries
in expectation to find the parent of v. Let sj be a 1/2-balanced separator of Tj . The first

base case is given when sj is the parent of v: in this case we perform at most∆ queries (all

neighbours of sj) and find that sj is the parent. The second base case is when |Tj| = ∆+1,
in which case we query all distances between v and Tj and identify the parent of v.

We now assume that b⩾∆+2 and that the parent of v is in a component Tj+1 of Tj \sj .
Let a = |Tj+1|. By the claim, we query at most

1
2
(b − a)/a vertices in expectation before

we query the neighbour w of sj in Tj+1. We still need to query the distance from v to w.
If w is the first vertex to be queried, then we need to query one more vertex. Since sj is a
1/2-balanced separator, this happens with probability at most 1/2. So after at most

1
2
b
a
+1 in

expectation we find the neighbour of v is in Tj+1 after which by induction we need another

1
2
∆ log∆ a+∆+ 1 + log2 a queries in expectation. In total we use at most

1

2

b

a
+ 1 +

1

2
∆ log∆ a+∆+ 1 + log2 a

in expectation. We find that
b
a
+ ∆ log∆ a ⩽ ∆ log∆ b for all ∆ ⩾ 4 (same calculation as

before) and log2 a+1 ⩽ log2 b since a ⩽ b/2. So we used at most∆ log∆ b+∆+1+ log2 b
queries in expectation, as claimed.

2.3.2 Distance reconstruction for k-chordal graphs

In this subsection we extend the algorithm presented above in Theorem 2.10 from trees to k-
chordal graphs: graphs without induced cycles of length at least k+1. In the simpler case of

(3-)chordal graphs, (randomised) reconstruction from a quasi-linear number of queries was

already known to be possible [108]. Besides extending the class of graphs, our algorithm

45

shaves off a (log n)-factor and is now optimal in n (the number of vertices of the input

graph).

The core of the proof uses the same principles as for trees in Section 2.3.1: we recon-

struct the edges of a vertex u to the previous layer, layer-by-layer and vertex-by-vertex. The
two important ingredients are (1) a structural result on the neighbourhood of a vertex (see

Claim 2.22) and (2) the existence of “nice” balanced separators on the already reconstructed

subgraph (see Claim 2.23). After removing the separator, we need to show that we can cor-

rectly determine the component that contains the neighbourhood of the vertex u that we

are currently considering. We also need to reconstruct the edges within the layer, but this

turns out to be relatively easy.

Theorem2.9 ([25]). There exists a deterministic algorithm to reconstruct the class of connected

k-chordal graphs of maximum degree at most ∆ on n vertices using O∆,k(n log n) queries.

Proof. We start by fixing a vertex v0 and askingQuery(V (G), v0). From that, we reconstruct

Li = {v ∈ V (G) | d(v, v0) = i}. We write L▷◁i = ∪j▷◁iLj for any relation ▷◁∈ {⩽, <,>,⩾}.
The algorithm proceeds by iteratively reconstructing G[L⩽i] for increasing values of i.

Note that we can reconstruct L⩽2∆k, the vertices at distance at most 2∆k from v0, using
Ok,∆(n) queries.

Suppose that we reconstructedG1 := G[L⩽i−1] for some i ⩾ 2∆k and we again want to

reconstruct the two edge sets

Ei−1,i = {uv ∈ E | u ∈ Li−1, v ∈ Li}

and

Ei,i = {uv ∈ E | u, v ∈ Li}.
We callH1 =G[L⩽i−1−k] the core ofG1. We need a lemma that implies that neighbourhoods

are not spread out too much in G1.

Claim 2.22. For all u ∈ Li and v, w ∈ N(u) ∩ Li−1, dG1(v, w) ⩽ ∆k.

Proof. Let v, w∈N(u)∩Li−1 and letP be a shortest vw-path inG1. IfV (P)∩N(u)= {v, w},
then the vertex set V (P)∪{u} induces a cycle inG, and so |V (P)|⩽ k (else the k-chordality
would be contradicted). For the same reason, P can have at most k− 1 consecutive vertices
outside of N(u). Since u has at most ∆ neighbours, it follows that dG1(v, w) ⩽ ∆k.

Since G has treelength at most k, it has a tree decomposition (T ′,B′) such that all bags

B′ ∈ B′
satisfy dG(u, v)⩽ k for all u, v ∈B′

. In particular the bags have size at most∆k+1.
We have already reconstructed G1, so in particular we know N⩽k[v] for all v ∈ H1.

Therefore, we can construct a tree decomposition of (T,B) of G1 such that each B ∈ B has

46

size at most∆k + 1 and for any bag B ∈ B that contains at least one vertex of the coreH1,

we have dG1(u, v) ⩽ k for all u, v ∈ B.

Fix u ∈ Li. We describe an algorithm to reconstruct N(u) ∩ Li−1. The algorithm re-

cursively constructs a sequence of connected graphs (Gj)
ℓ
j=0 and a sequence of separators

(Sj)
ℓ
j=1 for some ℓ ⩽ ⌈log(n)⌉, such that Sj is a

1
2
-balanced separator ofGj , Sj ⊆ L⩽i−∆k−1

and N(u) ∩ Li−1 ⊆ V (Gj).
We first prove the following claim that we use to find our sequence of separators (Sj).

Claim 2.23. For n large enough compared to∆ and k and any set of verticesA⊆ V (G1) with
|A| ⩾ log n, there exists a bag B of T such that B is a

1
2
-balanced separator of A and B is

contained in L⩽i−∆k−1.

Proof. Let T be rooted in a bag that contains v0. By Theorem 2.15, there is a bagB of T that

forms a
1
2
-balanced separator for A (i.e. all connected components of G1[A \ B] are of size

at most |A|/2). We choose such a bag B of minimum depth (in T). We need to show B is

contained in L⩽i−∆k−1.

If B contains v0, then B ⊆ G[L⩽k]. Since i ⩾ 2∆k, we are done in this case.

Suppose now that v0 /∈ B and let B′
be the parent of B. By definition, B′

is not a
1
2
-

balanced separator of A. If B contains a vertex of L⩽i−1−k = V (H1), then its diameter in

G1 is at most k. So eitherB ⊆ L⩽i−∆k−1 orB ⊆ L>i−(∆+1)k−1. We are done in the first case,

so assume the latter. SinceG1 is connected, B∩B′ ̸= ∅. The same diameter argument gives

that B′ ⊆ L>i−(∆+2)k−1. If C is a component of G1 \ B′
that does not contain v0, then the

shortest path (of length at most i) from any v ∈ C must go through B′
(at distance at least

i−(∆+2)k−1 from v0). In particular, all such components are contained inN ((∆+2)k+1)(B′)
and so the total size is at most ∆(∆+2)k+1|B′| = Ok,∆(1). For n sufficiently large, this is at

most
1
2
log n.

On the other hand, as B′
is not a

1
2
-balanced separator, there exist a component A′

of

G1[A \ B′] with |A′| > 1
2
log n. We found above that A′

must contain v0. Since B does

not contain v0, A
′
is contained in the component of G1[A \ B] containing v0. This yields a

contradiction with the fact that B is a
1
2
-balanced separator of A.

Suppose that we have definedGj for some j ⩾ 1 and let us describe how to defineGj+1.

If |Gj| ⩽ log n, we ask Query(u, V (Gj)) and output N(u) ∩ V (Gj). Otherwise, we let Sj

be the bag found in Claim 2.23 when applied to A = V (Gj). Then Sj ⊆ L⩽i−∆k−1 and it is

a
1
2
-balanced separator of Gj . Since it is a bag of T and contained in H1, we find the size

of the bag is at most ∆k + 1 and dG1(u, v) ⩽ k for all u, v ∈ Sj . We ask Query(N [Sj], u)
and letGj+1 be a component ofGj \Sj that contains a vertex from arg minx∈N [Sj] dG(x, u).
Then, we increase j by one and repeat the same procedure.

We now prove the correctness of the algorithm presented above.

47

N(u)

L<i−k

L⩾i−k

u

H

Sj

Hx

L⩾i

y

x

xk

x1
x2

P ′′

P ′ P

Figure 2.3: This figure depicts a possible configuration in the proof of Claim 2.24 for which

we end up with a contradiction by finding a large induced cycle.

.

We first argue thatN(u)∩Li−1 is contained in a unique connected component ofGj\Sj .

Since every separator is included in L⩽i−∆k−1, we find dG1(u, Sℓ) ⩾∆k+1 for all ℓ ⩽ j. By
Claim 2.22, all vertices in N(u) ∩ Li−1 are connected via paths in G1 of length at most ∆k
and by the observation above, these paths avoid all separators so will be present in a single

connected component of Gj \ Sj . The only thing left to prove is the following claim.

Claim 2.24. Gj+1 is the component that contains N(u) ∩ Li−1.

Proof. Let x∈N [Sj] such that dG(x, u) is minimised and letHx be the connected component

of x. We will prove thatHx containsN(u)∩Li−1. In particular, this implies thatGj+1 =Hx

(a priori, Gj+1 could be a different component for another minimiser than x), so that Gj+1

contains N(u) ∩ Li−1, as desired.

Suppose towards a contradiction that N(u) ∩ Li−1 is instead contained in a different

connected component H . We will find an induced cycle of length at least k + 1.

Let P be a shortest path in G from x to u.

48

Let P ′
be a path from u to Sj with all internal vertices inH . Such a path exists since Gj

is connected.

Let P ′′
be a shortest path in G between a neighbour of x in Sj to the endpoint of P ′

in

Sj . As Sj is a bag contained in H1, any two vertices in Sj are within distance k in G1. So

P ′′ ⊆ L⩽i−2k−2 (we may assume ∆ ⩾ 4).
Let y be the first vertex on the path P (from x to u) that lies in Li (such a vertex must

exist since the path does not have internal vertices in Sj by choice of x and sinceHx contains

no neighbours of u).
Let x1, . . . , xk be the k vertices before y in P . Note that none of the xi can be adjacent

to or part of P ′ ∪ P ′′
(since they are in Hx ∩ L⩾i−k). Let G

′
be the graph obtained from

G[P ∪ P ′′ ∪ P ′] by contracting P ′′ ∪ P ′ ∪ (P \ {x1, . . . , xk}) to a single vertex p. Note
that the selected vertex set is indeed connected and that the resulting graph has vertex set

{x1, . . . , xk, p}. Since P was a shortest path in G, the vertex set {x1, . . . , xk} still induces

a path and it suffices to argue about the adjacencies of p. Via edges of P , the vertex p is

adjacent to x1 and xk. If p was adjacent to xi for some i ∈ [2, k − 1], then there must be a

vertex y ∈ P ′′ ∪P ′ ∪ (P \ {x1, . . . , xk}) adjacent to xi. But a case analysis shows this is not
possible. (The only vertices adjacent to xi in P are xi+1 and xi−1 since P is a shortest path;

we already argued that y ̸∈ P ′ ∪ P ′′
.) We hence found an induced cycle of length k + 1, a

contradiction.

We now show how to reconstruct all edges in Ei,i incident to u.

Claim 2.25. If x∈N(u)∩Li−1 and y ∈N(v)∩Li−1 for some uv ∈Ei,i, then dG[L⩽i−1](x, y)⩽
2∆k.

Proof. Since |N [{u, v}]|⩽ 2∆, it suffices to prove that dG1(x, y)⩽ k when the shortest path
P in G1 between x and y avoids other vertices from N [{u, v}]. As we argued in Claim 2.22

this is true when x or y is a neighbour of both u and v (else we create an induced cycle of

length at least k + 1). So we may assume that x ∈ N(u) \N(v) and y ∈ N(v) \N(u). But
now P ∪ {u, v} is an induced cycle of length at least k + 1.

Let G′
1 be the graph obtained from G1 by adding the vertices in Li and the edges in

Ei,i−1. Our algorithm already reconstructed G′
1. If uv ∈ Ei,i, then applying Claim 2.25 to

vertices x, y ∈ Li−1 on the shortest paths from u, v to the root v0 respectively, we find that

dG′
1
(u, v) ⩽ 2∆k + 2. For each u ∈ Li, we ask Query(u,N⩽2∆k+2

G′
1

(u) ∩ Li) and we record

the vertices v for which the response is 1. Those are exactly the vertices adjacent to u. Per
vertex u ∈ Li, this takes at most ∆2∆k+3

queries.

The query complexity of reconstructing Ei−1,i is Ok,∆(log n|Li|) as there are at most

log n iterations (using the fact that the (Sj)j are
1
2
-balanced separators) and in each iter-

ation we do Ok,∆(log n) queries per vertex u ∈ Li. In order to reconstruct Ei,i, we use

49

Ok,∆(1) queries per vertex of Li. Therefore, the total query complexity of the algorithm is∑
iOk,∆(|Li| log n) = Ok,∆(n log n).

Using a similar technique while putting in additional effort to optimised the dependency

on ∆ in the case of (3-)chordal graphs, we obtain an algorithm tight up to a O(log∆) fac-
tor. We omit the proof here, as it is similar to the proof of Theorem 2.9, but invovles a

considerable amount of technical details.

Theorem2.8 ([25]). There exists a deterministic algorithm to reconstruct the class of connected

n-vertex chordal graphs of maximum degree at most∆ ⩽
√
log n using O(∆n log n) distance

queries.

2.4 Reconstruction in G(n, p)

We will now focus on reconstructing G ∼ G(n, p) for 2000 logn
n

⩽ p ⩽ n− 1
2
−ε
. Note that in

this setting the average degree ofG, often denoted∆ in this chapter, is equal to (1+o(1))np
with high probability.

Theorem 2.12 ([19]). For any ε ⩾ 0, and every n ∈ N, for every 2000 logn
n

⩽ p ⩽ n− 1
2
−ε
, there

exists an algorithm that reconstructs G ∼ G(n, p) using O(∆2n log n) queries in expectation,

where ∆ = (n− 1)p is the expected average degree of G.

Before proving Theorem 2.12, let us desrcibe here the algorithm we employ, introduced

by Mathieu and Zhou [141] and also used in [126]. Similar to previous works, the correct-

ness of the algorithm is straightforward, with the main challenges lying in its complexity

analysis.

A simple algorihtm Consider a random set S ⊆ V (G) of fixed size |S| = s. First, the
algorithm asks Query(S, V (G)). From these queries, it computes the pseudo-edges of G
define as

Ẽ := {{u, v} ⊆ V (G) | ∀s ∈ S, |d(s, u)− d(s, v)| ⩽ 1}.

The algorithm asks Query(Ẽ) and finishes. Note that this algorithm always completely

reconstructs the graph. If there exists s such that |d(s, u) − d(s, v)| ⩾ 2 then uv /∈ E(G),
therefore Ẽ is a superset ofE(G). The number of queries asked is atmostns+|Ẽ|. Therefore
the challenge in proving precise upper bounds lies in showing that even for small values of

s, |Ẽ| does not become excessively large.

50

Discussion This algorithm is extremely simple and natural, similarly to previous works,

the correctness of the algorithm is straightforward, with the main challenges lying in its

complexity analysis. Theorem 2.12 was found independently from [126], the primary novel

aspect, compared to [126], is deriving bounds even for very sparse graphs where the di-

ameter grows with n and p ⩽ log2 n/n. This requires a detailed study of the interactions

within the k-neighbourhoods of non-adjacent vertices. More specifically, given two vertices

u, v ∈ V (G), and an integer k, we derive precise bounds for the number of vertices in the

set {x ∈ V (G) | d(u, x) = k ∧ d(v, x) ∈ [k, k + 1]}. Our method might also be applica-

ble for establishing bounds for other types of distance profiles between pairs of vertices.

That is, given two vertices u, v and two distances i and j, computing tight bounds on the

distribution of vertices satisfying {x | d(u, x) = i ∧ d(v, x) = j}.

2.4.1 Proof of Theorem 2.12
From now on, and for the rest of the subsection let us set

2000 logn
n

⩽ p ⩽ n−1/2−ε
. We

consider G ∼ G(n, p). Let ∆ = p(n− 1). Note that ∆ is the expected average degree in G.
A key notion for the proof is vertices that are called witnesses defined below. Intuitively, a

witness x of a non-edge uv /∈ E(G) is a vertex such that the answers toQuery({x}, {u, v})
are enough to conclude that uv /∈ E(G).

Definition 2.26. We say that s ∈ V (G) is a witness of the non-edge uv /∈ E(G) if |d(s, u)−
d(s, v)| ⩾ 2. We denoteWuv the set of witnesses of the non-edge uv.

Let us first prove the following key lemma, stating that almost all pairs of vertices have

a large number of witnesses.

Lemma 2.27 (Main Lemma). The set E = {uv /∈ E(G) | |Wuv| ⩾ n
257∆2} has size at least(

n
2

)
−O(n∆2) with probability 1− o(n−1).

Proof. Since we aim to prove the statement with a probability of 1− o(n−1), we can apply

a union bound to a constant number of events, each having a probability of 1 − o(n−1).
For example, we will assume deterministic conditioning on the fact that Lemma 2.18 holds.

We will also use similar reasoning throughout the proof, in which case, we will say that we

assume that an event (here Lemma 2.18) holds deterministically. We first make the following

easy claim:

Claim 2.28. There are at most
9
4
n∆2

pairs of vertices u, v ∈ V (G) satisfying d(u, v)⩽ 2 with
probability 1− o(n−1).

Proof. For a fixed u ∈ V (G), from Lemma 2.18, |N2(u)| ⩽
(
3
2
∆
)2

= 9
4
∆2

. The claim follows

from double counting.

51

Intuitively, such pairs of vertices are too close and therefore may have plenty of non-

witnesses, but Claim 2.28 ensures that there are O(n∆2) such pairs, therefore, we can as-

sume that none of these pairs is in E , and focus on proving that the set {uv /∈ E(G) |
d(u, v) ⩾ 3 ∧ |Wuv| ⩾ n

257∆2} ⊆ E is large enough. We will in fact prove {uv /∈ E(G) |
d(u, v) ⩾ 3} ⊆ E with probability 1− o(n−1).

To do so, we consider a uniformly chosen pair of vertices uv ∈
(
V (G)
2

)
and we prove that

either d(u, v) ⩽ 2 or |Wuv| ⩾ (1/2− o(1))n/∆2
with probability 1− o(n−3). Let us denote

by Nk(u, v) the combined k-neighbourhood of u and v,

Nk(u, v) = {x ∈ V (G) | min(d(u, x), d(v, x)) = k}.

Our approach sequentially reveals edges of G by spheres of increasing radius around u and

v. By that, we mean that we first reveal the edges from {u, v} toN(u, v) then fromN(u, v)
to their neighbors outside of {u, v}, . . . until we reveal all the edges. Therefore, at step k, we
reveal the edges xywhere x∈Nk(u, v) and y ∈Nk+1(u, v), but also the edges xywhere both
x and y are in Nk(u, v). This sequential procedure is equivalent to sampling G ∼ G(n, p),
but simplifies studying the evolution of the structure of Nk(u, v) when k grows. We define

a partition of Nk(u, v) into two sets Ak and Bk. Intuitively, Ak will contain a high density

of witnesses of the pair u, v. On the contrary, we will add to Bk any vertex that could

potentially be a non-witness of uv. We will define Bk as the union of three subsets, Bk
1 ,Bk

2

and Bk
3 , represented in Fig. 2.4. We give a formal definition of each subset below, and then

of Ak and Bk, as well as a short informal explanation of why vertices in these parts could

be non-witnesses:

• Bk
1 = N(Bk−1): Suppose x ∈ Bk−1 is a non-witness, for example d(x, u) = d(x, v) =

k−1, then any neighbour y of x inNk(u, v) satisfies d(y, u) = d(y, v) = d(x, u)+1= k
and is a non-witness of uv, therefore N(x) should be in Bk.

• Bk
2 = N({x ∈ Ak−1 | N(x)∩Nk−1(u, v) ̸= ∅}): Consider x, y ∈ Ak−1 such that xy ∈

E(G), and suppose that before the xy edge is revealed, both x and y have a distance
profile that makes them potential witnesses of uv. One possible case is dG\{xy}(x, u) =
dG\{xy}(y, v) = k − 1, dG\{xy}(x, v) > k and dG\{xy}(y, u) > k. When the edge xy is
revealed the distance profiles are modified: d(x, u) = d(y, v) = k − 1 and d(x, v) =
d(y, u) = k. Both x and y become non-witnesses. Any neighbour z ∈N(x)∪Nk(u, v)
satisfy d(z, u) = k and k ⩽ d(z, v)⩽ d(z, x)+d(x, v) = k+1. A symmetric reasoning

for y implies that every vertex in (N(x) ∪N(y)) ∩Nk(u, v) is not a witness of uv.

• Bk
3 =

{
x ∈ Nk(u, v)

∣∣|N(x) ∩ Ak−1| ⩾ 2
}
: Suppose x, y are two distinct witnesses of

uv. Again, one possible case is d(x, u) = d(y, u) = k − 1, d(x, v) > k and d(y, u) >
k. Suppose they share a neighbour z in Nk(u, v). Now the distance profile of z is

52

d(z, u) = d(x, u) + 1 = k and d(z, v) = d(y, v) + 1 = k, therefore z is a non-witness
of uv.

Let A1 = N(u, v) and B1 = ∅ we define recursively, for k ∈ N,

Bk = Nk(u, v) ∩ (Bk
1 ∪ Bk

2 ∪ Bk
3) Ak = Nk(u, v) \Bk.

Nk−1(u, v)

Nk(u, v)

B3 B2 B1Ak

Ak−1 Bk−1

Figure 2.4: Representation of the three parts Bk
1 ,Bk

2 ,Bk
3 that compose Bk

The proof is structured around three claims. Claim 2.29 ensures that at least a fourth of

the vertices of Ak are witnesses of u, v with high probability.

Claim 2.29. For any k such that |Nk(u, v)| ⩽ 3|Ak| ⩽ n
16∆

, we have either d(u, v) ⩽ 2 or

|Ak ∩Wuv| ⩾ 1
4
|Ak| with probability 1− o(n−3).

Claim 2.30 and Claim 2.31 control the size of Bk (and therefore Ak) inductively. Specifi-

cally, Claim 2.30 addresses the case where |Bk| is small. In such cases, we allow a constant

factor increase in the upper bound of |Bk+1|. Conversely, Claim 2.31 handles larger |Bk|
with a tighter concentration and increase factor close to 1.

Claim 2.30. For any constant β ⩾ 0, for n large enough and for any k ∈ N if |Nk−1(u, v)| ⩽
n/∆2

then

|Bk−1| ⩽ β|Nk−1(u, v)| =⇒ |Bk| ⩽
(
3β +

1

26

)
|Nk(u, v)|

with probability at least 1− n−4
.

53

Claim 2.31. For n large enough, for any k ⩾ 1, if |Nk−1(u, v)| ⩽ n/∆2
and |Bk−1| ⩾ ∆2/4

then

|Bk−1| ⩽
1

2

(
1 +

30

log n

)k−1

|Nk−1(u, v)| =⇒ |Bk| ⩽
1

2

(
1 +

30

log n

)k

|Nk(u, v)|

with probability at least 1− n−4
.

The factor (1 + 30
logn

)k in Claim 2.31 is just a product of the induction. It is important

to note that the range of k of interest in this claim is upper bounded by the diameter of

G, which means k = O(log n/ log log n). In this range, we have (1 + 30
logn

)k ⩽ e30k/ logn =

eo(1) = 1 + o(1).

Let us first prove that the lemma follows from the three claims. We assume that Claim 2.29,

Claim 2.30 and Claim 2.31 hold deterministically. We will now show that for any k such that
|Nk−1(u, v)| ⩽ n/∆2

, we have |Ak| ⩾ (1/2− o(1))|Nk−1(u, v)|. Since Ak, Bk forms a par-

tition of Nk(u, v), it is equivalent to show that |Bk| ⩽ (1/2 + o(1))|Nk−1(u, v)|. Let us

consider i ∈ N to be the first step such that Bi+1 is non-empty. Note that i ⩾ 1 as B1 = ∅.
By Claim 2.30 applied with β = 0, we have that 1 ⩽ |Bi+1| ⩽ 1

26
|N i+1(u, v)|. Applying

Claim 2.30 again for Bi+1, and then Bi+2 with first β = 1/26 and then β = 1/2, we obtain
the following,

|Bi+2| ⩽
2

13
|N i+2(u, v)| and |Bi+3| ⩽

1

2
|N i+3(u, v)|.

By maximality of i, Bi+1 is non-empty. Therefore we can consider z ∈ Bi+1, by def-

inition of Bi+2
1 we have N i+2(u, v) ∩ N(z) ⊆ Bi+2

1 ⊆ Bi+2. Remember that we can sup-

pose N i+2(u, v) ⩽ n/∆2
. The probability that a vertex x ̸∈ N i+1(u, v) is a neighbour of

x is p. Therefore E[|N i+2(u, v) ∩ N(z)|] = (1 − 1/∆2)pn = (1 − o(1))∆. We apply a

Chernoff’s bound (Lemma 0.1) with parameter δ = 1
2
and µ = (1 − o(1))∆ to obtain that

|N i+2(u, v)∩N(z)| ⩾ ∆/2 with probability 1− o(n3). Applying similar reasoning, we can

argue that |N i+3(u, v) ∩N2(z)| ⩾ ∆2/4 with probability 1− o(n3).

Recall thatN i+3(u, v)∩N2(z)⊆Bi+3, therefore, |Bi+3|⩾∆2/4whp, and the conditions
are met to apply Claim 2.31 for k ⩾ i+ 3, as long as |Nk−1(u, v)| ⩽ n/∆2

. Let ℓ denote the
largest integer such that |N ℓ(u, v)| ⩽ n

32∆2 is satisfied. Note that as
2000 logn

n
⩽ p ⩽ n−1/2−ε

,

ℓ is indeed well-defined whp. Moreover, it is upper bounded by the diameter ofG, therefore

54

ℓ = O(log n/ log log n) whp. Applying Claim 2.31 we obtain,

|Aℓ| ⩾
1

2

(
1 +

30

log n

)ℓ

|N ℓ(u, v)|

⩾
1

2

(
1 +

30

log n

)O(logn
log logn

)
n

32∆2

⩾

(
1

64
+ o(1)

)
n

∆2
.

The second inequality holds as k 7→ (1 + 30
logn

)k|Nk(u, v)| is increasing whp for k ⩽ ℓ. It is

now sufficient to apply Claim 2.29 for k = ℓ to conclude that |Wuv| ⩾ |Ak|/4 ⩾ (1/256 −
o(1))n/∆2

with probability 1 − o(n−3). By using a union bound over all such pairs. We

obtain that all pairs uv /∈ E(G), such that d(u, v) ⩾ 3 satisfy |Wuv| ⩾ (1/256+ o(1))n/∆2
.

Finally, using Claim 2.28 we conclude that |E|⩾ |{uv /∈E(G)|d(u, v)⩾ 3}|⩾
(
n
2

)
−O(n∆2)

with probability 1− o(n−1).

We will now prove Claim 2.29 - Claim 2.31. We start by Claim 2.31 as it encapsulates the

main ideas of the proof.

Claim 2.31. For n large enough, for any k ⩾ 1, if |Nk−1(u, v)| ⩽ n/∆2
and |Bk−1| ⩾ ∆2/4

then

|Bk−1| ⩽
1

2

(
1 +

30

log n

)k−1

|Nk−1(u, v)| =⇒ |Bk| ⩽
1

2

(
1 +

30

log n

)k

|Nk(u, v)|

with probability at least 1− n−4
.

Proof of Claim 2.31. We will upper bound the size of the three different parts Bk
1 ,Bk

2 and Bk
3

that compose Bk independently:

• Bk
1 = N(Bk−1): Consider a vertex x /∈ Nk−1(u, v), the probability that x ∈ N(Bk−1)

can be written as:

P(x ∈ N(Bk−1)) = P(Bin(|Bk−1|, p) ⩾ 1)

= 1− (1− p)|Bk−1|

= (1− o(1))p|Bk−1|

therefore,

E[|Bk
1 |] = (1− o(1))p|Bk−1|(n− |Bk−1|) = (1− o(1))∆|Bk−1| ⩽ ∆|Bk−1|.

55

By Chernoff’s bound (Lemma 0.1) with δ = 1
logn

, we obtain that

P
(
|Bk

1 | ⩾
(
1 +

1

log n

)
∆|Bk−1|

)
⩽ e−(1−o(1))∆|Bk−1|/(3 log2 n)

⩽ e−(1−o(1))∆3/(12 log2 n)

⩽ n−5

for n large enough.

• Bk
2 = N({x ∈ Ak−1 | N(x) ∩ Nk−1(u, v) ̸= ∅}): This set is contained in the neigh-

bourhood of non-isolated vertices in the graph H := G[Nk−1(u, v)]. Note that the

vertex set Nk(u, v) is defined independently of the distribution of the edges in H .

Therefore H ∼ G(|Nk−1(u, v)|, p). Let N denote |Nk−1(u, v)|. By assumption we

have |Bk−1| ⩽ N ⩽ n/∆2
. Therefore p = ∆

n
⩽ 1

N∆
. We can apply Lemma 2.19 to H

and deduce that |{x ∈ Ak−1 | N(x) ∪Nk−1(u, v) ̸= ∅}| ⩽ 4N/∆ with probability at

least

1− 2e−N/3∆ ⩾ 1− 2e−∆/12 ⩾ 1− n−5.

Applying Lemma 2.18 we obtain,

P
(
|Bk

2 | ⩾ 6|Nk−1(u, v)|
)
⩽ n−5.

• Bk
3 =

{
x ∈ Nk(u, v)

∣∣|N(x) ∩ Ak−1| ⩾ 2
}
: Given a vertex x ∈ Nk(u, v), considerMx

the event: |N(x) ∩ Ak−1| ⩾ 2. If x ∈ Nk(u, v) has a neighbour in Bk−1 then x has

already been counted in Bk
1 . Therefore we can suppose x has a neighbour in Ak−1.

The probability for such an x to satisfyMx can be written as:

P(Mx | |N(x) ∩ Ak−1| ⩾ 1) = P(|N(x) ∩ Ak−1| ⩾ 2 | |N(x) ∩ Ak−1| ⩾ 1)

= P(Bin(|Ak−1| − 1, p) ⩾ 1)

⩽ 1− (1− p)|Ak−1|−1

⩽ 1−
(
1− ∆

n

)n/∆2

⩽ 1/∆

Note that theMx aremutually independent, therefore usingChernoff’s bounds (Lemma 0.1),

over |Nk(u, v)| ⩾ ∆2/4 i.i.d. variables with δ = 1 and µ ⩽ |Nk(u, v)|/∆, we deduce,

P
(
|Bk

3 | ⩾ 2|Nk(u, v)|/∆
)
⩽ n−5.

56

Summing and using a union bound on the three events described above we get that,

P
(
|Bk| ⩽

(
1 +

1

log n

)
∆|Bk−1|+ 6|Nk−1(u, v)|+ 2|Nk(u, v)|

∆

)
⩾ 1− 3n−5.

Let us rewrite this inequality to fit the statement of the theorem.

|Bk| ⩽
(
1 +

1

log n

)
∆|Bk−1|+ 6|Nk−1(u, v)|+ 2|Nk(u, v)|

∆

⩽

(
1 +

1

log n

)(
1 +

30

log n

)k−1
∆

2
|Nk−1(u, v)|+ 6|Nk−1(u, v)|+ 2|Nk(u, v)|

∆

⩽

(
1 +

1

log n
+

12

∆

)(
1 +

30

log n

)k−1
∆

2
|Nk−1(u, v)|+ 2|Nk(u, v)|

∆

⩽

[(
1 +

2

log n
+

12

∆

)(
1− 1

log n

)−1

+
2

∆

](
1 +

30

log n

)k−1
1

2
|Nk(u, v)|

⩽

(
1 +

30

log n

)(
1 +

30

log n

)k−1
1

2
|Nk(u, v)|

⩽
1

2

(
1 +

30

log n

)k

|Nk(u, v)|,

where we use the claim hypothesis to go from line 1 to 2. From line 3 to 4, we use the

following fact, which can be derived from a Chernoff’s bound (Lemma 0.1) in the same way

as the above upper bound on N(Bk−1): |Nk(u, v)| ⩾ (1− 1
logn

)∆|Nk−1(u, v)|.

Let us now discuss our bound on Bk for the small values of k, when |Bk| ⩽ ∆2/4. The
proof follows the same guideline as Claim 2.31.

Claim 2.30. For any constant β ⩾ 0, for n large enough and for any k ∈ N if |Nk−1(u, v)| ⩽
n/∆2

then

|Bk−1| ⩽ β|Nk−1(u, v)| =⇒ |Bk| ⩽
(
3β +

1

26

)
|Nk(u, v)|

with probability at least 1− n−4
.

Proof of Claim 2.30. What differs from Claim 2.31 is only that Chernoff’s inequality yields

a weaker concentration. But the statement is tailored to absorb this lost concentration into

the error factor (3β + 1
100

).

57

• Bk
1 = N(Bk−1): We can consider Bk−1 to be non-empty (otherwise N(Bk−1) = ∅).

Again, a Chernoff bound (Lemma 0.1) with δ = 1 and µ = (1+ o(1))∆|Bk−1| implies

that,

P
(
|Bk

1 | ⩾ 2∆|Bk−1|
)
⩽ e(1+o(1))∆/3 ⩽ n−5.

Note that |Nk(u, v)| ⩽ 3
2
|Nk−1(u, v)| by Lemma 2.18. Therefore,

|Bk
1 | ⩽ 2∆|Bk−1| ⩽ 2∆β|Nk−1(u, v)| ⩽ 3β|Nk(u, v)|.

• Bk
2 =N({x∈Ak−1 |N(x)∩Nk−1(u, v) ̸= ∅}): Instead of directly bounding the size of

Bk
2 we use the fact that |Bk

2 | is upper bounded by two times the number of edges in the

graphG[Nk−1(u, v)]. Let us denote this random variable byM := |E(G[Nk−1(u, v)])|
and µ = E[M]. Note that µ = O(p|Nk−1(u, v)|2) ≪ |Nk−1(u, v)| by assumption.

Therefore we can fix δ2 ⩾ 1 to satisfy (1+δ2)µ=
1

104
|Nk−1(u, v)| and apply Chernoff’s

bounds

P
(
|Bk

2 | ⩾
∆

52
|Nk−1(u, v)|

)
⩽ P

(
M ⩾

1

104
|Nk−1(u, v)|

)
⩽ e−(1+o(1))δ2µ/3

⩽ e−
1+o(1)
312

|N1(u,v)|

⩽ n−5.

• Bk
3 = {x ∈ Nk(u, v) | |N(x) ∩ Ak−1| ⩾ 2}. From the same reasoning as the proof

of Claim 2.31, we know that P(|N(x) ∩ Ak−1| ⩾ 2 | x ∈ Ak) ⩽ 1/∆. We can also

use Chernoff’s bounds (Lemma 0.1). Fix δ3 ⩾ 1 which satisfies (1 + δ3)E(|Bk
2 |) =

∆
104

|N1(u, v)| ⩽ 1
52
|N2(u, v)|. As for Bk

2 we have,

P(|Bk
3 | ⩾

∆

104
|N1(u, v)|) ⩽ e−∆2/312

⩽ n−5.

Using a union bound on the three events described above, we obtain:

P
(
|Bk| ⩽ 3β|Nk(u, v)|+

2|Nk(u, v)|
52

)
⩾ 1− 3n−5.

Finally, we are left to prove thatAk contains a large number of witnesses of the pair u, v.

58

Claim 2.29. For any k such that |Nk(u, v)| ⩽ 3|Ak| ⩽ n
16∆

, we have either d(u, v) ⩽ 2 or

|Ak ∩Wuv| ⩾ 1
4
|Ak| with probability 1− o(n−3).

Proof of Claim 2.29. We will prove that, if d(u, v) ⩾ 3, then any vertex x ∈ Ak such that

N(x) ∩ Nk(u, v) = ∅ is a witness of u, v. To show that this is a sufficient claim, we can

reasong as in Claim 2.30 and upper bound |{x∈Ak|N(x)∩Nk(u, v) ̸= ∅}| using Lemma 2.19

on H := G[Nk(u, v)] ∼ G(N, p) where n := |Nk(u, v)| and D := 16, to get that at most

4N/D = N/4 ⩽ 3
4
|Ak| vertices of Ak do not satisfies N(x) ∩Nk(u, v) = ∅.

Suppose that d(u, v) ⩾ 3, we prove by induction on k that for any x ∈ Ak, if N(x) ∩
Nk(u, v) = ∅ then x is a witness of u, v. It is true for k = 1 as by assumption d(u, v) ⩾ 3,
therefore any vertex x ∈ N(u, v) satisfying N(x) ∩ N(u, v) = ∅ is not on a length 3 path

between u and v, and must satisfy either d(u) = 1 and d(v) ⩾ 3 or symmetrically d(v) = 1
and d(u)⩾ 3. Assume that the statement holds up toAk−1. Consider x ∈Ak and the unique

y ∈Ak−1 such that xy ∈E(G). Such a y exists by construction ofAk. Note that the definition

Bk
2 ensures that if x ∈ Ak then y satisfies the induction hypothesis: N(y)∩Nk−1(u, v) = ∅.

Therefore, we can consider up to symmetry that d(y, u) = k − 1 and d(y, v) ⩾ k + 1. Thus
d(x, u) = k and d(y, v) ⩾ k + 2 as its unique neighbour in Nk−1(u, v) ∪ Nk(u, v) is y.
Therefore, x is a witness of uv.

Theorem 2.12. For any ε ⩾ 0, and every n ∈ N, for every 2000 logn
n

⩽ p ⩽ n− 1
2
−ε
, there exists

an algorithm that reconstructsG ∼ G(n, p) using O(∆2n log n) queries in expectation, where
∆ = (n− 1)p is the expected average degree of G.

Proof. Recall that ∆ = (n − 1)p. We will prove an upper bound on the expected query

complexity of O(∆2n log n). Let E :=
(
V (G)
2

)
\ E(G) be the set of non-edges of G. The

algorithm proceeds as follows. First, we consider a randomly sampled set S of vertices

where |S| = 103∆2 log n. We askQuery(V, S). We then deduce

D = {{u, v} ∈
(
V (G)

2

)
| ∃s ∈ S, |d(s, u)− d(s, v)| ⩾ 2},

and query all pairs in

(
V (G)
2

)
\D. Note that D ⊆ E by definition, therefore the correctness

of this algorithm is direct.

We now prove that

(
[n]
2

)
\ D = O(∆2n) with probability 1 − o(n−1). Consider the set

D = {uv ∈
(
[n]
2

)
| |Wuv| ⩾ n

257∆2}. Lemma 2.27 ensures us that |D| =
(
n
2

)
− O(∆2n) with

probability 1 − o(n−1). Assume that Lemma 2.27 holds deterministically. We compute the

probability that a fixed pair uv ∈ D has no witness in S.

59

P(S ∩Wuv = ∅) ⩽
(
1− n

257n∆2

)103∆2 log(n)

⩽ e−
103

257
log(n)

⩽ o(n−3).

If we union bound over the events S ∩Wuv ̸= ∅ for all pairs of vertices, we conclude

that |
(
[n]
2

)
\ Ẽ| = O(∆2n) with probability 1 − o(n−1), in which case, our algorithm uses

n|S|+O(∆2n) = O(∆2n log n) queries. The worst-case query complexity of the algorithm

being O(n2) we obtain that the expected number of queries done by the algorithm is (1 −
o(n−1))∆2n log n+ o(n−1)n2 = O(∆2n log n).

2.5 Query complexity lower bounds
In this section we prove that the algorithms presented in Section 2.3.1 are optimal in terms

of the dependency on n and ∆, even when randomisation is allowed. The theorem below

also imply that the results in Section 2.3.2 are optimal in term of there dependency in n.

Theorem 2.14. Let∆⩾ 2 and n = 2c∆k
be integers, where c ∈ [1,∆) and k ⩾ 50(c ln c+3)

is an integer. Any randomised algorithm requires at least
1
50
∆n log∆ n queries in expectation

to reconstruct n-vertex trees of maximum degree ∆+ 1.

Note that, for constant c,∆ could even be a small polynomial in n. The proof that we de-
velop is flexible, and allows us to derive easily new lower bounds for similar reconstruction

questions presented in Section 2.5.4.

For the rest of this section any “algorithm” is allowed to be randomised unless specified

to be deterministic.

2.5.1 Reconstructing functions from the coordinate oracle

In order to prove the lower bound we reduce to a natural function reconstruction problem

that could be of independent interest. Let ∆ ⩾ 3, k ⩾ 1 and n = c∆k
be integers, where

c ∈ [1,∆).
Let A = [n] and B = [∆]k. Suppose that f : A → B is an unknown function that we

want to reconstruct. For b ∈ B and 1 ⩽ i ⩽ k, we write bi for the value of the ith coordinate

of b.
The coordinate oracle can answer the following two types of queries:

60

• Type 1. Query
c
1(a, b, i) for a ∈ A, b ∈ [∆] and i ∈ [k] answers YES if f(a)i = b and

NO otherwise.

• Type 2. Query
c
2(a, a

′, i) for a, a′ ∈ A and i ∈ [k] answers YES if f(a)i = f(a′)i and
NO otherwise.

In the case of the coordinate oracle, we will count the number of queries for which the

answer is NO instead of the number of queries.

We say that f : A→ B is a balanced function if for every b ∈ B, |f−1(b)| = c for some

integer c ⩾ 1.
Our main result on function reconstruction from a coordinate oracle is the following.

Theorem 2.32. Let ∆ ⩾ 3, c ⩽ ∆ − 1 and k ⩾ 50(c ln c + 2) be positive integers and let

n = c∆k
. Any algorithm reconstructing f : [n] → [∆]k using the coordinate oracle, in the

special case where f is known to be a balanced function, has at least
1
11
∆nk queries answered

NO in expectation.

In order to prove Theorem 2.32, we first study the query complexity in the general case,

when no restriction is put on f . Using Yao’s minimax principle [183], studying the expected

complexity of a randomised algorithm can be reduced to studying the query complexity of

a deterministic algorithm on a randomised input.

Lemma 2.33 (Corollary of Yao’s minimax principle [183]). For any distribution D on the

inputs, for any randomised algorithm M , the expected query complexity of M is at least the

average query complexity of the best deterministic algorithm for input distribution D.

We will apply Yao’s principle for D the uniform distribution and the query complexity

measuring the number of queries answeredNO. We combine this with the following lemma.

Lemma 2.34. Let n, k and∆ be integers. For any deterministic algorithmR using the coordi-

nate oracle and f : [n] → [∆]k sampled u.a.r., the probability that R reconstructs f in at most

1
10
∆nk queries answered NO is at most e−

1
50

nk
.

We first deduce our main theorem on function reconstruction from the two lemmas

above.

Proof of Theorem 2.32. LetM be a deterministic algorithm that reconstructs balanced func-

tions using the coordinate oracle. We first extendM to an algorithm M̃ that reconstructs

all functions (among all functions) while the number of NO answers remains the same if

the input is balanced. The algorithm M̃ first performs the same queries as M does, until

it either has no balanced candidates or a single balanced candidate f compatible with the

61

answers so far. In the former case, it reconstructs the function by brute-force. In the second

case, it performsQuery
c
1(a, f(a)i, i) for all a ∈ A and i ∈ [k] to verify that indeed the input

is f . If the input is indeed f , we have now distinguished f among all functions (rather than

all balanced functions) without additional NO answers. If any of the queries answers NO,
we again have no balanced candidates left and may perform the brute-force approach again.

We will show that, when restricted to balanced functions, M̃ has an average query com-

plexity (in terms of the number of NO answers) greater than
1
11
∆nk. SinceM has the same

number of NO answers as M̃ on balanced inputs, it has the same average query complexity

as M̃ . Using Yao’s principle (Lemma 2.33), it then follows that any randomised algorithm

that reconstructs balanced functions has at least
1
11
nk queries answered NO in expectation.

By Lemma 2.34, there are at most |B|ne− 1
50

nk
functions f : A→ B for which M̃ recon-

structs f in less than
1
10
∆nk queries. On the other hand the number of balanced function

fromA toB is the following multinomial coefficient

(
n

c,...,c

)
= n!

(c!)n
. In particular, there are at

least

(
n

c,...,c

)
− (n/c)ne−

1
50

nk
balanced function for which M̃ requires at least

1
10
∆nk queries.

This means that the average query complexity of M̃ is at least(
n

c,...,c

)
− (n/c)ne−

1
50

nk(
n

c,...,c

) 1

10
∆nk =

n!− (c!)n(n/c)ne−
1
50

nk

n!

1

10
∆nk ⩾

1

11
∆nk

since,

(c!)n(n/c)ne−
1
50

nk =
(n
e

)n(ec!
c
e−

1
50

k

)n

⩽ nne−
51
50

n ⩽
1

100
n!

using for the first inequality that k ⩾ 50(c ln c+ 2) and for the second that n ⩾ 251.

Proof of Lemma 2.34. Let R be a deterministic algorithm that uses the coordinate oracle to

reconstruct functions. Let Ft denote the set of possible functions f : A → B that are con-

sistent with the first t queries done by R. (This depends on the input function g : A → B,

but we leave this implicit.) For a ∈ A and i ∈ [k], let

J t
a,i = {j ∈ [∆] | f(a)i = j for some f ∈ Ft}.

Note that all values j1, j2 ∈ J t
a,i are equally likely in the sense that there is an equal number

of f ∈ Ft with f(a)i = j1 as with f(a)i = j2. The algorithm R will perform the same t
queries for all f ∈ Ft. In particular, if g : A → B was chosen uniformly at random, then

after the first t queries all f ∈ Ft are equally likely (as input function) and in particular g(a)i
is uniformly distributed over J t

a,i, independently of the sets J t
a′,i′ for (a

′, i′) ̸= (a, i). This is
the part for which we crucially depend on the fact that we allow all functions f :A→B and

62

not just bijections (where there may be dependencies between the probability distributions

of g(a) and g(a′) for distinct a, a′ ∈ A).
We say that the tth query of the algorithm is special if

• it is a Type 1 queryQuery
c
1(a, b, i) and |J t

a,i| ⩾ ∆/2, or

• it is a Type 2 queryQuery
c
2(a, a

′, i) and either |J t
a,i| or |J t

a′,i| is at least ∆/2.
Let T denote the number of NO answers to special queries that R does to the coordinate

oracle until it has reconstructed the input function. We let Yi = 1 if the answer of the ith

special query is YES and 0 otherwise. So

∑T
i=1 Yi denotes the number of special queries

with answer YES.
At the start of the algorithm J0

a,i = [∆] for all a ∈ A and i ∈ [k]. Thus, to reconstruct

the function, the pair (a, i) is either (1) involved in a special query with answer is YES or

(2) involved in ∆/2 special queries for which the answer is NO. Since any query involves

at most two elements of A, we deduce that

|A|k/2 = nk/2 ⩽

(
T −

T∑
i=1

Yi

)
2

∆
+

T∑
i=1

Yi.

We aim to prove that if g :A→B is sampled uniformly at random, then with high probabil-

ityT =T (g)⩾ 1
10
∆nk. In order to do so, we consider a simplified process and a randomvari-

able τ which is stochastically dominated byT (i.e. for any x∈R+
, P(T ⩽ x)⩽P(τ ⩽ x)). Let

us consider an infinite sequence of i.i.d. random variablesX1, X2, X3, · · · ∼ Bernoulli(2/∆).
Note that

H(t) =

(
t−

t∑
i=1

Xi

)
2

∆
+

t∑
i=1

Xi =

(
1− 2

∆

) t∑
i=1

Xi +
2t

∆

is increasing in t. Let τ be the first integer t for which H(t) ⩾ 1
2
n log∆ n.

If g is sampled uniformly at random then the jth special query (say involving a ∈ A and

i ∈ [k] with |J t
a,i| ⩾ ∆/2) has answer YES with probability

P(Yi = 1) ⩽
2

∆
= P(Xi = 1).

This is because all values of J t
a,i are equally likely for g(a)i (and independent of the value

of g(a′)i or bi for b ∈ B and a′ ∈ A). This inequality holds independently of the values of

(Y1, . . . , Yi−1). This implies that, for any t ∈ N+
and any x ∈ R+

,

P

(
t∑

i=1

Xi ⩽ x

)
⩽ P

(
t∑

i=1

Yi ⩽ x

)
.

63

Therefore,

P

((
1− 2

∆

) t∑
i=1

Xi +
2t

∆
⩽ x

)
⩽ P

((
1− 2

∆

) t∑
i=1

Yi +
2t

∆
⩽ x

)
.

From this we can conclude that P(T ⩽ x) ⩽ P(τ ⩽ x), thus T stochastically dominates τ .
If τ ⩽ 1

10
∆nk, then using the definition of τ we find that(

1

10
∆nk −

τ∑
i=1

Xi

)
2

∆
+

τ∑
i=1

Xi ⩾
1

2
nk

which implies

τ∑
i=1

Xi ⩾

(
1− 2

∆

) τ∑
i=1

Xi ⩾
3

10
nk.

Let x = 1
10
∆nk. We compute E [

∑x
i=1Xi] =

2
∆
x = 1

5
nk. Using Chernoff’s inequality (see

e.g. [143]) we find

P(τ ⩽ x) ⩽ P

(
x∑

i=0

Xi ⩾

(
1 +

1

2

)
1

5
nk

)
⩽ exp

(
−
(
1

2

)2
1

5
nk/

(
2 +

1

2

))
.

Since
1
2
1
2
1
5
2
5
= 1

50
, this proves P(T ⩽ x) ⩽ P(τ ⩽ x) ⩽ e−

1
50

nk
. In particular, the probability

that at most
1
10
∆k queries are used is at most e−

1
50

nk
, as desired.

2.5.2 Reconstructing functions from the word oracle
Let once againA= [n] andB = [∆]k. We next turn our attention to reconstructing functions

f :A→B from a more complicated oracle that we use as a stepping stone to get to distance

queries in trees. For b ∈ B, we write b[i,j] = (bi, bi+1, . . . , bj). It will also be convenient to

define b∅ as the empty string. The word oracle can answer the following two types of

questions.

• Type 1. Query
w
1 (a, b) for a ∈ A and b ∈ B, answers the largest i ∈ [0, k] with f(a)[1,i] =

b[1,i].

• Type 2. Query
w
2 (a, a

′) for a, a′ ∈A, answers the largest i∈ [0, k]with f(a)[1,i] = f(a′)[1,i].

By studying the number of queries for the word oracle and the number of NO answers for

the component oracle, we can link the two reconstruction problems as follows.

64

ε

1

11

a1

12

a2

13

a5

2

21

a3

22

a7

23

a4

3

31

a9

32

a6

33

a8

Figure 2.5: Example of the tree Tc,∆,k constructed in the proof of Theorem 2.14 for ∆ = 4,
c = 1 and k = 2 with the labelling ℓ of the internal nodes.

Lemma 2.35. For all positive integers∆, k and n, for any algorithmM using the word oracle

that reconstructs functions f : A → B in at most q(f) queries in expectation, there exists an

algorithmM ′
using the coordinate oracle that reconstructs functions f : [n] → [∆]k such that

at most q(f) queries are answered NO in expectation.

Proof. Given an algorithm M using the word oracle, we build a new algorithm M ′
using

the coordinate oracle. We do so query-by-query. IfM asksQuery
w
1 (a, b), thenM

′
performs

a sequence of queries Query
c
1(a, b1, 1), Query

c
1(a, b2, 2), . . . ,Query

c
1(a, bi+1, i + 1), where

i ∈ [0, k−1] is the largest for which f(a)[1,i] = b[1,i]. Note that the sequence indeed simulates

a query of the word oracle yet the coordinate oracle answers NO at most once (on the

(i+ 1)th query).

Queries of Type 2 can be converted analogously. This way, for every input f , the natural
“coupling” of the randomness inM andM ′

ensures that the number of NO answers toM ′

is stochastically dominated by the number of queries to M . In particular, the expected

number of NO answers given by M ′
is upper bounded by q(f), the expected number of

queries toM .

Lemma 2.35 and Theorem 2.32 now give the following result.

Corollary 2.36. Let∆⩾ 3, c⩽∆−1 and k ⩾ 50(c ln c+2) be positive integers. Let n= c∆k
.

Any algorithm reconstructing f : [n] → [∆]k using the word oracle, in the special case where

f is known to be balanced, needs at least
1
11
∆nk queries in expectation.

2.5.3 Reducing tree reconstruction to function reconstruction
In order to prove Theorem 2.14 we consider a specific tree Tc,∆,k (with c ⩽ ∆): the tree of

depth k+1where each node at depth at most k−1 has exactly∆ children and each node at

depth k has exactly c children (see Fig. 2.5). Theorem 2.14 is an almost direct consequence

of the following lemma.

65

Lemma2.37. Let∆⩾ 2, k⩾ 150 be positive integers. Consider a labelling of the tree T∆,k with

N = ∆k
leaves, where only the labels of the leaves are unknown. Any randomised algorithm

requires at least
1
11
∆N log∆N queries in expectation to reconstruct the labelling.

Proof. We consider T = Tc,∆,k and let L be the set of leaves of T and let P be the set parents

of the leaves. The tree T has n=
∑k

i=0∆
i+c∆k

nodes andN = c∆k
leaves. Let p :L→P be

the bijection that sends each leaf to its direct parent. We label internal nodes as follows. The

root is labelled ∅ (the empty string) and if a node v has label ℓ and has ∆ children, then we

order the children 1, . . . ,∆ and we label the child i with label obtained from concatenation

ℓ+ (i). We put such labels on all internal nodes.

Let I denote the set of internal nodes and let ℓ(v) denote the label of v ∈ I . Let f : L→
[∆]k be the bijection that sends a leaf u ∈ L to the label ℓ(p(u)) ∈ [∆]k of its direct parent.

We consider the trees which have a fixed labelling (as described above) for node in I , and
every possible permutation of the labelling of the leafs. All possible bijections f : L→ [∆]k

appear among the trees that we are considering. To reconstruct the tree, we in particular

recover the corresponding bijection f . Distance queries between internal vertices always

give the same response and can be ignored. We show the other queries are Type 1 and Type

2 queries in disguise.

• For a ∈ L and b ∈ I the distance between a and b is given as follows. Let z ∈ I be

the nearest common ancestor of a and b and say z has depth i and b has depth j. The
distance between a and b is 1+ (k− i)+ (j− i). The values of k and j do not depend
on f but the value of i is exactly given bymax{s : f(a)[0,s] = b[0,s]}, the answer to the
corresponding type 1 query of (a, b) to the word oracle. To be precise, since b may

have a length shorter than i, the queryQuery
w
1 (a, b

′) where b′s = bs for all s ∈ [1, |b|]
and b′s = 0 otherwise, gives the desired information.

• For a, a′ ∈ L, the distance between a and a′ is given by 2(1+ (k− i)) for i the answer
of a Type 2Query

w
2 (a, a

′) to the word oracle.

This shows that we reduce an algorithm to reconstruct the labelling of the leaves from

q distance queries to an algorithm that reconstructs functions f : L→ [∆]k from q queries
to the word oracle. By Theorem 2.32, since k ⩾ 50(c ln c + 2), we need at least

1
11
∆Nk

queries.

We are now ready to deduce the main result of this section.

Theorem 2.14. Let∆⩾ 2 and n = 2c∆k
be integers, where c ∈ [1,∆) and k ⩾ 50(c ln c+3)

is an integer. Any randomised algorithm requires at least
1
50
∆n log∆ n queries in expectation

to reconstruct n-vertex trees of maximum degree ∆+ 1.

66

Proof. Let∆, n ⩾ 2 be integers. We write n = 2c∆k
for c ∈ [1,∆) and k an integer. (When

n/2 ⩾ 1, there is a unique pair (c, k) ∈ [1,∆)× Z⩾0 with n/2 = c∆k
.)

Suppose that k ⩾ 50(c ln c+3). In particular,∆ ⩾ 2 implies k ⩾ ⌊log∆ n− 1⌋. The tree
T = T⌊c⌋,∆,k considered in Lemma 2.37 has maximum degree∆+1, N = ⌊c⌋∆k

leaves and

n′ =
∑k

i=0 ∆
i + ⌊c⌋∆k

vertices, where

n/4 ⩽ N ⩽ n′ ⩽ 2c∆k = n.

For ∆ ⩾ 2 and c ⩾ 1, if n ⩾ 2∆50(c ln c+3)
then N ⩾ n

4
⩾ ∆50(c ln c+2)

. So we may apply

Lemma 2.37 and find that at least

1

11
∆N⌊log∆N − 1⌋ ⩾ 1

44
∆n(log∆ n− 4)

queries are required. As log∆ n ⩾ 150, we find that this is at least
1
50
∆n log∆ n.

Corollary 2.38. Any randomised algorithm requires at least
1
50
∆n log∆ n distance queries to

reconstruct n-vertex trees of maximum degree ∆+ 1 ⩾ 3 if n ⩾ 2∆50(∆ ln∆+3)
.

2.5.4 Randomised lower bounds for related models

Wenext show that our result implies various other new randomised lower bounds. Although

we state these results with a weaker assumption on n for readability reasons, we remark

that our more precise set-up (allowing ∆ to be a small polynomial in n for specific values

of n) also applies here.

Betweenness queries A betweenness query answers for three vertices (u, v, w) whether
v lies on a shortest path between u and w. Using three distance queries to (u,w), (u, v)
and (v, w), you can determine whether v lies on a shortest path between u and w, so the

betweenness oracle is weaker (up to multiplicative constants). It has been shown in [2] that

randomised algorithms can obtain a similar query complexity for betweenness queries as

was obtained for distance queries by [107]. Moreover, a randomised algorithm for 4-chordal
graphs has been given that uses a quasi-linear number of queries to a betweenness oracle

[162]. A deterministic algorithm using Õ(∆n3/2) betweenness queries has been given for

trees, as well as a Ω(∆n) lower bound [97]. Our randomised lower bound from Theorem

2.14 immediately extends to this setting.

Corollary 2.39. Any randomised algorithm requires at least
1

150
∆n log∆ n betweenness queries

to reconstruct n-vertex trees of maximum degree ∆+ 1 ⩾ 3 if n ⩾ 2∆50(∆ ln∆+3)
.

67

Path and comparison queries Given two nodes i, j in a directed tree, a path query an-

swers whether there exists a directed path from i to j. Improving on work from [181], it was

shown in [5] that any algorithm needs Ω(n log n+ n∆) to reconstruct a directed tree on n
nodes of maximum degree ∆. When we consider a directed rooted tree in which all edges

are directed from parent to child, then path queries are the same as ancestor queries: given

u, v in a rooted tree, is u an ancestor of v? We apply this to the tree Tc,∆,h from Lemma 2.37

for which the labels of all internal vertices are fixed but the labels of the leaves are unknown.

Path queries (u, v) only give new information if v is a leaf and u is an internal vertex. But

this is weaker than distance queries, since we can obtain the same information by asking

the distance between u and v. This means that we can redo the calculation from the proof

of Theorem 2.14 (applying Lemma 2.37) to lift the lower bound to path queries.

Corollary 2.40. Any randomised algorithm requires at least
1
50
∆n log∆ n path queries to

reconstruct n-vertex directed trees of maximum degree ∆+ 1 ⩾ 3 if n ⩾ 2∆50(∆ ln∆+3)
.

A randomised algorithm using O(n log n) path queries on bounded-degree n-vertex
trees has been given in [5] but their dependency on ∆ does not seem to match our lower

bound. We remark that besides query complexity, works on path queries such as [5, 4, 181]

also studied the round complexity (i.e. the number of round needs when queries are per-

formed in parallel).

The same ideas applies to lift our lower bound to one for reconstructing tree posets

(T,>) from comparison queries, which answer for given vertices u, v of the tree whether

u < v, v < u or u||v.

Corollary 2.41. Any randomised algorithm requires at least
1
50
∆n log∆ n comparison queries

to reconstruct n-vertex tree posets of maximum degree ∆+ 1 ⩾ 3 if n ⩾ 2∆50(∆ ln∆+3)
.

This improves on the lower bound of Ω(∆n+ n log n) from [164] and matches (up to a

(C log∆) factor) the query complexity of their randomised algorithm.

Membership queries for reconstructing partitions The (n, k)-partition problem was

introduced by King, Zhang and Zhou [117]. Given n elements which are partitioned into

k equal-sized classes, the partition needs to be determined via queries of the form “Are

elements a and b in the same class?”. They used the adversary method to prove Ω(nk)
queries are needed by any deterministic algorithm. Liu and Mukherjee [131] studied this

problem phrased as learning the components of a graph via membership queries (which

answer whether given vertices lie in the same component or not) and provide an exact

deterministic lower bound of (k − 1)n −
(
k
2

)
for deterministic algorithms. It indeed seems

natural that randomised algorithms need αkn queries for some constant α in this setting.

68

Nonetheless the best lower bound for randomised algorithm seems to be the information-

theoretic lower bound of Ω(n log k). Our next result remedies this gap in the literature.

Corollary 2.42. Let ε > 0. Any randomised algorithm requires at least
1
11
nk membership

queries to solve the (n, k)-partition problem if n ⩾ k1+ε
is sufficiently large.

Proof. Since we plan to apply Lemma 2.34, we will write ∆ = k.
First note that we can see the (n,∆)-partition problem using membership queries as

reconstructing a balanced function using only Type 2 queries to the coordinate oracle. For-

mally, if f : [n]→ [∆] is the function which associates an element a ∈ [n] to the index i ∈ [∆]
of the part that contains a (out of the ∆ parts in the partition), then a membership query

between a, a′ ∈ [n] is exactly equivalent to the coordinate query Query
c
2(a, a

′) applied the

function f . Once we reconstructed the partition, we can retrieve the index of each parts us-

ing∆2 = o(n∆) queries of Type 1 to the coordinate oracle. Therefore it suffices to show that

at least
1
11
∆n queries are needed in expectation to reconstruct a balanced function using the

coordinate oracle.

Applying Lemma 2.34 with k = 1, we find that when f is sampled uniformly at random

(among all functions g : [n] → [∆]), the probability that a given randomised algorithm uses

less than
1
10
n∆ queries is at most e−

1
50

n
. In particular, the number of balanced functions

reconstructed in less than
1
10
n∆ queries is upper bounded by ∆ne−

1
50

n
. We compare this

number to the total number

(
n

n/∆,...,n/∆

)
= n!

(n/∆)!∆
of balanced functions:

∆ne−
1
50

n

n!
(n/∆)!∆

⩽ ∆ne−
1
50

n (2πn/∆)∆/2(n/(e∆)n√
2πn(n/e)n

e∆/(12n/∆)

=
1√
2πn

(2πn/∆)∆/2 exp(∆2/(12n)− n/50).

Here we used that for all n ⩾ 1,
√
2πn(n/e)n < n! <

√
2πn(n/e)ne1/(12n).

Since∆ ⩽ n1/(1+ϵ)
for some ϵ > 0, the fraction tends to 0, so in particular becomes smaller

than
1

100
when n is sufficiently large (depending on ϵ). This implies that the expected num-

ber of queries to reconstruct a ∆-balanced function is at least
99
100

1
10
∆n ⩾ 1

11
n∆. By the

discussion at the start, we find the same lower bound for the (n,∆)-partition problem.

The same lower bound holds when queries of the form “Is element a in class i?” are also
allowed. We expect that our methods can be adapted to handle parts of different sizes and

that our constant
1
11

can be easily improved.

69

Randomised algorithms have been studied in a similar setting by Lutz, De Panafieu,

Scott and Stein [133] under the name active clustering. They provide the optimal average

query complexity when the partition is chosen uniformly at random among all partitions.

They also study the setting in which a partition of n items into k parts is chosen uniformly

at random and allow queries of the form “Are items i and j in the same part?”. However

there is a key difference: the set of answers the algorithm receives, needs to distinguish the

partition from any other partition (including those with a larger number of parts). In this

setting, the following algorithm is optimal. Order the items 1, . . . , n. For i= 1, . . . , n, query
item i to items j = 1, . . . , i in turn if the answer to the query “Are items i and j in the same

part?” is not yet known. It follows from [133, Lemma 9] that this algorithm is has the lowest

possible expected number of queries. The expected number of queries used is at most

(1 + 2 + 3 + · · ·+ k)
1

k
n =

k + 1

2
n.

In particular, for i = Ω(log n) queries, with high probability there are items in k different

parts among the first i − 1 items. Since the number of parts is not “known”, the algorithm

will use k queries for item i if is in the “last part” and so the complexity is (k+1
2

+ o(1))n
as n → ∞. The same algorithm would use (k+1

2
− 1

k
+ o(1))n queries when the number

of parts may be assumed to be at most k, in which case queries “to the last part” are never

needed. So the assumption on whether the number of parts is known, changes the query

complexity. Together with the parts “being known to be exactly balanced”, this introduces

additional dependencies in the (n, k)-partition problem that our analysis had to deal with.

Phylogenetic reconstruction This setting comes from biology. Reconstructing a phy-

logenetic tree has been modelled via what we call leaf-distance queries (similarity of DNA)

between leaves of the input tree [90, 182, 117]. Although very similar, the query complex-

ities of the phylogenetic model and the distance query model on trees are not directly re-

lated. In the phylogenetic model, the set of leaves is already known and the leaf-distance

queries are only possible between leaves. Moreover, we consider a phylogenetic tree to be

reconstructed once we know all the pairwise distances between the leaves. For example, if

the input tree is a path on n vertices, then in the phylogenetic setting we receive only two

leaves and are finished once we query their distance, whereas in the distance reconstruction

setting it takes Ω(n) queries to determine the exact edge set.

Improving on various previous works [42, 106, 110], King, Zhang, and Zhou [117, The-

orem 3.2] showed that any deterministic algorithm reconstructing phylogenetic trees of

maximum degree∆ with N leaves needs at least Ω(∆N log∆N) leaf-distance queries. De-
terministic algorithms achieving this complexity are also known [90].

For randomised algorithms, the previous best lower boundwas the information-theoretic

70

lower bound of Ω(N logN/ log logN). We provide the following randomised lower bound

from Lemma 2.37 which is tight up to a multiplicative constant.

Theorem 2.43. Let∆⩾ 2, c⩽∆−1 and k⩾ 50(c ln c+2) be positive integers. LetN = c∆k
.

Any randomised algorithm reconstructing phylogenetic trees of maximum degree ∆+ 1 with

N leaves needs at least
1
20
∆N log∆N leaf-distance queries in expectation.

Proof. Let T = Tc,∆,k be the tree considered in Lemma 2.37 with N leaves.

Suppose towards a contradiction that we could obtain the pairwise distances between

the leaves of this tree in
1
20
∆N log∆N leaf-distance queries in expectation. We show that,

from this, we can recover the labels of the leaves of T using only ∆2N ⩽ 1
30
∆N log∆N

additional distance queries, contradicting Lemma 2.37 since
1
20
+ 1

50
⩽ 1

11
and log∆N ⩾ k ⩾

50.
We proceed by induction on k, the depth of the tree T . When k = 0, Tc,∆,0 is a star

with c leaves. There is nothing to prove, as the parent of each leaves in known to be the

root. Suppose k ⩾ 1 and that the claim has already been shown for smaller values of k.
We define an equivalence relation on the set of leaves: for u1, u2 ∈ L, u1 ∼ u2 if and only if
d(u1, u2)< 2k. This is an equivalence relation with∆ equivalence classes, as d(u1, u2)< 2k
if and only if u1 and u2 have a child of the root as common ancestor.

Let u1, u2, . . . , u∆ be arbitrary representatives of each of the ∆ equivalence classes.

(Note that we can select these since we already know the distances between the leaves.)

Let r denote the root of T . We askQuery(ui, N(r)) for all i ∈ [∆]. From this we can deduce

the common ancestor among the children of the root for each of the classes. It is the unique

neighbour of r lying on a shortest path from ui to r. Let Vi denote the set of all the leaves
that have the ith neighbour of r as common ancestor. We also define Ti to be the subtree

rooted in the ith neighbour of r. We remark that it is now sufficient to solve ∆ subprob-

lems of reconstructing Ti knowing each Vi leaf matrix. By the induction hypothesis, each

subproblem is solvable in |V (Ti)|∆2 = N−1
∆

∆2 = (N − 1)∆ queries. Therefore, in total this

algorithm uses (N − 1)∆2 +∆2 = ∆2N distance queries.

2.5.5 Lower bound for reconstructing a Voronoi cell locally
One of the two main steps of the algorithm designed by Kannan, Mathieu, and Zhou in

Theorem 2.3 is based on reconstructing Voronoi cells locally. In this section, we prove the

following theorem. Intuitively it states that the brute-force subalgorithm used in this step

is optimal.

Theorem 2.7. For any n ∈ N, there exists a family of graphs G, all on the same vertex set

V := X ⊔ Y , and there exists x ∈ V and S ⊆ V satisfying the following properties, for any

G,G′ ∈ G:

71

• G has maximum degree 5,

• X = VorG(x, S),

• G[Y] = G′[Y],

• |V | = Θ(n2) and |X| = Θ(n log n).

Moreover, any randomised reconstruction algorithm using the partial oracle QueryG|X , taking

as input a graph G ∈ G, uses Ω(n2) queries to uniquely reconstruct G[X] in expectation.

Before starting the proof, let us define starshaped sets, already introduced in the context

of reconstruction by Abrahamsen, Bodwin, Rotenberg and Stockel [2].

Definition 2.44. Given a graphG, a vertex setX ⊆ V (G) is starshaped with respect to x ∈X
if, for all v ∈ X , every shortest path in G from x to v is contained in X .

Note that by definition a Voronoi cell is starshaped. Being starshaped is also a sufficient

condition for being a Voronoi cell in the following sense. For any starshaped setX in some

graph G, there exists a graphH and a set of centers S such that for some s ∈ S, there is an
isometry betweenX inG andVorH(s, S) inH . We are now equipped to prove Theorem 2.7.

Proof of Theorem 2.7. Let us start with the following claim, useful for the construction of G.

Claim 2.45. For any k ∈ N, there exists a graph H of maximum degree 3, and a set K ⊆ H
with |K| = k, and |V (H)| ⩽ 4k2 such that,

∀u, v ∈ K, u ̸= v =⇒ dH(u, v) = 2⌈log2 k⌉.

Proof. Let us consider the graph H , on vertex set K ∪ L. H consists of k disjoint complete

binary trees (Hu)u∈K , where, for every u ∈ K , Hu is rooted at u and has depth ⌈log2 k⌉.
Additionally, consider k arbitrary leaves of Hu and denote them by ℓu(v) for v ∈ K . To

obtain H we add, for every distinct u, v ∈ B, an edge from ℓu(v) to ℓv(u). As claimed, for

any distinct u, v ∈K , d(u, v) = 2⌈log2 k⌉. Moreover, the size of V (H) is at most k2log2 k+2 =
4k2.

We now construct a family of graphs G on vertex set V , such that for some X ⊆ V , X
is starshaped in every graph in G for some vertex x ∈ X . We construct G on the model

pictured in Fig. 2.6.

Without loss of generality, suppose that n is a power of 2 (otherwise consider the largest
power of 2 smaller than n). Let Tm,ℓ denote the tree obtained by subdividing ℓ times every

72

edge connected to a leaf in a binary tree withm leaves. Let us define the “model” graph G0

from which every graph in G ∈ G will be built. Let G0[X] be a copy of Tn,10 log2(n)−1 rooted

in some arbitrary vertex x ∈ X . Let A = {a ∈ X | d(x, a) = log2 n} and let B denote the

set of all leaves in G0[X]. let C = {u ∈ X | d(x, u) ⩽ log2 n} be the set of vertices “above”
A.

We constructG0[V \X] by taking two copies of Tn,4 log2 n rooted in the same vertex y and
identifying the leaves of the first copy with the vertices of A and the leaves of the second

copy with the vertices of B. By doing so, we ensure that, through G0[V \X], the distance
for any pair (a, b) ∈ A×B is at most 2(4 log2 n+ log2 n) = 10 log2 n.

Finally, to obtain G0, we add a copy of the graph H satisfying Claim 2.45, where we

identify K and B.

x

A

B

A

B

C

10 log(n) − 1

u

`(u)

y

4 logn

4 logn

H(B)

G[X] G[(V \X) ∪ A ∪B]

Figure 2.6: Depiction of a graph G in the class G constructed in the proof of Theorem 2.7.

On the left only the starshaped set G[X] is depicted and on the right the rest of the graph

is represented. The edges in blue denote the edges ofM .

For every matchingM overB, we add a copy ofGM = (V,E(G0)∪M) to G. See Fig. 2.6
for a representation. Note that, for anyG ∈ G,X is indeed starshaped inGwith x as center.
Moreover, it is possible to add a subdivided binary tree where the leaves are identified with

N(A)\X such that the root r of this new tree is at distance exactly 10 log2 n fromN(A)\X .

By doing so, we ensure that X = VorG(x, {x, r}) for every G ∈ G.
The remaining of the proof aims to show that any single query to the oracle QueryG|X

over G can be simulated using a single query from the simpler oracle Match that takes as

input two vertices b, b′ ∈ B and answer YES if bb′ ∈M and NO otherwise.

73

For any vertex u ∈ X \ C , let ℓ(u) denote the endpoint in B of the path in X \ C
containing u. Let us first show two key properties of our construction.

Claim 2.46. For any G ∈ G and any pair (u, x) ∈ C ×X we have dG(u, x) = dG0(u, x).

Proof. Consider (u, x) ∈ C ×X and consider a shortest path P from u to x that minimises

the number of edges in M used by P . We will show that P ∩ M = ∅ from which the

claim follows directly. Note that P contains a vertex a ∈ A (potentially a = u). Suppose
towards a contradiction that it contains an edge in b1b2 ∈ M , therefore P can be written

as P = u . . . a . . . b1b2 . . . v. By construction dG(a, b1) ⩾ 10 log2(n) − 1, therefore we have
d(a, b2) ⩾ 10 log2 n. It suffices now to consider the path P ′

obtained from P by substituting

the subpath between a and b2 by the path between a and b2 in G0[V \ X], as mentioned

above, this path as length exactly 10 log2 n, therefore P
′
is also a shortest path and contains

one less edge inM contradicting the minimality of P .

Claim 2.47. For any G ∈ G, and any u, v ∈ X \C there exists a shortest path P from u to v
such that E(P) ∩M ⊆ {ℓ(u)ℓ(v)}.

Proof. Suppose towards a contradiction, that the statement does not hold. Consider u, v ∈X
a counter-example to the statement minimising dG(u, v). There exists a shortest path P of

the form P = u . . . b1b2 . . . v where b1b2 ∈ M and b2 /∈ {ℓ(u), ℓ(v)}. If P contains a vertex

w ∈ C , using Claim 2.46 on the subpath of P from u to w and from w to v, we obtain a

shortest path P ′
satisfying the claim, therefore we can assume P ∩ C = ∅. The minimality

condition allows us to assume u = b1, and since P ∩ C = ∅, ℓ(v) is a cut-vertex separating
the component of u = b1 and v, therefore P can be written as P = b1b2 . . . ℓ(v) . . . v. Since,
by assumption, b2 ̸= ℓ(v) and b2ℓ(v) /∈ M , any shortest path from b2 to ℓ(v) goes through
H , and thus the property of H ensures by Claim 2.45 implies that dG(b2, ℓ(v)) = 2 log n.
On the other end, Claim 2.45 also implies that dG(b1, ℓ(v)) ⩽ 2 log2 n, but we just showed
that the subpath b1b2 . . . ℓ(v) is of length exactly 2 log n+1 which is a contradiction as any

subpath of a shortest path is also a shortest path.

Suppose w.l.o.g. before making its first query, the algorithm reconstructing G already

knows every edge in G except for the edges of M , then Claim 2.46 and Claim 2.47 to-

gether imply that the answer to any query QueryG|X(u, v) can differ from dG0(u, v) only
if ℓ(u)ℓ(v) ∈ M . Therefore, dG(u, v) can be recovered from the query Match(ℓ(u), ℓ(v)).
This implies that the number of queries required to reconstruct G ∈ G using QueryG|X is

at least the number of queries needed to reconstruct a matchingM on n-vertice, among all

possible matchings, using the oracle Match. This remark, combined with Claim 2.48 below

allows us to conclude that the average complexity of reconstructing G usingQueryG|x is at

least n2/36.

74

Claim 2.48. Any randomised algorithm using the oracle Match to reconstructM among the

set of matching on n vertices uses at least n2/36 queries in expectation.

Proof. Let Q and R be disjoint vertex sets with 2|Q| = |R| = 2
3
n. We apply Yao’s Mini-

max Principle (Lemma 2.33) to analyse the complexity of reconstructing a random bipartite

matchingM betweenQ and R that saturatesQ, whereM is sampled uniformly at random.

It remains to prove that any deterministic algorithm A must make at least n2/36 queries in
expectation to reconstruct such a matchingM drawn from the above distribution.

Fix this algorithm A and denote by C the expected query complexity of A. For every
q ∈Q, let Iq be the random variable associated to the number of queries made byA involving

the vertex q. The linearity of the expectation implies,

C =
∑
q∈Q

E[Iq].

Let us upper bound E[Iq] for q ∈ Q. We assume w.l.o.g. that every other query of the form

Match(q′, r), for q′ ∈ Q \ q and r ∈ R, has already been asked by the algorithm. Therefore,

every edge ofM except the one containing q is already known byA. Since |R|− |Q|⩾ n/3,
there exists a set R′ ⊆ R of size at least n/3 such that no element of R′

is adjacent to any

element of Q \ q. Moreover, every r′ ∈ R′
has the same probability of being the neighbour

of q, sinceM was sampled uniformly at random. This implies, using Markov’s inequality,

that E[Iq] ⩾ (n/6)P(Iq ⩾ n/6) ⩾ n/12, and therefore

C =
∑
q∈Q

E[Iq] ⩾
∑
q∈Q

n/12 = n2/36,

which concludes the proof.

2.6 Conclusion and perspectives
The main open question in distance reconstruction, stated by Mathieu and Zhou [140] re-

mains open to this day.

Conjecture 2.5. For any ∆ ∈ N there exists an algorithm A that reconstructs the class of all

connected n-vertex graphs of maximum degree ∆ using O∆(n polylog n) queries w.h.p..

In the light of Section 2.3 and Theorem 2.14, where we established that a query complex-

ity of f(∆)n log n is tight (up to the function f) for large classes of graphs, we ask whether
the following strengthening of Mathieu and Zhou’s conjecture holds.

75

Conjecture 2.49. For any ∆ ∈ N there exists an algorithm A which reconstructs the class of

all n-vertex graphs of maximum degree ∆ using O∆(n log n) queries w.h.p..

In pursuit of Conjecture 2.5, researchers have studied the query complexity of bounded-

degree graphs under additional constraints. The aim is to progressively weaken these con-

straints while maintaining a query complexity of n polylog(n). The results presented in Sec-
tion 2.3 follow this approach. In particular, we proved in Theorem 2.11 that well-structured

tree decompositions can be leveraged in an algorithm. Despite our effort, our approach still

requires the bags of the tree decomposition to be “local”. Taking a step further towards

Conjecture 2.5 could involve tackling the following problem, where the “local” condition is

lifted.

Problem 2.50. What is the query complexity of reconstructing the class of graphs of bounded

degree and bounded treewidth?

Towards Conjecture 6.1, a more fine-grained analysis is required. For example, in The-

orem 2.9, we designed an algorithm for k-chordal graphs. We did not try to optimise the

dependency on the maximum degree ∆ and k and the dependency on k can probably be

improved upon. If Conjecture 2.5 holds, then the dependency on k should be at most poly-

logarithmic. It would be interesting to see if any dependency on k is needed. To ensure that
such a new lower bound exploits the chordality, we pose the following problem.

Problem 2.51. Is it true that for some fixed values of k and∆ and for all n sufficiently large,

any algorithm reconstructing k-chordal graphs on n vertices of maximum degree ∆ requires

at least 106∆n log∆ n queries?

For deterministic algorithms determining the correct constant could be achievable, yet

would require new insight. In particular, our simple algorithm (Theorem 2.10 may be opti-

mal up to an additive constant. We pose the following problem towards this.

Problem 2.52. Is there a constant c > 1
2
such that for all ∆ ⩾ 3, there are infinitely many

values of n for which any deterministic algorithm that reconstructs n-vertex trees of maximum

degree ∆ needs at least c∆n log∆ n queries?

We showed in this chapter that the randomised and deterministic query complexities

have the same dependence on n and ∆ (Theorem 2.10 and Theorem 2.14). In that sense

randomness does not help much. Nevertheless, a simple randomisation trick allowed us to

gain a factor 2 between Theorem 2.10 and Theorem 2.20. If the answer to the question above

is positive, it would show that randomness does at least make a difference.

Finally, wewould like to discuss a question that has both a theoretical and practical inter-

est. In Section 2.5we studied the query complexity of reconstructingG(n, p) for small values

76

of p. Our result, similarly to [141, 126], heavily relies on the expander structures of random

graphs and random regular graphs, and the tame distribution of the degree sequences in

these models. In the context of reconstructing Internet networks, studying classes of graphs

with less concentrated degree sequences would be natural. In particular, experience shows

that real-life networks tend to have a power-law degree distribution, therefore we ask the

following question.

Problem 2.53. Given a degree sequence D following a power-law distribution, what is the

complexity of reconstructing a uniformly sampled graph with degree sequence D?

77

Chapter 3

Partial ordered set saturation and
parameters

This chapter explores topics related to partially ordered set saturation and includes the

study of new structural poset parameters that naturally arose during this work. The

results presented about saturation are jointly published works with Carla Groenland and

Tom Johnston, one co-authoring Hugo Jacob [28] and the other Maria-Romina Ivan [27].

The results about structural poset parameters are joint work with Jędrzej Hodor, Hoang

La and William T. Trotter.

3.1 Introduction
Given a graphH , we say that another graph G isH-saturated if G does not containH as a

subgraph, but adding any edge toG creates a copy ofH . A fundamental problem in extremal

graph theory is to compute the minimum and maximum number of edges of H-saturated

graphs. WhenH is the complete graph on k vertices, two highly celebrated theorems — one

by Turán [178] and the other by Erdős, Hajnal, and Moon [68] — solve this question for the

maximum and the minimum number of edges, respectively.

Theorem 3.1 ([178]). For any fix integer r ⩾ 1, the maximal number of edges in a Kr-

saturated graph on n vertices denoted ex(n,Kr) satisfies

ex(n,Kr) =

(
1− 1

r

)
n2

2
.

78

Theorem 3.2 ([68]). For any fixed integer r ⩾ 1, the minimal number of edges in a Kr-

saturated graph on n vertices is

n(r − 2)−
(
r − 1

2

)
.

In recent years, there has been significant interest in Turán-type problems for partially

ordered sets, also called posets. We only consider finite posets. This chapter focuses on a

poset version of the Erdős-Hajnal-Moon theorem called induced saturation. The hypercube,

also called the Boolean lattice, is the poset induced by the subsets of {1, . . . , n} ordered by

the inclusion relation; we denote it by 2[n].

Definition 3.3. Given a poset P , a subset poset F ⊆ 2[n] is said to be P -saturated if both

following conditions are satisfied:

1. F does not contain any induced copy of P ;

2. for all x ∈ Qn \ F , F ∪ {x} contains an induced copy of P .

We also define sat*(n, P) as the minimum size of a P -saturated family in 2[n].

The parameter sat* was introduced first by Gerbner, Keszgeh, Lemons, Palmer, Pálvöl-

gyi and Patkós [82]. Since then there has been extensive effort to calculate its value and

asymptotic for specific posets P [73, 82, 146, 95]. This chapter focuses on results that stem

from our attempt to deepen our understanding of the parameter sat*. Most of them directly

concern sat*, but some also could be of interest in other areas of mathematics. For example,

we generalize a lemma from Lehman and Ron, which has multiple implications in the field

of property testing. We also define new poset parameters raising new, interesting structural

questions about posets, some of which are also addressed in this chapter.

Fixed poset Computing sat*(n, P) appears to be a challenging task even for very simple

posets P . For example, the asymptotic of sat*(n,♢) for ♢ the 4-element diamond poset

(see Fig. 3.1) is still unknown, despite being the focus of multiple papers [136, 95]. The

best-known bounds are given below.

Theorem 3.4 ([95]). For any n, we have

(2
√
2− o(1))

√
n ⩽ sat*(n,♢) ⩽ n+ 1.

79

Figure 3.1: Hasse diagrams of some posets. Vertices represent elements of P . For a, b ∈ P ,
a ⩽ b if and only if there exists a path from a to b only using upward edges.

Poset sat*(n, P) References

For all poset P
· = O(1) or · ⩾ 2

√
n− 2 [77]

· = O(n|P |) [27]

Ck, k ∈ [2, 6] · = 2k−2
[82]

Ck, k ⩾ 7
√
k2k/2 ⩽ · ⩽ 2(1−

1
5
log2 28)k

[139]

Ak, k ∈ [2, 6] · = n(k − 1)−Θ(k log k) [28]

∨ (fork), ∧ · = n+ 1 [73]

Ks,2 n+ 1 ⩽ · = O(s3n) [130]

Ks,t · = Os,t(n) [130]

♢ (diamond) (2
√
2− o(1))n ⩽ · ⩽ n+ 1 [95]

▷◁ (butterfly) n+ 1 ⩽ · ⩽
(
n
2

)
+ 2n− 1 [94] [73]

Y,∨+ C1 2
√
n− 2 ⩽ · [116] [77]

N 2
√
n− 2 ⩽ · ⩽ 2n [94] [77, 138]

2C2, k ∈ [2, 6] 3
2
n+ 1

2
⩽ · ⩽ 2n [116]

3C2, 5C2, 7C2 · ⩽ 14, · ⩽ 42, · ⩽ 60 [116]

♢−
(diamond minus an edge) = 4 [116]

C3 + C1 3 ⩽ . ⩽ 8 [82]

UCTP with top chain (see [116] for def.) 2
√
n− 2 ⩽ · [116] [77]

Table 3.2: Summary of some bounds known for sat*(n, P). This table is not exhaustive.

80

The diamond poset is not the only poset for which computing sat* is challenging. Ta-
ble 3.2 summarises the state of the art for some posets (the notations are explained in

Fig. 3.1). For example, even in the simple case of Ck, the chain of size k (i.e. the total

order on k elements), the exact value of sat*(n,Ck) is still unknown, despite being the topic
of multiple papers [82, 146, 139] (see Table 3.2 for the best-known bounds). Similarly, the

antichain of size k, denoted Ak (i.e, the poset where every pair of elements is incompara-

ble), has also been extensively studied. Ferrara, Kay, Kramer, Martin, Reiniger, Smith and

Sullivan [73] were the first to study sat*(n,Ak) and made the following conjecture.

Conjecture 3.5 ([73]). For k ⩾ 3, sat*(n, k) ∼ (k − 1)n as n→ ∞.

Note that the upper bound is easy to see: for all i∈ [n], a k-antichain saturated family can

contain at most k − 1 subsets of size i since two subsets of the same size are incomparable.

A few years later, Martin, Smith, and Walker [136] proved the following bound.

Theorem 3.6 ([136]). For any k ⩾ 4 and n sufficiently large compared to k,

sat*(n,Ak) ⩾

(
1− 1

log2(k − 1)

)
(k − 1)n

log2(k − 1)
.

The exact values for k = 2, 3 and 4 were shown to be n+ 1, 2n and 3n− 1 respectively
in [73], the exact values for k = 5 and k = 6 were recently determined to be 4n − 2 and

5n − 5 respectively by Ðanković and Ivan [15]. They also strengthened Conjecture 3.5 as

follows, and proposed two weaker conjectures implied by Conjecture 3.7.

Conjecture 3.7 ([15]). sat*(n, k) = n(k − 1)−Ok(1).

We answer positively to both conjectures and also compute a closed formula for the

exact value of sat*(n,Ak). We would like to note that this is the first infinite family of

posets for which sat* is known exactly. To state our result we need to define the following

notions
1
. Given a fixed n, C(m, t) denotes the initial segment of size m in

(
[n]
t

)
when the

sets are ordered in colexicographically. For a family of setsA ⊆
(
[n]
t

)
, let ν(A) be the size of

the maximum matching from A to its shadow ∂A, and recursively define c0, c1, . . . , c⌊ℓ/2⌋
as follows. Let c⌊ℓ/2⌋ = k − 1. For 0 ⩽ t < ⌊ℓ/2⌋, let ct = ν (C(ct+1, t+ 1)).

Theorem 3.8. Let n, k ⩾ 4 be integers and let ℓ and c0, . . . , c⌊ℓ/2⌋ be as defined above. If n < ℓ,
then sat*(n, k) = 2n. If n ⩾ ℓ, then

sat*(n, k) ⩾ 2

⌊ℓ/2⌋∑
t=0

ct + (k − 1)(n− 1− 2⌊ℓ/2⌋).

Moreover, equality holds when n ⩾ 2ℓ+ 1.
1
The notions of shadow and colexicographical order are formally defined in Section 3.2.

81

A generalisation of Lehman and Ron’s lemma While working toward Theorem 3.8,

we became interested in the structure of chain decompositions in the Boolean lattice. We

proved a generalisation of a lemma by Lehman and Ron, which has been tremendously

useful in the field of property testing [128]. We believe this generalisation to be of interest

in its own right.

To state Lehman and Ron’s lemma we need to introduce the notion of skipless chain. We

say that a chain C1 ⊊ C2 ⊊ . . . ⊊ Cr ⊆ [n] is skipless if it has the property |Ci+1| = |Ci|+1
for all i∈ [r−1]. This concept has also been studied in other contexts such as in [18, 66, 132].

Theorem 3.9 (Lehman-Ron [128]). Let integers 1 ⩽ s < r ⩽ n be given and for all i ∈ [m],
subsets Xi ⊆ Yi ⊆ [n] with |Xi| = s and |Yi| = r. Then there exist m disjoint skipless chains

that cover {X1, . . . , Xm, Y1, . . . , Ym}.

Our generalisation comes from a natural question. What happens if we allow the sets to

come from different layers, or ask that the chains go via some elements from layers between

layer r and layer s? Is it possible to cover any m disjoint chains with m disjoint skipless

chains, or can we force the use of an additional chain? We show that m chains always

suffice.

Theorem 3.10. Suppose that F ⊆ 2[n] admits a chain decomposition into m chains. Then

there exist disjoint skipless chains C1, . . . , Cm ⊆ 2[n] such that F ⊆ ⋃m
i=1C

i
.

To showcase the strength of this generalisation, we provide a proof of the following

corollary, which is weaker than Theorem 3.8 but still resolves both Conjecture 3.5 and Con-

jecture 3.7.

Corollary 3.11. There exist constants c1, c2 > 0 such that for all k ⩾ 4 and n sufficiently

large,

n(k − 1)− c1k log k ⩽ sat*(n, k) ⩽ n(k − 1)− c2k log k.

The upper bound part was already known [15]. So the following proof only includes an

argument for the lower bound.

Proof. Recall that ℓ is the smallest j such that
(

j
⌊j/2⌋

)
⩾ k−1, so ℓ=Θ(log k). By Dilworth’s

theorem [61] (see Theorem 0.2), having a chain decomposition of size at most k − 1 is

equivalent to not containing any antichain of size k. Suppose that F ⊆ 2[n] is k-antichain
saturated and so admits a decomposition into k−1 chains. By Theorem 3.10, there are k−1
disjoint skipless chainsC1, . . . , Ck−1

that cover the elements ofF ; sinceF is saturated, this

must form a chain decomposition of F . It suffices to show that every chain must contain a

set of size at most ℓ and a set of size at least n− ℓ. Suppose the smallest elementX of some

chain Ci
has size |X| > ℓ, then all subsets Y of X must be present in F since otherwise

82

we may extend Ci
to include Y (and that would mean that F ∪ {Y } can also be covered by

k− 1 chains, contradicting the fact that F is k-antichain saturated). There are at least k− 1
subsets ofX of size ⌊ℓ/2⌋, and these cannot all be covered by the other k − 2 chains. Since
each chain contains an element of size at most ℓ and one of size at least n − ℓ, the bound
follows immediately from the fact that the chains are skipless.

In order to prove the exact lower bound of Theorem 3.8, we would need to examine

what happens on layers 1, . . . , ℓ. This is considerably more delicate, and the full proof is

not included in this manuscript due to space constraints. In particular, we also needed to

design an explicit construction of a k-antichain saturated system F which matches our

lower bound, provided n is sufficiently large. This construction was already known for the

special case k− 1 =
(

ℓ
⌊ℓ/2⌋

)
, and we apply it recursively for other values of k. The recursion

requires special care and depends on a particular way of writing k− 1 as a sum of binomial

coefficients. This notation can be used to write exact values for the matching numbers ct
from Theorem 3.8. In Section 3.4.2, we describe our explicit construction but omit the proof

that this family is indeed Ak-saturated.

General theorems Although sat* has been investigated for various specific posets, very

few general results are known to hold, and as seen above, many fundamental questions

remain open. Nonetheless, the study of general properties of sat* has gained significant

momentum in recent years, yielding promising results [77, 27, 96]. It was first shown that

the growth of sat
∗(n, P) has a dichotomy. Keszegh, Lemons, Martin, Pálvölgyi and Patkós

[116] proved that for any poset P , sat*(n, P) is either bounded or at least log2(n), and they
made the following conjecture.

Conjecture 3.12 ([116]). For any fixed poset P , and any n ∈ N, either

sat*(n, P) = O(1) or sat*(n, P) ⩾ n+ 1.

Note that the conjecture above, even in the very restricted case where P is the 4-element

diamond poset, is not yet known to hold. Nonetheless, a few years later, progress was made

towards this conjecture. Freschi, Piga, Sharifzadeh and Treglown [77] proved the following

result.

Theorem 3.13 ([77]). For any fixed poset P and any n ∈ N, either

sat*(n, P) = O(1) or sat*(n, P) ⩾ 2
√
n− 2.

Surprisingly, there is no known poset P for which sat*(n, P) = ω(n). In fact, some

researchers believe in an even stronger version of Conjecture 3.12 written below.

83

Conjecture 3.14. For any fixed poset P and any n ∈ N, either

sat*(n, P) = O(1) or sat*(n, P) = ΘP (n).

Whilst as summarised above, some general lower bounds have been established, prior

to our work, no non-trivial general upper bounds have yet been found. We showed that the

saturation number has at worst polynomial growth.

Theorem 3.15. For any fixed poset P and any n ∈ N, sat∗(n, P) = O(nc), where c ⩽ |P | is
a constant depending on P only.

To prove Theorem 3.15 we introduce two new key notions, “cube-height” and “cube-

width”. Intuitively, for a poset P , the “cube-height” is the least k such that, for some n, we
can embed P into the first k + 1 layers of Qn, while the “cube-width” is the smallest n that

makes such a “small height” embedding possible. See Fig. 3.3 for a few examples.

Definition 3.16. For a poset P , the cube-height h*(P) is the minimum h∗ ∈N for which there

exists n ∈ N such that

(
[n]
⩽h∗

)
contains an induced copy of P .

Definition 3.17. For a poset P , the cube-widthw*(P) is the minimumw∗ ∈N such that there

exists an induced copy of P in

(
[w∗]

⩽h*(P)

)
.

Figure 3.3: Hasse diagram of two posets P1 and P2 such that h*(P1) = 4, w*(P1) = 4 and

h*(P2) = 2,w*(P2) = 4. We also represented a witness assignement
3
for P1 + P2 achieving

optimal cubeheight and cubewidth, h*(P1 + P2) = 5 and w*(P1 + P2) = 6.

Theorem 3.15 is in fact a direct consequence of the two following theorems.

Theorem 3.18. For any fixed poset P and any n ⩾ 2|P |, sat∗(n, P) = O(nw*(P)).

Theorem 3.19. For any poset P , w*(P) ⩽ |P |.
3abc stands for the set {a, b, c} – we use this convention in throughout this section.

84

Our construction in Theorem 3.18 could be interpreted as the result of a greedy algo-

rithm where the sets are ordered according to size (and then arbitrarily within the layers).

An element is added to the family as long as it does not create a copy of P inside the cur-

rent family. Greedy algorithms have been used before for studying poset saturation; most

notably, a greedy colex algorithm was used to show a linear upper bound for the butterfly

[116]. Our result shows that “layer-by-layer” greedy algorithms result in a saturated family

of size at most n|P |
, and we note that such an algorithm has a near-linear time complexity

of OP (|Qn|(log2 |Qn|)|P |2) = OP (2
nn|P |2). This follows from the fact that for any family F ,

it can be decided if it is P -free in OP (|F||P |) time.

Roadmap In Section 3.2, we define the important notions and tools used in this chapter.

Section 3.3 aims to provide a complete proof of Theorem 3.15. This section is split into two

subsections: first, in Section 3.3.1, we prove Theorem 3.18, and then, in Section 3.3.2, we

prove Theorem 3.19. Section 3.4.1 focuses on Theorem 3.10. Finally, in Section 3.4.2, we give

an overview of our exact bound for the antichain saturation number stated in Theorem 3.8.

3.2 Preliminaries
Colex for shadows and matchings In the colexicographic or colex order on

(
[n]
t

)
, we

have A < B if max(A△B) ∈ B, where △ denotes the symmetric difference A△B = (A \
B) ∪ (B \ A). Informally, sets with larger elements come later in the order. For t = 3 the

initial segment of size 8 in colex is given by

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}.

We write C(m, t) for the initial segment of colex on layer t of sizem.

For a family of sets A ⊆
(
[n]
t

)
, the shadow of A is given by

∂A = {X ∈
(
[n]
t−1

)
| X ⊆ Y for some Y ∈ A}.

The well-known Kruskal-Katona theorem below shows that the shadow of a family of

subsets of size t is minimised by taking the family to be an initial segment of colex, and we

will prove an analogous result about matchings between a family and its shadow.

Theorem 3.20 (Kruskal-Katona [127]). Let 1 ⩽ t ⩽ n be integers. Let B ⊆
(
[n]
t

)
and let C be

the initial segment of colex on

(
[n]
t

)
of size |B|. Then |∂B| ⩾ |∂C|.

For B ⊆
(
[n]
t

)
, let ν(B) denote the size of the maximum matching in the bipartite graph

between B and ∂B, where X ∈ B is adjacent to Y ∈ ∂B if Y ⊆ X .

85

Lemma 3.21. Let 1 ⩽ t ⩽ n be integers. Let B ⊆
(
[n]
t

)
and let C be the initial segment of colex

on

(
[n]
t

)
of size |B|. Then ν(B) ⩾ ν(C).

We omit the proof in this manuscript, but it is available in [28] (Lemma 2.4).

Cascade notation Let m, r be integers. For our upper bound construction, we need a

result that gives the value of ν(C(m, r)).
There is a unique way of writingm as

m =

(
ar
r

)
+

(
ar−1

r − 1

)
+ · · ·+

(
as
s

)
where r ⩾ s ⩾ 1, ar > · · · > as > 0 and ai ⩾ i for all i ∈ [s]. The initial segment of colex

C(m, r) of size m on layer r is the union of the set

(
[ar]
r

)
, the set containing all elements

of the form A ∪ {ar + 1} with A ∈
(
[ar−1]
r−1

)
, the set containing all elements of the form

A∪{ar+1, ar−1+1}whereA ∈
(
[ar−2]
r−2

)
, and so on until the sets containing all the elements

of the form A ∪ {ar + 1, ar−1 + 1, . . . , as+1 + 1} where A ∈
(
[as]
s

)
.

The expansion above is also called the r-cascade notation of m and may be built recur-

sively as follows. Take ar to be the largest j such that

(
j
r

)
⩽ m, and set m′ = m −

(
j
r

)
. If

m′ = 0, the recursion ends. Otherwise, we append the expansion form′
and r′ = r − 1.

This expansion can be used to compute the size of the shadow |∂C(m, r)|, but we are

interested in using it to give the precise value of ν(C(m, r)) as follows.
Lemma 3.22. Let r ⩾ s ⩾ 1 and ar > · · · > as > 0 be such that

m =

(
ar
r

)
+

(
ar−1

r − 1

)
+ · · ·+

(
as
s

)
. (3.1)

If i ⩽ ⌈ai/2⌉ for all i ∈ [s, r], then ν(C(m, r)) = ∑r
i=s

(
ai
i−1

)
. Otherwise, let j ∈ [s, r] be

maximal such that j > ⌈aj/2⌉. Then

ν(C(m, r)) =
(

ar
r − 1

)
+ · · ·+

(
aj+1

j

)
+

(
aj
j

)
+ · · ·+

(
as
s

)
.

The proof of Lemma 3.22 is omitted in this manuscript but available in [28].

VC-dimension We say that a family F of subsets of [n] shatters a set S ⊆ [n] if, for all
F ⊆ S, there exists A ∈ F such that A ∩ S = F . In other words, {A ∩ S : A ∈ F} is the

power set of S. The VC-dimension of F is the largest cardinality of a set shattered by F .

The size of a family F with bounded VC-dimension grows at worst polynomially, as shown

by the following well-known result.

86

Lemma 3.23. [Sauer-Shelah lemma [166, 168]] If F ⊆ 2[n] has VC-dimension d then,

|F| ⩽
d∑

i=0

(
n

i

)
.

3.3 A universal upper bound through cubewidth
The aim of this section is to prove Theorem 3.15. It is divided into two subsections. First, we

focus on the saturation part of the theorem and prove Theorem 3.18. Then, we investigate

the parameter cube-width and prove Theorem 3.19.

3.3.1 A universal upper bound
This section focuses on Theorem 3.18. The proof is fairly short and relies on the use of

the VC-dimension introduced in the preliminaries, along with two new poset parameters

introduced earlier (see Definition 3.16 and Definition 3.17).

Theorem 3.18. For any fixed poset P and any n ⩾ 2|P |, sat∗(n, P) = O(nw*(P)).

Proof of Theorem 3.18. Let h∗ = h*(P), w∗ = w*(P), and assume n ⩾ 2w∗
. Let F0 be the

family consisting of the first h∗ layers, or in other words, all the elements of size at most

h∗−1. By the definition of the cube-height, the familyF0 does not contain an induced copy

of P . We now extend this family to a P -saturated family in an arbitrary fashion. Let F be

this resulting family. The crucial property of this family is the following.

Claim 3.24. The VC-dimension of F is less than w∗
.

Proof. Suppose towards a contradiction thatF shatters a set S of sizew∗
. By definition, this

means that L = {A ∩ S : A ∈ F} is the power set of S, and it is isomorphic to Qw∗ . Since

w∗
is the cube-width of P , we can find a copy of P in L such that all sets have size at most

h∗. Let PS denote such a copy of P in L.
Let M1, . . . ,Ms be the sets in PS that have size exactly h∗ – they are subsets of S by

construction. Let P ′ = PS \ {M1, . . . ,Ms}. Since we have removed all elements of PS of

maximal size, the cube-height of P ′
is strictly less than that of PS (i.e. h*(P ′) < h*(PS) =

h*(P)). Therefore there exist an embedding of P ′
in the first h∗ layers. These layers are part

of F0, thus P
′
is contained in F0 ⊆ F .

Since eachMi is a subset of S, we can find Ai ∈ F such that Ai ∩ S =Mi for all i ⩽ s.
Note that this implies that |Ai| ⩾ h∗ for all i ⩽ s, and so no Ai appears in P

′
. We now

show that P ′ ∪ {A1, . . . , As} is an induced copy of P in F , which will yield the desired

contradiction.

87

First, ifB ∈ P ′
is incomparable toMi, thenB is also incomparable toAi. This is because

if B is a subset of Ai, then it is also a subset of Ai ∩ S =Mi, a contradiction. Conversely, if

B ∈ P ′
is a subset ofMi = Ai∩S, then it is a subset ofAi, too. We also have thatAi andAj

are incomparable for i ̸= j as they are incomparable when restricted to S. Finally, Ai can

never be a subset of B ∈ P ′
, since Ai ∩ S =Mi is not a subset of B ∩ S = B.

We conclude that P ′ ∪ {A1, . . . , As} is an induced copy of P in F . This contradict our

intial assumption that F is P -satured and therefore P -free, proving that the VC-dimension

of F is strictly less than w∗
, as desired.

Combining Lemma 3.23 and Claim 3.24, we conclude that, as n ⩾ 2w∗
,

sat
∗(n, P) ⩽ |F| ⩽

w∗−1∑
i=0

(
n

i

)
⩽ w∗ nw∗−1

(w∗ − 1)!
⩽ 2nw∗−1.

Here we have used that
m

(m−1)!
⩽ 2 for all m ∈ N, and that, since n ⩾ 2w∗

, the largest

binomial coefficient in the above sum is

(
n

w∗−1

)
.

3.3.2 Cubewidth

This section explores the new concept of cube-width and related notions in structural poset

theory. One of the consequences of our study is a tight bound on the value that cube-width

can take. In particular, Theorem 3.19 is derived directly from the main theorem of this

section.

Inclusion representation Before stating this theorem, we define inclusion representation

and introduce the concepts of equivalent and irreducible inclusion representations.

In the following, a poset is called trivial if it has exactly one element and a poset is non-

trivial if it has more than one element. Given a poset P , a family S = {Sx : x ∈ P} of sets

is called an inclusion representation of P if for all x, y ∈ P , we have x ⩽ y in P if and only

if Sx ⊆ Sy. We say that an inclusion representation S uses |⋃S| elements.

With these definitions the cube-height of a poset P can be seen as the least non-negative

integer h such that P has an inclusion representation S = {Sx : x ∈ P} where |Sx| ⩽ h for

every x ∈ P . Similarly the cube-width of a poset P is the least non-negative integer w
for which there is an inclusion representation S of P using at most w elements such that

|Sx| ⩽ h*(P) for every x ∈ P .
Note that every poset has an inclusion representation. Indeed, for a poset P and an

element x ∈ P , we denote by DP [x], the closed downset of x in P , that is, the set of all

y ∈ P such that y ⩽ x in P . Now, it is easy to verify that {DP [x] : x ∈ P} is an inclusion

88

representation of P . We call this representation the canonical inclusion representation. Let P
be a poset, and let S = {Sx : x∈ P} and S ′ = {S ′

x : x∈ P} be inclusion representations ofP .
We say thatS andS ′

are isomorphic if |⋃S|= |⋃S ′| and there is a bijection f : ⋃S →⋃S ′

such that for every x ∈ P and every a ∈⋃S , a ∈ Sx if and only if f(a) ∈ S ′
x. We say that S ′

is a reduction of S if |⋃S ′| ⩽ |⋃S| and |S ′
x| ⩽ |Sx| for every x ∈ P . With this definition,

an inclusion representation is a reduction of itself. We say that S is equivalent to S ′
if S is a

reduction of S ′
and S ′

is a reduction of S . Note that two inclusion representations of a poset
can be equivalent but not isomorphic – see Figure 3.4. We say that S ′

is a strict reduction

of S if S ′
is a reduction of S and they are not equivalent. An inclusion representation that

has no strict reduction is said to be irreducible. In Figure 3.5, we give an example of a poset

with two irreducible inclusion representations S and S ′
with |⋃S| ≠ |⋃S ′|.

123
123

345
456

12
12

23 13
23 13

34
45

35 45
46 56

14 15 16 24 25 26 36 46 45
14 15 16 24 25 26 34 35 36

Figure 3.4: The Hass diagram of a 17-elements poset P , with two inclusion representations

of P (in blue and in pink). These representations are equivalent but not isomorphic.

11

12

123

1234

12345

123456

12

123

1234

12345

123456

7 8 9

67 68 78

Figure 3.5: Th Hasse diagram of a 9-elements poset P . And two irreducible configuration.

w*(P) = 8 and iir(P) = 9.

A natural question that arises is how many elements irreducible inclusion representa-

tions can use. Thus, for a poset P , we define iir(P) as the maximum non-negative integer

w such that there is an irreducible inclusion representation of P that uses w elements. Note

that, for every poset P , we have w*(P) ⩽ iir(P). Indeed, for a poset P , take an inclu-

sion representation S of P witnessing h*(P) and then set S ′
to be an irreducible inclusion

89

representation of P such that S ′
is a reduction of S . Therefore, the following result im-

plies Theorem 3.19.

Theorem 3.25. Every irreducible inclusion representation of every poset P uses at most |P |
elements. In other words, iir(P) ⩽ |P | for every poset P .

The theorem admit a fairly easy proof through induction, once the induction hypothesis

is stated cleverly. the following lemma encapsulate the key property for this induction.

Lemma 3.26. Let P be a poset, let S = {Sx : x ∈ P} be an inclusion representation of P , and
let y ∈ P . LetQ= P−DP [y], and letQ

′
be a poset with the ground set {Sx−Sy : x∈ P−{y}}

equipped with the inclusion relation. Let ε ∈ {0, 1} be the number of unique minimal elements

of Q′
. Then, there exists an inclusion representation S ′ = {S ′

x : x ∈ P} of P with |S ′
x| ⩽ |Sx|

for every x ∈ P and ∣∣∣⋃S ′
∣∣∣ ⩽ iir(Q′) + ε+ |Sy|.

Proof. Let A = ∅ when Q′
has no unique minimal element and A = ζ when ζ is a unique

minimal element ofQ′
(note that in this case ζ ̸= ∅ since otherwise q ⩽ y in P where q ∈ P

is such that Sq−Sx = ζ). Clearly, T ′ = {α−A : α ∈Q′} is an inclusion representation ofQ′
.

LetR′ = {R′
α : α ∈ Q′} be an irreducible inclusion representation of Q′

that is a reduction

of T ′
. In particular,R′

uses at most iir(Q′) elements. Assume that the ground sets of S and

R′
are disjoint. For every x ∈DP [y], let S

′
x = Sx. ChooseA

′ ⊂ A arbitrarily so that |A′|⩽ 1
(note that ε = |A′|). For every x ∈ P −DP [y], let S

′
x = R′

α ∪ (Sx ∩ Sy) ∪A′
where α ∈ Q′

is such that α = Sx − Sy. We claim that S ′ = {S ′
x : x ∈ P} is an inclusion representation

of P and |S ′
x| ⩽ |Sx| for every x ∈ P .

Let x, z ∈ P . If x ⩽ z in P , then S ′
x ⊂ S ′

z by definition. Thus, assume x ̸< z in P . If
x, z ∈ DP [y], then S

′
x ̸⊂ S ′

z as S is an inclusion representation of P . If x, z /∈ DP [y], then
either (Sx∩Sy) ̸⊂ (Sz∩Sy) or (Sx−Sy) ̸⊂ (Sz−Sy). In the former case clearly S ′

x ̸⊂ S ′
z and

in the latter case we have R′
α ̸⊂ R′

β , where α = Sx − Sy and β = Sz − Sy, and so, S
′
x ̸⊂ S ′

z .

Next, suppose that x ∈ DP [y] and z /∈ DP [y]. If S
′
x ⊂ S ′

z , then Sx ⊂ Sz ∩ Sy ⊂ Sz , which is

not possible. Finally, assume x /∈DP [y] and z ∈DP [y]. IfQ
′
has no uniqueminimal element,

then Rα ̸= ∅ for every α ∈ Q′
, and so, S ′

x ̸⊂ S ′
z . Otherwise, A

′ ⊂ S ′
x − S ′

z , which implies

S ′
x ̸⊂ S ′

z . The above case analysis yields that S ′
is indeed an inclusion representation of P .

Now, we argue that S ′
is a reduction of S . For every x ∈ DP [y], we have |S ′

x| = |Sx|, and
for every x ∈ P −DP [y], we have

|S ′
x|= |R′

α|+|Sx∩Sy|+|A′|⩽ |α−A|+|Sx∩Sy|+|A′|= |Sx−Sy|−|A|+|Sx∩Sy|+|A′|⩽ |Sx|.

Finally, ∣∣∣⋃S ′
∣∣∣ ⩽ ∣∣∣⋃R′

∣∣∣+ |A′|+ |Sy| ⩽ iir(Q′) + ε+ |Sy|.

90

Proof of Theorem 3.25. The proof is by induction on the number of elements of P . If P is

trivial, then the statement is clear. Suppose that P is non-trivial and let S = {Sx : x ∈ P} be
an irreducible inclusion representation of P . Additionally, suppose to the contrary that S
uses more than |P | elements. If |DP [x]|⩽ |Sx| for every x ∈ P , then the canonical inclusion
representation of P is a strict reduction of S , which contradicts the irreducibility of S .

Therefore, we can assume that there is y ∈ P with |DP [y]| > |Sy|. Observe that y is not
a unique maximal element in P as otherwise |Sy| = |⋃S| > |P | = |DP [y]|. Hence, y is not
a unique maximal element, and so, Q = P −DP [y] is non-empty. Consider a poset Q′

with

the ground set {Sx − Sy : x ∈ Q} equipped with the inclusion relation and let ε ∈ {0, 1}
be the number of unique minimal elements of Q′

. Note that by induction iir(Q′) ⩽ |Q′|.
By Lemma 3.26, there is an inclusion representation S ′ = {S ′

x : x ∈ P} of P with |S ′
x|⩽ |Sx|

for every x ∈ P and∣∣∣⋃S ′
∣∣∣ ⩽ iir(Q′) + ε+ |Sy| ⩽ |Q′|+ 1 + (|DP [y]− 1) ⩽ |P | <

∣∣∣⋃S
∣∣∣ .

This shows that S ′
is a strict reduction of S , which is a contradiction.

3.4 Antichain saturation throughLehmanandRon’s lemma
The aim of this section is to discuss our results on antichain saturation Theorem 3.8. To

understand the structure of an Ak-saturated family, where Ak denotes the antichain of size

k, we first need to examine the structure of chains in the Boolean lattice. Our study led to

Theorem 3.10, a generalisation of Lehman and Ron’s lemma [128]. We believe this general-

isation could be of interest beyond the scope of saturation theory.

3.4.1 A generalisation of Lehman and Ron’s lemma
For convenience, we recall the statement of Theorem 3.10 below.

Theorem 3.10. Suppose that F ⊆ 2[n] admits a chain decomposition into m chains. Then

there exist disjoint skipless chains C1, . . . , Cm ⊆ 2[n] such that F ⊆ ⋃m
i=1C

i
.

The following lemma uses the main building block in the inductive argument we will

employ to prove Theorem 3.10.

Lemma 3.27. Let s ⩽ r ⩽ n be integers. Let C1, . . . , Cm
be disjoint chains, such that for

all i ∈ [m − 1], the chain Ci
starts in layer s and ends in layer r. Suppose that Cm

starts

in A ∈
(
[n]
⩽s

)
and ends in B ∈

(
[n]
r

)
. Then there exist m disjoint chains D1, . . . , Dm

with the

following three properties.

91

C1 C2 C3 C4

B

A

D1 D2 D3 D4

B

A

Figure 3.6: Representation of Lemma 3.27 (case r = s+ 2 andm = 4).

1. For i ∈ [m− 1], the chainDi
starts in the sth layer, ends in the rth layer and is skipless.

2. The chain Dm
starts at A and intersects the ith layer for all i ∈ [s+ 1, r].

3. The chains D1, . . . , Dm
cover the elements in C1, . . . , Cm

.

Note that our lemma allows the element A to appear on a lower layer than the others

(illustrated in Figure 3.6) and that it may be impossible to add an element on layer s to the

chain Dm
.

The overall structure of the proof of Lemma 3.27 is very similar to that of Lehman-Ron

[128]. We first consider the special case in which s = r− 2. As in the proof of Lehman-Ron

[128], the first step is to show that there are at leastm elements in the (r − 1)th layer that

could be elements of the chains D1, . . . , Dm
.

Lemma 3.28. Let a, r, n be integers satisfying a ⩽ r − 2 ⩽ n − 2, let R ⊆
(
[n]
r

)
be of size

m, let S ⊆
(

[n]
r−2

)
be of size m − 1 and let A ∈

(
[n]
a

)
. Suppose that there exists a bijection

f : R → S ∪ {A} with f(X) ⊆ X for all X ∈ R.

Let Q denote the set of Q ∈
(

[n]
r−1

)
with S ⊆ Q ⊆ R for some (S,R) ∈ (S ∪ {A})×R. Then

|Q| ⩾ m.

Proof. We prove the claim by contradiction. Consider a counterexample to the claim for

which m is minimal. If m = 1, then we are given elements A ⊆ R with |A| ⩽ r − 2 and

|R|= r. Then there exists at least one elementQ ∈ Q such thatA⊆Q⊆ R: simply remove

one of the elements in R \ A from R to obtain Q. We therefore assumem ⩾ 2.
We consider the Hasse diagram H = (V,E) of 2[n]. Note that Q can be seen as the set

of all elements of cardinality r − 1 lying on a path between an element of S ∪ {A} and an

element ofR.

92

We consider the “restriction”H ′ = (V ′, E ′)which is obtained by taking the subgraph of

H on vertex set V ′ =R∪S ∪Q∪{A}, removing all arcs containing A and then adding an

arc from A to Q for all Q ∈ Q with A ⊆ Q. We denote by N+(X) (resp. N−(X)) the set of
verticesY with an arcX→Y (resp. with an arcY →X) inH ′

, and define d+(X)= |N+(Y)|
and d−(X) = |N−(X)|. We first prove the following three claims.

Claim 3.29. For every R ∈ R and every Q ∈ N−(R), we have d−(R) ⩾ d−(Q).

Proof. In order to prove the claim, for any R in R, and any Q in N−(R), we exhibit an

injective function π : N−(Q) → N−(R).
We denote by j the unique element of the set R \ Q. For S ∈ S ∩ N−(Q), we denote

by i the unique element in Q \ S and set π(S) = R \ {i} = S ∪ {j}. Note that π(S) ∈ Q
as S, π(S), R is a path in H ′

. By doing so, we specified a unique π(S) ∈ N−(R) for all
S ∈ N−(Q) except for possibly A if A ∈ N−(Q). However, there is one element in N−(R)
that we have not yet used: the elementQ=R\{j} ∈N−(R) and we may map this element

to A to finish the definition of our injection π if needed.

Claim 3.30. For every Q ∈ Q and every S ∈ N−(Q), we have d+(Q) < d+(S).

Proof. The proof of this claim is similar to the proof of the previous claim. Let Q ∈ Q and

S ∈ N−(Q). Once again we exhibit an injective function π′ : N+(Q) → N+(S). We define

π′(R) = S ∪ (R \Q) for R ∈ N+(Q). Note thatQ itself is never an image of π′
thus a strict

inequality holds.

Claim 3.31. ∑
R∈R

d−(R) ⩾
∑
Q∈Q

d−(Q) and

∑
Q∈Q

d+(Q) <
∑

S∈S∪{A}

d+(S).

Proof. We start by showing the first inequality. For c ∈ N, let us define Rc = {R ∈ R |
d−(R) = c} and distinguish two cases. Suppose first that there exists a c ∈ N such that

Rc =R. Thenwe have

∑
R∈R d

−(R)= cm. By Claim 3.29, ∀Q∈Q, d−(Q)⩽ c and therefore∑
Q∈Q d

−(Q) ⩽ c(m− 1) ⩽
∑

R∈R d
−(R).

Otherwise, Rc ̸= R for every choice of c. In this case, we define, for any integer d <
maxR∈R d

−(R), R⩽d = ∪c⩽d Rc and remark that R⩽d ̸= R. Since we chose (R,S ∪ {A})
to be minimal, Lemma 3.28 holds for the pair (R⩽d, f(R⩽d)). In particular, we can find a

set Q⩽d of size exactly |R⩽d| such that Q⩽d ⊆ Q and every element in Q⩽d lies on a path

between an element ofR⩽d and an element of f(R⩽d). By definition, eachQ ∈Q⩽d is in the

in-neighbourhood of some R ∈ R⩽d, and therefore d
−(Q) ⩽ d by Claim 3.29. We conclude

that for any d <maxR∈R d
−(R) there exist |Q⩽d|= |R⩽d| vertices inQ of in degree at most

d.

93

If we denote by d0 < d1 < · · · < dk the in-degree sequence of R, then the result of the

last paragraph induces an injective function π′′ : R⩽dk−1
→ Q as follows: we map Rd0 to

Q⩽d0 , then map Rd1 to Q⩽d1 \ Q⩽d0 and continue to map Rdi to Q⩽di \ Q⩽di−1
for all i ∈

[2, k − 1]. We argued in the previous paragraph that such injections exist. By construction,

∀R ∈ R⩽dk−1
, d−(π′′(R)) ⩽ d−(R).

All vertices in Q are in the in-neighbourhood of some element of R and therefore

d−(Q) ⩽ dk for all Q ∈ Q by Claim 3.29. Since by assumption |Q| < |R|, this proves∑
R∈R d

−(R) ⩾
∑

Q∈Q d
−(Q) since we can associate each term in the second sum to an

element that is at least as large in the first sum (and all terms are non-negative).

The proof of the inequality

∑
Q∈Q d

+(Q) <
∑

S∈S∪{A} d
+(S) is analogous, but now the

strict inequality follows from the strict inequality in Claim 3.30 instead of the weak inequal-

ity of Claim 3.29.

We are now fully equipped to conclude the proof of Lemma 3.28. By double counting,∑
Q∈Q d

−(Q) =
∑

S∈S∪{A} d
+(S) and

∑
R∈R d

−(R) =
∑

Q∈Q d
+(Q). Using Claim 3.31 we

deduce the following contradiction,∑
Q∈Q

d−(Q) =
∑

S∈S∪{A}

d+(S) >
∑
Q∈Q

d+(Q) =
∑
R∈R

d−(R) ⩾
∑
Q∈Q

d−(Q).

This proves the lemma.

Using Lemma 3.28 we can now prove the following special case of Lemma 3.27, which

we will use to push through an inductive argument.

Lemma 3.32. Let 3⩽ r ⩽ n be integers. LetC1, . . . , Cm−1
be skipless disjoint chains between

the (r− 2)th and the rth layers. Let B ∈
(
[n]
r

)
and let A be a subset of B of size at most r− 2,

such that A,B /∈ ∪m−1
i=1 C

i
.

Then there existm disjoint chains D1, . . . , Dm
with the following three properties.

• For i ∈ [m − 1], the chain Di
starts in the (r − 2)th layer, ends in the rth layer and is

skipless.

• The chain Dm
starts in A and intersects both the (r − 1)th and the rth layer.

• The chains D1, . . . , Dm
cover the elements in C1, . . . , Cm−1

and A,B.

Proof. We prove the claim by induction onm. The casem = 1 is immediate.

94

We letR, T ,S denote the restriction of the chains to layers r, r − 1, r − 2 respectively,
and add A to S and B toR. That is,

R =

(⋃
i

Ci ∩
(
[n]

r

))
∪ {B},

T =
⋃
i

Ci ∩
(

[n]

r − 1

)
,

S =

(⋃
i

Ci ∩
(

[n]

r − 2

))
∪ {A}.

LetQ denote the set of all elementsQ∈
(

[n]
r−1

)
such that there exists (R, S)∈R×S satisfying

R ⊆ Q ⊆ S. We define a bijection f :R→ S with f(B) = A and f(X) ⊆ X for allX ∈ R
using the given chains. Lemma 3.28 shows that |Q| ⩾ m. Since |T | = m − 1, T is a strict

subset of Q.

We consider the poset as a directed graph H ′
via an adjusted Hasse diagram as before:

the vertex set consists of V =R∪Q∪S , andX → Y is an arc inE(H ′) if and only ifX ⊊ Y
and either |Y | = |X| + 1 or X = A and Y ∈ Q. Finding the desired chains D1, . . . , Dm

,

is equivalent to finding m vertex-disjoint paths between R and S in the induced subgraph

HQ = H ′[R ∪ T ∪ S ∪ {Q}] for some Q ∈ Q. By Menger’s theorem [142], there exist m
vertex-disjoint paths if and only if there is no (R,S)-cut of size m − 1, that is, there is no
subset C ⊆ V with |C| = m− 1 such that, for all pairs (R, S) ∈ R× S , every path from R
to S contains a vertex of C.

Since |T |< |Q|, there is an elementQ0 ∈Q\T . By the discussion above, wemay assume

that an (R,S)-cut C of sizem− 1 exists inHQ0 . We first show that C ̸⊆ Q. Indeed, for any

Q ∈ Q there exists a pair (R, S) ∈ R × S such that S → Q → R is a path in H ′
. When

C ⊆ Q, all such paths inHQ0 are cut off only when C contains all elements of T ∪{Q0}; but
|C| = m− 1 < m = |T ∪ {Q0}|. So C must contain at least one element which is not in Q.

We partition the size of the cut in three parts

m1 = |R ∩ C|, m2 = |Q ∩ C|, m3 = |S ∩ C|.

Consider the chains whose endpoints have not been touched by the cut. That is, letR∗ ⊆R
consist of theR ∈R for whichR, f(R) ̸∈ C, and let S∗ = f(R∗). ThenQ∩C is an (R∗,S∗)-
cut. Moreover,

m2 = |Q ∩ C| = (m− 1)−m1 −m3 < m−m1 −m3 ⩽ |R∗|.

Let T ∗ ⊆T consist of the elements that lie on some chainCi
betweenS∗

andR∗
. SinceQ∩C

is an R∗,S∗
-cut of HQ0 , it must in particular contain all elements of T ∗

. Since m2 < |R∗|,

95

this means that (A,B)∈ (S∗×R∗). Moreover, wemay apply the induction hypothesis since

|R∗|< |R| (becausem1+m3 > 0). This gives us |R∗| chains which cover all elements in T ∗

and all intersect layer r− 1, so in particular we obtain some elementQ1 ∈ Q\T ∗
such that

there are |R∗| > m2 vertex-disjoint S∗ −R∗
paths in H∗ = H ′[R∗ ∪ T ∗ ∪ {Q0, Q1} ∪ S∗].

We distinguish two cases.

• Suppose thatQ1 /∈ T . In this case we have obtained our desired chain decomposition.

Indeed, we keep the chains between S\S∗
andR\R∗

as they are and since T ∗∪{Q1}
is disjoint from those chains, we may use the |R∗| chains betweenR∗

and S∗
that we

obtained by induction in order to define the remaining chains.

• Suppose that Q1 ∈ T . In that case, H∗
is an induced subgraph of HQ0 . This gives a

contradiction: H∗
has |R∗| > m2 vertex disjoint paths between R∗

and S∗
, whereas

Q∩ C gives an (R∗,S∗)-cut of sizem2 in HQ0 .

From this, we will deduce the case of general s.

Proof of Lemma 3.27. We prove the lemma by induction onm. The casem= 1 is immediate.

Suppose the claim has been shown for allm′ < m.

Let C1, . . . , Cm
be the given chain decomposition, where Cm

starts in A ∈
(
[n]
⩽s

)
and

ends in B ∈
(
[n]
r

)
, and the first m − 1 chains are between layers s and r. Let t ∈ [s + 1, r].

We say the chainsD1, . . . , Dm
are t-good if the firstm− 1 chains are skipless and between

layers s and r,Dm
is betweenA andB and intersects layers t, . . . , r, and ∪m

i=1C
i ⊆ ∪m

i=1D
i
.

We first argue that there exists an r-good decomposition. Indeed, applying the induction

hypothesis to the firstm′ =m−1 chains, we can find chainsD1, . . . , Dm−1
between layers

s and r that are skipless and such that ∪m−1
i=1 C

i ⊆ ∪m−1
i=1 D

i
. By removing the elements from

Cm
that also appear in someDi

, we have obtained an r-good decomposition forC1, . . . , Cm
.

Let t ⩽ r be minimal for which a t-good decomposition D1, . . . , Dm
exists. Suppose

towards a contradiction that t > s + 1. Let B′
be the element of Dm

in layer t. Since

t > s + 1, we find t − 2 ⩾ s and so the chains D1, . . . , Dm−1
all intersect layer t − 2. We

can apply Lemma 3.32 on the chainsD1, . . . , Dm−1
restricted to layers s′ = t−2 and r′ = t,

and elements A and B′
. This produces a set C1 of chains. Let C0 and C2 be the restrictions

of D1, . . . , Dm
to layers s, . . . , t− 2 and to layers t, . . . , r respectively. Then each chain of

C1 shares a vertex with exactly one chain of C0 and exactly one chain of C2. Hence, there
is only one way to merge these chains in a chain decomposition E1, . . . , Em

. This chain

decomposition is (t− 1)-good, contradicting the minimality of t. Therefore, there exists an
(s+ 1)-good decomposition D1, . . . , Dm

, as claimed by the lemma.

We will obtain Theorem 3.10 as a corollary of the following lemma. The lemma is stated

in the way that we wish to apply it in the proof of Theorem 3.8.

96

Lemma 3.33. Let F ⊊ 2[n] be k-antichain saturated. Then F has a chain decomposition into

k − 1 skipless chains.

Proof. Suppose, towards a contradiction, that F has no chain decomposition C1, . . . , Ck−1

for which the first i+1 chains are skipless, but it does have one for which the first i are skip-
less. Note that, we can always rearrange the chain decomposition such that C1

is skipless,

else F would not be saturated. This means we have 1 ⩽ i < k − 1.
Amongst the decompositions for which the first i chains are skipless, we choose a de-

compositionC1, . . . , Ck−1
which minimises the “number of layers the (i+1)th chain skips”.

That is, the decomposition which minimises

max
X∈Ci+1

|X| − min
Y ∈Ci+1

|Y |+ 1− |Ci+1|.

By assumption, we can find A ⊆ B consecutive in Ci+1
with |B| > |A|+ 1 such that Ci+1

is skipless between B and its maximal element. After renumbering, we can assume that for

some j ∈ [0, i], the chains C1, . . . , Cj
have elements present on layers |B| − 2, |B| − 1 and

|B|, whereas Cj+1, . . . , Ci
miss an element either on layer |B|−2 or on layer |B|. (Here we

use that C1, . . . , Ci
are skipless.) In particular, if Ca

where a ∈ [j + 1, i] has an element on

layer |B| − 1, then it is its minimal or maximal element, and so we can move it to another

chain without creating any skips in the chain Ca
.

We apply Lemma 3.27 to the chains C1, . . . , Cj
restricted to layers |B| − 2, |B| − 1, |B|,

and A ⊆ B to obtain disjoint chains D1, . . . , Dj+1
with the following properties:

• ∪j
a=1C

a ∪ {A,B} ⊆ ∪j+1
a=1D

a
;

• D1, . . . , Dj
are skipless, start in layer |B| − 2 and end in layer |B|;

• Dj+1
contains A and elements on layers |B| − 1 and |B|.

Since the chainsC1, . . . , Cj
have an element on layer |B|−1, there is a uniqueX ∈ ∪j+1

a=1D
a

with |X| = |B| − 1 such that X ̸∈ ∪j
a=1C

a
.

The chains D1, . . . , Dj+1
define a matchingM between layer |B| and layer |B| − 1 of

size j + 1. We will use this to reroute the chains into a “better” chain decomposition and

arrive at a contradiction. A possible configuration is depicted in Figure 3.6. We define the

chain decomposition E1, . . . , Ek−1
as follows.

For a ∈ [j], let b ∈ [j] be such thatDb
contains the unique element in Ca

of size |B| − 2.
Let a′ ∈ [j] ∪ {i + 1} be the index such that Db

contains the unique element in Ca′
of size

|B|. We set

Ea =

[
Ca ∩

(
[n]

⩽ |B| − 2

)]
∪Db ∪

[
Ca′ ∩

(
[n]

⩾ |B|

)]
.

97

D1 D2 D3 D7 D4 D5 D6

A

C1 C2 C3 C7 C4 C5 C6

A

B B

Figure 3.7: An example of a possible rearrangement as done in the proof of Lemma 3.33 (for

j = 3 and i = 6). The sets A and B are part of the chain C7.

Note that our assumption that C1, . . . , Ci+1
are skipless from layer |B| upwards means the

chain Ea
must be skipless as well.

For a∈ [j+1, i], we letEa =Ca\{X}. Either we kept the chain the same, or we removed

the minimal or maximal element, so these chains are also skipless. For a ∈ [i+2, n], we also
set Ea = Ca \ {X}.

For a = i + 1, let Ca′
be the unique chain which contains the element of Dj+1

of size

|B|. We set

Ei+1 =

[
Ci+1 ∩

(
[n]

⩽ |A|

)]
∪Dj+1 ∪

[
Ca′ ∩

(
[n]

⩾ |B|

)]
.

The chains E1, . . . , Ek−1
form a chain decomposition of F ∪ {X} (which must equal F

in this case because F is k-antichain saturated). The chains E1, . . . , Ei
are skipless and

the chain Ei+1
skips one fewer layers than the chain Ci+1

, contradicting the optimality of

C1, . . . , Ck−1
.

We recall the statement of Theorem 3.10: if F admits a chain decomposition into m
chains, then it can be covered bym skipless chains.

Proof of Theorem 3.10. By assumption, F does not contain an antichain of size m + 1. Let
F ′

be obtained from F by greedily adding sets until the set system has become (m + 1)-
antichain saturated. If F ′ = 2[n], then we find a skipless chain decomposition for F ′

by

Lemma 0.3. Otherwise, we can find a chain decomposition for F ′
into m + 1 − 1 = m

skipless chains by Lemma 3.33. These chains cover F as desired.

98

3.4.2 Overview of the proof of Theorem 3.8
This section focuses on Theorem 3.8. The complete proof is quite involved, as it requires im-

proving both the previously known lower bound and the upper bound. In the following, we

first prove the lower bound part of the statement. Second, we provide a proof for a simpler

subcase of the general upper bound construction of Theorem 3.8. This simpler construction

serves as the building block for our more general upper bound construction. We conclude

this section by describing our general construction without including its correctness proof,

which is available in [25].

Lower bound of Theorem 3.8

Let us first recall the set-up. Given a natural number k, let ℓ be the smallest integer j such
that

(
j

⌊j/2⌋

)
⩾ k − 1. We may assume that n ⩾ ℓ. Let C(m, t) denote the initial segment of

layer t of sizem under the colexicographic order. Let ct = k−1 for all t∈ [⌊ℓ/2⌋ , ⌊n/2⌋]. For
0 ⩽ t < ⌊ℓ/2⌋, we define ct = ν (C(ct+1, t+ 1)). (Recall that ν(B) is the size of the largest
of a matching between B and its shadow, as defined in Section 3.2.)

The lower bound of Theorem 3.8 follows directly from the lemma below, since the de-

sired lower bound for the upper layers follows by symmetry.

Lemma 3.34. For any k-antichain saturated set systemF ⊊ 2[n], |Ft|⩾ ct for any t⩽ ⌊n/2⌋.

Proof. Suppose that F ⊊ 2[n] is k-antichain saturated. By Lemma 3.33, there is a skipless

chain decomposition C1, . . . , Ck−1
for F . Let Ft = F ∩

(
[n]
t

)
. We define D(Ft) as the

sets A ∈ Ft−1 for which the chain Ci
that contains A also contains an element of Ft. The

following claim is key to our proof.

Claim 3.35. For all t ∈ [n], |D(Ft)| = ν(Ft).

Proof. By definition, there is a matching fromFt toD(Ft)⊆ ∂Ft of size |D(Ft)|, and hence,
ν(Ft) ⩾ |D(Ft)|. We now focus on the opposite inequality.

Suppose, towards a contradiction, that there is a t for which |D(Ft)| < ν(Ft). LetM be

a matching between Ft and ∂Ft of size ν(Ft), and letM ′
be the matching between Ft and

C(Ft) corresponding to the inclusions in the chains (i.e. X is matched to Y if X and Y are

in the same chain). Consider the multigraph where the vertices are

(
[n]
t

)
∪
(
[n]
t−1

)
and the edge

set isM ∪M ′
. The non-empty components of this graph are paths and even cycles which

alternate between edges fromM andM ′
(with no multiedges), and multiedges which have

one edge fromM and one edge fromM ′
. Since |M | > |M ′| there must be some component

P which is a path that starts and ends with edges from M . We will reroute some of the

chains so that they use the edges fromM instead of the edges fromM ′
, increasing the size

of D(Ft).

99

If a chain Ca
is not incident with an edge in this path, let Da = Ca

(i.e. the chain is

unchanged). One end of P must be in layer t and one end in layer t − 1, and we order the

edges starting from the end in layer t. If e ∈ M is not the last edge in the path, then it

connects a set X ∈ Ca
of size t to a set Y ∈ Cb

of size t− 1, and we replace Ca
by

Da =

(
Ca ∩

(
[n]

⩾ t

))
∪
(
Cb ∩

(
[n]

⩽ t− 1

))
.

If e ∈ M is the last edge in the path, there are two cases. The edge may connect a set

X ∈ Ca
of size t to a set Y of size t − 1 which is not in any other chain, in which case we

set Da =
(
Ca ∩

(
[n]
⩾t

))
∪ {Y }. Then D1, . . . , Dk−1

gives a decomposition of F ∪ {Y } into

k− 1 chains and this contradicts the assumption that F is k-antichain saturated. The other

case is where the edge connects a set X ∈ Ca
of size t to a set Y ∈ Cb

of size t − 1. Since
there is no edge in M ′

incident to Y , it must be the largest set in Cb
. In this case, we set

Da =
(
Ca ∩

(
[n]
⩾t

))
∪Cb

. The k− 2 chainsD1, . . . , Db−1, Db+1, . . . , Dk−1
now cover all the

elements of F and we may still define the chain Db
freely. We can choose any set A which

is not in F and setDb = {A}. ThenD1, . . . Dk−1
is a chain decomposition of F ∪ {A} into

k − 1 chains, a contradiction.

Lemma 0.3 shows that, for all t > ⌊n/2⌋ there is a matching between Ft and ∂Ft of size

|Ft|, which implies ν(Ft) = |Ft|. Using the claim above, every chain with a set in layer t
must have a set in layer t−1 for all t > ⌊n/2⌋. The set systemF = {[n]\F : F ∈ F} is also
k-antichain saturated. Applying Claim 3.35 to F , we find that every chain with a set of size

s < ⌈n/2⌉ must have a set of size s + 1 as well. Putting these together gives the following

claim.

Claim 3.36. For all i ∈ [k − 1], Ci
contains an element from layer ⌊n/2⌋.

An immediate consequence of Claim 3.35 is that |Ft−1| ⩾ ν(Ft). Together with Lemma

3.21, this shows

|Ft−1| ⩾ ν(Ft) ⩾ ν(C), (3.2)

where C is an initial segment of colex on

(
[n]
t

)
of size |Ft|. We already have |F⌊n/2⌋| = k− 1

(by Claim 3.36) and we want this for Ft down to t = ⌊ℓ/2⌋. From (3.2), we can push this

downwards at least when ν(C) = |C|, and the following claim shows that this holds for all

t > ⌊ℓ/2⌋.

Claim 3.37. For t > ⌊ℓ/2⌋, an initial segment of colex C on layer t of size at most k − 1 has

ν(C) = |C|, and so |Ft−1| ⩾ |Ft|.

100

Proof. Let ℓ∗ be the largest element in any set in C i.e. ℓ∗ = max(
⋃

A∈C A). If t > ⌊ℓ∗/2⌋,
then applying Lemma 0.3 to [ℓ∗] shows that there is a matching from |C| to layer t−1 of [ℓ∗]
of size |C|, and we are done. Suppose instead that t ⩽ ⌊ℓ∗/2⌋. Since C is an initial segment

of colex, it must contain all subsets of [ℓ∗− 1] of size t as well as a set containing ℓ∗, but this
means C contains too many sets. Indeed,

1 +

(
ℓ∗ − 1

t

)
⩾ 1 +

(
2t− 1

t

)
⩾ 1 +

(
ℓ

⌊ℓ/2⌋

)
⩾ k.

Combined with Claim 3.36, we find that layers ⌊ℓ/2⌋ up to ⌊n/2⌋ all contain k − 1
elements of F .

For t < ⌊ℓ/2⌋, if |Ft+1| ⩾ ct+1 then (3.2) shows that

|Ft| ⩾ ν(C(|Ft+1|, t+ 1)) ⩾ ν(C(ct+1, t+ 1)) = ct,

which concludes the proof of Lemma 3.34.

Note that, by complementing every set, Lemma 3.34 can be used to deduce lower bounds

for layers close to n. The lower bound of Theorem 3.8 follows from using this observation

and summing over every layer.

Let us remark that for infinitely many values of k, a matching upper bound to Theorem

3.8 was already known [73] (this upper bound construction is briefly explained below)which

works for all n ⩾ ℓ+ 1. Therefore Lemma 3.34 combined with the simple observation that

ν
((

[m]
r

))
=
(

m
r−1

)
provided r ⩽ ⌈m/2⌉, gives the following corollary.

Corollary 3.38. Let ℓ, k, n be integers such that

(
ℓ

⌊ℓ/2⌋

)
= k−1. If n⩽ ℓ then sat*(n, k) = 2n.

If n ⩾ ℓ+ 1, then

sat*(n, k) = 2

⌊ℓ/2⌋∑
j=0

(
ℓ

j

)
+ (k − 1)(n− 1− 2⌊ℓ/2⌋).

When k − 1 =
(

ℓ
⌊ℓ/2⌋

)
, we remark that all minimal k-antichain saturated set systems

have a similar shape: layer ⌊ℓ/2⌋ is the lowest layer with k − 1 elements and induces an

isomorphic copy of colex, layer n − ⌊ℓ/2⌋ is the highest layer with k − 1 elements and

contains the complements of an isomorphic copy of an initial segment of colex, and the

elements in between these two layers can be covered by k − 1 skipless chains.

101

A simpler upper bound (Corollary 3.38)

Let us first describe the upper bound construction mentioned above, studied in [73]. Let

ℓ, k, n be integers such that

(
ℓ

⌊ℓ/2⌋

)
= k − 1 and n ⩾ ℓ+ 1. We show,

sat*(n, k) ⩽ 2

⌊ℓ/2⌋∑
j=0

(
ℓ

j

)
+ (k − 1)(n− 1− 2⌊ℓ/2⌋). (3.3)

We define a set system F ⊆ 2[n] that is k-antichain saturated.

For t ⩽ ⌊ℓ/2⌋, the sets of size t in F are exactly the subsets of [ℓ] of size t, and for

t ⩾ n − ⌊ℓ/2⌋, we add to F all subsets X ⊆ [n] of size t for which [n] \ X is a subset of

[ℓ]. There are k − 1 sets F of size ⌊ℓ/2⌋ and n − ⌊ℓ/2⌋, and we will join these up using

Theorem 3.10.

For ℓ odd, we first fix a matchingM between

(
[ℓ]

⌊ℓ/2⌋

)
and

(
[ℓ]

⌈ℓ/2⌉

)
, which exists by Lemma

0.3. When ℓ is even, we letM be the identity. We denote byM(X) the element matched to

X byM . Let f : F⌊ℓ/2⌋ → Fn−⌊ℓ/2⌋ be given by

f(X) =M(X) ∪ [ℓ+ 1, n],

and note that X ⊆ f(X) for all X ∈ F⌊ℓ/2⌋. To complete the family F , we take any set of

k−1 disjoint skipless chains betweenF⌊ℓ/2⌋ andFn−⌊ℓ/2⌋, which we know exist by Theorem

3.10.

To see that F has no antichain of size k, we note that it allows a decomposition into

k − 1 chains. Indeed, we may extend the previously obtained k − 1 chains between layers

⌊ℓ/2⌋ and n − ⌊ℓ/2⌋, using any chain decomposition of [ℓ] restricted to the lowest ⌊ℓ/2⌋
layers. We can similarly extend the chains to the layers n− ⌊ℓ/2⌋+ 1, . . . , n.

To see thatF is saturated, note thatwe clearly cannot add any subset of size t∈ [⌊ℓ/2⌋, n−
⌊ℓ/2⌋] since F already contains k − 1 subsets of size t. For t < ⌊ℓ/2⌋, any subset of size t
that is not yet in F must contain some element i > ℓ and is therefore incomparable to the

k − 1 elements of F ∩
(

[n]
⌊ℓ/2⌋

)
. A similar argument holds for t > n− ⌊ℓ/2⌋.

By counting the number of sets in each layer, we find that

|F| = 2

⌊ℓ/2⌋∑
j=0

(
ℓ

j

)
+ (k − 1)(n− 1− 2⌊ℓ/2⌋),

as required.

102

General upper bound (Theorem 3.8)

Let us now describe our general upper bound construction. Only the construction is ex-

plained here, the proof that it is indeed a Ak-saturated family is available in [28].

Recall that Lemma 3.34 tells us that the set system F that we wish to construct satisfy

ν(Ft) = ν(C(|Ft|, t)) for all t ⩽ ⌊ℓ/2⌋ while maintaining that F can be covered by k − 1
chains.

Suppose that each set in C(m, r) is in a chain and consider how many continue to the

layer below. If we consider the r-cascade notation ofm (defined in Section 3.2), Lemma 3.22

shows that the difference m − ν(C(m, r)) comes only from an initial sequence and that,

for remaining binomial terms, we always need to continue the chains to the layer below.

This gives us some freedom to not use the initial segment of colex for these continuing

chains, and we will instead take elements that ensure that we will able to use a suitable

initial segment of colex on smaller layers. To do this, we will change the later terms in the

r-cascade notation of m, so that they are part of the expansion of a later layer and use the

new expansion to define F . We now introduce this different way of writing of m as a sum

of binomial coefficients that gives our new expansion.

Givenm, r ⩾ 1 such thatm ⩾
(
2r−1
r

)
. Let the r-expansion ofm be

m =

(
ar1
r1

)
+ · · ·+

(
ars
rs

)
recursively formed as follows. Let r1 = r and define ar1 as the maximum j such that

(
j
r1

)
⩽

m. Note that ar1 ⩾ 2r1− 1. Setm′ =m−
(
ar1
r1

)
. Ifm′ = 0, we are done. Otherwise, let r′ be

the maximum j ⩽ r−1 such that

(
2j−1
j

)
⩽m′

and form the r-expansion ofm by appending

to

(
ar1
r1

)
the r′-expansion ofm′

. It is easy to see that this is well-defined and must terminate.

As an example, let us consider the 5-expansion ofm = 1011. Since
(
12
5

)
< 1011 <

(
13
5

)
,

we take ar1 = 12 (and r1 = 5). This meansm′ = 219, and the largest integer j ⩽ 4 such that(
2j−1
j

)
⩾ m′

is j = 4 (we also have

(
9
5

)
⩽ m′

, but this is not allowed). We therefore append

the 4-expansion of 219. Calculating this recursively in the same manner, we see ar2 = 10
(and r2 = 4), which leaves a remainder of 9. Since

(
4
2

)
⩽ 9<

(
5
3

)
, we append the 2-expansion

of 9, which is

(
4
2

)
+
(
3
1

)
. This gives the 5 expansion of 1011 as

1011 =

(
12

5

)
+

(
10

4

)
+

(
4

2

)
+

(
3

1

)
.

Construction for Theorem 3.8. Let ℓ be the smallest integer j such that

(
j

⌊j/2⌋

)
⩾ k − 1. Let

103

A1 A2 A3

r1

r2 + 1

r3 + 2

n− r1

n− r2 − 1

n− r3 − 2

Figure 3.8: The shape of our upper bound construction is depicted. We represent layers

horizontally (starting with the lowest at the bottom). For some, we indicated the number of

the layer (e.g. layer n− r3 − 2).

104

the ⌊ℓ/2⌋-expansion of k − 1 be

k − 1 =

(
ar1
r1

)
+ · · ·+

(
ars
rs

)
Through some omited proof, we can guarantee that ⌊ℓ/2⌋ = r1 > · · · > rs ⩾ 1, ar1 > · · · >
ars > 0 and ri ⩽ ⌈ari/2⌉ for all i ∈ [s]. Note that the specific case where ar1 = ℓ has been
treated in the previous subsection as the upper bound construction for Corollary 3.38, so

we can suppose that ar1 ⩽ ℓ− 1.
We now define our construction by processing each of the terms in this expansion. Ini-

tialise I as an empty set of chains. For each i ∈ [s], let Ai be the set system consisting of

sets of the form

A = X ∪ {ar1 + 1, ar2 + 1, . . . , ari−1
+ 1}

where X is a subset of [ari] of size at most ri. Note that the largest element in any of these

sets is either ar1 or ar1 + 1, and hence all sets are contained in [ℓ].
Since ri ⩽ ⌈ari/2⌉, we can cover Ai with

(
ari
ri

)
disjoint chains, and we add these chains

to our collection of chains I . Indeed, we may start with the chains from a symmetric chain

decomposition of 2[ari] and add the elements ar1 +1, ar2 +1, . . . , ari−1
+1 to every set. Then

we discard any sets which are not inAi and remove any empty chains to leave the required

chain covering.

Define f : 2[n] → 2[n] by f(A) = {i ∈ [n] : n+1− i ̸∈ A}. Form a second set of chains I ′

by replacing each chain C ∈ I by {f(A) : A ∈ C}. Since we have assumed that n ⩾ 2ℓ+1,
we have that A ⊆ f(A) for any set A ⊆ [ℓ], and these are indeed chains. The chains in I ′

are also disjoint and we can apply Theorem 3.10 to find disjoint chainsD1, . . . , Dk−1
which

cover all sets in I ∪ I ′
and are skipless. We take F to be the union of D1, . . . , Dk−1

. See

Fig. 3.8 for a depiction of a set system constructed as above. We only note here, that the set

system F is the union of k − 1 chains, so cannot contain an antichain of size k. The fact
that F is indeed k saturated is proven in [28].

3.5 Conclusion and perspectives
Despite extensive efforts from researchers, our understanding of the possible behaviours of

the parameter sat* remains limited. By combining the results of [77] and Theorem 3.15, we

obtain the following theorem, which summarises our knowledge of the possible range of

values taken by sat*(n, P).

Theorem 3.39. For any poset P and any n ∈ N, either

sat*(n, P) = O(1) or Ω(
√
n) = sat*(n, P) = O(n|P |).

105

To this day, only two types of behaviour are known: either constant or linear. Moreover,

examples of both behaviours have been known for quite some time, such as sat*(n,C2) = 1
and sat*(n,A2) = n+ 1. The primary conjecture in the field can be stated as follows:

Conjecture 3.40. For any poset P and any n ∈ N, either

sat*(n, P) = O(1) or sat*(n, P) = ΘP (n).

A weaker version of this conjecture was first formulated in [116], where ΘP (n) was
replaced byΩ(n). If we believe Conjecture 3.40 to be true, then we can speculate on possible
structural explanations for the linear behaviour. Perhaps, there always exists a saturated

family using only a constant number of elements on each layer of the hypercube.

Conjecture 3.41. For any poset P , and any n ∈ N, there exists a P -saturated family F in

2[n] such that,

|F ∩
(
[n]

t

)
| = O(1).

To understand the possible behaviour, it might be a good idea to first focus on the sim-

plest case and attempt to deepen our understanding of it. Almost nothing is known about

posets P satisfying sat*(n, P) = O(1). From a theoretical perspective, developing neces-

sary and/or sufficient conditions for a poset to have a bounded saturation number would be

valuable. For example, finding a characterisation of posets P such that sat*(n, P) = O(1).
From an algorithmic perspective, the following problem remains widely open.

Problem 3.42. What is the complexity class of the following algorithmic problem:

Input: A poset P
Output: YES if sat*(n, P) = O(1) and NO otherwise.

We remark that, to our knowledge, the problem discussed above is not even known to

be decidable.

On the contrary, if we believe Conjecture 3.40 to be false, we would need to exhibit

a poset P for which sat*(n, P) = ω(1) but sat*(n, P) ̸= Θ(n). Despite multiple papers

focusing on the diamond poset ♢ [73, 95], it is still a possible candidate for disproving Con-

jecture 3.40. The following conjecture was proposed by Ivan in [95].

Conjecture 3.43. For any n ∈ N, sat*(n,♢) = Θ(
√
n).

106

Chapter 4

Spread embedding in graphs of high
minimum degree

This chapter presents results about how to construct “uniform-like” random embeddings,

called spread embeddings in dense graphs. This is joint work with Clément Legrand-

Duchesne and Alp Müyesser [30].

4.1 Introduction

There is a large body of results in extremal graph theory focusing on determining the min-

imum degree threshold which forces the containment of a target subgraph. For example, a

classical result of Dirac [62] states that any n-vertex graph with minimum degree at least

n/2 contains a Hamilton cycle. Although this result is tight, graphs with minimum degree

n/2 are quite dense, so it is natural to suspect that they are Hamiltonian in a rich sense.

In this direction, Sárközy, Selkow, and Szemerédi [165] showed that n-vertex graphs with

minimum degree n/2 contain Ω(n)n distinct Hamilton cycles (we refer to such results as

enumeration results, see also [58]). Moreover, randomly sparsifying the edge set of an n-
vertex graph with minimum degree n/2 yields, with high probability, another Hamiltonian

graph, as long as each edge is kept with probability Ω(log n/n). This follows from an influ-

ential result of Krivelevich, Lee, and Sudakov [125] (such results are referred to as robustness

results, see [174]), which generalises Pósa’s celebrated result stating that the random graph

G(n,C log n/n) is Hamiltonian with high probability.

The study of randomgraphswas recently revolutionised by Frankston, Kahn, Narayanan,

and Park’s [76] proof of the fractional expectation threshold vs. threshold conjecture of Tala-

107

grand [175] (see also [150] for a proof of the even stronger Kahn–Kalai conjecture [103]). In

our context, these breakthroughs imply that the enumeration and robustness results stated

in the first paragraph, which themselves are fairly general, admit a a further common gen-

eralisation. To state this generalisation, we need the language of spread distributions which

we will define momentarily. In a nutshell, the key idea is to show that a graph G, with
minimum degree large enough to necessarily contain a copy of a target graph H , actually

supports a random embedding of H that (roughly speaking) resembles a uniformly random

function from V (H) to V (G). The formal definition we use is below.

Definition 4.1 ([154]). LetX and Y be finite sets, and let µ be a probability distribution over

injections φ : X → Y . For q ∈ [0, 1], we say that µ is q-spread if for every two sequences of

distinct vertices x1, . . . , xs ∈ X and y1, . . . , ys ∈ Y ,

µ ({φ : φ(xi) = yi for all i ∈ [s]}) ⩽ qs.

In our context, X = V (H), Y = V (G), |X| = |Y | = n, and µ is a probability distribu-

tion over embeddings of H into G. The gold standard for us is constructing distributions

µ that are O(1/n)-spread. Such distributions have the optimal spread (up to the value of

the implied constant factor) that is also attained by a random injection from V (H) to V (G).
We remark that Definition 4.1, originally introduced in [154], is different to the usual defi-

nition of spreadness phrased in terms of edges, instead of vertices. However, for embedding

spanning subgraphs, the above definition turns out to be more convenient (see [115, 154]

for more details).

The breakthroughs on the Kahn-Kalai conjecture have created a lot of incentive to show

“spread versions” of Dirac-type results in graphs and hypergraphs, as such results directly

imply enumeration and robustness results, thereby coalescing two streams of researchwhich

have, until now, been investigated independently. We refer the reader to the recent papers

[154, 115, 105, 100, 14] that obtain several results in this direction (see also [7]). Most of the

aforementioned work focuses on constructing spread distributions for target graphs with

rather simple structures, such as perfect matchings or Hamilton cycles. One notable excep-

tion is the result from [154] for bounded degree trees. To introduce this result, we first cite

the following classical result in extremal graph theory.

Theorem 4.2 (Komlós–Sárközy–Szemerédi [121]). For every∆ ∈ N and α > 0, there exists
n0 ∈ N such that the following holds for all n ⩾ n0. If G is an n-vertex graph with δ(G) ⩾
(1 +α)n

2
, then G contains a copy of every n-vertex tree with maximum degree bounded by∆.

Theorem 4.2 admits a spread version, as demonstrated in [154].

Theorem 4.3 (Pham, Sah, Sahwney, Simkin [154]). For every∆ ∈ N and α > 0, there exists
n0, C ∈ N such that the following holds for all n ⩾ n0. If G is an n-vertex graph with δ(G) ⩾

108

(1 + α)n
2
, and T is a n-vertex tree with ∆(T) ⩽ ∆, there exists a (C/n)-spread distribution

on embeddings of T onto G.

Using the s = n case of Definition 4.1, Theorem 4.3 allows us to deduce that in the

context of Theorem 4.2, G contains Ω(n)n copies of a given bounded degree tree (see [102]

for a more precise result). Furthermore, Theorem 4.3 implies that the random subgraph

G′ ⊆ G obtained by keeping each edge of G with probability Ω(log n/n) also contains a

given bounded degree tree (see [154] for a precise statement).

The original proof [121] of Theorem 4.2 constitutes one of the early applications of

the Szemerédi regularity lemma (used in conjunction with the blow-up lemma of Kom-

lós, Sárközy, and Szemerédi). The proof of the more general Theorem 4.3 in [154] can be

interpreted as a randomised version of the proof in [121]. Indeed, readers familiar with

applications of the regularity/blow-up lemma would know that whilst embedding a target

subgraph with this method, there is actually a lot of flexibility for where each vertex can go.

Thus, a choice can be made randomly from the available options as a reasonable strategy

towards proving Theorem 4.3.

The main focus of the current chapter is a proof of Theorem 4.3 that uses Theorem 4.2

as a black-box. The most obvious advantage of such a proof is that, as Theorem 4.2 has a

more modern proof due to Montgomery and Kathapurkar [111] that circumvents the use of

Szemerédi regularity lemma, our proof yields a regularity-free proof of Theorem 4.3 which

naturally has better dependencies between the constants (see Remark 4.14). Our proof is

presented in Section 4.3, and Section 4.3.1 contains an overview explaining the key ideas.

Our methods are fairly general, and flexible. We believe they could translate to spread

distribution in other related structures such as directed trees or hypertrees, and maybe to

other structures admitting nice decomposition rules, such as spanning grids. we give more

details about this intuition in Section 4.4.

4.2 Preliminaries
We use the standard notation for hierarchies of constants, writing x≪ y to mean that there

exists a non-decreasing function f : (0, 1]→ (0, 1] such that the subsequent statements hold

for x ⩽ f(y). Hierarchies with multiple constants are defined similarly.

We will use the following theorem to embed our subtrees of bounded size. It generalises

Theorem 4.2 and was proved in [145], using tools from [111]. In particular, the proof of the

following theorem does not rely on the Szemerédi regularity lemma.

Theorem 4.4 (Theorem 4.4 [145]). Let 1/n ≪ 1/∆, α. Let G be an n-vertex graph with

δ(G) ⩾ (1/2 + α)n. Let T be an n-vertex tree with∆(T) ⩽ ∆. Let t ∈ V (T) and v ∈ V (G).
Then, G contains a copy of T with t copied to v.

109

4.2.1 Tree-splittings
Definition 4.5. Let T be an n-vertex tree. A tree-splitting of size ℓ is a family of edge-disjoint

subtrees (Ti)i∈[ℓ] of T such that

⋃
i∈[ℓ]E(Ti) = E(T). Note that for any i ̸= j, the subtrees Ti

and Tj intersect on at most one vertex. Given a tree-splitting (Ti)i∈[ℓ] of an n-vertex tree T , we
define the bag-graph of the tree-splitting to be the graph whose nodes are indexed by [ℓ] and
in which the nodes i and j are adjacent if V (Ti) ∩ V (Tj) ̸= ∅. A bag-tree of a tree-splitting is

simply a spanning tree of the bag-graph.

We will use the following simple proposition to divide a tree into subtrees (see, for ex-

ample, [144, Proposition 3.22]).

Proposition 4.6. Letn,m∈N such that 1⩽m⩽n/3. Given anyn-vertex treeT containing a

vertex t ∈ V (T), there are two edge-disjoint trees T1, T2 ⊂ T such thatE(T1)∪E(T2) =E(T),
t ∈ V (T1) andm ⩽ |T2| ⩽ 3m.

This implies that a tree can be divided into many pieces of roughly equal size, as follows

(see [145] for the simple proof).

Corollary 4.7. Let n,m ∈ N satisfy m ⩽ n. Given any n-vertex tree T , there exists a tree-

splitting (Ti)i∈[ℓ] of T such that for each i ∈ [ℓ], we havem ⩽ |Ti| ⩽ 4m.

4.2.2 Probabilistic results
Below we give a lemma that encapsulates a simple argument often used when computing

the spreadness of a random permutation.

Lemma4.8. Letn∈N, s⩽ n, andL1, . . . , Ls ⊆ [n]. For any distinct integers 1⩽ x1, . . . , xs ⩽
n, a uniformly sampled permutation π of [n] satisfies P [

∧s
i=1 π(xi) ∈ Li] ⩽

∏s
i=1

e|Li|
n
.

Proof of Lemma 4.8. We have the following,

P

[
s∧

i=1

π(xi) ∈ Li

]
=

s∏
i=1

P

[
π(xi) ∈ Li

∣∣∣∣∣
i−1∧
j=1

π(xj) ∈ Lj

]
⩽

s∏
i=1

|Li|
n− i+ 1

⩽
s∏

i=1

e|Li|
n

,

where in the last step we used the fact that

∏s
i=1 n− i+ 1 ⩾

(
n
e

)s
, which is a well-known

application of Stirling’s approximation.

Next, we present a lemma that records several properties we need from a random ver-

tex partition of a dense graph. The proof consists of standard applications of well-known

concentration inequalities, namely Chernoff’s bound and McDiarmid’s inequality, and can

be found in the complete version of this result [30].

110

Lemma 4.9. Let 1/n≪ η, 1/C, 1/K, δ, α, and suppose 1/C ≪ 1/K ≪ α. Fix two sequences
of integers (ac)C⩽c⩽4C ⩾ 1 and (bc)C⩽c⩽4C ⩾ 1 such that

∑
C⩽c⩽4C bcac < n, bc ⩾ ηn and

C − K ⩽ ac ⩽ 4C − K for each C ⩽ c ⩽ 4C . Set ε := e−α2C/12
. Let G be a n-vertex

graph with δ(G) ⩾ (δ+α)n and let v ∈ V (G). Then, there exists a random labelled partition

R = (Rj
c)C⩽c⩽4C,j∈[bc] of a subset of V (G) \ {v} into

∑
C⩽c⩽4C bc parts, with the following

properties,

A1 ∀c ∈ [C, 4C],∀j ∈ [bc], |Rj
c| = ac, meaning there are exactly bc parts of size ac;

A2 ∀Rj
c ∈ R, |{u ∈ V (G) | deg(u,Rj

c) ⩾ (δ + α
2
)|Rj

c + u|}| ⩾ (1− 3e−
α2C
10)|V (G)|;

A3 ∀u ∈ V (G), |{Rj
c ∈ R | δ(G[Rj

c + u]) ⩾ (δ + α
2
)|Rj

c|}| ⩾ (1− 3e−
α2C
10)|R|.

Moreover, call Rj
c ∈ R good if δ(G[Rj

c]) ⩾ (δ + α/2)|Rj
c|. Call Rj

c, R
k
d ∈ R a good pair if

δ(G[Rj
c + v]) ⩾ (δ+ α/2)|Rj

c + v| for each v ∈ Rk
d , and the same statement holds with j and

c interchanged with k and d. Let A be the auxiliary graph with vertex setR where Rj
c ∼A R

k
d

if and only if Rj
c, R

k
d is a good pair. Then, there exists a subgraph A

′
of A such that

B1 For all c ∈ [C; 4C], A′
c := {Rj

c ∈ A′ : |Rj
c| = ac} has size at least (1− ε)bc;

B2 ∀Rj
c ∈ A′, ∀d ∈ [C, 4C], degA′(Rj

c, A
′
d) ⩾ (1− ε)|A′

d|;

B3 ∀Rj
c ∈ A′

, Rj
c is good.

Furthermore, the following spreadness property holds. For any function f : {u1, . . . , us} →
R (where {u1, . . . , us} ⊆ V (G)), P[ui ∈ f(ui)] ⩽ (12C/n)s.

4.2.3 Good spread with high minimum degree
If the minimum degree of the host graph is larger than the size of the target graph we wish

to embed, a simple random greedy algorithm can find a distribution with good spread. The

following lemma records a version of this where vertices of the target and host graphs are

coloured, and the embedding we produce respects the colour classes. This is used in the

proof whilst (randomly) embedding the bag tree of a tree splitting into an auxiliary graph

where vertices represent random subsets of a host graph, edges represent good pairs (as in

Lemma 4.9), and the colours represent the size of the random set.

Lemma 4.10. Let 1/n ≪ γ ≪ η ⩽ 1. Let G be a graph and v ∈ V (G). Let V1 ∪ . . . ∪ Vk
be a partition of V (G) \ {v} where |Vi| ⩾ ηn for all i ∈ [k] and so that for all i ∈ [k], for all
u ∈ V (G), deg(u, Vi) ⩾ (1 − γ)|Vi|. Let T be a tree and let t be a vertex of T . Let c be a
k-colouring of T − t such that the number of vertices coloured i is at most (1 − η)|Vi|. Then,
there exists a random embedding ϕ : T → G such that the following all hold.

111

1. With probability 1, ϕ(t) = v.

2. With probability 1, any i-coloured vertex of T is embedded in Vi.

3. The random embedding induced via ϕ by restricting to the forest T − t is a
(

2
η2n

)
-spread

embedding.

Proof. Let us consider an ordering t, t1, t2, . . . , tm of the vertices of T rooted in t, where
T [{t, t1, . . . , ti}] is a subtree for each i ∈ [m]. We define ϕ : T → G greedily vertex by

vertex following the ordering of V (T). Let ϕ(t) := v. We denote by pi the parent of ti in T
for all i ⩾ 1, and define ϕ(ti) conditioned on some value of ϕ(t), ϕ(t1), . . . ϕ(ti−1) to be the

random variable following the uniform distribution over

(
Vc(ti) ∩N(ϕ(pi))

)
\ ∪i−1

j=1ϕ(tj).
Note that, ∣∣(Vc(ti) ∩N(ϕ(pi)

)
\ ∪i−1

j=1{ϕ(tj)}
∣∣ ⩾ deg(pi, Vc(ti))− |c−1(c(ti))|
⩾ ((1− γ)− (1− η)) |Vc(ti)|
⩾ (η − γ)ηn.

We now discuss the spreadness of ϕ. Fix an integer s⩽ k and two sequences t′1, . . . , t
′
s ∈

V (T) \ {t} and v1, . . . , vs ∈ V (G) \ {v} of distinct elements. Moreover, let us suppose that

t′1, t
′
2, . . . , t

′
s appear in this order in the ordering chosen above. Observe that

P

[
s∧

i=1

ϕ(t′i) = vi

]
=

s∏
i=1

P

[
ϕ(t′i) = vi

∣∣∣∣∣
i−1∧
j=1

ϕ(t′j) = vj

]
⩽

(
1

(η − γ)ηn

)s

.

The last inequality follows as for any u ∈ V (G) and i ∈ [k] the probability that ϕ(ti) = u
conditioned on any value of ϕ(t), ϕ(t1), . . . , ϕ(ti−1) is at most

1
(η−γ)ηn

. In particular, the

lemma follows as we have γ ⩽ η/2.

4.3 Proof of Theorem 4.3

4.3.1 Overview
As briefly discussed in Section 4.4, our proof capitalises on several desirable properties (as

collected in Lemma 4.9) satisfied by a random partition of the vertex-set of the host graphG.
In this way, our proof bears resemblance to the proof in [115]; however, we emphasise that

the specific constructions of the distributions are otherwise quite different. In particular,

the key idea in the current work could be used to give a distinct, and more concise proof of

the results in [115].

112

To start, we split T into O(1)-sized edge-disjoint subtrees via Corollary 4.7 and take a

random partitionR of the host graph given by Lemma 4.9 (we will comment on the choice

of parameters momentarily). Almost all of the random subsets R in R have good enough

minimumdegree to contain all bounded degree trees of size |R| by just applying Theorem 4.2

as a black-box. Now, we need to decide (randomly), which subtrees of T will embed into

which random subsets of V (G). This corresponds to randomly embedding a bag-tree of

the tree-splitting into A′
, the auxiliary graph given in Lemma 4.9 that encodes the pairs of

random sets with good minimum degree. Thus, we reduce Theorem 4.3 to a weaker version

of itself where the host graph G is nearly complete (thanks to B2). Unfortunately, we do

not have a way of directly producing the necessary random embedding even in this simpler

context where the minimum degree of the host graph is extremely large
1
.

To circumvent this problem, we introduce the following trick which we hopemight have

further applications. While applying Lemma 4.9, we make the sizes of the random sets an ε-
fraction smaller than the sizes of the subtrees they are meant to contain. This gives us extra

space as we then havemore random sets than subtrees we need to embed. Afterwards, using

a simple random greedy strategy (see Lemma 4.10), we can produce the necessary random

embedding ψ of the bag-tree into A′
. Two problems remain: some random sets are unused

by ψ and the random sets that are used by ψ are too small to contain the subtrees we wish

to embed. We fix both of these issues by randomly reallocating all vertices of the unused

random sets into the used random sets using Corollary 4.12. We need a fair bit of precision

in this final step, which is discussed more in Section 4.3.2.

To finish the embedding, we need to convert ψ into a random embedding ϕ : V (T) 7→
V (G). We may do this by ordering the subtrees so that each subtree intersects the previous

ones in at most one vertex, and using Theorem 4.4, which is a slight strengthening of The-

orem 4.2 that allows us to prescribe the location of a root vertex in advance. To illustrate,

suppose T1, . . . , Ti−1 are already embedded, and suppose that ψ(Ti) is an empty random

set large enough to contain Ti. Say there exists some t ∈ V (Ti) ∩ V (Tj) for some j < i,
then ϕ(t) is already determined, as Tj is already embedded. The properties of ψ, coming

from Lemma 4.9 and Lemma 4.10, guarantee that ϕ(t) ∪ ψ(Ti) has large minimum degree,

so we may invoke Theorem 4.4 to extend ϕ to embed vertices of Ti in ψ(Ti), respecting the
previous choice of ϕ(t), as desired.

1
In contrast, a similar method is employed in [115] to embed hypergraph Hamilton cycles, but here the

“bag-tree” of a hypergraph Hamilton cycle is simply a 2-uniform Hamilton cycle, which is simpler to embed

randomly with good spread using elementary methods.

113

4.3.2 Spread distributions on star matchings
As described in Section 4.3.1, we need away to randomly shuffle around vertices in a random

partition of G to adjust the sizes of certain random sets, and we need to do this without

damaging the randomness properties or the minimum degree conditions of the partition

(coming from Lemma 4.9). The following lemma gives us a way to achieve this in the special

case where each random set is meant to receive exactly one new element.

Lemma 4.11 (Lemma 3.1 in [115]). There exists an absolute constant C4.11 with the following

property. IfG is a balanced bipartite graph on 2n vertices with δ(G) ⩾ 3n/4, then there exists
a random perfect matching M of G such that for any collection of edges e1, . . . , es ∈ E(G),
P[
∧

i∈[s] ei ∈M] ⩽ (C4.11/n)
s
.

As we make each original random set multiple vertices smaller than it needs to be to

be able to contain the corresponding subtree (recall Section 4.3.1), each random set actually

has to receive more than just a single new element. The next result generalises the previous

lemma into this context.

Corollary 4.12. There exists an absolute constant C4.12 with the following property. Let

1/n≪ 1/k. LetG be a bipartite graph with partition (A,B), with |A|= n, |B|= kn. Suppose
for each a∈A, d(a,B)⩾ (99/100)|B| and for each b∈B, d(b, A)⩾ (99/100)|A|. Then, there
is a randomK1,k-perfect-matchingM of G (where the centres of theK1,k are embedded in A)
such that for any collection of edges e1, . . . , es ∈ E(G), P[

∧
i∈[s] ei ∈M] ⩽ (C4.12/n)

s
.

Proof. There exists an equipartition of B as B1, . . . , Bk such that eachG[A∪Bi] (i ∈ [k]) is
a graph with minimum degree at least (98/100)n. Indeed, a random partition of B would

have this property with high probability (as n/k → ∞, see, for example, Lemma 3.5 from

[87]). Now, Lemma 4.11 gives us a random perfect matchingMi in each G[A∪Bi] (i ∈ [k]),
and

⋃
i∈[k]Mi =: M is a random K1,k-perfect-matching of G. M clearly has the desired

spread with C4.12 = C4.11.

4.3.3 Proof of Theorem 4.3
We actually prove a stronger version of Theorem 4.3 where the location of a root vertex is

specified in advance (similar to Theorem 4.4) as we believe this stronger result could have

further applications. The unrooted version, i.e. Theorem 4.3, follows simply by choosing

t ∈ V (T) arbitrarily, and v ∈ V (G) uniformly at random, setting ϕ(t) = v, and using The-

orem 4.13 to complete this to a full O(1/n)-spread embedding of T .

Theorem 4.13. Let 1
n
≪ 1

C∗
≪ α, 1/∆. Let G be a n-vertex graph with δ(G) ⩾ (1/2 + α)n.

Let T be a tree on n vertices, with ∆(T) ⩽ ∆. Let t ∈ V (T) and let v ∈ V (G). Then, there

114

exists a random embedding ϕ : T → G such that ϕ(t) = v with probability 1 and ϕ restricted

to T − t is
(
C∗
n

)
-spread.

Remark 4.14. All of the dependencies between the constants that arise from our proof are

polynomial. However, we also need that C∗ is at least a polynomial function in f(α,∆),
where f is the function from Theorem 4.4 that ultimately relies on [111]. Unfortunately,

[111] does not cite an explicit bound (though their proof does not use the Szemerédi regu-

larity lemma).

Proof of Theorem 4.13. Let C Cbe a new constant such that 1/n ≪ 1/C∗ ≪ 1/C ≪ α, 1/∆.

Let (Ti)i∈[ℓ] be a tree-splitting of T obtained by Corollary 4.7 applied with m := C . Notice
that adding T∗ := {t} T∗to this tree-splitting produces another tree-splitting. Let T ′

be a bag-

tree of (Ti)i∈[ℓ] ∪ {T∗} rooted in T∗. Note that T
′
has maximum degree 4C∆. T ′

Step 1: Randomly partition of V (G) \ {v}. We assign to each subtree Ti a colour that
corresponds to its size. Formally, define the colouring ff :V (T ′)\{T∗}→ [C, 4C] via f(Ti) :=
|Ti| for each subtree Ti. Fix an integer K K, ac, bcsuch that 1/C ≪ 1/K ≪ α. For each colour

c ∈ [C, 4C], let ac := c− 1−K and bc := |f−1(c)|+
⌊

K
32C3n

⌋
.

We use Lemma 4.9 onGwith the following parameters, (ai)i∈[k] := (ac)C⩽c⩽4C , (bi)i∈[k] :=
(bc)C⩽c⩽4C , δ :=

1
2
,K :=K+1, andC, α, v := C, α, v. To do so, we need only need to check

that

∑
c acbc < n, as the other conditions follow directly from our choice of constants. Ob-

serve

4C∑
c=C

acbc =
ℓ∑

i=1

(|Ti| − 1−K) +

⌊
K

32C3
n

⌋ 4C∑
c=C

(c− 1−K) < |T | − ℓK +

⌊
K

32C3
n

⌋
5C(3C + 1)

2
⩽ n− K

4C
n+

K

4C
n.

We can thus obtain a partition R = (Rj
c)C⩽c⩽4C,j∈[bc] of a subset of V (G) \ {v} and an

auxiliary graph A′
whose vertex set V (A′) is a subset of R, satisfying the conditions listed

in Lemma 4.9. Add toA′
a vertex R∗R∗ = {v} adjacent to allRj

c ∈ R such that δ(G[Rj
c+v]) ⩾(

1
2
+ α

2

)
|Rj

c+v|. For each colour c ∈ [C, 4C], let us denote by Vc := {Rj
c | j ∈ [bc]}∩V (A′).

We define the colouring Vc, gg : V (A′) 7→ [C, 4C] that associates the colour c to all parts in Vc.
Formally, ∀c ∈ [C, 4C],∀Rj

c ∈ Vc, g(R
j
c) = c.

Step 2: Construct ψ : T ′ → A′. Conditional on a fixed outcome of R (and thus, A′
), we

describe ψψ, which is a random embedding of T ′
on A′

. We apply Lemma 4.10 to A′
with

partition VC ∪ . . . ∪ V4C and T ′
coloured by f , with parameters t := T∗, v := R∗, γ :=

e−α2C/12 γ, ηand η :=
⌊

K
32C3

⌋
to obtain a random embedding ψ. To apply the lemma, we need

the following conditions to be satisfied:

115

• 1/n≪ γ = e−α2C/12 ≪ η = Θ
(

K
C3

)
,

• for all i ∈ [C; 4C], for all u ∈ V (A′), deg(u, Vi) ⩾ (1− γ)|Vi|,

• for all c, the number of subtrees coloured c is at most (1− η)|Vc|.

The first condition is satisfied by our constant hierarchy. Our choice of γ and condition B1
of Lemma 4.9 is tailored so that V (A′) satisfies the second condition. The third condition

is less direct. Let nc be the number of subtrees coloured c in T ′
, what we aim to show is

nc ⩽ (1 − η)|Vc|. By Condition B1 of Lemma 4.9 and the definition of bc, we have that

|Vc| ⩾ (1− e−
α2C
12)(nc + ηn). Hence,

(1− η)|Vc| ⩾ (1− η)(1− e−
α2C
12)(nc + ηn) ⩾ (1− η − e−

α2C
12)(nc + ηn) ⩾ (1− 2η)(1 +

ηn

nc

)nc

⩾ (1− 2η)(1 + Cη)nc ⩾ nc

where we used that e−
α2C
12 ≪ η = Θ

(
K
C3

)
, and for the last step that nc ⩽ n

C
and C ⩾ 4.

Recall thatψ :V (T ′) 7→V (A′) denotes the random embedding obtained fromLemma 4.10.

By construction,ψ restricted toT ′\{T∗} is (2
15C6

n
)-spread, and note that this spreadness con-

dition holds independently of the values ofR andA′
that we condition on. Lemma 4.10 also

ensures that with probability 1, ψ preserves the colouring given by g, i.e. ∀i ∈ [ℓ], f(Ti) =
g(ψ(Ti)).

Step 3: Adjust the size of the bags. In this step, we describe how to obtain a randomised

partition M of V (G). We define M conditional on fixed values of R and ψ. Informally,

our goal is to build, for all Rj
c ∈ Im(ψ), a set M j

c satisfying Rj
c ⊆ M j

c and |M j
c | = c − 1

while preserving the minimum degree condition given by Lemma 4.9 for the set Im(ψ) and
the edges induced by ψ. Formally, definingN(Rj

c) N(Rj
c) = {R ∈ Im(ψ)|{ψ−1(Rj

c), ψ
−1(R)} ∈

E(T ′)}, we wantM to satisfy the following three properties:

C1 ∀Rj
c ∈ Im(ψ), |M j

c | = c− 1;

C2 ∀Rj
c ∈ Im(ψ), δ(G[M j

c]) ⩾
(
1
2
+ α

3

)
|M j

c |;

C3 ∀Rj
c ∈ Im(ψ), ∀Rj′

c′ ∈ N(Rj
c), ∀v ∈M j

c , δ
(
G
[
M j′

c′ + v
])

⩾
(
1
2
+ α

3

)
|M j′

c′ + v|.

Consider the following bipartite graphH,A,B H with bipartition (A,B) where B = V (G) \
({t} ∪ ∪R∈RR) and A = R. Put an edge between v ∈ A and R ∈ B if ∀R′ ∈ {R} ∪N(R),
δ(G[R′ + v]) ⩾

(
1
2
+ α

2

)
|R′ + v|. Note that, for all (a, b) ∈ A × B, A2 and A3 imply that

116

d(a,B)⩾ (1−(4∆C+1)3e−
α2C
10)|B|⩾ 99

100
|B| and that d(b, A)⩾ (1−(4∆C+1)3e−

α2C
10)⩾

99
100

|B|. Therefore, we may use Corollary 4.12 on H with k := K , to associate to each Rj
c

a disjoint random set of K elements of B, satisfying the spreadness property stated in the

lemma (regardless of the value ofR andψ that is being conditioned upon). Consider Lj
cLj

c ⊆A,
the set of random vertices that are matched by theK1,K-perfect-matching toRj

c , and define

M j
cM j

c :=Rj
c∪Lj

c. NoteC1 is then directly satisfied. The definition of an edge inH and the fact

that K/C ≪ α imply that C2 and C3 are also both satisfied. We define MM :=
⋃

c,j{M j
c }.

Having defined the random variable M, we now show the following spreadness prop-

erty. To clarify, ψ andR are not considered to be fixed anymore.

Claim 4.15. For any s ∈ N and any function h : {v1, . . . , vs} 7→ M where {v1, . . . , vs} ⊆
V (G), we have P [∧s

i=1vi ∈ h(vi)] ⩽ (12C·C4.12

n
)s.

Proof. Note that if v ∈ {v1, . . . , vs} then P[v ∈ h(v)] = 0. Suppose this is not the case, and
let us partition {v1, . . . , vs} into {x1, . . . , xs1} ⊆ A and {y1, . . . , ys2} ⊆ V (G) \ (A ∪ {v}).
Observe that

P

[
s∧

i=1

vi ∈ h(vi)

]
=P

[
s2∧
i=1

yi ∈ h(yi)

]
P

[
s1∧
i=1

xi ∈ h(xi)

∣∣∣∣∣
s2∧
i=1

yi ∈ h(yi)

]
⩽

(
12C

n

)s2 (C4.12

n

)s1

,

where we used the spreadness property from Lemma 4.9 and Corollary 4.12 in the last step.

Step 4: Embed the subtrees. From now on, we redefine g and ψ as being maps to M∪
{R∗} (by composing g and ψ with the natural bijectionR 7→M∪{R∗} that associatesM j

c

to Rj
c , and R∗ to itself).

We fix ϕ(t) := v, by doing so we embed T∗ into R∗. The goal is now to embed each Ti
in ψ(Ti) ∈ M. Note that |ψ(Ti)| = |Ti| − 1 for all i ∈ [ℓ] (by C1). We define ϕ as follows:

While there exists a subtree Ti that is not fully embedded into G, pick a subtree Ti that has
exactly one vertex ti already embedded say ϕ(ti) = vi and apply Theorem 4.4 to embed the

rest of Ti in ψ(Ti). We can use Theorem 4.4, due to C1, C2 and C3. This procedure is well
defined because T ′

is a tree. Let us define the native atom of a vertex y ∈ V (T), denoted by
T (y)T (y), to be the first Ti that contains y.

Checking spreadness. We now prove that the random embedding ϕ constructed this

way is

(
C∗
n

)
-spread. The spreadness of this embedding comes from two different random-

ness sources: the partitionM via Claim 4.15, and the random embedding ψ via Lemma 4.10.

Let us fix two sequences of distinct elements y1, . . . , ys ∈ V (G − v) and x1, . . . xs ∈
V (T − t). Let b := |{T (xi) | i ∈ [s]}|. We may suppose, up to reordering, that x1, . . . , xb
each have distinct native atoms, this way we have {Tx1 , . . . , Txb

} = {Tx1 , . . . , Txs}. Let us
split our probability on the two sources of spreadness as follows. Set C0 := 12C · C4.12.

117

P

[
s∧

i=1

ϕ(xi) = yi

]
=

∑
h:[b] 7→M

P

[
s∧

i=1

ϕ(xi) = yi

∣∣∣∣∣
s∧

i=1

yi ∈ h(i)

]
· P
[

s∧
i=1

yi ∈ h(i)

]

⩽
∑

h:[b] 7→M

P

[
s∧

i=1

ϕ(xi) = yi

∣∣∣∣∣
s∧

i=1

yi ∈ h(i)

]
·
(
C0

n

)s

by Claim 4.15

⩽
∑

h:[b] 7→M

P

[
b∧

i=1

ψ(T (xi)) = h(i)

]
·
(
C0

n

)s

⩽
∑

h:[b] 7→M

(
2C2

η2n

)b(
C0

n

)s

by Lemma 4.9

⩽ |M|b
(
2C2

η2n

)b(
C0

n

)s

⩽ nb

(
2C2

η2n

)b(
C0

n

)s

⩽

(
2C2C0

η2n

)s

⩽

(
C∗

n

)s

b ⩽ s

To justify the second inequality, it is sufficient to observe thatϕ(xi)= yi only ifψ(T (xi))=
h(i). Moreover by the remark made above, T (x1), . . . , T (xb) are all distinct, so we can in-

deed invoke the spreadness property of ψ coming from Lemma 4.10.

4.4 Conclusion and perspectives
Our proof could be interpreted as modest progress towards a more ambitious research

agenda, hinted to in [115], which asserts that all Dirac-type results admit a spread ver-

sion, regardless of the target structure being embedded. One reason why such a general

result could hold is that in Dirac-type results, host graphs have linear minimum degree.

Thus, Chernoff’s bound can be used to show that almost all O(1)-sized induced subgraphs

of such dense host graphs maintain the same (relative) minimum degree condition. If the

target graph itself has some recursive structure, we may use this to our advantage whilst

constructing a random embedding with optimal spread. The strategy would be to first break

up the target graph into pieces of size O(1), for example, in the case of Hamilton cycles, we

would simply break up the cycle into several subpaths. For eachO(1)-sized subpath, almost

all O(1)-sized subsets of the host graph have large enough minimum degree to necessarily

118

contain a copy of the subpath (simply by invoking Dirac’s theorem), so we may choose one

such host subset randomly while constructing a random embedding with good spread.

A variant of the above strategy was successfully implemented in [115] in the context

of hypergraph Hamilton cycles. In this chapter, we devise a novel strategy that works for

bounded-degree spanning trees, which, like Hamilton cycles, have a recursive structure,

albeit a lot more complex than that of Hamilton cycles. In particular, a Hamilton cycle can

be thought of as a union of subpaths of essentially the same length, whereas any partition

of a tree into further subtrees needs to use subtrees of a wide range of possible sizes (see

Section 4.2.1), which makes it difficult to extend the techniques of [115] to bounded-degree

trees.

Our proof is fairly short; however, we explain the key idea in Section 4.3.1. We believe

our methods are fairly general, and they could translate to construct spread distributions in

the context of directed trees [111], hypertrees [152, 151], or other related structures such as

spanning grids.

It remains an interesting open problem to find an even larger class of target graphs for

which the Dirac-type theorem admits a spread generalisation. For example, it would be

natural to investigate graph families with sublinear bandwidth, and we believe our meth-

ods could be applicable here. Note that this would entail more than simply randomising the

blow-up lemma based proof of the Bandwidth Theorem [40], as this theorem does not al-

ways give the optimal minimum degree condition for the containment of every graph family

with sublinear bandwidth. Though, of course, obtaining a spread version of the bandwidth

theorem would be of independent interest.

Komlós, Sárközy, Szemerédi [122] actually proved a stronger result than Theorem 4.2

where the maximum degree hypothesis is relaxed as∆(T) = o(n/ log n). It would be inter-
esting to similarly strengthen Theorem 4.3 by weakening the assumption on ∆(T).

119

Chapter 5

Faithful universal structures

This chapter focuses on universal structures. A structure is called universal for a familyF
if it contains all the elements ofF as a substructure. We study the case of universal posets

and graphs. This chapter is based on two unpublished works: one with Carla Groenland

and Rajko Nenadov, and the other with Carla Groenland, Louis Esperet, Claire Hilaire,

Clément Rambaud, and Alexandra Wesolek.

5.1 Introduction

A family of graphs U = (Un)n∈N is said to be strongly-universal for a graph class G if for any

n ∈ N, Un contains all the n-vertex graphs of G as induced subgraphs. Similarly, U is said

to be weakly-universal for G if for any n ∈ N, Un contains all the n-vertex graphs of G as

subgraphs.

The initial motivation for the introduction of these concepts was the design of config-

urable chips [36, 57], with the idea that a single chip could be used to produce a number of

different chips, by simply removing connectors (edges) or components (vertices) in a post-

processing phase. This led to a considerable amount of work, trying to either minimise the

number of edges in weakly-universal graphs [53, 55, 35, 17, 180, 34, 45, 10, 9, 70], or min-

imise the number of vertices in induced universal graphs [54, 80, 39, 67, 109, 8, 171, 147, 12,

13, 1, 10, 70].

For strongly-universal graphs, we give a sample of the best known results below. By a

slight abuse of notation, when we say that for some function f , a graph class G has weakly-

universal (or strongly-universal) graphs of size at most f(n), we mean that G has a weakly-

universal (or strongly-universal) graph family U = (Un)n ∈ N such that each Un contains

120

at most f(n) vertices. With this terminology, there are strongly-universal graphs of order

• O(n) for trees [12],

• n1+o(1)
for graphs of bounded treewidth [80],

• n1+o(1)
for planar graphs and a number of related graph classes [67, 81, 70],

• n2+o(1)
for proper minor-closed classes [80],

• O(n∆/2) for the class of graphs of maximum degree ∆ [11], and

• (1 + o(1))2(n−1)/2
for the class of all graphs [8].

A classical problem related to strongly-universal graphswas the Implicit graph conjecture

(see [109, 171]), which stated that every hereditary class of graphs which contains at most

2O(n logn)
different n-vertex graphs admit a strongly-universal graph of polynomial size.

This conjecture was only refuted recently by Hatami and Hatami [89].

There are two main techniques to construct universal graphs. In the case of strongly-

universal graphs, researchers generally use the notion of an adjacency labeling scheme, intro-

duced by Kannan, Naor and Rudich [109] andMuller [147]. Informally, this is a compact data

structure describing the adjacency relation between vertices in a graph class. One weakness

of such technique is that during the translation between the data structure and the universal

graph all the structure of the original graphs is lost, therefore controlling the structure of the

universal graphs is extremely difficult and even controlling the number of edges is difficult

(see for instance [70]). In the case of weakly-universal graphs, best known bound usually

come from separator theorems [53]. If the vertex set of any n-vertex graph G ∈ G can be

partitioned into three sets X1, S,X2, with |X1| ⩽ 2n/3, |X2| ⩽ 2n/3, |S| = O(n1−ε), and
no edges between X1 and X2, then the idea is to take (inductively) two weakly-universal

graphs for the graphs of size |X1| and |X2| in the class, and add a set of |S| universal vertices.
This typically creates large cliques, even if the graphs from G have a small clique number.

Let us say that a universal family U = (Un)n∈N for a graph class G is faithful if for any

n ∈ N, Un ∈ G. In the context of chip design, the configurable chip has the same physical

constraints as the different chips it is supposed to emulate. Thus in graph-theoretic termswe

expect the underlying (universal) graphs to be faithful (for instance, if all graphs underlying

the different chips have to be planar, the configurable chip also has to be planar). Note

that as explained above, while minimizing the number of vertices in a weakly-universal

in general is not relevant (because complete graphs contain all graphs of the same order

as subgraphs), minimizing the number of vertices in a faithful weakly-universal graph is

interesting, especially when the original graph class G is sparse (and thus does not contain

large cliques).

121

Countable universal graphs Beyond the motivation of designing configurable chips,

the concept of faithful countable graphs is well established (though under a different name)

in mathematics and has received a lot of attention over the past 40 years [3, 120, 59, 119, 78,

79, 118, 49, 50, 47, 51, 48, 93]. In this context, we say that an (infinite) countable graph U is

faithful strongly-universal for a class of countable graphs G if U ∈ G and U contains every

graph of G as an induced subgraph. A well-known example of this notion is the Rado graph.

Ackermann [3], Erdős and Rényi [69], and Rado [155] independently proved that the Rado

graph is faithful strongly-universal for the class of all countable graphs. The Rado graph

has, since then, proven to be useful in solving multiple other questions in combinatorics

(see the following surveys [43, 44]). Henson [91] has proven the existence of a faithful

strongly-universal graph for the class of countable Kt-free graphs. Since then, there has

been a systematic study of faithful universal graph for the family of countableH-free graphs

[120, 119, 78, 79, 118, 49, 50, 47, 51, 48]. Diestel, Halin and Vogler [60] proved that for any

t ⩽ 4, there does not exist a faithful universal graphs for the family of countableKt-minor-

free graphs, and similar results are known when excluding Ks,t has a minor [59].

In the context of minor-closed classes of graphs, Ulam asked the following natural ques-

tion:

Problem 5.1. Does there exist a faithful strongly-universal graph for the class of countable

planar graphs?

This question was answered negatively by Pach [148]. In his paper, Pach also asked

whether the faithful condition could be relaxed to obtain a strongly-universal graph for the

class of countable planar graphs while still preserving key properties of planar graphs. Fol-

lowing the direction of Pach’s question, it is natural to ask if there exists a strongly-universal

graph U for countable planar graphs, such that U isH-minor-free for some graphH . Forty

years after Pach’s results, Huynh, Mohar, Šámal, Thomassen and Wood [93] proposed an

answer to Pach’s question and sadly showed the following negative result.

Theorem 5.2 ([93]). If U is a countable strongly-universal graph for the class of countable

planar graphs, then the complete graph Kℵ0 is a minor of U .

Finite universal graphs In this chapter, we focus on finite graphs
1
. Ulam’s question, as

well as Pach’s follow-up question, can also be considered in a finite setting. Of course, for

any class of finite graphs G that is closed under disjoint union, there exists a family (Un)n∈N
of faithful strongly-universal graphs for G. For example define Un as the disjoint union of

1
We assume that all graphs considered from now on are finite, unless stated otherwise

122

all n-vertex graphs in G. However, this solution is far from satisfactory, as the size of Un

grows sharply
2
with n. A proper reformulation of Ulam’s question could be:

Problem 5.3. Does there exist a family of graphs (Un)n∈N faithful strongly-universal for the

class of planar graphs with |Un| = nO(1)
?

Sadly, Bergold, Iršič, Lauff, Orthaber, Scheucher and Wesolek recently gave a negative

answer to this question [33]. Once again, a similar question to the one Pach raised in the

infinite case was formulated in [33]: Does a universal graph satisfying Problem 5.3 exist

if we allow a relaxation of the faithful condition? We show, similarly to Huynh, Mohar,

Šámal, Thomassen, and Wood [93], that even when the “faithful” condition is weakened to

“H-minor-free”, such a universal graph still does not exist.

Theorem 5.4. There is a polynomial function f5.4 : N>0 → N>0 such that the following holds.

Let t, ℓ ⩾ 2 be integers. If U is aKt-minor-free graph containing every ℓ× ℓ triangulated grid
as subgraph, then

|V (U)| ⩾ 2
1

f5.4(t)
·ℓ
.

In particular, for every integer t ⩾ 5 there exists a constant Ct > 0 such that for every integer

n ⩾ 2, everyKt-minor-free graph containing every n-vertex planar graph as subgraph has at

least 2Ct
√
n
vertices.

The question first raised by Pach in [148] about universal graphs for the class of planar

graphs can be naturally generalised to multiple other classes of graphs. Very little is known

about faithful universal graphs in the finite setting. Remember that, as explained earlier,

all the techniques generally used to construct universal graphs in this setting do not pro-

duce faithful or “close” to faithful universal graphs. Moreover, in the few cases where some

non-trivial faithful universal graphs are known, their size is significantly larger than that

of the optimal universal graphs. Moreover, in the few cases where some non-trivial faithful

universal graphs were known, their size was significantly larger than the size of the optimal

universal graphs. Consider for instance the case of trees. It was proved by Chung and Gra-

ham [55] that there is a weakly-universal graphwithΘ(n log n) edges for trees, and that this
bound is best possible. As explained above, the proof uses separators and produces graphs

with cliques of logarithmic size, so the resulting graphs are very far from trees (or any other

class of sparse graphs). On the other hand, Gol’dberg and Livshits [83] constructed faithful

weakly-universal graphs for trees on 2O(log2 n)
vertices, and this order ofmagnitudewas later

shown to be asymptotically best possible [56]. With Esperet, Groenland, Hilaire, Rambaud

2
Similarly, in the infinite countable case, taking the disjoint union over G also yields a strongly-universal

graph, but an uncountable one.

123

andWesolek, we studied the existence of faithful or nearly faithful universal graphs for mul-

tiple natural graph parameters (i.e. treewidth, pathwidth, treedepth). These results are not

included in this manuscript but are summarised in the two tables below. Note that the lower

bounds for weakly-universal transfer directly to strongly-universal, and conversely, the up-

per bounds for strongly-universal transfer to weakly-universal, such results are mentioned

only in one of the two tables, to improve readability.

Class Exact Approximation

pathwidth k ⩾ 2 2Θ(n log k)
pathwidth k2 nOk(1)

treewidth k ⩾ 2 2Ω(n log k)
treewidth 3k − 1 nOk(1)

K4-minor-free 2Ω(n)
K7-minor-free nO(1)

K5-minor-free nO(logn)

Kt-minor-free, t ∈ [5, 6, 7] 2Ω(n/t) Kt′-minor-free 2Ωt(
√
n)

Kt-minor-free, t ⩾ 8 2Ω(n/t) Kt′-minor-free 2Ωt(n)

Figure 5.1: Results for weakly-universal graphs.

Class Exact Approximation

treedepth k ⩾ 1 O(nk) – –

pathwidth k ⩾ 2 2Ω(n log k)
pathwidth 2k nOk(1)

treewidth k ⩾ 1 2Ω(n log k)
treewidth 3k − 1 nOk(1)

K4-minor-free 2Ωk(n) K7-minor-free nO(1)

Figure 5.2: Results for strongly-universal graphs.

Universal Poset The definition of universality extends naturally beyond graphs and can

be defined for posets. A family of posets (Un)n∈N is said to be faithful strongly-universal for

a class of posets P if, for any n-element poset P ∈ P , P is an induced subposet of Un. The

topic of (countable) universal posets has a history even older than that of universal graphs

[75, 99, 98, 74] and, as mentioned in [92], has motivated the research area of category theory.

Nonetheless, the following natural question is still open:

124

Problem 5.5. What is the minimum size of a poset Un containing all n-element posets as an

induced subposet?

This problem was also raised in [38]. In this paper, Bonamy, Esperet, Groenland, and

Scott, considered the systematic study of strongly-universal graphs for dense classes of

graphs. They proved that classes of graphs that grow sufficiently quickly admit a universal

graph of asymptotically optimal size.

Theorem 5.6 ([38]). For α > 0 any class of graphs G such that |Gn| ⩽ 2αn
2
where Gn is the

set containing all n-vertex graph of G, there exists a universal graphs of size 2(α+o(1))n
, and

this is optimal up to the 2o(n) factor.

Using Theorem 5.6, Bonamy, Esperet, Groenland and Scott proved that the class of all

posets admits an asymptotically optimal comparability labeling scheme, which translated to

the following corollary in our setting.

Corollary 5.7 ([38]). For any n∈N, there exists a directed graphGwith |V (G)|⩽ 2(1/4+o(1))n

such that, for any n-element poset P , the comparability graph of P is an induced subgraph of

G.

While this result is optimal in size up to the 2o(n) factor, crucially, in Corollary 5.7, the

graphG obtained is not the comparability graph of a poset, which is why they raised Prob-

lem 5.5. The following theorem makes a step toward answering the question.

Theorem 5.8. For any n ∈ N, there exists a poset Un containing all n-element posets as an

induced subposet, and |Un| ⩽ 2
2
3
n+O(

√
n)
.

Roadmap We first give some preliminary definitions and tools in Section 5.2. In Sec-

tion 5.3 we give a proof of Theorem 5.4 and in Section 5.3 we prove Theorem 5.8.

5.2 Preliminaries
VC-dimension We recall here an important theorem of set theory, about VC-dimension

independently proven by Sauer and Shelah.

Given a setX , we write 2X for the power set ofX . Let F ⊆ 2X be a given set system on

the ground set X . The VC-dimension of F is the supremum taken over the integers d ⩾ 0
for which there is a set S ⊆ X of size d which is shattered, that is,

{Y ∩ S : Y ∈ F} = 2S.

125

Lemma 3.23. [Sauer-Shelah lemma [166, 168]] If F ⊆ 2[n] has VC-dimension d then,

|F| ⩽
d∑

i=0

(
n

i

)
.

For n ⩾ 2d and d sufficiently large,

d∑
i=0

(
n

i

)
⩽ nd/(d!) + dnd−1/((d− 1)!) ⩽ nd.

The upper bound ⩽ nd + dnd−1 ⩽ 2nd
is easy to see for all n ⩾ d and the VC dimension d

is always at most n.

Minors and edge count The following theorem will be useful in establishing the exis-

tence of a Kt minor in universal graphs.

Lemma 5.9 ([124, 176]). There exists a polynomial function f5.12 : N>0 → N>0 such that the

following holds. Let t be a positive integer. For every graph G, if Kt is not a minor of G, then

|E(G)| ⩽ f5.12(t)|V (G)|.

Integer partition Wewill encounter the following function while constructing universal

posets. Let us define p(n) as the number of ways we can partition an integer into smaller

integers. Formally, p(n) is the number of distinct non-increasing sequences λ1, λ2, . . . , λk
such that

∑k
i=1 λi = n.

Theorem 5.10. The number of partitions of an integer, p(n), as n tends to infinity, satisfies

p(n) ∼ 1

4
√
3n

exp

(
π

√
2n

3

)
.

5.3 Faithful universal graphs for minor-closed classes

This section focuses on proving Theorem 5.4, which gives a lower bound of 2Ωt(
√
n)

on the

order of aKt-minor-free graph containing all planar n-vertex graphs as subgraph; and The-
orem 5.16, which gives a lower bound of 2Ωt(n)

on the order of a Kt-minor-free graph con-

taining all toroidal n-vertex graphs as subgraph. In both results, the implicit multiplicative

constant in the exponent is a polynomial in t.

126

Theorem 5.4. There is a polynomial function f5.4 : N>0 → N>0 such that the following holds.

Let t, ℓ ⩾ 2 be integers. If U is aKt-minor-free graph containing every ℓ× ℓ triangulated grid
as subgraph, then

|V (U)| ⩾ 2
1

f5.4(t)
·ℓ
.

In particular, for every integer t ⩾ 5 there exists a constant Ct > 0 such that for every integer

n ⩾ 2, everyKt-minor-free graph containing every n-vertex planar graph as subgraph has at

least 2Ct
√
n
vertices.

The main results in this section are Theorem 5.4, which gives a lower bound of 2Ωt(
√
n)

on the order of a Kt-minor-free graph containing all planar n-vertex graphs as subgraph;

and Theorem 5.16, which gives a lower bound of 2Ωt(n)
on the order of a Kt-minor-free

graph containing all toroidal n-vertex graphs as subgraph. In both results, the implicit mul-

tiplicative constant in the exponent is a polynomial in t.

5.3.1 Kt-minors in grid with jumps

This subsection presents Lemma 5.11 stated below. Informally, this lemma allows us to

construct clique minors in a triangulated grid with a few extra edges. Note that we can

assume that t ⩾ 5, as the 3 × 3 grid, which is planar, has maximum degree at most 4 and

has treewidth 3, contains a K4-minor.

Let us first introduce some notation. For every positive integers a, b, the a× b grid is the

graph with vertex set [a]×[b] and edge set {(x, y)(x, y+1) | x∈ [a], y ∈ [b−1]}∪{(x, y)(x+
1, y) | x ∈ [a − 1], y ∈ [b]}. For every i ∈ [b], the ith row of this grid is the set of vertices

{(x, i) | x ∈ [a]}, and for every j ∈ [a], the jth column of this grid is the set {(j, y) | y ∈ [b]}.3
The toroidal a× b grid is obtained from the (a+1)× (b+1) grid by identifying the first

column with the (a + 1)-th column, and the first row with the (b + 1)-row. Equivalently,
the x-coordinates are considered modulo a and the y-coordinates are considered modulo b.

A triangulated a×b grid is a spanning supergraphG of the a×b grid such that for every
x ∈ [a−1], y ∈ [b−1], exactly one of the pairs (x, y)(x+1, y+1) and (x+1, y)(x, y+1) is
an edge ofG. A triangulated toroidal a×b grid is defined similarly, starting with the toroidal

a× b grid instead of the a× b grid.

If G is a triangulated a × b grid, we write Ri(G) = {(x, i) : x ∈ [a]} for the vertices in

the ith row and Cj(G) = {(j, y) : y ∈ [b]} for vertices in the jth column. When G is clear

from the context, we will simply write Ri for Ri(G) and Cj for Cj(G).

3
The coordinates are chosen so that rows and columns can be imagined in an xy−coordinate system.

127

A jump
4
in a triangulated gridG is a non-edge inG (i.e., a pair of non-adjacent vertices).

Our main goal is to show that adding the edges corresponding to sufficiently many jumps

to a triangulated grid will create a large complete minor. Since additional jumps near the

boundary of the grid are less helpful, we will only be interested in jumps between vertices

that are not too close to the boundary.

For integers i, t, ℓ, ℓ′, we call row Ri of a triangulated ℓ × ℓ′ grid t-internal if i ∈ {t +
1, t + 2, . . . , ℓ′ − t}. Similarly, we call column Cj t-internal if j ∈ {t + 1, t + 2, . . . , ℓ− t}.
We call a vertex v = (x, y) t-internal if its column and row are t-internal.

Given a triangulated grid G and a set of jumpsM , we denote by G∪M the graph with

vertex set V (G) and edge setE(G)∪M . We will need the following folklore lemma, whose

proof is omitted here but can be found in [22].

Lemma 5.11. There is a polynomial function f5.11 : N>0 →N>0 such that the following holds.

Let t be a positive integer, let ℓ, ℓ′ be integers with ℓ, ℓ′ ⩾ 2f5.11(t). Let G be a triangulated

ℓ× ℓ′ grid. For every setM of pairwise disjoint jumps of G, if

1. for every uv ∈M , u or v is f5.11(t)-internal; and

2. |M | ⩾ f5.11(t);

then Kt is a minor of G ∪M .

5.3.2 Creating the jumps
Together with Lemma 5.11 above, we will need the following two classical results.

Lemma 5.12 ([124, 176]). There is a polynomial function f5.12 : N>0 → N>0 such that the

following holds. Let t be a positive integer. For every graph G, if Kt is not a minor of G, then

|E(G)| ⩽ f5.12(t)|V (G)|.

Given a setX , we write 2X for the power set ofX . Let F ⊆ 2X be a given set system on

the ground setX . The VC-dimension ofF is the supremum taken over the integers d⩾ 0 for
which there is a setS ⊆X of size dwhich is shattered, that is such that {Y ∩S : Y ∈F}=2S .

Lemma 5.13 (Sauer-Shelah [167, 169]). If the VC-dimension of F ⊆ 2[n] is at most d, then
|F| ⩽∑d

i=0

(
n
i

)
⩽ 2nd

.

4
Note that our definition of a jump is slightly different from the definition of a jump in [93], but the spirit

is the same.

128

We will combine Lemma 5.11 with Lemmas 5.12 and 5.13 above to prove the following

result, which informally says that a Kt-minor-free graph on ℓ2 vertices cannot contain too

many triangulated ℓ× ℓ grids as a (spanning) subgraph.

Lemma 5.14. There is a polynomial function f5.14 : N>0 →N>0 such that the following holds.

Let t, ℓ ⩾ 2 be integers. Let U be a Kt-minor-free graph on ℓ2 vertices. Then there are at most

2f5.14(t)·ℓ log ℓ edge sets S ⊆ E(U) such that U [S] induces a triangulated ℓ× ℓ grid.

Proof. Let

d = 15(4f5.12(t)f5.11(t) + f5.11(t)) · ℓ.
Choose f5.14(t) = Θ(d/ℓ) (i.e. a sufficiently large constant times d/ℓ), such that for any

t, ℓ ⩾ 2,
2f5.14(t)·ℓ log ℓ > 2(f5.12(t) · ℓ2)d.

Let U be a Kt-minor-free graph on N = ℓ2 vertices. Suppose towards a contradiction that

U has more than 2f5.14(t)·ℓ log ℓ edge sets inducing a triangulated ℓ× ℓ grid.
Let G ⊆ 2E(U)

be the family of these edge sets. By Lemma 5.12, |E(U)| ⩽ f5.12(t) · ℓ2.
Since

|G| > 2f5.14(t)·ℓ log ℓ > 2
(
f5.12(t) · ℓ2

)d
⩾ 2|E(U)|d,

by Lemma 5.13, there exists A ⊆ E(U) with |A| = d + 1 such that for every B ⊆ A, there
existsEB ∈ G such thatEB∩A=B. In particular,EA andE∅ belong to G, so the graphG1 =
U [A] is a subgraph of a triangulated ℓ× ℓ grid and the graph G2 = U [E∅] is a triangulated
ℓ × ℓ grid.5 Since G1 has maximum degree at most 8, there exists a matchingM0 included

in A of size at least
|A|
15

⩾ (4f5.12(t)f5.11(t) + f5.11(t)) · ℓ.
Let C be the set of f5.11(t)-internal vertices of G2. LetM1 be the set of all the pairs in

M0 intersecting C . Note that since M1 ⊆ A, no edge in M1 is an edge of G2, so M1 is a

set of pairwise disjoints jumps between f5.11(t)-internal vertices of G2. We now show that

|M1| ⩾ f5.11(t).
Note that U [M0 \M1] is a subgraph of the Kt-minor-free graph U with vertex set in-

cluded in V (U) \ C , and |V (U) \ C| ⩽ 4f5.11(t) · ℓ. It follows that by Lemma 5.12,

|M0 \M1| ⩽ f5.12(t) · |V (U) \ C| ⩽ 4f5.12(t)f5.11(t) · ℓ.

Therefore, |M1| = |M0|− |M0 \M1| ⩾ f5.11(t), and we conclude by Lemma 5.11 thatKt

is a minor of G2 ∪M1, and so of U , yielding the desired contradiction.

We are now ready to prove the main result of this section.

5
We note that we do not need the full power of the Sauer-Shelah lemma here, just a simple consequence

on set systems in which the difference between any two sets has size at most d. However, the full power of
the Sauer-Shelah lemma will be needed later.

129

Theorem 5.4. There is a polynomial function f5.4 : N>0 → N>0 such that the following holds.

Let t, ℓ ⩾ 2 be integers. If U is aKt-minor-free graph containing every ℓ× ℓ triangulated grid
as subgraph, then

|V (U)| ⩾ 2
1

f5.4(t)
·ℓ
.

In particular, for every integer t ⩾ 5 there exists a constant Ct > 0 such that for every integer

n ⩾ 2, everyKt-minor-free graph containing every n-vertex planar graph as subgraph has at

least 2Ct
√
n
vertices.

Proof. Let ℓ ⩾ 2 be an integer and let U be a Kt-minor-free graph containing every trian-

gulated ℓ× ℓ grid as subgraph. Note that in particular, |V (U)| ⩾ ℓ2 ⩾ 2. We define

d = 120ℓ · f5.12(t)f5.11(t) + 48,

and let f5.4(t) = Θ((f5.14(t))
2 · d/ℓ) (i.e., a sufficiently large constant times (f5.14(t))

2 · d/ℓ).
We assume towards a contradiction thatN = |V (U)|⩽ 2

1
f5.4(t)

·ℓ
. SinceN ⩾ 2, we can assume

that ℓ ⩾ f5.4(t).

Given an ℓ×ℓ gridGwith vertex set [ℓ2], there are at least 2(ℓ−1)2−4
spanning supergraphs

of G that are isomorphic to a triangulated ℓ× ℓ grid in which the 4 corners have degree 2.
Any such triangulated grid has at most 24 automorphisms, since once you fix the image of

the degree two vertices, the remaining vertices are determined by their distances to these

vertices. This shows that in order to contain all ℓ × ℓ-triangulated grids as subgraph, the

graph U needs to have at least
1
24
2(ℓ−1)2−4 ⩾ 2(ℓ−1)2−9

distinct edge sets inducing such a

triangulated grid. By Lemma 5.14, for every subsetA⊆ V (U) of size ℓ2, at most 2f5.14(t)·ℓ log ℓ

triangulated ℓ× ℓ grids can be accounted for by U [A]. Hence there is a family G ⊆ 2V (U)
of

at least

2(ℓ−1)2−9−f5.14(t)·ℓ log ℓ > 2ℓ
2/2+1 ⩾ 2

(
2

1
f5.4(t)

·ℓ
)d

⩾ 2Nd
(5.1)

vertex sets of size ℓ2 of U that contain an ℓ× ℓ triangulated grid. In the computation above

we have used the fact that ℓ ⩾ f5.4(t) = Θ((f5.14(t))
2) in the first inequality (so that (ℓ −

1)2 − 9− f5.14(t) · ℓ log ℓ ⩾ (ℓ− 1)2 − ℓ3/2 log ℓ ⩾ ℓ2/2 + 1 for sufficiently large ℓ), and the
fact that f5.4(t) = Θ(d/ℓ) in the second inequality.

It then follows from Lemma 5.13 that the VC-dimension of G is at least d + 1. Hence
there exists A ⊆ V (U) of size d+ 1 such that for every B ⊆ A, there exists a VB ∈ G such

that

VB ∩ A = B.

In particular, A ⊆ VA ∈ G. Let G1 be a triangulated ℓ× ℓ grid spanning U [VA].

130

Note that the vertices of every triangulated grid can be covered by the following four

(not necessarily disjoint) induced paths: two horizontal paths covering the top and bottom

rows of the grid, one path containing all vertices in the odd numbered columns (except

for possibly those on the top and bottom rows) and the other for the vertices in the even

numbered columns. By the pigeonhole principle, this means that G1 contains an induced

path P containing at least |A|/4 vertices from A.
We select k = ⌊|V (P)|/3⌋ ⩾ |A|/12− 1 vertex-disjoint subpaths P1, . . . , Pk of P such

that for each 1 ⩽ i ⩽ k, the two endpoints of Pi are in A and exactly one internal vertex of

Pi lies inA (so each Pi contains precisely 3 vertices ofA). LetB ⊆ A be the set of endpoints

of the paths Pi, 1 ⩽ i ⩽ k. Note that every path Pi contains a vertex of A \B.

We then consider a set VB ∈ G such that VB ∩A = B and let G2 be a triangulated ℓ× ℓ
grid spanning U [VB]. We will show that G1 ∪G2 contains aKt-minor, hence contradicting

the fact that U is Kt-minor-free.

Let us construct two families of paths Q1 and Q2 satisfying the following properties:

1. the members of Q1 are pairwise disjoint paths in G2 internally disjoint from V (G1),
and whose endpoints are (pairwise disjoint) jumps of G1;

2. the members of Q2 are pairwise disjoint paths in G1 internally disjoint from V (G2),
and whose endpoints are (pairwise disjoint) jumps of G2.

For any 1 ⩽ i ⩽ k, we do the following. By definition, Pi intersects A \ B, and thus Pi

contains a subpathQi between two vertices x, y ∈ V (G2) such thatQi contains at least one

internal vertex, and such that all internal vertices ofQ lie in V (G1)\V (G2). If the endpoints
x, y of Qi are non-adjacent in G2, then add Qi to Q2. Otherwise add the path consisting of

the single edge xy toQ1. See Figure 5.3 for an illustration. Observe that the two properties

above are maintained in both cases.

SinceQ1 +Q2 = k ⩾ |A|/12− 1, there exists a ∈ {1, 2} such that |Qa| ⩾ |A|/24− 2 ⩾
d/24−2. Fix such a∈ {1, 2}, and letM0 be the family of all the pairs of endpoints of paths in

Qa. SinceQa is a family of pairwise disjoint paths internally disjoint from V (Ga), Ga ∪M0

is a minor of U . Moreover,M0 is disjoint from E(Ga) and

|M0| = |Qa| ⩾ d/24− 2 = 1
24

(
120f5.12(t)f5.11(t) · ℓ+ 48

)
− 2 ⩾ 5f5.12(t)f5.11(t) · ℓ.

Let C be the set of f5.11(t)-internal vertices of Ga, and let M1 be the set of all pairs in

M0 with at least one endpoint in C .
Consider the graph H with vertex set V (Ga) \ C and edge set M0 \ M1. Then, by

Lemma 5.12, since H is a minor of U , |E(H)| ⩽ f5.12(t)|V (H)|. This implies that

|M0 \M1| ⩽ f5.12(t) · |V (Ga) \ C| ⩽ f5.12(t) · 4ℓf5.11(t),

131

Figure 5.3: Illustration for the proof of Theorem 5.4. The depicted grid is G1, the red and

blue vertices represent the shattered set A, and the blue vertices are the members of the

subsetB. Along a path P in the grid (in bold green and violet) we build disjoint subpaths of

P between vertices in B via a vertex in A \ B. These subpaths are depicted in violet. This

ensures that every such path contains a path in V (G1) between two vertices u, v ∈ V (G2)
of length at least 2 internally disjoint from V (G2). If u, v are non-adjacent in G2, then this

creates a jump in G2, and we put it in Q2. Otherwise, the edge uv creates a jump in G1,

that we put inQ1. At the end of this process, eitherQ1 orQ2 is large, which will imply the

existence of a Kt-minor.

132

and so

|M1| ⩾ |M0| − 4ℓf5.11(t)f5.12(t) ⩾ f5.11(t).

We conclude by Lemma 5.11 that Kt is a minor of Ga ∪M1, and so of U .

Considering toroidal grids instead of planar grids leads to significantly better lower

bounds on the size of subgraph-universal graphs. This is due to the following variant of

Lemma 5.11, which avoids boundary conditions on the endpoints of jumps.

Lemma 5.15. There is a polynomial function f5.15 : N>0 →N>0 such that the following holds.

Let t be a positive integer, let ℓ, ℓ′ be integers with ℓ, ℓ′ ⩾ 2f5.15(t). Let G be a triangulated

toroidal ℓ× ℓ′ grid. For every setM of pairwise disjoint jumps of G with |M | ⩾ f5.15(t),Kt is

a minor of G ∪M .

Proof. Consider a random spanning triangular planar ℓ × ℓ′ subgrid G′
of G, obtained by

selecting the bottom left corner ofG′
uniformly at random inG, and let k ⩽min{ℓ/4, ℓ′/4}.

Note that the expected number of jumps fromM having at least one k-internal endpoint in
G′

is at least

(ℓ− 2k)(ℓ′ − 2k)

ℓℓ′
· |M | ⩾ |M |

4
.

It follows that G has a planar triangular ℓ× ℓ′ subgrid G′
andM has a subsetM ′

of at least

1
4
|M | jumps inG′

, each having at least one k-internal endpoint. Setting f5.15(t) = 4f5.11(t),
we can apply Lemma 5.11 and obtain a Kt-minor in G′ ∪M ′

, and thus also in G ∪M .

So while in the planar case we neededΩt(ℓ) jumps to produce aKt-minor, in the toroidal

case we only need a constant number Ot(1) of jumps to produce a Kt-minor.

A slight adjustment to the calculations in the proofs above, simply replacing applications

of Lemma 5.11 by applications of Lemma 5.15, gives the following result (as the proof is

mostly the same we only sketch the argument).

Theorem 5.16. There exists a polynomial function p(t) such the following holds. Let t, ℓ be
positive integers with ℓ ⩾ 2.

• Let U be a Kt-minor-free graph on ℓ2 vertices. Then there are at most ℓp(t) edge sets
S ⊆ E(U) such that U [S] induces a triangulated toroidal ℓ× ℓ grid.

• Let U be a Kt-minor-free graph containing every triangulated toroidal ℓ × ℓ grid as

subgraph. Then |V (U)| ⩾ 2ℓ
2/p(t)

.

In particular, for every integer t ⩾ 8 there exists a constant Ct > 0 such that for every posi-

tive integer n, every Kt-minor-free graph containing every n-vertex K8-minor-free graph as

subgraph has at least 2Ctn
vertices.

133

Proof sketch. For the first item, we closely follow the proof of Lemma 5.14. We start by

defining d1 = 15 · f5.15(t).
Let G ⊆ 2E(U)

be the family of edge sets of U inducing a triangulated toroidal ℓ× ℓ grid.
We define p1(t) such that

ℓp1(t) > 2(f5.12(t)ℓ
2)d1 .

Assume for the sake of contradiction that |G| ⩾ ℓp1(t). By Lemma 5.12, |E(U)| ⩽ f5.12(t)ℓ
2

and thus |G| > 2|E(U)|d1 . By Lemma 5.13, there exists A ⊆ E(U) with |A| = d1 + 1 such

that for every B ⊆ A, there exists EB ∈ G such that EB ∩ A = B. Let G1 = U [A] and
G2 = U [E∅]. Since G1 has maximum degree at most 8, there exists a matchingM included

in A of size at least
|A|
15

⩾ f5.15(t). The setM corresponds to a set of pairwise disjoint jumps

in G2, and it thus follows from Lemma 5.15 that G2 ∪M contains a Kt-minor, and thus U
also contains a Kt-minor, which is a contradiction.

For the second item, we follow closely the proof of Theorem 5.4. We set d2 = 24f5.15(t)+
48, and p2(t) = Θ(d2) (i.e., some sufficiently large constant times d2). Let U be aKt-minor-

free graph containing all triangular toroidal ℓ × ℓ grids, and assume for the sake of con-

tradiction that N = |V (U)| < 2ℓ
2/p2(t)

. There are 2Ω(ℓ2)
non-isomorphic triangular toroidal

ℓ× ℓ grids, and for each set A ⊆ V (U) of size ℓ2, at most 2p1(t) log ℓ triangular toroidal ℓ× ℓ
grids can be accounted for by U [A]. Hence there is a family G ⊆ 2V (U)

of 2Ω(ℓ2)−p1(t) log ℓ

vertex subsets of size ℓ2 of U that contain a triangulated toroidal n ℓ× ℓ grid.

We obtain

|G| = 2Ω(ℓ2)−f1(t)·ℓ log ℓ > 2
(
2ℓ

2/p2(t)
)d2 > 2Nd2 ,

and thus the VC-dimension of G is at least d2 + 1 by Lemma 5.13. Hence there exists A ⊆
V (U) of size d2+1 such that for everyB ⊆ A, there exists a VB ∈ G such that VB ∩A = B.

LetG1 be a toroidal ℓ× ℓ-grid spanned by U [VA]. Using an induced path inG1 covering

at least |A|/4 vertices of A, we choose at least |A|/12 − 2 induced paths P1, . . . , Pk in G1

whose endpoints are both in A and with exactly one internal vertex in A, and we call B the

subset of A consisting of the endpoints of the paths Pi.

We then select a subset VB of V (U) such thatU [VB] spans a triangular toroidal ℓ×ℓ-grid
G2, and for which VB ∩A = B. Using the paths Pi, we create at least |A|/24− 2 ⩾ f5.15(t)
pairwise disjoint jumps either inG1 orG2. It then follows from Lemma 5.15 that U contains

Kt as a minor, which is a contradiction.

5.4 Strongly-universal poset

This section aims to prove the following theorem.

134

Theorem 5.8. For any n ∈ N, there exists a poset Un containing all n-element posets as an

induced subposet, and |Un| ⩽ 2
2
3
n+O(

√
n)
.

The proof uses the concept of labeling schemes, a well-known tool for designing universal

graphs. The elements of the universal poset Un will be all the possible “labels” in some

cleverly chosen set L of labels, that is, Un = (L,≼) for some relation function ≼ to be

defined. The relation ≼ will be constructed such that for any two elements ℓ1, ℓ2 ∈ L, the
relation between ℓ1 and ℓ2 through ≼ is a function of only the two labels ℓ1, ℓ2. With this

terminology, proving that U is a universal poset boils down to proving the following two

properties about (L,≼):

• ≼ is a partial order (i.e transitive, reflexive and antisymmetric)

• For anyn-element posetP , there exists a set ofn labels {ℓ1, . . . , ℓn} such that ({ℓ1, . . . , ℓn},≼)
is isomorphic to P .

In the proof of Theorem 5.8, the universal poset Un is constructed as the disjoint union

of multiple smaller universal posets. These posets can be grouped into two categories, cor-

responding to Lemma 5.17 and Lemma 5.18, respectively. Lemma 5.17 constructs universal

structures for posets containing a large antichain, while Lemma 5.18 handles posets with

long chains.

Lemma 5.17. For any n, a, b ∈ N, such that a + b ⩽ n, let Qn(a, b) be the family of all n-
element posets P which contain an antichain of size a, and there are exactly b elements of P
which are strictly smaller than some element in A.

There exists a poset Qn(a, b) strongly-universal for Q(n, a, b) on n2n−a
elements.

Lemma 5.18. For any n ∈ N andm1, . . . ,mn ⩾ 0, let Sn(m1, . . . ,mn) denote the family of

all n-element posets P with a chain decomposition with exactlymj chains of length j for each
j ∈ [n]. Let a =

∑n
i=1mi.

There exists a poset Sn(m1, . . . ,mn) strongly-universal for Sn(m1 . . . ,mn) on na(
n
a
+1)a

elements.

Let us first prove Theorem 5.8 from the two lemmas stated above.

Proof of Theorem 5.8. Let Pn denote the family of all n-element poset and letQn(a, b) (resp.
Sn(m1, . . . ,mn)) be the poset defined in Lemma 5.17 (resp. Lemma 5.18). Dilworth’s theo-

rem Theorem 0.2 implies that every poset P has either an antichain of size n/3 or a chain

135

decomposition using at most n/3 chains. Therefore the poset Un defined as the disjoint

union of all posets in the following set is strongly-universal for Pn,{
Qn(a, b)

∣∣∣ a ∈
[n
3
, n
]
, b ∈ N

}
∪
{
Sn(m1, . . . ,mn)

∣∣∣∣∣
n∑

i=1

mi ⩽
n

3

}
.

Let us now discuss the size of Un.

|Un| ⩽

 n∑
a=n/3

n−a∑
b=0

|Q(a, b)|

+

 ∑
m1,...,mn∈N

m1+...+mn⩽n/3

|Sn(m1 . . . ,mn)|


⩽ n2 · n22n/3 + p(n) · na

(
n

n/3
+ 1

)n/3

⩽ n322n/3 + 2O(
√
n)n24n/3

= 2
2
3
n+O(

√
n)

Where p(n) is the number of partition of the integer n, and the third inequality follows from
Theorem 5.10.

Let us nowprove Lemma 5.17 and Lemma 5.18, both ofwhich rely on the labelingmethod

described earlier.

Proof of Lemma 5.17. The ground set ofQn(a, b) is all possible triples (x, Lx, Hx)where x ∈
[n],Lx ⊆{1, . . . , x−1}\{b+1, . . . , b+a+1}, andHx ⊆{x+1, . . . , n}\{b+1, . . . , b+a+1}.
We set (x, Lx, Hx) ≺ (y, Ly, Hy) if and only if the following holds:

(1) x < y,

(2) {x, y} ̸⊆ {b+ 1, . . . , b+ a},

(3) Lx ⊆ Ly and Hx ⊇ Hy,

(4) if x ⩽ b then x ∈ Ly,

(5) if y ⩾ b+ a+ 1 then y ∈ Hx.

We also set (x, Lx, Hx) ≼ (x, Lx, Hx).
The intuition behind this labeling is as follows. Consider a poset Q ∈ Qn(a, b), and a

linear extension of Q with an antichain A of size a, starting at position b+ 1 and ending at

136

position b+a+1 in the linear extension. The label of an element q ∈ Q will be (x, Lx, Hx),
where x represents the position of the element in the linear extension described above. Lx

(resp. Hx) represents the down-set (resp. up-set) of the element in P \ A. Crucially, q does
not record its adjacency to the antichain A in its own label, allowing us to significantly

reduce the label size. This is intuitively possible because if q ≼ a in P with q /∈ A and a ∈ A,
then the relation to q will be recorded in the label of a.

Let us now provide a formal proof that (Qn,≼) is a well-defined poset and that it is

strongly-universal.

Claim 5.19. ≼ is a partial order on Qn(a, b).

Proof. ≼ is reflexive by definition. (1) ensures the antisymmetry. Let us now discuss the

transitivity of ≼. Suppose (x, Lx, Hx) ≺ (y, Ly, Hy) and (y, Ly, Hy) ≺ (z, Lz, Hz). Then
x < y < z, Lx ⊆ Ly ⊆ Lz , andHx ⊇Hy ⊇Hz . If x⩽ b then x ∈ Ly and so x ∈ Lz . Similarly,

if y ⩾ b + a + 1 then z ∈ Hy and so z ∈ Hx. Therefore, (x, Lx, Hx) ≺ (z, Lz, Hz). Finally,
it cannot be that x, z ∈ {b+ 1, . . . , b+ a} as then y ∈ {b+ 1, . . . , b+ a} and so we would

not have (x, Lx, Hx) ≺ (y, Ly, Hy) due to (2).

Claim 5.20. Any poset Q ∈ Qn(a, b) is an induced subposet of (Qn(a, b),≼).

Proof. Let us consider a linear extension L ofQ and denote by L(x), for x ∈ Q, the number

of elements in the closed down-set of x in L. Since Q ∈ Qn(a, b), we can choose L such

that the set {x ∈ Q | L(x) ∈ [b + 1, b + a + 1]} forms an antichain in Q. To simplify

notation and without loss of generality, we assume the ground set of Q to be [n], where
each element x ∈ Q is now referred to as the element L(x). In particular, under this new

notation, A := {b+1, . . . , b+ a} ⊆ Q is an antichain. For each x ∈ Q, let ux = (x, Lx, Hx),
where Lx = {x′ | x′ ≺ x} \ A and Hx = {x′ | x ≺ x′} \ A. Let us show that {ux | x ∈ Q}
is an induced copy of Q in (Qn(a, b),≼).

Suppose x ≺ y in P . Then x < y and {x, y} ̸⊆ A since A is an antichain. Moreover,

Lx ⊆ Ly and Hx ⊇ Hy, therefore properties (1), (2), and (3) are satisfied. If x ⩽ b, then
x /∈ A and so x ∈ Ly. Similarly, if y ⩾ b + a + 1, then y /∈ A and so y ∈ Hx. Therefore,

properties (4) and (5) are also satisfied. Consequently, ux ≺ uy in Qn(a, b).

Suppose now that x and y are incomparable in Q. This means that x /∈ Ly and y /∈ Hx.

Without loss of generality, we may assume that x < y. If {x, y} ⊆ A, then by (2), we have

that ux and uy are not comparable. Otherwise, we must have x⩽ b or y ⩾ b+a+1, in which
case either (4) or (5) fails to hold. Thus, ux and uy are not comparable, which concludes the

proof that {ux | x ∈ Q} forms an induced copy of Q.

137

Claim 5.19 andClaim 5.20 combined imply thatQn(a, b) is strongly-universal forQn(a, b).
The size constraint follows from a simple count of the possible labels: there are n possible

values for x, and Lx ∪ Hx can be encoded using 2n−a
bits, leading to the claimed upper

bound on |Qn|.

We are now left to prove Lemma 5.18.

Proof of Lemma 5.18. By definition, any poset S in Sn(m1, . . . ,mn) admits a chain decom-

position with exactly mk chains of size k. Let us consider the chains to be ordered in non-

increasing order, and let ℓk denote the size of the kth chain. We also denote by a the total

number of chains, a :=
∑

k∈[n]mk. Note that the sequence ℓ1, . . . , ℓa is the same for every

S ∈ Sn(m1, . . . ,mn).
Let us define the ground set ofSn(m1, . . . ,mn) as all possible tuples of the form (x, c, i1, . . . , ia),

where x ∈ [n], c ∈ [a], and ik ∈ {0, 1, . . . , ℓk} for each k ∈ [a], with the additional constraint
that ic ⩾ 1. Intuitively, given a poset S that we want to embed and an element s ∈ S, x will

once again denote the position in a linear extension of the poset we wish to embed. Given

the chain decomposition satisfying the conditions mentioned above, where the chains are

numbered in non-increasing order, c will denote the position of the chain containing s, and
ik will denote the largest element in the kth chain smaller than s in S (or 0 if no such element

exists).

Formally, we define≼ as follows: Given two labels (x, c, i1, . . . , ia) and (y, d, j1, . . . , ja),
(x, c, i1, . . . , ia) ≺ (y, d, j1, . . . , ja) if and only if x < y and iℓ ⩽ jℓ for all ℓ ∈ [j].

Claim 5.21. ≼ is a partial order on Sn(m1, . . . ,mn).

Proof. ≼ is reflexive by definition. If (x, c, i1, . . . , ia)≼ (y, d, j1, . . . , ja) and (y, d, j1, . . . , ja)≼
(x, c, i1, . . . , ia) then x= y and therefore (x, c, i1, . . . , ia) = (y, d, j1, . . . , ja), which ensures
anti-symmetry.

It remains to check transitivity. Suppose,

(x, c, i1, . . . , ia) ≺ (y, d, j1, . . . , ja) and (y, d, j1, . . . , ja) ≺ (z, e, h1, . . . , ha).

Then x < y < z and for each k ∈ [a], ik ⩽ jk ⩽ hk which ensures,

(x, c, i1, . . . , ia) ≺ (z, e, h1, . . . , ha).

Claim 5.22. Any poset S ∈ Sn(m1, . . . ,mn) is an induced subposet of (Sn(m1, . . . ,mn),≼).

138

Proof. Consider (S,⩽)∈Sn(m1, . . . ,mn), and consider a chain decomposition C=(C1, . . . , Ca)
such that Ck chain has length ℓk. Let us also fix a linear extension L of S and denote by

L(x), for x ∈ S, the number of elements in the closed down-set of x in L.
Let x be an element of S in chain Cc, for each k ∈ [a], consider x1 ⩽ x2 ⩽ . . . ⩽ xℓk to

denote the element of Ck. Let ik(x) be the largest integer i such that xi ⩽ x and fix i = 0 if
no such integer xi exists. Since x is in Cc, we have ic(x) ⩾ 1, therefore we can associate to

x the label lab(x) = (L(x), c, i1(x), . . . , ia(x)) ∈ Sn(m1, . . . ,mn).
We show that {lab(x) : x ∈ S} forms an induced copy of S in Sn(m1, . . . ,mn). First,

consider two elements x, y ∈ S such that x < y, then L(x)< L(y) as L is a linear extension.

Moreover, for any k ∈ [a], if ik(x) > 0, then z ∈ S such that z is the ik(x)
th
element in Ck

satisfy, by definition of ik(x), z ⩽ x < y, and therefore z < y and ik(x) ⩽ ik(y), therefore
lab(x) ≼ lab(y). Now, consider x, y ∈ S such that x||y and L(x) < L(y). Suppose also,

without loss of generality, that x ∈ Cc for some integer c. By definition, x is the ic(x)
th

smallest element in Cc. Note that, if ic(y) ⩾ ic(x), then it implies that there exists z ∈ Cc

such that x ⩽ z ⩽ y, which would contradict our assumption that x||y. Therefore we have
ic(y) < ic(x) and x < y which implies lab(x)|| lab(y).

Claim 5.21 andClaim 5.22 combined imply thatQn(a, b) is strongly-universal forQn(a, b).
The size constraint follows from the fact that the function f(z1 . . . , za) =

∏
k∈[a](zi + 1) is

convex, and therefore, subject to

∑
k∈[a] xi = n, it is maximise for xk = n/a.

|Sn(m1, . . . ,mn)| ⩽ na
a∏

k=1

(ℓi + 1) ⩽ na
(n
a
+ 1
)a
.

5.5 Conclusion and perspectives
One of our main motivations in Section 5.3 was to obtain a finite version of the result of

Huynh, Mohar, Šámal, Thomassen andWood [93], stating that a countable graph containing

all countable planar graphs as subgraph has an infinite clique minor. A natural question is

whether there is a direct connection between the infinite and finite versions of the problem.

While it does not seem to us that one result can be quickly deduced from the other, we note

that our approach for producing Kt-minors out of short jumps can be used greedily in the

infinite case to produce arbitrarily large clique minors, because in the infinite case all jumps

can be considered as short. This alternative approach does not directly produce infinite

clique minors as in [93] (additional compactness arguments are needed), but this highlights

the fact that the finite version of the problem contains a number of challenges that do not

139

appear in the infinite version (such as boundary effects and the existence of long jumps),

regardless of any quantitative aspects.

In terms of subgraph-universalKt-minor-free graphs containing allKs-minor-free graphs,

we some additional result, not included in this paper, we settle the (approximate) order ex-

cept for the case s= 4 and t= 5, 6. We show thatK5-minor-free subgraph-universal graphs

of quasi-polynomial order can be obtained for the class ofK4-minor-free graphs and in fact

those universal graphs have treewidth 3. This leaves the question of whether such a graph

can be obtained of polynomial size.

Problem 5.23. Does the class of K4-minor-free graphs admit a subgraph-universal graph of

polynomial order which is K5-minor-free? If so, can it even be chosen of treewidth 3? If not,

what if we allow it to be K6-minor-free?

The paper has been mostly dedicated to minor-closed classes, but interesting questions

can be raised more generally for monotone or hereditary classes. The following problem

was raised in [41], in the context of local certification in distributed computing.

Problem 5.24 ([41]). For which graphH is it the case that the class ofH-subgraph-free graphs

has faithful subgraph-universal graphs of order n 7→ 2o(n
2)
?

In the case of universal posets, we have managed to improve the upper bound on the

optimal size of a universal poset containing all posets in Section 5.4, but we are still far from

completely solving the following question.

Problem 5.25. What is the minimum size of a poset Un containing all n-element posets as

induced subposets?

140

Chapter 6

Overall Conclusion and Perspectives

This chapter aims to reflect on the results established throughout this manuscript, and

introduce some perspectives for future research.

6.1 Distance reconstruction
While we have precisely determined the query complexity for reconstructing several im-

portant graph classes—such as trees, k-chordal graphs, bounded treelength graphs, and

Erdős–Rényi random graphs—the central open problem in distance reconstruction, origi-

nally posed by Mathieu and Zhou [140], remains unresolved.

Conjecture 2.5. For any ∆ ∈ N there exists an algorithm A that reconstructs the class of all

connected n-vertex graphs of maximum degree ∆ using O∆(n polylog n) queries w.h.p..

Motivated by our new lower bound results, we propose a strengthened version of this

conjecture, asking whether the Opolylog n factor can be improved to O(log n).

Conjecture 6.1. For any ∆ ∈ N there exists an algorithm A which reconstructs the class of

all n-vertex graphs of maximum degree ∆ using O∆(n log n) queries w.h.p..

We also raised a question that is of both theoretical and practical significance. In Sec-

tion 2.5, we analysed the query complexity of reconstructing G(n, p) for small values of

p. As in [141, 126], our result relies heavily on the expander properties of random graphs

and random regular graphs, as well as the relatively tame distribution of degrees in these

models. However, when aiming to reconstruct real-world networks such as the Internet,

it is natural to consider graph classes with more heterogeneous degree distributions. In

141

particular, empirical studies show that many real-life networks follow a power-law degree

distribution. This motivates the following open problem.

Problem 6.2. Given a degree sequence D following a power-law distribution, what is the

complexity of reconstructing a uniformly sampled graph with degree sequence D?

6.2 Poset induced saturation
The main open questions in induced saturation revolve around deepening our understand-

ing of the different possible behaviours and asymptotics of the function sat*(n, P). It has
been conjectured that this behaviour showcases a simple dichotomy.

Conjecture 6.3. For any poset P and any n ∈ N, either

sat*(n, P) = O(1) or sat*(n, P) = ΘP (n).

A first step towards this conjecture would be to prove the following weaker statement.

Conjecture 6.4. There exists a constant α > 0 such that for any poset P ,

sat*(n, P) = OP (n
α).

If we believe Conjecture 6.3 to be true, then a natural follow-up question would be to

characterise the posets P such that sat*(n, P) = OP (1). Almost nothing is known about

the structure of this family of posets. In particular, it is still unknown whether identifying

those posets is even computable.

Problem 6.5. What is the complexity class of the following algorithmic problem:

Input: A poset P
Output: YES if sat*(n, P) = O(1) and NO otherwise.

6.3 Spread embeddings
Kelly, Müyesser and Pokrovskiy suggested in [115], that every Dirac-type result might admit

a spread version, regardless of the specific structure being embedded.

Problem 6.6. For which family of graphs H and which value of δ ∈ [0, 1], is it true that for
any n-vertex graph G of min degree δn there is an n-vertex graph H ∈ H such that there is a

O(1/n)-spread embedding of H in G?

142

A key reason this generalisation might be possible lies in the nature of Dirac-type the-

orems: their host graphs have linear minimum degree. Consequently, Chernoff bounds im-

ply that almost all induced subgraphs of constant size (O(1)) in such dense graphs inherit

a comparable (relative) minimum degree. When the target graph exhibits some recursive

structure, this can be exploited in the design of a random embedding with optimal spread.

The general approach would involve partitioning the target graph into O(1)-sized compo-

nents—such as decomposing a Hamilton cycle into several subpaths, or trees into subtrees,

as was done in Chapter 4. A natural step towards this challenging goal would be to gener-

alise the bandwidth theorem to spread embeddings.

Conjecture 6.7. For any α > 0 and r ⩾ 1, there exists β > 0, such that given a n-vertex
graph G of minimum degree (r−1

r
+ α)n and a n-vertex graph H of chromatic number r and

bandwidth βn, H admits a O(1/n)-spread embedding in G.

6.4 Faithful universal graphs and posets
Faithful universal structures have been thoroughly investigated in the setting of infinite

graphs, yet many intriguing open problems remain in the finite case. For example, the

following problem was raised in [41] in the context of local certification in distributed com-

puting:

Problem 6.8 ([41]). For which graphs H does the class of H-subgraph-free graphs admit

faithful subgraph-universal graphs of order n 7→ 2o(n
2)
?

In [22], we also study faithful and near-faithful universal graphs for classeswith bounded

parameters (treewidth, pathwidth, treedepth, and maximum degree). Our results are sum-

marised in Fig. 5.1 and Fig. 5.2. In particular, we constructed a polynomial-size induced-

universal grap h U for the class of graphs with treewidth t, ensuring that tw(U) ⩽ 3t+ 1.
This means that the increase in treewidth from the class to the induced-universal graph is

bounded by a constant factor. In contrast, for pathwidth, Fig. 5.1 and Fig. 5.2 only guar-

antee an upper bound where the increase in pathwidth grows quadratically. We believe

this discrepancy is not merely a limitation of our techniques, but may reflect a difference in

behaviour between pathwidth and treewidth. This leads us to the following question:

Problem 6.9. Is there a constant C > 0 such that for every k ∈ N, the class Gpw⩽k admits

subgraph-universal graphs of pathwidth at most Ck and polynomial order nOk(1)
?

143

Bibliography

[1] Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk Tejs Knudsen, and

Morten Stöckel. Near-optimal induced universal graphs for bounded degree graphs.

In 44th International Colloquium on Automata, Languages, and Programming, ICALP

2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 128:1–128:14.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[2] Mikkel Abrahamsen, Greg Bodwin, Eva Rotenberg, and Morten Stöckel. Graph re-

construction with a betweenness oracle. In 33rd Symposium on Theoretical Aspects of

Computer Science (STACS 2016), page 5. Schloss Dagstuhl-Leibniz-Zentrum fur Infor-

matik GmbH, Dagstuhl Publishing, 2016.

[3] Wilhelm Ackermann. Die widerspruchsfreiheit der allgemeinen mengenlehre. Math-

ematische Annalen, 114(1):305–315, 1937.

[4] Ramtin Afshar and Michael T. Goodrich. Exact learning of multitrees and almost-

trees using path queries. In Armando Castañeda and Francisco Rodríguez-Henríquez,

editors, LATIN 2022: Theoretical Informatics, pages 293–311, 2022.

[5] Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda. Recon-

structing biological and digital phylogenetic trees in parallel. In 28th Annual European

Symposium on Algorithms (ESA 2020), pages 3:1–3:24, 2020.

[6] Martin Aigner. Lexicographic matching in boolean algebras. Journal of Combinatorial

Theory, Series B, 14:187–194, 1973.

[7] Peter Allen, Julia Böttcher, Jan Corsten, Ewan Davies, Matthew Jenssen, Patrick Mor-

ris, Barnaby Roberts, and Jozef Skokan. A robust Corrádi–Hajnal theorem. Random

Structures & Algorithms, 65(1):61–130, 2024.

[8] Noga Alon. Asymptotically optimal induced universal graphs. Geometric and Func-

tional Analysis, 27(1):1–32, February 2017.

144

[9] Noga Alon and Michael Capalbo. Optimal universal graphs with deterministic em-

bedding. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA ’08, page 373–378, USA, 2008. Society for Industrial and Applied

Mathematics.

[10] Noga Alon, Michael Capalbo, Yoshiharu Kohayakawa, Vojtěch Rödl, Andrzej Ru-

ciński, and Endre Szemerédi. Near-optimum universal graphs for graphs with

bounded degrees. In International Workshop on Randomization and Approximation

Techniques in Computer Science, pages 170–180. Springer, 2001.

[11] Noga Alon and Rajko Nenadov. Optimal induced universal graphs for bounded-

degree graphs. Math. Proc. Camb. Philos. Soc., 166(1):61–74, 2019.

[12] Stephen Alstrup, Søren Dahlgaard, and Mathias Bæk Tejs Knudsen. Optimal induced

universal graphs and adjacency labeling for trees. J. ACM, 64(4):27:1–27:22, 2017.

[13] Stephen Alstrup, Haim Kaplan, Mikkel Thorup, and Uri Zwick. Adjacency labeling

schemes and induced-universal graphs. SIAM J. Discrete Math., 33(1):116–137, 2019.

[14] Michael Anastos and Debsoumya Chakraborti. Robust hamiltonicity in families of

Dirac graphs. arXiv preprint arXiv:2309.12607, 2023.

[15] IrinaÐanković andMaria-Romina Ivan. Saturation for small antichains. The Electronic

Journal of Combinatorics, pages P1–3, 2023.

[16] Maria Axenovich and Mónika Csikós. Induced saturation of graphs. Discrete Mathe-

matics, 342(4):1195–1212, 2019.

[17] Laszlo Babai, Fan R. K. Chung, Paul Erdős, Ronald L. Graham, and Joel H. Spencer.

On graphs which contain all sparse graphs. In Theory and practice of combinatorics.

A collection of articles honoring Anton Kotzig on the occasion of his sixtieth birthday,

pages 21–26. Elsevier, 1982.

[18] Béla Bajnok and Shahriar Shahriari. Long symmetric chains in the boolean lattice.

Journal of Combinatorial Theory, Series A, 75(1):44–54, 1996.

[19] Paul Bastide. Distance reconstruction of sparse random graphs. arXiv preprint

arXiv:2407.17376, 2024.

[20] Paul Bastide, Marthe Bonamy, Anthony Bonato, Pierre Charbit, Shahin Kamali, Théo

Pierron, and Mikaël Rabie. Improved pyrotechnics: Closer to the burning number

conjecture. The Electronic Journal of Combinatorics, 30(4), 2023.

145

[21] Paul Bastide, Linda Cook, Jeff Erickson, Carla Groenland, Marc van Kreveld, Isja Man-

nens, and Jordi L Vermeulen. Reconstructing graphs from connected triples. In In-

ternational Workshop on Graph-Theoretic Concepts in Computer Science, pages 16–29.

Springer, 2023.

[22] Paul Bastide, Louis Esperet, Carla Groenland, Claire Hilaire, Clément Rambaud, and

AlexandraWesolek. Faithful universal graphs for minor-closed classes. arXiv preprint

arXiv:2504.19582, 2025.

[23] Paul Bastide and Pierre Fraigniaud. Brief annoucement: On extending brandt’s

speedup theorem from local to round-based full-information models. In 35th Inter-

national Symposium on Distributed Computing (DISC 2021). Schloss Dagstuhl-Leibniz-

Zentrum für Informatik, 2021.

[24] Paul Bastide, George Giakkoupis, and Hayk Saribekyan. Self-stabilizing clock syn-

chronization with 1-bit messages. In Proceedings of the 2021 ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 2154–2173. SIAM, 2021.

[25] Paul Bastide and Carla Groenland. Optimal distance query reconstruction for graphs

without long induced cycles. arXiv preprint arXiv:2306.05979, 2023.

[26] Paul Bastide and Carla Groenland. Quasi-linear distance query reconstruction for

graphs of bounded treelength. 19th International Symposium on Parameterized and

Exact Computation (IPEC 2024), pages 20–1, 2024.

[27] Paul Bastide, Carla Groenland, Maria-Romina Ivan, and Tom Johnston. A polynomial

upper bound for poset saturation. European Journal of Combinatorics, page 103970,

2024.

[28] Paul Bastide, Carla Groenland, Hugo Jacob, and Tom Johnston. Exact antichain satu-

ration numbers via a generalisation of a result of lehman-ron. Combinatorial Theory,

4, 2024.

[29] Paul Bastide, Claire Hilaire, and Eileen Robinson. Path eccentricity of k-at-free
graphs and application on graphs with the consecutive ones property. arXiv preprint

arXiv:2403.05360, 2024.

[30] Paul Bastide, Clément Legrand-Duchesne, and Alp Müyesser. Random embeddings

of bounded degree trees with optimal spread. arXiv preprint arXiv:2409.06640, 2024.

146

[31] Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoff-

mann, Mat Mihal’ak, and L Shankar Ram. Network discovery and verification. IEEE

Journal on selected areas in communications, 24(12):2168–2181, 2006.

[32] Sarah Behrens, Catherine Erbes, Michael Santana, Derrek Yager, and Elyse Yeager.

Graphswith induced-saturation number zero. The Electronic Journal of Combinatorics,

23(1), 2016.

[33] Helena Bergold, Vesna Iršič, Robert Lauff, Joachim Orthaber, Manfred Scheucher, and

Alexandra Wesolek. Subgraph-universal planar graphs for trees, 2024.

[34] Sandeep N. Bhatt, Fan R. K. Chung, Frank T. Leighton, and Arnold L. Rosenberg. Opti-

mal simulations of tree machines (preliminary version). In 27th Annual Symposium on

Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 274–282.

IEEE Computer Society, 1986.

[35] Sandeep N. Bhatt, Fan R. K. Chung, Frank T. Leighton, and Arnold L. Rosenberg. Uni-

versal graphs for bounded-degree trees and planar graphs. SIAM Journal on Discrete

Mathematics, 2(2):145–155, 1989.

[36] Sandeep N. Bhatt and Charles E. Leiserson. How to assemble tree machines (extended

abstract). In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Com-

puting, STOC ’82, page 77–84, New York, NY, USA, 1982. Association for Computing

Machinery.

[37] Béla Bollobás. Random graphs. Springer, 1998.

[38] Marthe Bonamy, Louis Esperet, Carla Groenland, and Alex Scott. Optimal labelling

schemes for adjacency, comparability, and reachability. In Proceedings of the 53rd

Annual ACM SIGACT Symposium on Theory of Computing, pages 1109–1117, 2021.

[39] Marthe Bonamy, Cyril Gavoille, and Michał Pilipczuk. Shorter labeling schemes for

planar graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,

pages 446–462. SIAM, 2020.

[40] Julia Böttcher, Mathias Schacht, and Anusch Taraz. Proof of the bandwidth conjecture

of Bollobás and Komlós. Mathematische Annalen, 343(1):175–205, 2009.

[41] Nicolas Bousquet, Louis Esperet, Laurent Feuilloley, and Sébastien Zeitoun. Renam-

ing in distributed certification. arXiv preprint arXiv:2409.15404, 2024.

147

[42] Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna O

..

stlin. The

complexity of constructing evolutionary trees using experiments. BRICS Report Series,

8(1), 2001.

[43] Peter J Cameron. The random graph. The Mathematics of Paul Erdös II, pages 333–351,

1997.

[44] Peter J Cameron. The random graph revisited. In European Congress of Mathematics:

Barcelona, July 10–14, 2000, Volume I, pages 267–274. Springer, 2001.

[45] Michael R. Capalbo. Small universal graphs for bounded-degree planar graphs. Com-

binatorica, 22(3):345–359, 2002.

[46] Amit Chakrabarti and Subhash Khot. Improved lower bounds on the randomized

complexity of graph properties. In 28th International Colloquium on Automata, Lan-

guages and Programming (ICALP), pages 285–296. Springer Verlag, 2001.

[47] Gregory Cherlin and Saharon Shelah. Universal graphs with a forbidden subtree.

Journal of Combinatorial Theory, Series B, 97(3):293–333, 2007.

[48] Gregory Cherlin and Saharon Shelah. Universal graphs with a forbidden subgraph:

block path solidity. Combinatorica, 36(3):249–264, 2016.

[49] Gregory Cherlin, Saharon Shelah, andNiandong Shi. Universal graphswith forbidden

subgraphs and algebraic closure. Advances in Applied Mathematics, 22(4):454–491,

1999.

[50] Gregory Cherlin and Niandong Shi. Forbidden subgraphs and forbidden substruc-

tures. The Journal of Symbolic Logic, 66(3):1342–1352, 2001.

[51] Gregory Cherlin and Lasse Tallgren. Universal graphs with a forbidden near-path or

2-bouquet. Journal of Graph Theory, 56(1):41–63, 2007.

[52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. The Annals of Mathematical Statistics, pages 493–507,

1952.

[53] Fan R. K. Chung. Separator theorems and their applications. In Paths, flows, and

VLSI-layout, Proc. Meet., Bonn/Ger. 1988, Algorithms Comb. 9, 17-34 (1990), pages 17–

34, 1990.

[54] Fan R. K. Chung. Universal graphs and induced-universal graphs. Journal of Graph

Theory, 14(4):443–454, 1990.

148

[55] Fan R. K. Chung and Ronald L. Graham. On universal graphs for spanning trees.

Journal of the London Mathematical Society, s2-27(2):203–211, 1983.

[56] Fan R. K. Chung, Ronald L. Graham, and Don Coppersmith. On trees which contain

all small trees. The Theory of Applications of Graphs, pages 265–272, 1981.

[57] Fan R. K. Chung, Arnold L. Rosenberg, and Lawrence Snyder. Perfect storage repre-

sentations for families of data structures. SIAM Journal on Algebraic Discrete Methods,

4(4):548–565, 1983.

[58] Bill Cuckler and Jeff Kahn. Hamiltonian cycles in Dirac graphs. Combinatorica,

29(3):299–326, 2009.

[59] Reinhard Diestel. On universal graphs with forbidden topological subgraphs. Euro-

pean Journal of Combinatorics, 6(2):175–182, 1985.

[60] ReinhardDiestel, Rudolf Halin, andWalter Vogler. Some remarks on universal graphs.

Combinatorica, 5:283–293, 1985.

[61] Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of

Mathematics, pages 161–166, 1950.

[62] G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc. (3), 2:69–81,

1952.

[63] Gabriel Andrew Dirac. Some theorems on abstract graphs. Proceedings of the London

Mathematical Society, 3(1):69–81, 1952.

[64] Yon Dourisboure. Compact routing schemes for generalised chordal graphs. J. Graph

Algorithms Appl., 9(2):277–297, 2005.

[65] Yon Dourisboure and Cyril Gavoille. Tree-decompositions with bags of small diame-

ter. Discrete Mathematics, 307(16):2008–2029, 2007.

[66] Dwight Duffus, David Howard, and Imre Leader. The width of downsets. European

Journal of Combinatorics, 79:46–59, 2019.

[67] Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat

Morin. Adjacency labelling for planar graphs (and beyond). Journal of the ACM,

68(6):Article 42, 2021. arXiv:2003.04280.

[68] Paul Erdos, András Hajnal, and John W Moon. A problem in graph theory. The

American Mathematical Monthly, 71(10):1107–1110, 1964.

149

https://arxiv.org/abs/2003.04280

[69] Paul Erdos and Alfréd Rényi. Asymmetric graphs. Acta Math. Acad. Sci. Hungar,

14(295-315):3, 1963.

[70] Louis Esperet, Gwenaël Joret, and Pat Morin. Sparse universal graphs for planarity.

J. Lond. Math. Soc., II. Ser., 108(4):1333–1357, 2023.

[71] Jill R Faudree, Ralph J Faudree, and John R Schmitt. A survey of minimum saturated

graphs. The Electronic Journal of Combinatorics, 1000:DS19–Jul, 2011.

[72] Uriel Feige. On sums of independent random variables with unbounded variance, and

estimating the average degree in a graph. In Proceedings of the thirty-sixth annual

ACM symposium on Theory of computing, pages 594–603, 2004.

[73] Michael Ferrara, Bill Kay, Lucas Kramer, Ryan R. Martin, Benjamin Reiniger,

Heather C. Smith, and Eric Sullivan. The saturation number of induced subposets

of the boolean lattice. Discrete Mathematics, 340(10):2479–2487, 2017.

[74] Pierre Fraigniaud and Amos Korman. An optimal ancestry scheme and small univer-

sal posets. In Proceedings of the forty-second ACM symposium on Theory of computing,

pages 611–620, 2010.

[75] Roland Fraïssé. Theory of relations. North-Holland, 1953.

[76] Keith Frankston, Jeff Kahn, Bhargav Narayanan, and Jinyoung Park. Thresholds ver-

sus fractional expectation-thresholds. Ann. of Math. (2), 194(2):475–495, 2021.

[77] Andrea Freschi, Simón Piga, Maryam Sharifzadeh, and Andrew Treglown. The in-

duced saturation problem for posets. Combinatorial Theory, 3(3), 2023.

[78] Zoltan Füredi and Péter Komjáth. Nonexistence of universal graphs without some

trees. Combinatorica, 17:163–171, 1997.

[79] Zoltan Füredi and Péter Komjáth. On the existence of countable universal graphs.

Journal of Graph Theory, 25(1):53–58, 1997.

[80] Cyril Gavoille andArnaud Labourel. Shorter implicit representation for planar graphs

and bounded treewidth graphs. In Algorithms – ESA 2007, 15th Annual European

Symposium, Eilat, Israel, October 8–10, 2007, Proceedings, pages 582–593, 2007.

[81] Paweł Gawrychowski and Wojciech Janczewski. Simpler adjacency labeling for pla-

nar graphs with B-trees. In Karl Bringmann and Timothy Chan, editors, 5th Sym-

posium on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference, January

10-11, 2022, pages 24–36. SIAM, 2022.

150

[82] Dániel Gerbner, Balázs Keszegh, Nathan Lemons, Cory Palmer, Dömötör Pálvölgyi,

and Balázs Patkós. Saturating sperner families. Graphs and Combinatorics, 29(5):1355–

1364, 2013.

[83] M. K. Gol’dberg and É. M. Livshits. On minimal universal trees. Mathematical notes

of the Academy of Sciences of the USSR, 4:713–717, 1968.

[84] Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Ran-

dom Structures & Algorithms, 32(4):473–493, 2008.

[85] Mika Göös and T.S. Jayram. A composition theorem for conical juntas. In 31st Con-

ference on Computational Complexity (CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2016.

[86] Curtis Greene and Daniel J. Kleitman. Strong versions of sperner’s theorem. Journal

of Combinatorial Theory, Series A, 20(1):80–88, 1976.

[87] Pranshu Gupta, Fabian Hamann, Alp Müyesser, Olaf Parczyk, and Amedeo Sgueglia.

A general approach to transversal versions of dirac-type theorems. Bulletin of the

London Mathematical Society, 55(6):2817–2839, 2023.

[88] Frank Harary. A survey of the reconstruction conjecture. In Graphs and Combina-

torics: Proceedings of the Capital Conference on Graph Theory and Combinatorics at the

George Washington University June 18–22, 1973, pages 18–28. Springer, 2006.

[89] Hamed Hatami and Pooya Hatami. The implicit graph conjecture is false. In 63rd

IEEE Symposium on Foundations of Computer Science (FOCS 2022), pages 1134–1137,

2022.

[90] Jotun Hein. An optimal algorithm to reconstruct trees from additive distance data.

Bulletin of mathematical biology, 51(5):597–603, 1989.

[91] CWard Henson. A family of countable homogeneous graphs. Pacific journal of math-

ematics, 38(1):69–83, 1971.

[92] Jan Hubička and Jaroslav Nešetřil. Universal partial order represented by means of

oriented trees and other simple graphs. European Journal of Combinatorics, 26(5):765–

778, 2005.

[93] Tony Huynh, Bojan Mohar, Robert Šámal, Carsten Thomassen, and David R Wood.

Universality in minor-closed graph classes. arXiv preprint arXiv:2109.00327, 2021.

151

[94] Maria-Romina Ivan. Saturation for the butterfly poset. Mathematika, 66(3):806–817,

2020.

[95] Maria-Romina Ivan. Minimal diamond-saturated families. arXiv preprint

arXiv:2110.01118, 2021.

[96] Maria-Romina Ivan and Sean Jaffe. Gluing posets and the dichotomy of poset satura-

tion numbers. arXiv preprint arXiv:2503.12223, 2025.

[97] M. Jagadish and Anindya Sen. Learning a bounded-degree tree using separator

queries. In Sanjay Jain, Rémi Munos, Frank Stephan, and Thomas Zeugmann, edi-

tors, Algorithmic Learning Theory (ALT), pages 188–202, 2013.

[98] John B Johnston. Universal infinite partially ordered sets. Proceedings of the American

Mathematical Society, 7(3):507–514, 1956.

[99] Bjarni Jónsson. Universal relational systems. Mathematica Scandinavica, pages 193–

208, 1956.

[100] Felix Joos, Richard Lang, and Nicolás Sanhueza-Matamala. Robust hamiltonicity.

arXiv preprint arXiv:2312.15262, 2023.

[101] Felix Joos, Richard Lang, and Nicolás Sanhueza-Matamala. Robust hamiltonicity,

2023.

[102] Felix Joos and Jonathan Schrodt. Counting oriented trees in digraphs with large min-

imum semidegree. Journal of Combinatorial Theory, Series B, 168:236–270, 2024.

[103] Jeff Kahn and Gil Kalai. Thresholds and expectation thresholds. Combin. Probab.

Comput., 16(3):495–502, 2007.

[104] Jeff Kahn, Michael Saks, and Dean Sturtevant. A topological approach to evasiveness.

Combinatorica, 4:297–306, 1984.

[105] Dong Yeap Kang, Tom Kelly, Daniela Kühn, Deryk Osthus, and Vincent Pfenninger.

Perfect matchings in random sparsifications of dirac hypergraphs. Combinatorica,

pages 1–34, 2024.

[106] Sampath Kannan, Eugene Lawler, and TandyWarnow. Determining the evolutionary

tree using experiments. Journal of Algorithms, 21(1):26–50, 1996.

152

[107] Sampath Kannan, Claire Mathieu, and Hang Zhou. Near-linear query complexity for

graph inference. In International Colloquium on Automata, Languages, and Program-

ming (ICALP), pages 773–784, 2015.

[108] Sampath Kannan, Claire Mathieu, and Hang Zhou. Graph reconstruction and verifi-

cation. ACM Transactions on Algorithms (TALG), 14(4):1–30, 2018.

[109] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs.

SIAM J. Discrete Math., 5(4):596–603, 1992.

[110] Ming-Yang Kao, Andrzej Lingas, and Anna O

..

stlin. Balanced randomized tree splitting

with applications to evolutionary tree constructions. In Christoph Meinel and Sophie

Tison, editors, Symposium on Theoretical Aspects of Computer Science (STACS), pages

184–196, 1999.

[111] Amarja Kathapurkar and Richard Montgomery. Spanning trees in dense directed

graphs. Journal of Combinatorial Theory, Series B, 156:223–249, 2022.

[112] Gyula OH Katona and Tamás Gy Tarján. Extremal problems with excluded subgraphs

in the n-cube. In Graph Theory: Proceedings of a Conference held in Poland, February

10–13, 1981, pages 84–93. Springer, 2006.

[113] Paul J Kelly. A congruence theorem for trees. Pacific. J. Math., 1957.

[114] Tom Kelly, Alp Müyesser, and Alexey Pokrovskiy. Optimal spread for spanning sub-

graphs of Dirac hypergraphs. Journal of Combinatorial Theory, Series B, 169:507–541,

2024.

[115] Tom Kelly, Alp Müyesser, and Alexey Pokrovskiy. Optimal spread for spanning sub-

graphs of dirac hypergraphs. Journal of Combinatorial Theory, Series B, 169:507–541,

2024.

[116] Balázs Keszegh, Nathan Lemons, Ryan R. Martin, Dömötör Pálvölgyi, and Balázs

Patkós. Induced and non-induced poset saturation problems. Journal of Combina-

torial Theory, Series A, 184:105497, 2021.

[117] Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-based

evolutionary tree reconstruction. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 444–453, USA, 2003. Society for

Industrial and Applied Mathematics.

153

[118] Péter Komjáth. Some remarks on universal graphs. Discrete mathematics, 199(1-

3):259–265, 1999.

[119] Péter Komjáth, Alan HMekler, and János Pach. Some universal graphs. Israel Journal

of Mathematics, 64(2):158–168, 1988.

[120] Péter Komjáth and János Pach. Universal graphs without large bipartite subgraphs.

Mathematika, 31(2):282–290, 1984.

[121] J. Komlós, G. N. Sárközy, and E. Szemerédi. Proof of a packing conjecture of Bollobás.

Combin. Probab. Comput., 4(3):241–255, 1995.

[122] János Komlós, Gábor N. Sárközy, and Endre Szemerédi. Spanning trees in dense

graphs. Combin. Probab. Comput., 10(5):397–416, 2001.

[123] Adrian Kosowski, Bi Li, Nicolas Nisse, and Karol Suchan. k-chordal graphs: From
cops and robber to compact routing via treewidth. Algorithmica, 72(3):758–777, 2015.

[124] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their

average degree. Combinatorica, 4:307–316, 1984.

[125] Michael Krivelevich, Choongbum Lee, and Benny Sudakov. Robust Hamiltonicity of

Dirac graphs. Trans. Amer. Math. Soc., 366(6):3095–3130, 2014.

[126] Michael Krivelevich and Maksim Zhukovskii. Reconstructing random graphs from

distance queries. arXiv preprint arXiv:2404.18318, 2024.

[127] Joseph B. Kruskal. The number of simplices in a complex. Mathematical optimization

techniques, 10:251–278, 1963.

[128] Eric Lehman and Dana Ron. On disjoint chains of subsets. Journal of Combinatorial

Theory, Series A, 94(2):399–404, 2001.

[129] Nikos Leonardos. An improved lower bound for the randomized decision tree

complexity of recursive majority. In Fedor V. Fomin, Rūsin
,
š Freivalds, Marta

Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming,

pages 696–708, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[130] Dingyuan Liu. Induced saturation for complete bipartite posets. arXiv preprint

arXiv:2402.08651, 2024.

154

[131] Xizhi Liu and Sayan Mukherjee. Tight query complexity bounds for learning graph

partitions. In Proceedings of 35th Conference on Learning Theory (COLT), pages 167–

181, 2022.

[132] Mark J. Logan. Sperner theory in a difference of boolean lattices. Discrete Mathemat-

ics, 257:501–512, 2002.

[133] Quentin Lutz, Elie de Panafieu, Alex Scott, and Maya Stein. Active clustering for

labeling training data. In Advances in Neural Information Processing Systems (NIPS),

pages 8469–8480, 2021.

[134] Frédéric Magniez, Ashwin Nayak, Miklos Santha, Jonah Sherman, Gábor Tardos, and

David Xiao. Improved bounds for the randomized decision tree complexity of recur-

sive majority. Random Structures & Algorithms, 48(3):612–638, 2016.

[135] W. Mantel. Problem 28, solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes,

F. Schuh, and W.A. Wytho, 10. Wiskundige Opgaven, pages 60–61, 1907.

[136] Ryan R. Martin, Heather C. Smith, and Shanise Walker. Improved bounds for induced

poset saturation. The Electronic Journal of Combinatorics, 27(2):P2.31, 2020.

[137] Ryan R Martin and Jason J Smith. Induced saturation number. Discrete Mathematics,

312(21):3096–3106, 2012.

[138] Ryan R Martin and Nick Veldt. Induced saturation of the poset 2c_2. arXiv preprint

arXiv:2408.14648, 2024.

[139] Ryan R Martin and Nick Veldt. Saturation of k-chains in the boolean lattice. arXiv

preprint arXiv:2402.14113, 2024.

[140] ClaireMathieu andHang Zhou. Graph reconstruction via distance oracles. In Interna-

tional Colloquium onAutomata, Languages, and Programming (ICALP), pages 733–744,

2013.

[141] ClaireMathieu andHang Zhou. A simple algorithm for graph reconstruction. Random

Structures & Algorithms, pages 1–21, 2023.

[142] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–

115, 1927.

[143] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and

probabilistic techniques in algorithms and data analysis. Cambridge university press,

2017.

155

[144] Richard Montgomery. Spanning trees in random graphs. Advances in Mathematics,

356, 2019.

[145] Richard Montgomery, Alp Müyesser, and Yani Pehova. Transversal factors and span-

ning trees. Adv. Comb., 2022.

[146] NatashaMorrison, Jonathan A. Noel, and Alex Scott. On saturated k-sperner systems.

The Electronic Journal of Combinatorics, 21(3):P3.22, 2014.

[147] John H. Muller. Local Structure in Graph Classes. PhD thesis, School of Information

and Computer Science, March 1988.

[148] János Pach. A problem of ulam on planar graphs. Eur. J. Comb., 2(4):357–361, 1981.

[149] Jinyoung Park and Huy Pham. A proof of the kahn–kalai conjecture. Journal of the

American Mathematical Society, 37(1):235–243, 2024.

[150] Jinyoung Park and Huy Pham. A proof of the Kahn–Kalai conjecture. Journal of the

American Mathematical Society, 37(1):235–243, 2024.

[151] Matías Pavez-Signé, Nicolás Sanhueza-Matamala, and Maya Stein. Dirac-type con-

ditions for spanning bounded-degree hypertrees. Journal of Combinatorial Theory,

Series B, 165:97–141, 2024.

[152] Yanitsa Pehova and Kalina Petrova. Embedding loose spanning trees in 3-uniform

hypergraphs. Journal of Combinatorial Theory, Series B, 168:47–67, 2024.

[153] Huy Tuan Pham, Ashwin Sah, Mehtaab Sawhney, and Michael Simkin. A toolkit for

robust thresholds. arXiv preprint arXiv:2210.03064, 2022.

[154] Huy Tuan Pham, Ashwin Sah, Mehtaab Sawhney, and Michael Simkin. A toolkit for

robust thresholds. arXiv:2210.03064, 2022.

[155] Richard Rado. Universal graphs and universal functions. Acta Arithmetica, 9:331–340,

1964.

[156] Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with

a focus on edge counting. In Algorithmic Learning Theory: 18th International Con-

ference, ALT 2007, Sendai, Japan, October 1-4, 2007. Proceedings 18, pages 285–297.

Springer, 2007.

156

[157] Ronald Rivest and Jean Vuillemin. A generalization and proof of the aanderaa-

rosenberg conjecture. In Proceedings of the seventh annual ACM Symposium on Theory

of Computing (STOC), pages 6–11, 1975.

[158] Neil Robertson and Paul Seymour. Graph minors. II. Algorithmic aspects of tree-

width. Journal of algorithms, 7(3):309–322, 1986.

[159] Neil Robertson and Paul Seymour. Graph minors xxiii. nash-williams’ immersion

conjecture. Journal of Combinatorial Theory, Series B, 100(2):181–205, 2010.

[160] Neil Robertson and Paul D Seymour. Graph minors. i. excluding a forest. Journal of

Combinatorial Theory, Series B, 35(1):39–61, 1983.

[161] Guozhen Rong, Wenjun Li, Yongjie Yang, and Jianxin Wang. Reconstruction and

verification of chordal graphs with a distance oracle. Theoretical Computer Science,

859:48–56, 2021.

[162] Guozhen Rong, Yongjie Yang, Wenjun Li, and Jianxin Wang. A divide-and-conquer

approach for reconstruction of C⩾5-free graphs via betweenness queries. Theoretical

Computer Science, 917:1–11, 2022.

[163] Arnold L Rosenberg. On the time required to recognize properties of graphs: A prob-

lem. ACM SIGACT News, 5(4):15–16, 1973.

[164] Jishnu Roychoudhury and Jatin Yadav. Efficient algorithms for sorting in trees.

arXiv:2205.15912, 2022.

[165] Gábor N. Sárközy, StanleyM. Selkow, and Endre Szemerédi. On the number of Hamil-

tonian cycles in Dirac graphs. Discrete Math., 265(1-3):237–250, 2003.

[166] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory. Series

A, 13:145–147, 1972.

[167] Norbert W. Sauer. On the density of families of sets. J. Comb. Theory, Ser. A, 13:145–

147, 1972.

[168] Saharon Shelah. A combinatorial problem; stability and order for models and theories

in infinitary languages. Pacific Journal of Mathematics, 41:247–261, 1972.

[169] Saharon Shelah. A combinatorial problem; stability and order for models and theories

in infinitary languages. Pac. J. Math., 41:247–261, 1972.

157

[170] Daniel Soudry, Suraj Keshri, Patrick Stinson, Min-hwan Oh, Garud Iyengar, and

Liam Paninski. Efficient" shotgun" inference of neural connectivity from highly sub-

sampled activity data. PLoS computational biology, 11(10):e1004464, 2015.

[171] Jeremy P. Spinrad. Efficient graph representations, volume 19 of Fields Institute mono-

graphs. American Mathematical Society, 2003.

[172] Clara Stegehuis and LotteWeedage. Reconstruction of geometric random graphswith

the simple algorithm. arXiv preprint arXiv:2407.18591, 2024.

[173] Michael Stiebitz, Thomas Schweser, and Bjarne Toft. Brooks’ Theorem: Graph Coloring

and Critical Graphs. Springer Nature, 2024.

[174] Benny Sudakov. Robustness of graph properties. In Surveys in combinatorics 2017,

volume 440 of London Math. Soc. Lecture Note Ser., pages 372–408. Cambridge Univ.

Press, Cambridge, 2017.

[175] Michel Talagrand. Are many small sets explicitly small? In Proceedings of the forty-

second ACM symposium on Theory of computing, pages 13–36, 2010.

[176] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc.

Camb. Philos. Soc., 95:261–265, 1984.

[177] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the thir-

teenth annual ACM symposium on Parallel algorithms and architectures, pages 1–10,

2001.

[178] Paul Turán. On an external problem in graph theory. Mat. Fiz. Lapok, 48:436–452,

1941.

[179] Stanislaw M Ulam. A collection of mathematical problems. Wiley, 1960.

[180] Leslie G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on

Computers, 30(2):135–140, February 1981.

[181] Zhaosen Wang and Jean Honorio. Reconstructing a bounded-degree directed tree

using path queries. In 57th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), pages 506–513, 2019.

[182] Michael Waterman, Temple Smith, Mona Singh, and William A Beyer. Additive evo-

lutionary trees. Journal of Theoretical Biology, 64(2):199–213, 1977.

158

[183] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unifiedmeasure of com-

plexity. In 18th Annual Symposium on Foundations of Computer Science (FOCS), pages

222–227. IEEE Computer Society, 1977.

159

	Introduction
	Extended introduction in english
	Introduction étendue en français

	Preliminaries
	Graphs and operations
	Algorithmic complexity
	Graph parameters
	Partially ordered sets

	Overview of the results
	Distance reconstruction
	Poset saturation
	Spread embedding of trees in dense graphs
	Faithful universal graphs and posets
	Result not included in this thesis

	Graph Reconstruction via distance oracle
	Introduction
	Preliminaries
	From reconstructing trees to reconstructing k-chordal graphs
	Distance reconstruction for trees
	Distance reconstruction for k-chordal graphs

	Reconstruction in G(n,p)
	Proof of

	Query complexity lower bounds
	Reconstructing functions from the coordinate oracle
	Reconstructing functions from the word oracle
	Reducing tree reconstruction to function reconstruction
	Randomised lower bounds for related models
	Lower bound for reconstructing a Voronoi cell locally

	Conclusion and perspectives

	Partial ordered set saturation and parameters
	Introduction
	Preliminaries
	A universal upper bound through cubewidth
	A universal upper bound
	Cubewidth

	Antichain saturation through Lehman and Ron's lemma
	A generalisation of Lehman and Ron's lemma
	Overview of the proof of

	Conclusion and perspectives

	Spread embedding in graphs of high minimum degree
	Introduction
	Preliminaries
	Tree-splittings
	Probabilistic results
	Good spread with high minimum degree

	Proof of Theorem 4.3
	Overview
	Spread distributions on star matchings
	Proof of Theorem 4.3

	Conclusion and perspectives

	Faithful universal structures
	Introduction
	Preliminaries
	Faithful universal graphs for minor-closed classes
	Kt-minors in grid with jumps
	Creating the jumps

	Strongly-universal poset
	Conclusion and perspectives

	Overall Conclusion and Perspectives
	Distance reconstruction
	Poset induced saturation
	Spread embeddings
	Faithful universal graphs and posets

