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Abstract

The aim of this internship is to characterize the affine line as the only smooth A1-contractible
curve, the starting point being the article [As19]. In the two first parts, we build a precise definition
of curve and give some fundamental results. In the third part, we introduce the Picard group, a
useful tool to classify varieties. Then, the fourth part aims to explain the meaning of the adjective
”A1-contractible”, and this requires to build a homotopy category. Finally, the fifth part details the
proof that the affine line is the only smooth A1-contractible curve.
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1 Schemes

In this section, we introduce the fundamental objects of algebraic geometry : schemes. They are often
described as a generalization of algebraic varieties, because the Nullstellensatz theorem makes a link
between classical algebraic varieties and some specific schemes. A more exhaustive construction of schemes
can be found in [Har77] or [Liu02].

1.1 Schemes

We begin by defining the simplest type of scheme, called ”affine scheme” : they are the elementary bricks
from which we will build the object ”scheme”.

Definition 1.1 Let R be a ring. The spectrum of R is a set, defined by :

Spec(R) := {p prime ideal of R}

It can be endowed with the Zariski topology, where the closed subsets are the following ones : for I an
ideal of R,

V (I) := {p ∈ Spec(R), I ⊂ p}

Remark 1.1 The following formulas ensure that this defines a topology, called the Zariski topology :

(i) V (I) ∪ V (J) = V (I ∩ J)

(ii)
⋂
λ∈Λ

V (Iλ) = V

(∑
λ∈Λ

Iλ

)

(iii) V (Spec(R)) = ∅ and V ({0}) = Spec(R)

Remark 1.2 This topology is not separated in general : indeed, if the ring R is an integral domain then
the ideal p0 = {0} is prime, so it is a point of the space Spec(R). Yet, the singleton {p0} is not closed
in Spec(R)... Actually, its closure is the whole space : {p0} = Spec(R). We call such a point a generic
point.

Proposition 1.1 Let R be a ring and I, J two ideals of R. Then the following formulas hold :

• V (
√
I) = V (I)

• V (I) ⊂ V (J) iff
√
J ⊂
√
I

• V (I ∩ J) = V (IJ)

Proof
• If p is a prime ideal that contains

√
I, then it contains I (because I ⊂

√
I), so V (

√
I) ⊂ V (I). Con-

versely, let us suppose that p is a prime ideal that contains I. Let a ∈
√
I, and n ∈ N∗ such that an ∈ I.

Then an ∈ p. But p is prime, so a ∈ p, and thus
√
I ⊂ p.

• If
√
J ⊂

√
I, then V (

√
I) ⊂ V (

√
J) and by the previous point, V (I) ⊂ V (J). Conversely, we can

use the formula : ⋂
p prime
I⊂p

p =
√
I

(see lemma 6.5 in appendices). Indeed, if V (I) ⊂ V (J), then every prime ideal of R that contains I also
contains J , and by the formula,

√
J ⊂
√
I.

• As IJ ⊂ I ∩ J , we have V (I ∩ J) ⊂ V (IJ). Conversely, if a prime ideal p contains IJ , then it
contains I or J because it is prime, so p ∈ V (I) ∪ V (J) = V (I ∩ J). �

In the Zariski topology, the open subsets are very big, in the sense of the following proposition.

Proposition 1.2 Let X = Spec(R) be a topological space as above. Let us suppose that X is irreducible
(it can’t be written as a union of two proper closed subsets). Then every open subset of X is dense in X.
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Proof
Let U be an open subset of X. It exists an ideal I of R such that U = V (I)c. The closure U is a closed
subset of X, so it exists an ideal J of R such that U = V (J).
Then V (J)c ∩ V (I)c = ∅, which can be rewrite as V (J) ∪ V (I) = X. But X is irreducible, so either
V (I) = X either V (J) = X. In any case, U is dense in X. �

Proposition 1.3 Let R be a ring.
Then, for f ∈ R, the set D(f) := {p ∈ Spec(R), f /∈ p} is an open set for the Zariski topology on
Spec(R).
Moreover, these open sets form a basis of open subsets of Spec(R).

Proof
It suffices to see that D(f)c = V ((f)). Indeed, if p is a prime ideal of R such that f ∈ p, then the ideal
generated by f is in p, so p ∈ V ((f)). Conversely, if p contains (f), then f ∈ p.

Now, let U be an open set in Spec(R), i.e U c = V (I) for a certain ideal I of R. Then we have
U =

⋃
f∈I D(f). �

Definition 1.2 Locally ringed space structure
Let R be a ring and X := Spec(R). For all f ∈ R, we define :

OX(D(f)) := Rf

where Rf means the localization of R by the powers of f . Moreover, for any inclusion D(f) ⊂ D(g), we
define a restriction map by

Resf,g : Rf −→ Rg
a

fm
7−→ qm

a

gmm0

where m0 ∈ N and q ∈ R such that fq = gm0 (it exists because D(f) ⊂ D(g)).
Finally, let U be an open subset of X, such that U =

⋃
λ∈ΛD(fλ). We have D(fλ) ∩D(fµ) = D(fλfµ)

for all λ, µ ∈ Λ, so it makes sense to define OX(U) by

OX(U) =

{
(sλ)λ∈Λ ∈

∏
λ∈Λ

OX(D(fλ)) | ∀λ, µ,Resfλ,fλfµ(sλ) = Resfµ,fλfµ(sµ)

}

Proposition 1.4 This endows X with a structure of locally ringed space.
The stalk of p ∈ X is the localization Rp.

Proof see [Liu02], section 2.3.1. �

The object (X,OX) is an affine scheme. We will see later why the adjective ”affine” is accurate.

Definition 1.3 Scheme
Let X be a topological space, and OX a ring sheaf on X, such that every stalk of X is a local ring. If
X can be covered by a family of open sets (Ui)i∈I such that each Ui is isomorphic (as a locally ringed
space) to an affine scheme (i.e. the spectrum of a ring with a locally ringed space structure as above),
then we say that X is a scheme.

Example 1.1 Projective schemes
Let R be a graded ring. Similarly to the construction of the spectrum of a ring, we can build the
homogeneous spectrum of a graded ring, as follows :

Proj(R) := {p homogeneous prime ideal of R, such that
⊕
d>0

Rd * p}

Then Proj(R) can be endowed with a structure of scheme :

- The topology is given by the closed subsets V+(I) := {p ∈ Proj(R) | I ⊂ p}, for any homogeneous
ideal I of R.

- A basis of open sets is given by the D+(f) := V+((f))c, for any homogeneous element f ∈ R.
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- For all f ∈ R homogeneous, we define OProj(R)(D+(f)) := R(f), the ring of elements of degree 0 in
the localization Rf . This defines a sheaf of rings (see [Liu02], page 51)

- For any homogeneous element f ∈ R, we have D+(f) = Spec(R(f)), so Proj(R) can be covered by
open subsets that are isomorphic to the spectrum of a ring.

A scheme that is isomorphic to the homogeneous spectrum of a graded ring is called a projective scheme.

Remark 1.3 Unlike in the affine case, the closed points of a projective scheme Proj(R) are not the
maximal homogeneous ideals of the ring R. Indeed, there is a unique maximal homogeneous ideal in R,
which is

⊕
d>0Rd. But in the definition, we took away this ideal, so the closed points are the prime

homogeneous ideals ”just below” this big ideal.
For instance, in Proj(C[T0, T1]), the closed points are the ideals (aT0 − bT1), with a, b ∈ C.

Definition 1.4 Affine and projective spaces
Let n ∈ N. Let k be a field.

• The affine space of dimension n over k is defined by

An(k) := Spec(k[T1, ..., Tn])

• The projective space of dimension n over k is defined by

Pn(k) := Proj(k[T0, ..., Tn])

Remark 1.4 These definitions generalize the usual affine space and projective space. Indeed, when k
is algebraically closed, the closed points of the abstract spaces An(k) and Pn(k) are in one-to-one corre-
spondence with the concrete affine and projective spaces, as explain below.

In the affine space, the closed points are the maximal ideals of k[T1, ..., Tn]. When k is algebraically
closed, the maximal ideals of k[T1, ..., Tn] are of the form (T1−a1, ..., Tn−an) (it is a weak version of the
Nullstellensatz theorem), so they are in bijection with the points (a1, ..., an) of the affine space kn.

In the projective space, it is the same idea : the closed points are the prime homogeneous ideals
of the form (T0 − a0Ti, · · · , Ti−1 − ai−1Ti, Ti+1 − ai+1Ti, · · · , Tn − anTi), with 0 ≤ i ≤ n, and we can
associate uniquely to any of these ideal a point [a0 : · · · : ai−1 : 1 : ai+1 : · · · : an].

Definition 1.5 Dimension
Let X be a scheme. The dimension of X is its dimension as a topological space, i.e. its Krull dimension,
which is the supremum of the lengths of chains of irreducible closed subsets of X.

Example 1.2 The dimension of An(k) and Pn(k) is n.

Definition 1.6 Let (X,OX) be a scheme. We say that X is :

• connected if its underlying topological space is connected ;

• integral when its underlying topological space is irreducible and every stalk is a reduced ring ;

• noetherian when it can be covered by a finite union of affine schemes that are spectrum of noetherian
rings.

Proposition 1.5 Let X = Spec(R) (resp. X = Proj(R)) be an affine scheme (resp. a projective scheme).
Then R is an integral domain iff X is integral.

Proof
• Let us suppose that R is an integral domain. If we can write X as union of two closed subsets, then
X = V (I1) ∪ V (I2), with I1, I2 two ideals of R, then X = V (I1 ∩ I2), so every prime ideal of R contains
I1 ∩ I2. But R is an integral domain, so {0} is a prime ideal, and thus I1 ∩ I2 = {0}. If I1 is not trivial,
it exists a ∈ I1 such that a 6= 0. For all b ∈ I2, we have ab ∈ I1 ∩ I2 so ab = 0, and as R is an integral
domain, b = 0. So I2 = {0}, and finally X is irreducible.
Moreover, for all p ∈ Spec(R), the stalk OX(p) is the localization of R by p. As R is an integral domain
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and R \ p does not contain 0, the localization Rp is an integral domain, so it is a reduced ring.
Therefore X is integral.

• Conversely, let us suppose that R is not an integral domain : it exits a, b ∈ R such that ab = 0
and a 6= 0, b 6= 0. Then (a) ∩ (b) =

√
(0), so X = V ((a)) ∪ V ((b)), with V ((a)) 6= X and V ((b)) 6= X,

because a 6= 0 and b 6= 0. So X is not irreducible.

The proof in the projective case is the same. �

Proposition 1.6 Let X be an integral scheme. Then there is a unique generic point in X, and its stalk
is a field.

Proof
Let us cover X by open affine subschemes : X =

⋃
λ∈Λ Uλ, with Uλ = Spec(Rλ). Since X is integral,

each ring Rλ is an integral domain. Thus the ideal {0λ} ⊂ Rλ is a generic point of Uλ. Yet, Uλ is dense
in X because X is irreducible, so {0λ} is a generic point of X.
Now, let x1, x2 be two generic points of X, and let U1 = Spec(R1), U2 = Spec(R2) be two affine open
subsets such that x1 ∈ U1 and x2 ∈ U2. From the above, we must have x1 = {01} and x2 = {02}.
However, the set U1 ∩ U2 is an open subset of X, so it is dense in X : a fortiori, it is non empty. Hence,
U1 ∩ U2 is a non empty open subset of U1, so it contains the ideal {01}. Thus {01} is also a point of U2,
and it is a generic point of U2, so it coincides with {02}. Finally x1 = x2.

Furthermore, we can compute the stalk of x1 : it is the localization of R1 by the ideal {01}, so it is
the fraction field Frac(R1). �

Definition 1.7 Let X be an integral scheme, and ξ be its generic point. The field OX(ξ) is called the
function field of X, and denoted κ(X).

1.2 Morphisms of schemes

Definition 1.8 Morphism of schemes
Let X and Y be two schemes. A morphism between X and Y is a couple (f, f̂) such that

- f : X −→ Y is a continuous map ;

- for all open subset V of Y , f̂(V ) : OY (V ) −→ OX(f−1(V )) is a morphism of rings compatible with
the restrictions, i.e. such that for all open W ⊂ V , the following diagram commutes :

OY (V ) OX(f−1(V ))

OY (W ) OX(f−1(W ))

f̂(V )

ResV,W

f̂(W )

Resf−1(V ),f−1(W )

Proposition 1.7 Let φ : A −→ B be a morphism of rings. Then φ induces a morphism of schemes
f : Spec(B) −→ Spec(A) such that f(p) = φ−1(p). If φ is surjective, then the morphism f is injective.
Moreover, the closure of Im(f) in Spec(A) is V (Ker(φ)).

Proof
The map f is well defined as the inverse image of a prime ideal by a morphism of rings is a prime ideal.
Then for all a ∈ A, we have f−1(D(a)) = D(φ(a)) so f is continuous. Finally, for all a ∈ A, as φ induces
a morphism of rings Aa −→ Bφ(a), there is a morphism of rings OSpec(A)(D(a)) −→ OSpec(B)(f

−1(D(a))),
and if D(a) ⊂ D(a′), than D(φ(a)) ⊂ D(φ(a′)) and the diagram commutes :

5



Aa Bφ(a)

Aa′ Bφ(a′)

φ

Resa,a′

φ

Resφ(a),φ(a′)

Therefore f is a morphism of schemes.

If φ is surjective, then for two ideals p, q in Spec(B) such that φ−1(p) = φ−1(q), we have φ(φ−1(p)) =
p = q = φ(φ−1(q)), so f is injective.

Now, let us show that Im(f) = V (Ker(φ)) (where Im(f) is the closure of Im(f) for the Zariski topology
on Spec(A)).
Let q ∈ Im(f) : it exists a prime ideal p ∈ Spec(B) such that φ−1(p) = q. As 0 ∈ p, we have φ−1(0) ⊂
φ−1(p) so Ker(φ) ⊂ q. Thus Im(f) ⊂ V (Ker(φ)), and by definition of closure, Im(f) ⊂ V (Ker(φ)).
Conversely, let q ∈ V (Ker(φ)). Let us notice that

Im(f) =
⋂

I ideal of A
Im(f)⊂V (I)

V (I)

Let I be such an ideal of A. Then I ⊂
⋂

p∈Im(f) p =
⋂

p∈Spec(B) φ
−1(p) = φ−1

(⋂
p∈Spec(B) p

)
.

Yet, we have
⋂

p∈Spec(B) p =
√

0B , so

I ⊂ φ−1(
√

0B) =
√

Ker(φ) =
⋂

p prime
Ker(φ)⊂p

p

As q is a prime ideal that contains Ker(φ), we have I ⊂ q.
Finally q ∈ Im(f). �

Definition 1.9 Morphisms of finite type
Let f : X −→ Y be a morphism of schemes. We say that f is locally of finite type when for every point
x ∈ X, it exists an open affine neighbourhood Spec(A) of x in X and an open affine Spec(B) in Y such
that f(Spec(A)) ⊂ Spec(B) and A is a finite type B-algebra for the induced map B −→ A, given by the

morphism f̂ : OB(Spec(B)) −→ OA(Spec(A)).
Moreover, we say that f is of finite type when f is locally of finite type and for every open V of Y that
is quasi-compact, the inverse image f−1(V ) is quasi-compact.

Proposition 1.8 Glueing schemes
Let (Xi)i∈I be a family of schemes over k, such that for all i ∈ I, for all j ∈ I, it is given a subscheme
Xij of Xi, and an isomorphism of schemes over k, fij : Xij −→ Xji such that :

(i) fii = idXii

(ii) fij(Xij ∩Xik) = Xji ∩Xjk

(iii) fjk ◦ fij = fik on Xij ∩Xik.

Then there exists a unique (up to isomorphisms) scheme over k, X, with open immersions gi : Xi −→ X
such that

X =
⋃
i∈I

gi(Xi) and gi = gj ◦ fij on Xij

Proof see [Liu02], page 50. �

Example 1.3 The projective space Pn(k), for any field k, is the glueing of a family (Xi)0≤i≤n, where

Xi := D+(Ti) ∼= An(k)
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Definition 1.10 Affine and finite morphisms
Let f : X −→ Y be a morphism of schemes. We say that f is affine when for all affine open subset V of
Y , the subset f−1(V ) is affine.
Moreover, we say that f is finite when f is affine and for all open affine subset V of Y , the ringOX(f−1(V ))
is finite as a OY (V )-module.

Remark 1.5 A finite morphism f : X −→ Y is a locally finite type morphism.
Indeed, let x ∈ X. Then we can find an affine open Spec(R) ⊂ Y such that f(x) ∈ Spec(R). As f is
finite, the inverse image f−1(Spec(R)) is affine : f−1(Spec(R)) = Spec(A), and the ring A is a finite
R-module.

Proposition 1.9 A closed immersion is a finite morphism.

Proof
Let f : X −→ Y be a closed immersion, which means that we can factor f in i◦φ where i : Z −→ Y is the
inclusion of a closed subscheme of Y , and φ : X −→ Z is an isomorphism. As an isomorphism, φ is affine.
Moreover, if V := Spec(R) is an affine open of Y , we have i−1(V ) = Z ∩V , so it is a closed subset of V in
Y . Therefore it exists an ideal I of R such that V (I) = Z ∩ V , and we have V (I) ∼= Spec(R/I) so Z ∩ V
is affine. Thus i is an affine morphism, and by composition, f is an affine morphism. Finally, we have
OX(f−1(V )) = OX(φ−1(Z ∩ V )) ∼= OZ(Z ∩ V ) = OZ(Spec(R/I)) = R/I, and it is a finite R-module.
Hence f is a finite morphism. �

Definition 1.11 Scheme over a field
Let (X,OX) be a scheme. We say that X is a scheme over a field k when we consider a morphism of
scheme f : X −→ Spec(k).
In that case, the function field κ(X) can be denoted k(X).

Definition 1.12 Scheme of finite type
We say that a scheme X over k is of finite type when there is a finite covering X =

⋃n
i=1 Spec(Ri) where

each Ri is a finite-type k-algebra.

Definition 1.13 Unramified, flat and étale morphisms
Let f : X −→ Y be a morphism of schemes over k, such that X and Y are noetherian schemes of finite
type. Let x ∈ X, and y := f(x).

• We say that f is unramified at x if the morphism of rings f̂ : OY,y −→ OX,x induced by f satisfies

f̂(my)OX,x = mx, and if the extension k(y) −→ k(x) is separable.

• We say that f is flat at x if the morphism of rings f̂ : OY,y −→ OX,x is flat, i.e. it makes flat OX,x
as a OY,y-module (see appendices for the definition of flat module).

• We say that f is étale when for all x ∈ X, it is unramified and flat at x.

Proposition 1.10 The composition of two étale morphisms is étale.

Proof
Let f : X −→ Y and g : Y −→ Z be two étale morphisms. Let x ∈ X. Then the morphism
f̂ : OY (f(x)) −→ OX(x) is such that f̂(mf(x))OX(x) = mx, and the morphism ĝ : OZ(g(f(x)) −→
OY (f(x)) is such that ĝ(mg(f(x))OY (f(x)) = mf(x). Then f̂(ĝ(mg(f(x)))OY (f(x)))OX(x) = mx, so

ĝ ◦ f(mg◦f(x))OX(x) = mx.
Moreover, the extension k(g(f(x))) −→ k(x) is the composition of two separable extensions so it is sep-
arable. Therefore g ◦ f is unramified at x.
Finally, OX(x) is flat as a OY (f(x))-module via f̂ , and OY (f(x)) is flat as a OZ(g(f(x)))-module via ĝ,

so OX(x) is flat as a OZ(g(f(x)))-module, via f̂ ◦ ĝ (see proposition 6.4 in appendices). Then g ◦ f is flat
at x.
Hence g ◦ f is étale at x, for all x ∈ X. �

Proposition 1.11 Any immersion is étale.
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Proof
Let i : X −→ Y be an inclusion of schemes over k, with X and Y locally Noetherian and of finite type.
Let x ∈ X. Then OX(x) = OY (x) so the morphism î : OY (x) −→ OX(x) is the identity. Therefore i is
unramified and flat at x.
As an immersion is the composition of an inclusion and an isomorphism, and since any isomorphism is
étale, we get that any immersion is étale. �

Proposition 1.12 Let f : X −→ Y be a morphism of schemes. There is a unique morphism ∆ : X −→
X ×Y X such that π1 ◦∆ = π2 ◦∆ = idX (where πi are the projections X ×Y X −→ X).

Proof
The following diagram is commutative :

X X

X Y

idX

idX

f

f

By universal property of fibred product, it exists a unique morphism ∆ : X −→ X ×Y X such that
π1 ◦∆ = π2 ◦∆ = idX . �

Definition 1.14 We say that f as above is separated when ∆ is a closed immersion.
If X is a scheme over k a field, we say that X is separated when the morphism X −→ Spec(k) is a
separated morphism.

Definition 1.15 Categories of schemes
We will denote by Schk the category of noetherian schemes over k, of finite dimension, and Smk the
category of smooth, separated schemes of finite type over k. (See [Lei16] to have the basic notions of
category theory).

1.3 Base change and smoothness

Now we describe a way to change the field over which a scheme is defined, and this will allow us to talk
about smoothness of schemes.

Definition 1.16 Base change
Let k be a field and k ⊂ k′ an extension. Let X be a scheme over k.
The base change of X consists in building a scheme over k′ from X, by setting

Xk′ := X ×k Spec(k′)

Hence, Xk′ is endowed with a structure of scheme over k′ by the projection X ×k Spec(k′) −→ Spec(k′).

Proposition 1.13 Let k ⊂ k′ be a field extension. LetX = Spec(k[T1, ..., Tn]/I) (resp. Proj(k[T0, ..., Tn]/Ī))
be an affine (resp. projective) variety over k. Then the base change Xk′ of X over k′ is isomorphic to
Spec(k′[T1, ..., Tn]/I) (resp. Proj(k′[T0, ..., Tn]/Ī)).

Proof
By definition, Xk′ = X ×k Spec(k′). Let us check that X ′ = Spec(k′[T1, ..., Tn]/I) satisfies the universal
property of fibred product. The inclusion i : k −→ k′ induces a morphism of rings q : X ′ −→ X. Moreover,
X ′ has naturally a structure of scheme over k′, so there is a morphism g : X ′ −→ Spec(k′). Let us denote
by p : Spec(k′) −→ Spec(k) the morphism of rings induced by k ⊂ k′, and by f : X −→ Spec(k) the
morphism induced by the structure of scheme over k of X. Then the diagram commutes :

X ′ X

Spec(k′) Spec(k)

q

g

p

f
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Moreover, let W be a scheme and morphisms q′ : W −→ X and g′ : W −→ Spec(k′) such that f◦q′ = p◦g′.
Then g′ induces a morphism of rings φ : k′ −→ OW (W ), and the map q′ induces a morphism of rings
ψ : k[T1, ..., Tn]/I −→ OW (W ). Together, they define a morphism of rings k′[T1, ..., Tn]/I −→ OW (W ).
Moreover, as f ◦ q′ = p ◦ g′, we have then φ ◦ i = ψ ◦ j, and therefore φ and ψ coincide on k. Then we
have a morphism of rings η : k′[T1, ..., Tn]/I −→ OW (W ) such that η|k′ = φ and η|k[T1,...,Tn]/I = ψ. This
induces a morphism of schemes h′ : W −→ X ′ Then the following diagram commutes :

X ′ X

Spec(k′) Spec(k)

W

q

g f

p

q′

g′

h′

Finally X ′ satisfy the universal property of fibred product, so X ′ ∼= X ×k Spec(k′).

The proof is the same in the projective case. �

Definition 1.17 Regular and smooth schemes
Let X be a noetherian scheme over k.
•We say that X is regular when every closed stalk of X is a regular local ring, i.e. for every closed point
x ∈ X, we have dimk(x)(mx/m

2
x) = dim(X).

•We say that X is smooth when the base change Xk̄ = X×k Spec(k̄) is locally of finite type and regular.

Proposition 1.14 A smooth scheme over k is regular over k. The converse is false.

Proposition 1.15 Let X be a smooth scheme of finite type over k. Let k ⊂ k′ be a field extension of k.
Then the base change Xk′ := X ×k Spec(k′) is still a smooth scheme of finite type (over k′).

Proof
First, by definition of smoothness, the base change of a smooth scheme is still smooth.
Let us show that Xk′ is of finite type over k′. Let z ∈ Xk′ . Let us denote by π the projection Xk′ −→ X.
Since X is of finite type, it exists an open affine neighbourhood Spec(A) of π(z) in X, such that A is a
finite type k-algebra, so we can write A = k[T1, ..., Tn]/I. Then π−1(Spec(A)) = Spec(k′[T1, ..., Tn]/I ′),
where I ′ is the ideal of k′[T1, ..., Tn] generated by I. Thus we have an open affine neighbourhood of z,
such that the ring associated is a finite type k′-algebra. Therefore Xk′ is of finite type. �

Remark 1.6 Unfortunately, if k′ is an extension of k, the base change of an integral scheme X over k
toward k′ is not always an integral scheme over k′...
For instance, let k = Q, k′ = Q(i) and X = Spec(Q(i)). Then the fibred product X ×k Spec(k′) is equal
to Spec(Q(i)⊗Q Q(i)). The ring Q(i)⊗Q Q(i) is not an integral domain, as shown by the following little
calculus :

(1⊗ i+ i⊗ 1) ∗ (1⊗ i− i⊗ 1) = −1⊗ 1− i⊗ i+ i⊗ i+ 1⊗ 1 = 0

Therefore XQ(i) is not integral.
Due to this loss of integrity, the notion of abstract variety below is not stable by base change, which will
cause some difficulties later. Thus in what follows, we will try to specify when the results work even if
the scheme is not integral.

1.4 Varieties

Here we will make the link between schemes and classical algebraic varieties (defined as the zero-locus of
a set of polynomials).

From this point, let k denote a given field.

Definition 1.18 Abstract variety
Let X be a scheme over k. We say that X is an abstract variety over k when the two conditions hold :

9



(i) X is integral

(ii) The morphism X −→ Spec(k) is separated and of finite type.

In the case of an algebraically closed field, an abstract variety can be viewed as a classical variety,
thanks to the following proposition.

Proposition 1.16 Suppose that k is an algebraically closed field. Let F1, ..., Fs be irreducible polyno-
mials in k[T1, ..., Tn], and V be the variety {(a1, ..., an) ∈ kn | Fi(a1, ..., an) = 0 ∀i}.
If we denote by A := k[T1, ..., Tn]/(F1, ..., Fr) the coordinate ring of V , then Spec(A) is an affine variety
and there is a one-to-one correspondence between V and the closed points of Spec(A).

Proof see corollary 1.1.15, page 31 of [Liu02]. �

Proposition 1.17 Let n ∈ N. The affine space of dimension n over k is a variety over k, and its function
field is k(T1, ..., Tn), the field of fractions of k[T1, ..., Tn].

Proof
As k[T1, ..., Tn] is an integral domain and by proposition 1.3, An(k) is integral.
As the inclusion k −→ k[T1, ..., Tn] is a finite type ring morphism, the morphism f : An(k) −→ Spec(k) is
locally of finite type. Moreover, the only open subset of Spec(k) is Spec(k), and it is quasi-compact. Let
us show that f−1(Spec(k)) = An(k) is quasi-compact : let us consider an open covering An(k) =

⋃
λ∈Λ Uλ.

By definition, for all λ ∈ Λ, it exists an ideal Iλ ⊂ k[T1, ..., Tn] such that Uλ = V (Iλ)c. Then⋃
λ∈Λ Uλ = V (

∑
Iλ)

c
. Yet k[T1, ..., Tn] is noetherian, so we can extract a finite number of ideals Iλi ,

i = 1, ..., r, such that
∑
Iλ =

∑r
i=1 Iλi , and then we get An(k) =

⋃r
i=1 Uλi . Therefore An(k) is of finite

type over k.
Finally, An(k) ×k An(k) = A2n (see appendices on fibred product), so the map An(k) −→ A2n(k) is a
closed immersion, induced by the morphism of rings k[T1, ..., T2n] −→ k[T1, ..., Tn] that maps Ti over Ti
and Ti+n over 1 for i ∈ [[1, n]]. This shows that An(k) is a variety over k.

As An(k) is affine, we can choose An(k) for the affine open subscheme of the definition of function
field. We have OAn(k)(An(k)) = k[T1, ..., Tn] and the fraction field of this ring is k(T1, ..., Tn). �

Proposition 1.18 Let n ∈ N. The projective space of dimension n over k is a variety over k, and its
function field is kh(T0, ..., Tn), the homogeneous fractions of k[T0, ..., Tn].

Proof
It suffices to adapt the proof of the affine case. �

Definition 1.19 Affine and projective varieties
• An affine variety over k is a variety over k that is isomorphic to a closed subscheme of An(k), for one
n ∈ N.
• A projective variety over k is a variety over k that is isomorphic to a closed subscheme of Pn(k), for
one n ∈ N.

Remark 1.7 Fortunately, the spaces An(k) and Pn(k) are respectively an affine variety and a projective
variety over k.

Proposition 1.19 Let X be a variety over k.
Then X is an affine scheme iff X is an affine variety over k.

Remark 1.8 This explains why we call ”affine scheme” a scheme that is isomorphic to the spectrum of
a ring.

Proof
• First, if X is an affine variety, then X is (isomorphic to) a closed subscheme of An(k), so it exists an
ideal I of k[T1, ..., Tn] such that X ∼= V (I).
But V (I) is the set of all prime ideals of k[T1, ..., Tn] that contains I, and it is isomorphic to the set of
prime ideals of k[T1, ..., Tn]/I. Then X ∼= Spec(k[T1, ..., Tn]/I), so X is an affine scheme.

• Conversely, let us suppose that X is an affine scheme : X = Spec(R). As X is a variety over k,
the morphism f : X −→ Spec(k) is of finite type, so for all x ∈ X, it exists an affine open neighbourhood

10



Ux = Spec(Rx) of x such that Rx is a finite type k-algebra. Thus we have an open covering X =
⋃
x∈X Ux.

Moreover, since f is of finite type, the inverse image f−1(Spec(k)) = X is quasi-compact, so we can find
a finite number of points x1, ..., xr in X such that

X =

r⋃
i=1

Uxi

Let us write Uxi = Spec(Ri), with Ri a finite type k-algebra. Then X is a finite union of spectrum
of finite type k-algebra, so R is a finite type k-algebra itself : R = k[T1, ..., Tn]/I. The projection
k[T1, ..., Tn] −→ R induces an immersion i : X −→ An(k), and we have i(X) = V (I) so X is isomorphic
to a closed subscheme of An(k). �

Example 1.4 The multiplicative group Gm.
We denote by k[T, T−1] := k[T1, T2]/(T1T2 − 1). The multiplicative group scheme is

Gm = Spec(k[T, T−1])

endowed with the following group structure :
Consider the morphism of rings φ : k[T, T−1] −→ k[T, T−1] ⊗k k[T, T−1] such that φ(T ) = T ⊗ T . This
induces a morphism of schemes m : Spec(k[T, T−1] ⊗k k[T, T−1]) −→ Spec(k[T, T−1]), i.e. a morphism
of schemes

m : Gm ×k Gm −→ Gm
that gives a ”multiplicative law” on Gm.

In the same way, we define an inverse morphism i : Gm −→ Gm induced by T −→ T−1 and a neu-
tral morphism e : Spec(k) −→ Gm induced by T −→ 1.

Now, let us show that Gm is an affine variety.
First, as T1T2 − 1 is irreducible, the ring k[T1, T2]/(T1T2 − 1) is an integral domain, and thus Gm is
integral. Furthermore, we have

Gm ×k Gm ∼= Spec(k[T1, T2, T3, T4]/(T1T2 − 1, T3T4 − 1))

Therefore the morphism Gm −→ Gm ×k Gm is a closed immersion, induced by the morphism of rings
k[T1, T2, T3, T4]/(T1T2 − 1, T3T4 − 1) −→ k[T1, T2]/(T1T2 − 1) which maps T1 on T1, T2 on T2 and T3, T4

on 1. Then Gm is separated. Finally, as k[T1, T2]/(T1T2 − 1) is a finite type k-algebra and a noetherian
ring, Gm is of finite type over k.
Moreover, the projection k[T1, T2] −→ k[T1, T2]/(T1T2 − 1) gives a closed immersion of Gm in A2(k), so
Gm is an affine variety.

Moreover, when the field k is algebraically closed, one can see Gm as the pointed line An(k) \ {0} :
this needs some computations, detailed below.
As k is algebraically closed, the nonzero prime ideals of k[T1, T2] are the maximal ideals (T1−a, T2−b) for
a, b ∈ k and the prime ideals (P ) where P is irreducible. Then the prime ideals that contains (T1T2 − 1)
are the maximal ones and (T1T2 − 1). Let p = (T1 − a, T2 − b) such that T1T2 − 1 ∈ p. It exists two
polynomials P,Q such that

T1T2 − 1 = (T1 − a)P + (T2 − b)Q
Case 1 : if deg(P ) > deg(Q), then the degree of (T1 − a)P + (T2 − b)Q is deg(P ) + 1, so deg(P ) = 1. We
can write P = p1T1 + p2T2 + p0 and Q = q0 with p1, p2, p0, q0 ∈ k. Thus

T1T2 = p1T
2
1 + p2T1T2

Hence p1 = 0 and p2 = 1, and after some computation, we have p0 = 0, q0 = a and bq0 = 1. Necessarily,

ab = 1. Then p = (T1 − a, T2 −
1

a
).

Case 2 : if deg(P ) = deg(Q) = d, then we can write P =
∑d
i=0 Pi, with Pi a homogeneous polyno-

mial of degree i, and the same for Q. We get the following system :
1 = aP0 + bQ0

0 = T1P0 + T2Q0 − aP1 − bQ1

T1T2 = T1P1 + T2Q1 − aP2 − bQ2

0 = T1Pi + T2Qi − aPi+1 − bQi+1 for i ≤ 2

11



Actually, when working on these equations, we end on ab = 1, which means that p = (T1 − a, T2 −
1

a
).

Therefore the closed points of Gm are in one-to-one correspondence with the points along the line An(k)
except 0.

Definition 1.20 Projectivization
Let X an affine variety over k, say X := Spec(k[T1, ..., Tn]/I). The projectivization of X, denoted by X,
is the scheme Proj(k[T0, ..., Tn]/I), where I is the ideal generated by{

T d0 F

(
T1

T0
, ...,

Tn
T0

)
| F ∈ I, deg(F ) = d

}
Remark 1.9 We could have defined like this the projectivization of any affine scheme of finite type over
k (indeed we don’t need the scheme to be integral neither separated in this definition).

Example 1.5 The projectivization of An(k) is Pn(k).

Example 1.6
For an affine curve, the projectivization of X consists in adding a point at infinity. For instance, if
X := Spec(C[T1, T2]/(T2 − T 2

1 )), we have

X = Proj(C[T0, T1, T2]/(T2T0 − T 2
1 ))

Hence the closed points of X are of two kinds :

- The closed points [1 : x1 : x2] where x2
1 = x2, which corresponds to the closed points of X ;

- The point ”at infinity” [0 : 0 : 1].

Proposition 1.20 Let X be an affine variety over k of dimension 1. Then X is a projective variety over
k of dimension 1, and X ∼= X t {x1, ..., xm} where the xi’s are closed points.
Moreover, if X is smooth, then X is smooth too.

Proof
Let us write X := Spec(k[T1, ..., Tn]/I). By construction, X is a subset of Pn(k). Moreover, as X is a
variety, the ideal I is prime in k[T1, ..., Tn], so I is prime in k[T0, ..., Tn]. Then, by proposition 1.4, the
scheme Proj(k[T0, ..., Tn]/I) is integral.
Let us denote by πI the canonical projection k[T0, ..., Tn] −→ k[T0, ..., Tn]/I. Then we can cover X by
finitely many open charts :

X =

n⋃
i=0

D+(πI(Ti))

We can show that these charts are affine. Indeed, D+(πI(Ti))
∼= Spec(k[Y0, ..., Yi−1, Yi+1, ..., Yn]/Ji)

where Yl = Tl/Ti and Ji is the ideal generated by
{
F (Y0, ..., Yi−1, 1, Yi+1, ..., Yn) | F ∈ I

}
.

We can notice that k[Y1, ..., Yn]/J0
∼= k[T1, ..., Tn]/I, so D+(πI(T0)) ∼= X.

Therefore there is an open immersion j : X −→ X. Furthermore, as X has dimension one, the Krull
dimension of the ring k[T1, ..., Tn]/I is one, so the ring k[T0, ..., Tn]/I also has dimension one. This allows
to compute X \ X = X \ D+(πI(T0)). Indeed, this is a proper closed subset of X, so this is simply a
finite set of closed points. Hence X \X = {x1, ...xm}.
Then X is an integral projective scheme of dimension 1, of finite type over k. Furthermore, as X is a
variety, the morphism ∆ : X −→ X ×k X is a closed immersion. Then we can build from it a closed
immersion ∆ : X −→ X ×k X, such that ∆|X = ∆ and for all i ∈ [[1,m]], ∆(xi) = (xi, xi) ∈ X ×k X.

Hence X is a separated scheme over k, and finally it is a projective variety.

Moreover, if X is smooth, then X is the glueing union of n + 1 affine smooth charts (because they
are isomorphic to X which is smooth), so X is smooth. �

Remark 1.10 If we want to work without integrity, the proof above works : if X is just an affine scheme
of finite type over k and of dimension 1, then X is a projective scheme of finite type over k, of dimension
1.
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Example 1.7 The projectivization of Gm
We suppose in this example that k is algebraically closed. Recall that the multiplicative group Gm is
defined as the spectrum of k[T1, T2]/(T1T2 − 1). By definition, its projectivization is then

Proj(k[T0, T1, T2]/(T1T2 − T 2
0 ))

and we have Gm ∼= D+(π(T0)), where π is the canonical projection k[T0, T1, T2] −→ k[T0, T1, T2]/(T1T2−
T 2

0 ).
Therefore Gm \Gm ∼= V+(π(T0)). Let us compute this set. By definition, V+(π(T0)) is the set of all prime
homogeneous ideals of k[T0, T1, Tn]/(T1T2 − T 2

0 ) that contains π(T0), and that does not contain all the
elements of positive degree.
First, the homogeneous ideal generated by π(T0) is not prime. Indeed, we have π(T1T2) = π(T 2

0 ) so
π(T1)π(T2) is in (π(T0)), but neither π(T1) nor π(T2) is in (π(T0)). Therefore (π(T0)) is not in V+(π(T0)).
Then any ideal p in V+(π(T0)) is generated by π(T0) and at least another polynomial π(P ). We can
suppose that P is a homogeneous, irreducible polynomial in T1, T2, because π(T0) is already in p. Fur-
thermore, every occurrence of T1T2 in P can be removed, because π(T1T2) = π(T0)2 is already in p.
Therefore we can suppose that P = P1 + P2 where P1 is a homogeneous polynomial in T1, of degree d,
and P2 a homogeneous polynomial in T2 of degree d too. But then π(T d1 )π(P ) = π(T d1 P1) + π(T d1 P2),
and π(T d1 P2) can be seen as a polynomial in T0 because π(T1T2) = π(T 2

0 ). Hence π(T d1 P2) is in p, and so
is π(T d1 P1). Finally, we can actually suppose that P is a polynomial only in T1. Yet, we said that it was
a homogeneous prime polynomial, and as k is algebraically closed, we get P = T1, up to multiplication
by a nonzero constant. As T1 and T2 play symmetric roles, we can also have P = T2.
We can check that the ideals (π(T0), π(T1)) and (π(T0), π(T2)) are prime ideals, and they don’t contain
all the polynomials of positive degree.
Therefore the projectivization of Gm only consists in ”adding two points at infinity”. We could have
guessed this by thinking of Gm as the pointed line A1(k) \ {0} : to complete it we need a point at zero
and a point at infinity.

Proposition 1.21 Let X be an affine variety over k. The projectivization of X ×k X is X ×k X.

Proof
Say X = Spec(k[T1, ..., Tn]/I), with I a prime ideal of k[T1, ..., Tn]. Then

X ×k X = Spec(k[T1, ..., Tn/I ⊗k k[S1, ..., Sn]/J) ∼= Spec(k[T1, ..., Tn, S1, ..., Sn]/(I, J))

where J is the ideal I with polynomials in Si instead of Ti.
Therefore the projectivization of X ×k X is Proj(k[T0, T1, ..., Tn, S1, ..., Sn]/(I, J)).
On an other hand, we have

X×kX = Proj(k[T0, ..., Tn]/I⊗k[S0, ..., Sn]/J) ∼= Proj(k[T0, ..., Tn, S0, ..., Sn]/(I, J, S0−T0)(see appendices)

Therefore X ×k X = X ×k X. �

1.5 Rational points

A little focus on some special points of a scheme, which will be important in the final section.

Definition 1.21 Rational point
Let X be a scheme over k. A point x ∈ X is rational when the residue field k(x) := OX(x)/mx is equal
to k.

Example 1.8 Rational points of the line
The prime ideals of k[T ] are the principal ideals (P ) with P an irreducible polynomial, and the ideal {0}.
It is easy to show that {0} is not a rational point : indeed, the stalk OA1(k)({0}) is the fraction field k(T ),
so the residue field is k(T ) which is not isomorphic to k.

Moreover, if P is an irreducible polynomial, the stalk at the point (P ) is the localization k[T ](P ) :=
(k[T ] \ (P ))−1k[T ]. The maximal ideal of this ring is the image of (P ), and then the residue field at (P )
is

k((P )) = k[T ](P )/m(P )
∼= k[T ]/(P )
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Therefore the rational points of A1(k) are exactly the ideals (P ) with P a polynomial of degree 1.

In particular, when k is algebraically closed, the irreducible polynomials all have degree 1, so all the
points of A1(k) except {0} are rational points.

Definition 1.22 Sections
Let X be a scheme over k, and f : X −→ Spec(k) the associated morphism. A section of X is a morphism
of k-schemes σ : Spec(k) −→ X, such that f ◦ σ = idSpec(k).
The set of sections of X is denoted by X(k).

Proposition 1.22 Let X be a scheme over k, and f : X −→ Spec(k) the associated morphism. Then
X(k) can be identified with the set of rational points of X.

Proof Let σ ∈ X(k). As k is a field, we have Spec(k) = {ξ}, with ξ the zero ideal of k. Then σ is just
the choice of one point in X : σ(ξ) = x. But σ is a morphism of schemes, so it induces a morphism of
rings k(x) −→ k. Since k(x) is a field, this morphism of rings is injective, so k is an extension of k(x).
But k(x) is also an extension of k, so k = k(x), and x is rational.

Conversely, let x ∈ X be a rational point. Then we have a canonical surjection OX(x) −→ k, which
induces an immersion Spec(k) −→ Spec(OX(x)). It suffices to find a morphism Spec(OX(x)) −→ X
and we will have a section of X. Let U be an affine subset that contains x (it exists by definition
of scheme). We have a restriction morphism OX(U) −→ OX(x), that induces a morphism of schemes
Spec(OX(x)) −→ Spec(OX(U)). But U is affine, so Spec(OX(U)) = U , and thus we have a mor-
phism Spec(OX(x)) −→ U , that we can compose with the inclusion U −→ X to have a morphism
Spec(OX(x)) −→ X. �

Example 1.9 Rational points of an elliptic curve
Let C be an elliptic curve over Q, i.e. a smooth projective curve over Q of genus 1.
The Q-rational points of C form a group, and the Mordell-Weil theorem states that it is abelian and
finitely generated.

Proposition 1.23 When X is a variety and k is algebraically closed, the rational points are exactly the
closed points.

Proof
Let us suppose that k is algebraically closed, and let X be a variety over k.

• Let x ∈ X be a closed point. As X is a variety over k, it exists an affine open subset Spec(R) of
x such that R is a finite type k-algebra : R = k[T1, ..., Tn]/I. Then x can be seen as a maximal ideal
p of k[T1, ..., Tn] that contains I. Yet, k is algebraically closed, so by the weak Nullstellensatz, we have
R/p ∼= k. Thus the residue field of x is

OX(x)/mx ∼= Rp/pRp
∼= R/p ∼= k

Then x is a rational point.

• Conversely, let us suppose that x is a rational point. Let us denote again by Spec(R) an affine
neighbourhood of x, with R ∼= k[T1, ..., Tn]/I, and p the prime ideal associated. We have, by hypothesis :

OX(x)/mx ∼= Frac(R/p) ∼= k

We can embed R/p into its field of fraction Frac(R/p). Thus

R/p ⊂ Frac(R/p) ∼= k

On an other hand, as R is a k-algebra, we have an canonical inclusion k ⊂ R/p. Therefore R/p ∼= k, so
p is a maximal ideal of R, and then x is a closed point in X. �

2 Curves

Since the aim of this report is to prove something about curves, this section begins to study these objects
and gives tools like the genus or the divisors of a curve.

Definition 2.1 A curve is a variety over k of dimension 1.
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2.1 Classification of curves

In this subsection, we will focus on showing that a curve is either an affine variety either a projective
variety. Then let us take a curve X over k. The main idea is to embed X in a projective curve and say
that if X is not projective, then it must be an affine chart of this projective curve.

Lemma 2.1 There exists a projective curve X and an open immersion j : X −→ X such that :

X = X t {x1, ..., xn}

with each xi a closed point in X.

Proof
Let us write X =

⋃r
i=1 Ui, an affine open covering of X. As X is a curve, each open subscheme Ui is an

affine curve over k. Then by proposition 1.20, the projectivization U i of Ui is a projective curve over k,

and Ui = Ui t {x(i)
1 , ..., x

(i)
mi} for some closed points x

(i)
j .

We want to apply the glueing lemma (proposition 1.8). In this aim, we set Uij := Ui ∩ Uj for all
i, j ∈ [[1, r]] and fij = idUij . Then the conditions (i), (ii) and (iii) of the glueing lemma are satisfied, so

it exists a unique scheme over k, X, such that X =
⋃r
i=1 Ui. Then :

X =

r⋃
i=1

Ui =

r⋃
i=1

Ui t {x(i)
1 , ..., x(i)

mi} = X t {x(1)
1 , ..., x(1)

m1
, ..., x

(r)
1 , ..., x(r)

mr}

with each x
(i)
j a closed point of X.

Let us show that X is a projective curve over k. First, X is reduced, because each Ui is reduced. Then, let
us suppose that X = F1∪F2 with F1, F2 two closed subsets of X. We have X = (X ∩F1)∪ (X ∩F2), and
X ∩ Fi is a closed subset of X for i = 1, 2. But X is irreducible, so we have (for instance) X = F1 ∩X,
which means that X ⊂ F1. Therefore X \ F1 = {y1, ..., ys} is a finite set of closed points. As the
complement of F1, which is closed, the set {y1, ..., ys} is an open subset of X. Thus for all i ∈ [[1, r]],
{y1, ..., ys} ∩ Ui is an open and closed subset of Ui. But Ui is an integral scheme, so its underlying
topological space is connected. Thus we have {y1, ..., ys} ∩ Ui = ∅ or Ui. But if {y1, ..., ys} ∩ Ui = Ui,
then the dimension of Ui is 0 : that is absurd. Therefore for all i ∈ [[1, r]], we have {y1, ..., ys} ∩ Ui = ∅,
and thus {y1, ..., ys} = ∅, so F1 = X.
This shows that X is irreducible.

Now, we have to show that the morphism f : X −→ Spec(k), induced be the morphisms Ui −→ Spec(k),
is separated and of finite type. As X is a finite union of finite type schemes over k, X is of finite type
over k. Finally, as X is a variety, the morphism ∆ : X −→ X×kX is a closed immersion. By proposition
1.21, we have X ×k X = X ×k X, so X ×k X = X ×k X t {z1, · · · zt} for some closed points zi, and then
the closed immersion ∆ : X −→ X ×k X induces a closed immersion X −→ X ×k X.
We have shown that X is a variety over k. It is also a curve, because dim(X) = dim(X) = 1, and it is a
projective curve by construction. �

Remark 2.1 If X was just a scheme of finite type over k of dimension 1, then the above proof can be
adapted, so we still can show that there exists a projective scheme of finite type over k, of dimension 1
such that X = X t {x1, ..., xn}.

Proposition 2.1 X is either affine or projective.

Proof
Let us suppose that X is not a projective curve. Then, by lemma 2.1 above, it exists an open immersion
j : X −→ X, with X a projective curve and X \X = {x1, ..., xn}.
As X is a projective curve, there is a closed immersion f : X −→ Pn(k) for some n ∈ N∗. Moreover, by
construction of the projectivization, we have f−1(D+(T0)) = j(X). But f is a closed immersion, so it is
a finite morphism. As D+(T0) is an affine open subscheme of Pn(k), we conclude that j(X) is affine, and
so is X. �

Remark 2.2 This is still true if X is just a finite type scheme over k of dimension 1.
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2.2 Genus of a curve

We already know the genus of a topological space : it is an invariant that ”counts the number of holes”
of the space. Here, we define two different genus for a curve. Actually, when the curve is ”sufficiently
nice”, all these genus match.

Definition 2.2 Cech cohomology
Let X be a variety over k. Let U be an affine open covering of X, such that U = (Ui)i∈I . For all p ∈ N,
we define the space of p-cochains of U by

Cp(U) :=
∏

(i0,...,ip)∈Ip+1

OX(Ui0 ∩ ... ∩ Uip+1)

The space of cochains is then C(U) =
⊕

p≥0 C
p(U).

Moreover, for all p ≥ 0, the differential is a map dp : Cp(U) −→ Cp+1(U) such that, for f ∈ Cp(U),
and (i0, · · · , ip+1) ∈ Ip+2,

(dpf)i0,··· ,ip+1
=

p+1∑
j=0

(−1)jfi0,··· ,îj ,··· ,ip+1 |Ui0∩···∩Uip+1

Finally, the Cech cohomology is defined by

Hp(U) := Ker(dp)/ Im(dp−1)

It can be shown that Hp(U) does not depend on the affine covering U , so we can simply write

Hp(X) = Ker(dp)/ Im(dp−1)

Remark 2.3 If X can be covered by m affine open subsets, then for all p ≥ m, Hp(X) = 0. (see [Liu02]
p.186).

Definition 2.3 Arithmetic genus
Let X be a smooth projective curve over k. The arithmetic genus of X is defined by

pa(X) := 1− χk(OX) = 1−
∑
i≥0

(−1)i dimkH
i(X)

Proposition 2.2 Sheaf of ideals
Let X be a variety over k. Let Y be a closed subset of X.
For all open subset U of X, we set

I(U) := {f ∈ OX(U) | ∀P ∈ OX(U ∩ Y ), f|P ∈ mP }

Then I is an OX -module, called the sheaf of ideals of X over Y .

Proof
First, for any open subset U of X, the set I(U) is an ideal of OX(U). Therefore it has a structure of
OX(U)-module. Then, if V ⊂ U , we have a restriction map ResIU,V : I(U) −→ OX(V ), given by the

restriction map OX(U) −→ OX(V ). It is easy to check that the map ResIU,V actually arrive in I(V ).
Hence I is a subsheaf of OX . �

Definition 2.4 Let X be a variety over k, and ∆ : X −→ X ×k X the closed immersion of proposition
1.6. Let I be the sheaf of ideals of X ×k X over ∆(X). Then we define the sheaf of differentials by :

ΩX/k = ∆∗(I/I2)

Definition 2.5 Geometric genus
Let X be a projective smooth variety over k. The geometric genus of X is defined by

pg(X) = dimk ωX(X)

where ωX :=
∧n

ΩX/k, where n = dim(X).

Theorem 2.1 Let X be a smooth projective variety over k. Then the geometric genus and the arithmetic
genus of X are the same, and coincide with the topological genus of X when k = C.

Proof See [Har77] page 246, remark 7.12.2. �
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2.3 The Riemann-Roch theorem

Here, we will suppose that k is algebraically closed. The aim of the section is to show that the projective
line is the only smooth projective curve of genus 0. To do this, we will use the famous Riemann-Roch
theorem.

Definition 2.6 Divisors of a curve
Let X be a curve over k. A divisor of X is a formal sum D :=

∑r
i=1 niPi, for ni ∈ Z and Pi a closed

point of X.
Moreover, we say that D is effective when ni ≥ 0 for all i.
The degree of D is the integer

∑r
i=1 ni.

Definition 2.7 Divisor of a function
Let X be a projective curve over k, and h a homogeneous polynomial. For a closed point P of X, with
coordinates [a0 : ... : an] (see the remark 1.4 for the link between closed points of X and homogeneous
coordinates), we define νP (h) to be the valuation of h(T0−a1, ..., Tn−an). We extend this definition to all
f ∈ κ(X), setting νP (f) = νP (h1)− νP (h2) if f = h1/h2, with h1 and h2 two homogeneous polynomials
of same degree.
Then, for f ∈ κ(X)∗, we define

Div(f) :=
∑

νP (f)P

The sum is over all closed points of X, but it is actually a finite sum because except for finitely many
points, νP (f) = 0.
When a point P is such that νP (f) > 0, we say that P is zero of f , and when νP (f) < 0, we say that P
is a pole of f .

Definition 2.8 Let X be a projective curve over k. For all divisor D of X, we define

L(D) := {f ∈ κ(X)∗ | Div(f) +D is effective} t {0}

Lemma 2.2 Let X be a projective curve over k, and D a divisor of X. Then L(D) is a k-vector space.

Proof
We have an inclusion L(D) ⊂ κ(X), and κ(X) is a k-vector space itself.
By definition 0 ∈ L(D). Let us write D =

∑
Z nZZ, with for almost all Z, nZ = 0. If f, g ∈ L(D), then

Div(f) +D and Div(g) +D are effective, so for all Z, nZ + νZ(f) ≥ 0 and nZ + νZ(g) ≥ 0. Thus for all
Z, min(νZ(f), νZ(g)) + nZ ≥ 0, and so νZ(f + g) + nZ ≥ 0. Therefore f + g ∈ L(D).
If a ∈ k, then for all Z, νZ(af) = νZ(f) because k is an integral domain, so af ∈ L(D).
Therefore L(D) is a k subvector-space of κ(X). �

Definition 2.9 We denote by l(D) the dimension of L(D).

Example 2.1 We have l(0) = 1.
Indeed, L(0) is the space of functions f such that Div(f) is effective. Yet, the rational functions in κ(X)
have as much zeros as poles because X is projective, so the only functions with an effective divisor are
the constant ones. Therefore L(0) ∼= k, and l(0) = 1.

Proposition 2.3 Let X be a projective curve over k, and D an effective divisor of X. Then l(−D) = 0.

Proof
Let us write D =

∑
nPP , with nP ≥ 0 for all P .

Suppose that there is a rational function f such that Div(f) − D is effective. If f is constant, then
Div(f) = 0, and Div(f) − D is not effective. Thus f is not constant, so it has a pole, say Q. Since
Div(f)−D is effective, we must have νQ(f)−nQ ≥ 0. But νQ(f) < 0 because Q is a pole, and −nQ ≤ 0
because D is effective, so νQ(f)− nQ < 0, which is absurd.
Hence L(−D) = {0} and l(−D) = 0. �

Definition 2.10 Equivalence of divisors
Let X be a projective curve over k, and D,D′ two divisors of X. We say that D and D′ are equivalent,
denoted by D ∼ D′, when it exists f ∈ κ(X)∗ such that

D −D′ = Div(f)

This is an equivalence relation, and we will denote by [D] the class of D for this relation.
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Theorem 2.2 (Riemann-Roch)
Let X be a projective smooth curve over k (always assumed to be algebraically closed), of genus g. Then
for all divisor D of X, we have

l(D) = l(KX −D) + deg(D) + 1− g

Where KX is a specific divisor, called the canonical divisor of X. This canonical divisor has degree 2g−2.

Proof admitted, see for instance [Gat18]. �

Proposition 2.4 If k is algebraically closed, then P1(k) is the only smooth projective curve of genus 0.

Proof
Let X be a smooth projective curve of genus 0. Let P and Q two distinct points on X. Then by Riemann-
Roch theorem, we have l(P −Q) = l(K − (P −Q)) + deg(P −Q) + 1− g = 1, because deg(P −Q) = 0
and deg(K − (P −Q)) = −2 so l(K − (P −Q)) = 0. Then the divisor D := P −Q is such that l(D) > 0
and deg(D) = 0. As l(D) 6= 0, it exists f ∈ k(X) such that Div(f) +D is effective. Then D is equivalent
to an effective divisor. But deg(D) = 0, so D is equivalent to an effective divisor of degree 0 : there is
only one such divisor, it is 0. Hence P ∼ Q, and it exists f ∈ k(X) such that P −Q = Div(f).
Since X is a projective curve, we can write X = Proj(k[T0, ..., Tn]/I), and f = h1/h2, with h1, h2 two
(equivalence classes of) homogeneous polynomials of same degree. Then f is an element of the ring
OX(D+(h2)). Let us consider the following morphism of k-algebras :

θ : k[T ] −→ OX(D+(h2))
T 7−→ f

This gives rise to a morphism of schemes

φ : D+(h2) −→ A1(k)

Since φ is a morphism of schemes, it is a continuous map. Hence by density of D+(h2) in X, φ induces
a morphism of schemes

φ : X −→ P1(k)

We refer to [Har77], p.138, to conclude that φ is an isomorphism. �

3 Picard groups and relatives

To any scheme we can associate a group, the Picard group, which is invariant by fibred product with the
affine line. This property will be useful to study A1-contractibility.

3.1 Class divisors

Here, we generalize the notion of divisor, introduced in the frame of projective curves over k in the last
section. This section was widely inspired by [Bri08].

Definition 3.1 Divisors of a variety
Let X be a smooth variety over k. We call prime divisor of X a closed subvariety of X of codimension 1.
More generally, a divisor of X is a formal sum D :=

∑r
i=1 niZi, for ni ∈ Z and Zi prime divisor of X.

Let us denote by Div(X) the group of divisors of X.

Remark 3.1 Any closed subset of X can be endowed with a scheme structure induced by that of X (see
appendices about locally ringed spaces). Hence any integral closed subset of X is a prime divisor of X.

Example 3.1 If X is a smooth curve over k, the prime divisors are the closed points of X, which is
what we studied in the last section.

Example 3.2 If X := An(k), then every curve V (F ), with F an irreducible polynomial in k[T1, ..., Tn],
is a prime divisor of X. We will see later that the converse is true.
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Proposition 3.1 Let X be a smooth variety over k, and Z a prime divisor of X. Let ξZ be the generic
point of Z (it exists and it is unique because Z is an integral scheme). Then the ring OX(ξZ) is a discrete
valuation ring.
Hence, it exists a valuation νZ : κ(X) −→ Z such that

OX(ξZ) = {f ∈ κ(X) | νZ(f) ≥ 0}

Proof
Since X is smooth, the stalk OX(ξZ) is regular, and since Z is a prime divisor of X, the dimension of
OX(ξZ) is one. Then (see appendices, lemma 6.6) OX(ξZ) is a discrete valuation ring. �

Definition 3.2 Let X be a smooth variety over k, and f ∈ κ(X). The divisor of f is defined by :

Div(f) = (f) :=
∑

Z prime divisor

νZ(f)Z

This makes sense because for almost all prime divisor Z, we have νZ(f) = 0, so the sum is finite.
This kind of divisor is called a principal divisor.

Proposition 3.2 The set of all principal divisors of a smooth variety X over k, denoted by Princ(X),
is a subgroup of Div(X).

Proof
• By definition, Princ(X) is a subset of Div(X).
• We have 0Div(X) = (1), with 1 the constant function equal to 1, so 0Div(X) ∈ Princ(X).
• If f, g ∈ κ(X), then (f) + (g) = (fg) and −(f) = (1/f), so Princ(X) is stable under addition and
inversion.
Hence Princ(X) is a subgroup of Div(X). �

Definition 3.3 Let X be a smooth variety over k. The class group of X is defined by the quotient

Cl(X) := Div(X)/Princ(X)

As is the previous section, for all D ∈ Div(X), we will denote by [D]X , or simply [D], the class of D in
Cl(X).

Remark 3.2 This definition makes sense because Div(X) is an abelian group, so we can take the quotient
by Princ(X).

Example 3.3 For all n ∈ N, Cl(An(k)) = {0}.
Indeed, let Z be a prime divisor of An(k).
The ring OX(ξZ) is a local ring, so it contains a unique maximal ideal, denoted by mZ . Yet OX(ξz) is
a local regular ring because X is smooth, so it is a unique factorization domain. By the principal ideal
theorem (see [Eis95] p.233), mZ is minimal over an ideal generated by one element, so mZ is minimal
over a principal ideal, in a factorial domain. By lemma 6.4 (see appendices), mZ is itself principal. So
we can write mZ = fZOX(ξZ) for a certain fZ ∈ OX(ξZ) ⊂ κ(An(k)) = k(T1, ..., Tn). We can write
fZ = g/h with g, h ∈ k[T1, ..., Tn] and h(z) 6= 0 for all z ∈ Z. Therefore h is invertible in OX(ξZ),
so fZOX(ξZ) = gOX(ξZ), thus we can suppose that fZ is a polynomial. Moreover, as fZOX(ξZ) is a
maximal ideal, the polynomial fZ must be irreducible. Hence :

Z = Div(fZ)

Therefore Z is a principal divisor of X. Now, if D =
∑r
i=1 niZi is a divisor of X, we have

D = Div

(
r∏
i=1

fniZi

)
Hence Div(X) = Princ(X), and Cl(An(k)) = {0}.

Proposition 3.3 Let Z be a prime divisor of a smooth variety X over k. Let U := X \ Z. Then the
following sequence is exact :

Z φ−→ Cl(X)
ψ−→ Cl(U) −→ {0}

where φ(1) = [Z] and ψ([D]) = [D ∩ U ].
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Proof
• Let us verify that the map ψ is well defined. If Z ′ is a prime divisor of X, then Z ′ ∩ U is a closed
subvariety of U , so it is a prime divisor of U . By linearity, if D ∈ Cl(X), then D∩U ∈ Cl(U). Moreover,
if D and D′ are in the same class in Cl(X), then it exists f ∈ κ(X) such that D−D′ = (f)X . Therefore
(D −D′) ∩ U = (f) ∩ U , then D ∩ U −D′ ∩ U = (f)U (we denoted the principal ideal associated to f in
X by (f)X and the one in U by (f)U ). Hence ψ([D]) = ψ([D′]), so ψ is well defined.

• Now, by definition of φ, we have φ(Z) = Z · [Z] = {[nZ], n ∈ Z}. But for all n ∈ Z, we have
nZ ∩ U = ∅, so Im(φ) ⊂ Ker(ψ).
Conversely, if [D] ∈ Ker(ψ), then D ∩ U = ∅, so for every prime factor Z ′ that appears in D, we have
Z ′ ∩ U = ∅, so Z ′ ⊂ Z. But Z ′ has a codimension of 1, and Z 6= X so Z ′ = Z. Finally, D ∈ Z · Z, and
Im(φ) = Ker(ψ).

• We just have to show that ψ is surjective to conclude. By linearity, it suffices to show that for
every prime divisor ZU of U , there is D ∈ Div(X) such that [D ∩U ] = [ZU ]. The topology over U is the
topology induced by the topology of X : as ZU is closed in U , there exists a closed subset Z ′ of X such
that ZU = Z ′ ∩ U . Let us show that Z ′ is a prime divisor of X.
As ZU 6= ∅, Z ′ is not contained in Z, so it has at least one irreducible component which is not contained
in Z. Therefore we can suppose without loss of generality that none of the irreducible components of Z ′

are contained in Z. If Z ′ is not irreducible, then Z ′ = (F1∩Z ′)∪ (F2∩Z ′) with F1, F2 two closed subsets
of X. Hence ZU = (F1 ∩ ZU ) ∪ (F2 ∩ ZU ), but ZU is irreducible, so (for instance) F1 ∩ ZU = ∅. Thus
F1 ∩ Z ′ ∩ U = ∅, so F1 ∩ Z ′ ⊂ Z, which is impossible, because we assumed that none of the irreducible
components of Z ′ were contained in Z. Finally, Z ′ is irreducible.
Moreover, for x ∈ Z, the stalk OZ(x) is a subring of OX(x), so it is a reduced ring. Therefore Z ′ is an
integral closed subset of X, i.e. it is a closed subvariety of X. �

Corollary 3.1 The class group of Pn(k), for all n ∈ N∗ is isomorphic to Z.

Proof
Let us recall that Pn(k) ' Pn−1(k) t An(k), and Pn−1(k) = V+((T0)). Hence Pn−1(k) is a closed subset
of Pn(k). Furthermore, Pn−1(k) is a variety over k, and has a codimension of 1 in Pn(k). Then Pn−1(k)
is a prime divisor of Pn(k). We can apply the previous proposition with X = Pn(k) and Z = Pn−1(k).
By the example 3.3, we have Cl(An(k)) = 0, so we have the exact sequence

Z φ−→ Cl(Pn(k)) −→ {0}

which means that φ is surjective.

Let us show that φ is injective. Let m ∈ Z such that φ(m) = 0. Then [mPn−1(k)] = 0, so m = 0
or Pn−1(k) is principal. If Pn−1(k) is principal, then it exists f ∈ κ(Pn(k)) such that Pn(k) = Div(f).
We can write f = g/h with g and h two homogeneous polynomials of identical degree. So Div(f) =∑
Z νZ(g)Z −

∑
Z νZ(h)Z = Pn−1(k). As Pn−1(k) is a prime divisor, we must have νPn−1(g) = 1 and

for all other prime divisor Z ′, νZ′(g) = νZ′(h) = 0. But then the degree of g is strictly greater than the
degree of h, and this is absurd. Therefore [Pn−1(k)] 6= 0, so m = 0 and finally φ is injective.

Hence the map φ defines an isomorphism between Z and Pn(k). �

Proposition 3.4 The class group is A1(k)-invariant.

Proof
Let X be a smooth variety over k. We will denote by π the projection X ×k A1(k) −→ X. The product
X ×k A1(k) is still a smooth variety over k.

Let us consider the following map :

φ : Div(X) −→ Cl(X ×k A1(k))
D =

∑
niZi −→

[∑
niπ
−1(Zi)

]
Let us show that this map is well defined : for a prime divisor Z of X, we have to show that the set
π−1(Z) is a prime divisor of X ×k A1(k).
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As the inverse image of an integral closed subscheme by a morphism of schemes, π−1(Z) is an irreducible
closed subscheme of X ×k A1(k). And it is reduced because X ×k A1(k) is reduced.
Furthermore, if it exists a closed subset irreducible F in X×kA1(k) such that π−1(Z) ⊂ F ⊂ X×kA1(k),
then Z ⊂ π(F ) ⊂ X. But Z has a codimension of 1 so π(F ) = Z or π(F ) = X.
If π(F ) = Z, then π−1(Z) = π−1(π(F )) so F ⊂ π−1(Z), then F = π−1(Z).
If π(F ) = X, then F = X ×k W with W a closed subset of A1(k), but F contains π−1(Z), and
π−1(Z) = Z ×k A1(k) (see lemma 6.1 in appendices), so F = X ×k A1(k). Hence the codimension
of π−1(Z) is 1.

Moreover, φ is a morphism of groups, and we will show that it is surjective : indeed, the prime di-
visors of X×kA1(k) are the ones like Z×kA1(k), for Z a prime divisor of X, and the ones like X×k {a},
where a is a closed point of A1(k). For the first type of prime divisors, we have Z ×k A1(k) = π−1(Z) so
[Z ×k A1(k] is in the image of φ. For the second type, we have [X ×k {a}] = 0. Indeed, the function field
κ(X ×k A1(k)) is isomorphic to κ(X)(T ), so the rational function fa = T − a can be seen as a function
in κ(X ×k A1(k)), and we have Div(fa) = X ×k {a}.

Finally, let us compute the kernel of φ : let D =
∑
niZi be a divisor of X, with φ(D) = 0. Then

it exists f ∈ κ(X ×k A1) such that
∑
niπ
−1(Zi) = Div(f) in X ×k A1. Hence, if we see f as a fraction

of T with coefficients in κ(X), we have that for all prime divisor Z in X, νπ−1(Z)(f) = νZ(f(0)), with
f(0) ∈ κ(X). Thus D = Div(f(0)), so D ∈ Princ(X).
Conversely, Princ(X) ⊂ Ker(φ).

By the quotient universal property, φ induces an isomorphism φ̃ : Cl(X) −→ Cl(X ×k A1(k)). �

Proposition 3.5 Let X be a smooth projective curve over k, with x ∈ X a k-rational point. Then
Cl(X) 6= 0.

Proof
As x is a k-rational point, {x} is a closed subset of X. Moreover, X is a curve, so dim(X) = 1, and
then the codimension of {x} is 1. Therefore {x} is a prime divisor of X. If it is principal, there exists
f ∈ κ(X) such that νx(f) = 1 and for every other prime divisor Z of X, νZ(f) = 0. So f has only one
zero on x, which is absurd since f is a homogeneous fraction. So {x} /∈ Princ(X), and Cl(X) 6= {0}. �

3.2 Picard group

The class group was only defined for varieties. Now, we will introduce a more abstract group that
generalize the class group.

Definition 3.4 Invertible sheaf
Let X be a scheme. A sheaf of OX -modules on X is a sheaf F such that for all open set U of X, F(U)
is an abelian group endowed with a structure of OX(U)-module.
We say that F is invertible when X can be covered with open sets Ui such that F|Ui is isomorphic to
OX|Ui .

Proposition 3.6 Let X be a scheme. If L and M are invertible sheaves over X, then L⊗M is still an
invertible sheaf.
Moreover, it exists an invertible sheaf over X, L′, such that L ⊗ L′ ∼= OX .

Proof
As L is invertible, we can cover X by open sets Ui such that L|Ui ∼= OX|Ui for all i. We can do the same
for M : it exists open sets Vj such that M|Vi ∼= OX|Vi . Then, for all i, j, we have (L ⊗M)|Ui∩Vj

∼=
OX|Ui∩Vj ⊗OX|Ui∩Vj = OX|Ui∩Vj . Then L ⊗M is an invertible sheaf.

Then, let L′ = HomOX (L, OX), be the dual sheaf of L, i.e. a sheaf of OX -modules such that for all
open set U , L′(U) is the set of morphisms of OX(U)-modules between L(U) and OX(U). This set is
endowed naturally with a structure of OX(U)-module.
Let us prove that L ⊗ L′ ∼= OX . Let U be an open subset of X. Let us consider

Ψ : L(U)⊗HomOX(U)(L(U), OX(U)) −→ OX(U)
f ⊗ φ 7−→ φ(f)
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This is a morphism of OX(U)-modules. Furthermore, we can decompose U =
⋃
i∈I U ∩ Ui, and we have

an isomorphism of sheaves (OX)|U∩Ui
αi∼= L|U∩Ui for all i ∈ I.

Let us take f ∈ L(U) and φ ∈ HomOX(U)(L(U), OX(U)) such that φ(f) = 0. Then for all i ∈ I, we
have φ(f)|U∩Ui = 0, so φ|U∩Ui(f|U∩Ui) = 0. To simplify what follows, we take i ∈ I, and we denote by
φi := φ|U∩Ui and fi := f|U∩Ui . We have an isomorphism between L(U ∩Ui)⊗Hom(L(U ∩Ui, OX(U ∩Ui))
and OX(U ∩ Ui), given by

g ⊗ ψ 7−→ αi(g)ψ(α−1
i (1)) = ψ(g) (∗)

As φi(fi) = 0, we have fi ⊗ φi = 0. Therefore fi ⊗ φi = 0, for all i ∈ I. As (Ui ∩ U) is a cover of U , it
follows that f ⊗ φ = 0, so Ψ is injective.

Then if g ∈ OX(U), we can find fi ⊗ φi ∈ L(U ∩ Ui) ⊗ Hom(L(U ∩ Ui), OX(U ∩ Ui)) for all i ∈ I
such that g|U∩Ui = φi(fi) because of the isomorphism (*). This gives rise to an element f ⊗ φ ∈
L(U)⊗Hom(L(U), OX(U)) such that φ(f) = g. Therefore Ψ is surjective. �

Definition 3.5 Let X be a scheme. The Picard group of X is the group of invertible sheaves on X, up
to isomorphisms.

For ”sufficiently nice” schemes, the Picard group is just the class group.

Theorem 3.1 If X is a smooth variety over k, then Pic(X) ∼= Cl(X).

Proof see [Har77], corollary II.6.16 page 145. �

4 A1-contractibility

In this section we get closer to the goal, by defining an equivalence relation over a category of schemes,
in order to give meaning to the adjective ”A1-contractible”.

In what follows, we will denote A1(k) by A1.

4.1 Naive A1-homotopy equivalence

The naive definition of A1-homotopy equivalence is similar to the homotopy theory in algebraic topology,
except that we replace the unit interval [0, 1] by the affine line A1.

Definition 4.1 A1-homotopy equivalence
Let f, g : X −→ Y be two morphisms of schemes over k. We say that f and g are A1-homotopy equivalent
when there exists a morphism of schemes

H : X ×k A1 −→ Y

such that {
H|X×k{0} = f

H|X×k{1} = g

More formally, the point 0 is rational in A1, associated to the section σ0 : Spec(k) −→ A1 such that
Im(σ0) = {0}. By the universal property of fibred product (see appendices), from the morphisms idX :
X −→ X and σ0 ◦ φX : X −→ A1, we can construct a unique morphism Φ0 : X −→ X ×k A1.
In the same way, we can construct a morphism Φ1 : X −→ X ×k A1 from the morphisms idX and
σ1 : Spec(k) −→ A1, Im(σ1) = {1}.
What is required in the A1-homotopy equivalence is that H ◦ Φ0 = f and H ◦ Φ1 = g.

Example 4.1 The morphism identity idA1 and the constant equal to 0 are A1-homotopy equivalent.
First, let us recall that A1 ×k A1 = A2. So let us consider the map H : A2 −→ A1 such that for
all closed points (x, t) of A2, H(x, t) = xt ∈ A1. Additionally, let us notice that for f ∈ k[T ], we

have H−1(D(f)) = D(f̂), where f̂ is the image of f by the morphism φ : k[T ] −→ k[T1, T2] such that
φ(T ) = T1T2. Then, φ induces a morphism of rings OA1(D(f)) −→ OA2(H−1(D(f))), and it is local on
stalks. Therefore H is a morphism of schemes.
Finally, we have H|A1×k{0} = 0 and H|A1×k{1} = idA1 .
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Proposition 4.1 The relation of A1-homotopy equivalence is reflexive and symmetric.

Proof
• If f : X −→ Y is a morphism of schemes, then we can put H = f ◦ πX : X ×k A1 −→ Y . Indeed, H is
then a morphism of k-schemes, and H ◦Φ0 = f ◦πX ◦Φ0, but by definition of Φ0 we have πX ◦Φ0 = idX ,
so H ◦ Φ0 = f . It is the same for H ◦ Φ1. Therefore f is A1-homotopy equivalent to itself.

• Then, let f, g be A1-homotopy equivalent by a homotopy H : X ×k A1 :−→ Y such that H|X×k{0} = f
and H|X×k{1} = g.
Let e : A1 −→ A1 be a morphism of schemes such that e(1) = 0 and e(0) = 1, i.e. e ◦ σ0 = σ1 and
e◦σ1 = σ0 (for example, we can take e(t) = 1−t for the closed points of A1). Let E : X×kA1 −→ X×kA1

be the morphism of schemes built from e and idX , i.e. such that πX ◦ E = πX and πA1 ◦ E = e ◦ πA1 .
Then we have πX ◦ (E ◦ Φ0) = idX and πA1 ◦ (E ◦ Φ0) = σ1 ◦ φX , so E ◦ Φ0 satisfies the same property
than Φ1. By uniqueness, E ◦ Φ0 = Φ1. By the same way, E ◦ Φ1 = Φ0.
Now, it suffices to take H̃ := H ◦ E to have a homotopy between f and g such that H̃ ◦ Φ0 = g and
H̃ ◦ Φ1 = f . �

Remark 4.1 Unfortunately, this is not an equivalence relation, as it is not transitive. For instance,
let us consider the affine scheme Y = Spec(C[T1, T2]/((T 3

1 + T 3
2 − 2T1T2)(T1 + T2 − 2))). As C is al-

gebraically closed, we will make the identification between the closed points of Y and the points in C2

where (T 3
1 + T 3

2 − 2T1T2)(T1 + T2 − 2) vanish (see figure below).

Let us take f, g, h : A1 −→ Y , three morphisms of schemes such that f(x) = (2, 0), g(x) = (1, 1) and
h(x) = (0, 0) for all x ∈ Spec(A). Then f and g (resp. g and h) are A1-homotopy equivalent, thanks to
the following homotopy :

H1 : A2 −→ Y
(x, t) 7−→ (t, 2− t) resp.

H2 : A2 −→ Y

(x, t) 7−→
(

2(1− t)
1 + t3

,
2(1− t)2

1 + t3

)
These two maps are morphisms of schemes, and we have H1(x, 0) = (0, 2), H1(x, 1) = H2(x, 0) = (1, 1)
and H2(x, 1) = (0, 0).
However, we can’t build a homotopy between f and h. Indeed, suppose that we have a morphism
of schemes H : A2 −→ Y such that H(x, 0) = (0, 2) and H(x, 1) = (0, 0). From H we can ex-
tract a morphism of schemes H̃ : A1 −→ Y ; H̃(t) = H(0, t). This induces a morphism of rings
φ : k[T1, T2]/((T 3

1 + T 3
2 − 2T1T2)(T1 + T2 − 2)) −→ k[T ]. Let us denote by π the canonical projec-

tion k[T1, T2] −→ k[T1, T2]/((T 3
1 + T 3

2 − 2T1T2)(T1 + T2 − 2)).

Then, by morphism properties, φ(π(T 3
1 + T 3

2 − 2T1T2))φ(π(T2 + T1 − 2)) = 0. But k[T ] is an inte-
gral domain, so we must have φ(π(T2 + T1 − 2)) = 0 (for instance, cause the proof is symmetric for
φ(π(T 3

2 + T 3
1 − 2T1T2)) = 0).

Let us show that Im(H̃) is contained in Spec(k[T1, T2]/(T1+T2−2)) (corresponding to the line T1+T2 = 2,
see figure). Let p ∈ Im(H̃). We have Im(H̃) ⊂ V (Ker(φ)) (indeed, see the proof of proposition 1.7),
so p contains Ker(φ). But we saw that π(T1 + T2 − 2) ∈ Ker(φ), so π(T1 + T2 − 2) is in p, and then
(T1 + T2 − 2) ⊂ p, which means that p is (or can be seen as) an ideal of Spec(k[T1, T2]/(T1 + T2 − 2)).
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However, by construction we have H̃(1) = (0, 0), that is not on the line T1 + T2 = 2. Therefore f and h
are not A1-homotopy equivalent. (There is other examples in [Aso16]).

Definition 4.2 Naive equivalence of morphisms
We define a naive A1-homotopy equivalence relation by taking the relation generated by A1-homotopy
equivalence defined above.
More precisely, we will say that two morphisms of schemes f, g : X −→ Y are naively A1-homotopy
equivalent when it exists finitely many morphisms h1, ..., hn : X −→ Y such that h0 = f , hn = g and hi
is A1-homotopy equivalent to hi+1 for all i.
For two schemes X and Y , we denote by [X,Y ]N (k) the set of naive equivalence classes of morphisms
from X to Y .

Definition 4.3 Naive equivalence of schemes
Let X, Y be two schemes over k. We say that X and Y are naively A1-homotopy equivalent when there
exists a morphism f : X −→ Y and a morphism g : Y −→ X such that f ◦ g (resp. g ◦ f) is naively
A1-homotopy equivalent to idY (resp. idX).
We denote by N (k) the category of schemes over k where maps are naive A1-homotopy equivalence classes
of morphisms.

Example 4.2 Let Z be a proper closed subset of A1, i.e. a finite number of points in A1. Let U := A1\Z.
Then

[Spec(k), U ]N (k) = U(k)

Indeed, let s1 and s2 be two sections Spec(k) −→ U . If there was a homotopy H between s1 and s2, then
H would be a morphism of schemes from A1 to U . Let us show that H must be constant.
As Z is a closed subset of A1, there is a polynomial f ∈ k[T ], such that Z = V (f) and deg(f) ≥ 1. Then

U = Df = Spec

(
k

[
T,

1

f

])
is the localisation of k[T ] by the powers of f . Then H induces a morphism of rings φ : k

[
T,

1

f

]
−→ k[T ].

We will show that the image of φ is in k.
We must have φ(f)φ(1/f) = 1, so f is mapped on a unit of k[T ], i.e a nonzero element of c ∈ k. Let

us write f =
∑d
j=0 ajT

j , with aj ∈ k and ad 6= 0. Then c = φ(f) =
∑d
j=0 φ(aj)φ(T )j . If φ(T ) = 0,

then the image of φ is in k. Otherwise, the degree of φ(f) is 0 because it is in k, and it is also equal to
d× deg(φ(T )). As d 6= 0, we must have deg(φ(T )) = 0 which means that φ(T ) ∈ k. Then the image of φ
is in k.
Therefore for all prime ideal p in Spec(k[T ]), we have H(p) = φ−1(p) = Ker(φ). Then H is constant.
But H is supposed to make a link between s1 and s2, so s1 = s2.
Finally all the sections of U are in two by two distinct classes of naive A1-homotopy classes.

Definition 4.4 Naive A1-contractibility
We say that a scheme X over k is naively A1-contractible when it is naively A1-homotopy equivalent to
Spec(k).

Proposition 4.2 When k is infinite, the only open subscheme of A1(k) that is naively A1(k)-contractible
is A1(k).

Proof
Indeed, let U = A1(k)\Z be an open subscheme of A1(k). If U is naively A1-contractible and is not A1(k),
then Z is a proper closed subset of A1(k), so by the previous example (4.2), we have [Spec(k), U ]N (k) =
U(k). But as U is naively A1-contractible, we have [Spec(k), U ]N (k) = {∗} a point. Therefore there is
only one rational point in U(k).
Yet, as k is infinite, there is an infinity of ideals in k[T ] of the form (T − a) with a ∈ k, and all these
ideals are rational points of A1(k) (see section 1.5). As Z is only a finite set of closed points, U must
have an infinity of rational points. Then Z = ∅ and U = A1(k). �

Example 4.3 Special linear group

Let n be a positive integer. We define the ring

R := k[tij , 1 ≤ i, j ≤ n]/(det−1)
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where det is the determinant polynomial for the variables tij . Then SLn(k) := Spec(R) is an affine

scheme endowed with a group structure. It is a subscheme of the scheme An2

(k) of n× n-matrices over
k. We will compute here the set (it is actually a group) [Spec(k),SLn(k)]N (k).

First, a morphism of schemes from Spec(k) to SLn(k) is just the choice of a rational point of SLn(k). As
the rational points of SLn(k) are the usual matrices of the special linear group over k, we will work in

kn
2

instead of An2

(k).

Furthermore, every matrix in kn
2

can be written as a product of elementary matrices (see appendices),
i.e. matrices like Eij(α) := In + αeij , with i 6= j, where eij is the matrix with zeros except that the
coefficient i, j is a 1, and α ∈ k. Let us show that these elementary matrices are A1-homotopy equivalent
to the identity matrix In. For i, j ∈ [[1, n]], i 6= j, let us consider the map

H : A1 −→ SLn(k)
t 7−→ In + tαeij

Then H is a homotopy between Eij(α) and In. Hence every matrix in SLn(k) is A1-homotopy equivalent
to In, so [Spec(k),SLn(k)]N (k) = {In}.

4.2 A1-invariance

Before building the ”good” homotopy category for schemes, we present some examples of objects that are
invariant by the naive equivalence relation. As always, what is interesting with these invariant objects is
that they separate schemes that are not naively A1-homotopy equivalent.

Definition 4.5 A contravariant functor F : Smk −→ Set is said A1-invariant when for all X ∈ Smk, the
map F(X) −→ F(X ×k A1), given by the projection X ×k A1 −→ X, is a bijection.

Proposition 4.3 Let F be a contravariant functor A1-invariant. Let X, Y be two schemes over k, and
let us suppose that they are naively A1-homotopy equivalent. Then F(X) ∼= F(Y ).

Proof
Since X and Y are naively A1-homotopy equivalent, it exists two morphisms f : X −→ Y and g : Y −→ X
such that f ◦ g is naively homotopy equivalent to idY and g ◦ f to idX . Then it exists a homotopy
HX : X ×k A1 −→ X such that HX ◦ Φ0 = g ◦ f and HX ◦ Φ1 = idX . Therefore we have a morphism
F(g ◦ f) : F(X) −→ F(X) that is equal to F(Φ0) ◦ F(HX).
Now, by hypothesis, F(πX) : F(X ×k A1) −→ F(X) is a bijection. Moreover, we know that πX ◦ Φ0 =
πX ◦ Φ1 = idX . Hence F(Φ0) and F(Φ1) both are left inverse of F(πX). By unicity of the inverse
function, we have F(Φ0) = F(Φ1).
Then we can write F(g ◦ f) = F(Φ1) ◦ F(HX) = idF(X). Since f and g have symmetric roles, we also
have F(f ◦ g) = idF(Y ), so F(f) defines a bijection between F(X) and F(Y ). �

Example 4.4 The class group is A1-invariant. Hence the affine space An(k) and the projective space
Pn(k) are not naively A1-equivalent.

Example 4.5 We can associate to a scheme X the group of units of its global sections OX(X)∗. This
defines a contravariant functor Smk −→ Grp. Let us show that it is A1-invariant on affine schemes.

Let X = Spec(R) an affine scheme over k. We have X ×k A1 = Spec(R ⊗k k[T ]) = Spec(R[T ]), so
OX×kA1(X ×k A1) = R[T ]. But the group of units of R[T ] is R∗, so

OX×kA1(X ×k A1)∗ = OX(X)∗

Theorem 4.1 Representable functors in the category N (k) are A1-invariant on affine schemes.

Proof Let Y be an affine scheme over k, and F be the functor represented by Y on the affine schemes,
i.e. for all affine scheme X = Spec(R) over k, F(X) = [X,Y ]N (k).
Let us denote by π the projection X ×k A1 −→ X. As the morphism of rings φ : R ⊗k k[T ] −→ R that
sends r ⊗ P on r is surjective, the associated morphism of schemes i : X −→ X ×k A1 is injective, and
we have π ◦ i = idX . Then, if [f ], [g] ∈ [X,Y ]N (k) are such that [f ◦ π] = [g ◦ π] in [X ×k A1, Y ]N (k), we
can compose by i to get that [f ] = [g]. Therefore F(X) −→ F(X ×k A1) is injective.
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Now, let [f̃ ] ∈ [X ×k A1, Y ]N (k), and let us consider f : X −→ Y such that f(x) = f̃(x, 0). We want to

show that f ◦ π is naively A1-homotopy equivalent to f̃ . We can take

H : X ×k A1 ×k A1 −→ Y

(x, u, t) 7−→ f̃(x, ut)

H is a morphism of schemes, and H(x, u, 0) = f̃(x, 0) = f(π(x, u)), H(x, u, 1) = f̃(x, u), so f ◦ π and f̃
are naively A1-homotopy equivalent, and F(X) −→ F(X ×k A1) is surjective. �

Proposition 4.4 The multiplicative group defines a functor Affk −→ Grp (from affine schemes over k
to groups), by setting Gm(X) = Hom(X,Gm). This functor is the one of example 4.5 above.

Remark 4.2 Therefore this functor of example 4.5 is representable, and by the previous theorem, we
thus have immediately that it is A1-invariant on affine schemes.

Proof
Let X = Spec(R) be an affine scheme. Let us show that OX(X)∗ ∼= Hom(X,Gm).

Let f : X −→ Gm be a morphism of schemes. Since X is affine, the morphism f̂ : OGm(Gm) −→ OX(X)

is actually a morphism f̂ : k[T, T−1] −→ R. But then f̂(T ) is invertible in R, so the following map is
well defined :

Ψ : Hom(X,Gm) −→ R∗

f −→ f̂(T )

Furthermore, we have f̂g = f̂ ĝ, so Ψ is a morphism of groups.
Finally, if we have u ∈ R∗, we can associate to u the morphism of rings φu : k[T, T−1] −→ R such that
φu(T ) = u, and this induces a morphism of schemes fu : X −→ Gm, satisfying Ψ(fu) = u. Hence Ψ is
an isomorphism of groups. �

4.3 A1-weak equivalence

Now, we will refine the notion of A1-equivalence, by building a homotopy category that has ”best prop-
erties” than the naive one. To have more details, see [Mor02], [Dug98], [Dug00], [AE16] or [Sev06].

Definition 4.6 Simplicial sets
The category of simplical sets, denoted by sSET , is the category where objects are contravariant functors
∆op −→ SET and maps are natural transformations between these functors.

Definition 4.7 Simplicial presheaves over a category.
Let C be a small category. A simplicial presheaf over C is a contravariant functor Cop −→ sSET . The
category of simplicial presheaves over C is then the category where objects are simplicial presheaves over
C and maps are natural transformations.

We will denote by Spck (resp. Spc′k) the category of simplicial presheaves over Smk (resp. Schk).

Example 4.6 Let X be a scheme over k. Then we can build a simplicial presheaf associated to X :

r(X) : Smk −→ sSET

Z 7−→
(

∆ −→ SET
[n] 7−→ [Z,X]

)
For all morphism of scheme f : X −→ Y , there is a natural transformation between the simplicial
presheaves associated r(f) : r(X) −→ r(Y ) defined by : for all scheme Z, for all n ∈ N and for all
φ : Z −→ X,

r(f)Z,[n](φ) = f ◦ φ

Definition 4.8 Nisnevich distinguished squares
Let X be a scheme over k and U, V two open subsets of X. Let j : U −→ X an open immersion of
schemes, and φ : V −→ X an étale morphism, such that φ−1(X \U) −→ X \U is an isomorphism. Then
a Nisnevich diagram is the following pullback diagram :
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W V

U X
j

φ

We will denote by U
j−→ X

φ←− V such a diagram.

Definition 4.9 Nisnevich topology
The Nisnevich topology is the Grothendieck topology (see appendices) on Smk such that a family of
morphisms {pi : Ui −→ X}i∈I is a Nisnevich cover when for all i ∈ I, pi is étale, and for all x ∈ X, it
exists i ∈ I and y ∈ Ui such that f(y) = x and the morphism k(x) −→ k(y) is an isomorphism.

Remark 4.3 We can check that the three axioms of Grothendieck topology are satisfied with this defi-
nition.

Proposition 4.5 A Nisnevich distinguished square U
j−→ X

φ←− V defines a Nisnevich covering of X.

Proof

Let U
j−→ X

φ←− V be a Nisnevich square. By definition, φ is étale and j is an open immersion, so j is
étale too (see proposition 1.11 ).
Moreover, let x ∈ X. If x is in j(U), then it exists y ∈ U such that j(y) = x, and the induced morphism
k(x) −→ k(y) is an isomorphism, because ĵ : OX(x) −→ OU (y) is an isomorphism. If x is not in U , then
x ∈ X \U . Since φ is an isomorphism between φ−1(X \U) and X \U , it exists (a unique) y ∈ φ−1(X \U)
such that φ(y) = x, and k(x) ∼= k(y) via φ.
Therefore the family {φ, j} is a Nisnevich cover. �

Let X be a scheme over k. Let {Ui −→ X}i∈I be a Nisnevich covering of X. Then the family
{Ui×XUj −→ X}i∈I is a Nisnevich covering of X for all j ∈ I. This gives a family {Ui×XUj −→ X}i,j∈I
that is a nisnevich covering, and we can keep on going this, to have coverings like {Ui1 ×X · · ·×X Uin −→
X}, etc... Finally, we have a simplicial presheaf on Smk, denoted by Č({Ui}) :

Č({Ui}) : ∆ −→ Spck
[n] 7−→

∐
i0,...,in

r (Ui0 ×X ...×X Uin)

where r(Ui0 ×X · · · ×X Uin) is the simplicial presheaf associated to Ui0 ×X · · · ×X Uin as in example 4.6.
Hence we get a natural transformation Č({Ui}) −→ r(X), given by the maps Ui1 ×X · · · ×X Uin −→ X.

Definition 4.10 Homotopy category
The homotopy category, denoted by HA1(k), will be the category where objects are simplicial presheaves
and maps are morphisms of simplicial presheaves, but where we impose that the maps Č(U) −→ r(X)
are isomorphisms, and projections r(X ×k A1) −→ r(X) are isomorphisms too. This process is called
localization, in analogy with the ring localization where we arbitrarily invert some elements. To have
more details, see the appendix A of [DDC03].

Remark 4.4 As we impose some morphisms to be isomorphisms, other morphisms has to match in the
homotopy category. For example, in the homotopy category, the projection πX : X ×k A1(k) −→ X is an
isomorphism. Yet, we can build several converse morphisms Φt : X −→ X ×k A1(k), from the sections
over the rational point t ∈ A1(k). These morphisms satisfy πX ◦Φt = idX (see definition 4.1). By unicity
of the inverse function of a bijection, all the Φt must be the same in homotopy category.

Therefore there is a surjection from the set of morphisms between two schemes X and Y in the set
[X,Y ]HA1 (k) of morphisms between r(X) and r(Y ) in the homotopy category.

Definition 4.11 A A1-weak equivalence between two schemes will be an isomorphism in HA1(k).
We will say that a scheme over k is A1-contractible if the morphism X −→ Spec(k) is a A1-weak
equivalence.

Remark 4.5 When two schemes X, Y are naively A1-homotopy equivalent, it means that there is an
isomorphism of simplicial presheaves between the two simplicial presheaves associated to X and Y .
Therefore, if two schemes are naively A1-homotopy equivalent, then they are A1-weakly equivalent.
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Remark 4.6 By construction of HA1(k), for all scheme X, the projection X ×k A1 −→ X is a A1-weak
equivalence. In particular, A1 −→ Spec(k) is a A1-weak equivalence, so A1 is A1-contractible. Likewise,
the affine space An = A1 ×k ...A1 ×k A1 is A1-contractible, by induction.

Example 4.7 The cupsidal curve
Let X be the curve Spec(k[T1, T2]/(T 3

1 − T 2
2 )).

Then X is A1-contractible. Indeed, we have an A1-homotopy equivalence between A1 and X, given by
x 7→ (x2, x3). As A1 is A1-contractible, the curve X is also.
Here, we found a A1-contractible curve that is not A1. The hypothesis of smoothness is then necessary
to caracterize A1 as the only smooth curve A1-contractible.

Example 4.8 The motivic sphere (in dimension 1)
Let us suppose that k is algebraically closed.

We will show that ΣGm is A1-weakly equivalent to P1. (see appendices for the definition of the sus-
pension ΣGm).

We can cover P1 with the two charts U1 := {[1 : y], y ∈ k} and U2 := {[x : 1], x ∈ k}, and these
charts are isomorphic to A1. Furthermore, we saw that Gm is isomorphic to A1 \ {0}, so we can consider
the following commutative diagram :

Gm A1

A1 P1

x 7→ 1/x

x 7→ x

x 7→ [x : 1]

y 7→ [1 : y]

Let us show that this is a Nisnevich diagram. First, it is a pullback diagram. Indeed, if we take a scheme
W together with morphisms f, g : W −→ A1 such that

W A1

A1 P1

f

g

x 7→ [x : 1]

y 7→ [1 : y]

commutes, then we have, for all w ∈W , [g(w) : 1] = [1 : f(w)], so f(w) 6= 0, g(w) 6= 0 and g(w) = 1/f(w).
Then the map g arrive actually in A1 \ {0} = Gm, and the following diagram is commutative :
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Gm A1

A1 P1

W

x 7→ 1/x

x 7→ x [1 : y]

[x : 1]

f

g

h

Furthermore, the morphism x 7−→ [x : 1] is an open immersion as A1 ' U2 ⊂ P1, and the morphism
y 7−→ [1 : y] is also an open immersion, so it is an étale morphism. Finally, P1 \ U2 = {[1 : 0]} and if we
denote by i the map y 7→ [1 : y], we have i−1(P1 \ U2) = {0}, so it induces an isomorphism between {0}
and {[1 : 0]}.
As A1 is A1-contractible, this gives rise to a commutative diagram :

Gm Spec(k)

Spec(k) P1

Then P1 is A1-homotopy equivalent to ΣGm. Actually, the space ΣGm is the fisrt bigraded motivic
sphere, S1,1. See [Aso16], page 13 for more details.

4.4 A1-rigidity

Definition 4.12 Let X be a scheme over k. We say that X is A1-rigid when for all scheme U over k,
the following map, induced vu the projection U ×k A1 −→ U ,

HomSpec(k)(U,X) −→ HomSpec(k)(U ×k A1, X)

is a bijection.
The category of smooth, separated, A1-rigid schemes over k of finite type will be denoted by Smrig

k .

Proposition 4.6 The functor Smrig
k −→ HA1(k) is fully faithful.

Proof see [MV99], example 2.4 page 106. �

Proposition 4.7 If X is a smooth projective curve over k, of positive genus, then X is A1-rigid.

Proof
Let U be a scheme over k. Let ψ ∈ HomSpec(k)(U ×k A1, X). Let σ0 : Spec(k) −→ A1(k) be the section
associated to the rational point 0 in A1(k). We set φ : U −→ X such that φ(u) = ψ(u, 0) for all u ∈ U .
Let us show that for all u ∈ U , for all t ∈ A1(k), we have ψ(u, t) = ψ(u, 0).
Let u ∈ U . The map f : A1(k) −→ X defined by f(t) = ψ(u, t) for all t ∈ A1(k) is a morphism of curves.
Then by proposition II.6.8 of [Har77] (p.137), f is constant or surjective. But if f is surjective, then
we can find a surjective morphism of curves P1(k) −→ X, that is finite by the lemma 7.3.10 of [Liu02].
Hence by theorem 7.4.16 of [Liu02], we must have 0 ≥ g, which is wrong. Thus f is constant, and we
have what we wanted.
Hence φ ◦ πU = ψ, so the map HomSpec(k)(U,X) −→ HomSpec(k)(U ×k A1, X) is surjective. It is also
always injective, as πU is surjective, so X is A1-rigid. �

5 A1-contractible smooth curves

Finally, we are able to prove that the only A1-contractible smooth curve is the affine line.
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5.1 When k is algebraically closed

For the moment, we assume that k is algebraically closed.

Theorem 5.1 Let X be a smooth curve over k. If X is A1-contractible, then X is isomorphic to A1(k).

Proof
First, we can suppose that X has k-rational points. Indeed, the map X(k) −→ [Spec(k), X]HA1 (k) is
surjective (see remark 4.2), so if X(k) was empty we would have [Spec(k), X]HA1 (k) = ∅. But X is weakly
equivalent to Spec(k), so [Spec(k), X]HA1

= [Spec(k),Spec(k)]HA1
6= ∅. Therefore we will assume that

X(k) is not empty.

By proposition 2.1, X is either affine or projective.

Case 1 : X is projective.
As X(k) 6= ∅, we can apply proposition 3.3. For some rational point z ∈ X, there is an exact sequence

Z φ−→ Cl(X) −→ Cl(X \ {z}) −→ {0}

Let us show that the map φ is injective. Let m ∈ Z such that φ(m) = 0. Then m = 0 or {z} = Div(f)
for some f ∈ κ(X). So f has only one zero and no pole. It is impossible in a projective space, so m must
be zero, and φ is injective.
Therefore Cl(X) 6= {0}. But X is A1-contractible so its class group must be zero : this gives an absurdity.
Finally, X can’t be projective.

Case 2 : X is affine. Let us write X := Spec(k[T1, ..., Tn]/I), with I an ideal of k[T1, ..., Tn]. By
proposition 1.20, we can consider its projectivization X, which is a smooth projective curve over k such
that X = X t {x1, ..., xm}, with xi some closed points, the ”points at infinity”. Let us show that X has
genus 0.
As X is A1-contractible, in HA1(k), we have X ∼= {x1, ..., xm} ∪ {xm+1}. Yet, the discrete scheme
{x1, ..., xm+1} is A1-rigid, so by proposition 4.6, it is the only A1-rigid scheme that is sent on X in the
homotopy category HA1(k). Now, if the genus of X is positive, then X is A1-rigid by proposition 4.7, so
by faithfulness, we must have X = {x1, ..., xm+1}, which means that X is discrete. This is absurd, and
thus X has a zero genus.
Therefore X ∼= P1(k), because k is algebraically closed (proposition 2.4). We have then X ∼= P1(k) \
{y1, ..., ym} with yi some closed points of P1(k), and m ≥ 1. But we saw that A1(k) is isomorphic to the
complement of one point in P1(k), so X ∼= A1(k) \ {y2, ..., ym}. Yet if m ≥ 2, then A1(k) \ {y2, ..., ym} is
not A1-contractible, by proposition 4.2. Therefore m = 1 and X ∼= A1(k). �

Remark 5.1 Here, if X was not a curve but just a smooth scheme of finite type over k of dimension 1,
the proof would have been the same.

5.2 When k is any field

Even when we don’t suppose that k is algebraically closed, the theorem still holds : the only A1-
contractible smooth curve over k is A1(k). To prove this, we will use base change.
In all what follows, we take a field k and we denote by k̄ an algebraic closure of k. For any curve X over
k, we will denote by Xk̄ the base change of X over k̄.

Proposition 5.1 Let X be an A1-contractible, smooth curve over k. Then X ∼= A1(k).

Proof
We would like to apply the previous case to the scheme Xk̄. But we saw that the base change of a
variety is not always a variety, so Xk̄ is not necessarily a curve. However, by proposition 1.15, Xk̄ is a
smooth finite type scheme over k̄, of dimension 1. Moreover, by the remark before proposition 2.8, page
108 of [MV99], the morphism Spec(k̄) −→ Spec(k) induces a functor HA1(k) −→ HA1(k̄). Hence if X is

A1(k)-contractible, then the base change Xk̄ is A1(k̄)-contractible. We can thus apply the remark that
follows the previous theorem to get Xk̄

∼= A1(k̄).

Hence X k̄
∼= P1(k̄). This implies that X is geometrically integral (the base change X k̄ is integral),
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and that X has genus 0 (by lemma 53.8.2 of [SP]). Moreover, as in the previous proof, we can assume
that X has rational points (indeed, we didn’t use the fact that k was algebraically closed in this part of
the proof). Therefore X is a geometrically integral smooth projective curve of genus 0 that has rational
points. By proposition 7.4.1 of [Liu02], we get X ∼= P1(k).

Then X is an open subscheme of P1(k), so X = P1(k) \Z with a closed subset Z in P1(k). Furthermore,
the base change over k̄ of P1(k) \ Z is P1(k̄) \ Z, so P1(k̄) \ Z ∼= A1(k̄). Yet A1(k̄) is isomorphic to the
complement of a closed point in P1(k̄), so Z is actually a closed point in P1(k). Finally X ∼= A1(k). �
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6 Appendices

6.1 Presheaves and sheaves

Definition 6.1 Presheaf of rings
Let X be a topological space. To all open set U of X, we associate a ring F(U), such that for every
inclusion of open sets V ⊂ U , there is a morphism of rings

ResFU,V : F(U) −→ F(V )

Moreover, let us suppose that, for all open sets U, V,W ,

(i) ResFU,U = idU ;

(ii) If W ⊂ V ⊂ U then ResFU,W = ResFV,W ◦ResFU,V .

Then F is a presheaf of rings over X, and the rings F(U) are called the rings of sections over U .

Remark 6.1 Let U, V be two open sets of X, such that V ⊂ U , and let s ∈ F(U). Sometimes, we will
write s|V instead of ResFU,V (s).

Definition 6.2 Stalks
Let X be a topological space, and F be a presheaf over X. Let x ∈ X. The stalk on x of the presheaf F
is the inductive limit

Fx := lim
→
F(U)

the limit being taken over the open sets U that contains x, with the relation of inclusion V ⊂ U and the
restriction morphisms ResFU,V .

Definition 6.3 Sheaf of rings
Let X be a topological space, and F be a presheaf of rings over X.
We say that F is a sheaf of rings when for all open set U , for all open covering U =

⋃
i∈I Ui, for all family

of sections {si}i∈I , such that si ∈ F(Ui), if we have

ResFUi,Ui∩Uj (si) = ResFUj ,Ui∩Uj (sj) for all i, j ∈ I

then it exists a unique section s ∈ F(U) such that for all i ∈ I, ResFU,Ui(s) = si.

Remark 6.2 This additional condition means that it suffices to know the sections locally to know them
globally.

Definition 6.4 Morphism of sheaves
Let X be a topological space, and F , G two presheaves of rings over X. A morphism between F and G
is a family {Φ(U)}U⊂X, open set of maps such that for all open set U ⊂ X, Φ(U) : F(U) −→ G(U) is a
morphism of rings, and for all inclusion V ⊂ U , the following diagram commutes :

F(U) G(U)

F(V ) G(V )

Φ(U)

ResFU,V ResGU,V

Φ(V )

Furthermore, we say that F and G are isomorphic when for all open set U , the map Φ(U) is an isomorphism
of rings.

Definition 6.5 Locally ringed space
Let X be a topological space, and F be a sheaf of rings over X.
We say that (X,F) is a locally ringed space when for every point x ∈ X, the stalk Fx is a local ring. We
will denote by mx the maximal ideal of Fx.
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Definition 6.6 Subspaces
Let (X,F) be a locally ringed space.
• Let U be an open subset of X. Then U can be endowed with a locally ringed space structure : for any
open set V of X, we put

FU (U ∩ V ) = F(U ∩ V )

• Likewise, let Z be a closed subset of X. Then Z can also be endowed with a structure of locally ringed
space : for any open set V of X, we put

FZ(Z ∩ V ) =
{
s ∈ F(V ) | ∀x ∈ Zc, s|x = 0

}
6.2 Fibred product

Definition 6.7 Let X and Y be two schemes over k, with the maps X
φX−→ Spec(k) and Y

φY−→ Spec(k).
The fibred product of X and Y over k is a scheme over k, denoted by X ×k Y and two maps called
projections πX , πY such that the following diagram is commutative, and which satisfy the universal
property below :

X ×k Y X

Y Spec(k)

πX

πY φX

φY

Proposition 6.1 Universal property of fibred product (for schemes)
For all scheme W with morphisms ψX : W −→ X and ψY : W −→ Y such that φX ◦ ψX = φY ◦ ψY ,
there exists a unique morphism W −→ X ×k Y , such that the diagram commutes :

X ×k Y X

Y Spec(k)

W

πX

πY φX

φY

ψX

ψY

∃!

In the category of schemes, the fibred product always exists :

Proposition 6.2 Let X and Y be schemes over k. Then the fibred product X×k Y exists and is unique
up to isomorphism.
Moreover, if X and Y are affine, say X = Spec(A) and Y = Spec(B), then

X ×k Y = Spec(A⊗k B)

Finally, if X and Y are projective, say X = Proj(R) and Y = Proj(S), then

X ×k Y = Proj(R⊗ S)

Proof See [Liu02], page 79. �

Lemma 6.1
Let X and Y be schemes over k. Let Z be a closed subset of X. Then π−1

X (Z) = Z ×k Y .

Proof Let us denote by i the inclusion π−1
X (Z) −→ X ×k Y and by iZ the inclusion Z −→ X.

First, we have maps πX ◦ i : π−1
X (Z) −→ Z and πY ◦ i : π−1

X (Z) −→ Y , and these maps make the diagram
commutative :
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π−1
X (Z) Z

Y Spec(k)

πX ◦ i

πY ◦ i φX ◦ iZ = φZ

φY

Moreover, let W be a scheme over k, and ψZ : W −→ Z, ψY : W −→ Y two morphisms such that
φY ◦ ψY = φZ ◦ ψZ . Then φY ◦ ψY = φX ◦ (iZ ◦ ψZ), so by universal property of the fibred product
X ×k Y , it exists a unique morphism f : W −→ X ×k Y such that πX ◦ f = πY ◦ f = ψY = iZ ◦ ψZ (see
the following diagram) :

W Z

X ×k Y X

Y Spec(k)

ψZ

ψY

iZ

φZ
φX

πX

πY

φY

f

But as iZ ◦ψZ = πX ◦ f , the image of f is in π−1
X (Z), so f induces a morphism W −→ π−1(Z) such that

the following diagram commutes :

π−1
X (Z) Z

Y Spec(k)

W

πX ◦ i

πY φX ◦ iZ

φY

ψZ

ψY

f

By universal property of fibred product, we have then π−1
X (Z) = Z ×k Y and πX ◦ i = πZ . �

6.3 Smash product and suspension

Here we will denote by ∗ the scheme Spec(k).

Definition 6.8 Let X be a scheme over k. A pointed space is the given of the simplicial presheaf
associated to X, denoted by r(X) (see example 4.6), and of a morphism σ : ∗ −→ r(X).

Definition 6.9 Wedge sum and smash product
Let X,σX and Y, σY be two pointed spaces.
• The wedge sum X ∨ Y is the pushout of the diagram X ←− ∗ −→ Y .
• The smash product X ∧ Y is then the limit of the diagram

X ∨ Y Y ×k X

∗ Y ∧X

• The suspension of X is the colimit of the following diagram :
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X ∗

∗ ΣX

Proposition 6.3 It exists a pointed space S1, called the motivic sphere of dimension 1, such that for
any pointed space X, we have X ∧ S1 ∼= ΣX.

6.4 Grothendieck topologies

Let C a category. Here we define a notion of topology over C, inspired by the case where C is the category
of open sets of a topological space.

Definition 6.10 Sieves
For an object U of C, a sieve on U is a family of morphisms {Ui −→ U}i∈I .

Example 6.1 If X is a topological space and C the category of open sets of X, then we can define a
sieve on an open set U to be a family of inclusion {Ui ↪→ U} such that U =

⋃
i∈I Ui.

Definition 6.11 Site
Let C be a category. A Grothendieck topology on C is a family of sieves J(U) for every object U ∈ C,
such that :

(i) If V −→ U is an isomorphism, then {V −→ U} ∈ J(U) ;

(ii) If {Ui −→ U}i∈I ∈ J(U) and for all i ∈ I, {Vij −→ Ui}j∈Ji ∈ J(Ui), then {Vij −→ U}i,j ∈ J(U) ;

(iii) If {Ui −→ U}i∈I ∈ J(U) and V −→ U is a map, then Ui×U V exists for all i ∈ I, and {Ui×U V −→
V }i∈I ∈ J(V ).

A site is the given of a category endowed with a Grothendieck topology.

6.5 Little lemmas of algebra and arithmetic

These results are basic propositions that can be found in [W], in [Eis95] or in our course of algebraic
geometry [Stu21].

Definition 6.12 Reduced ring
Let R be a ring. We say that R is reduced when

√
{0} = {0} in R, i.e. the only nilpotent element of R

is zero.

Lemma 6.2 Let A be a ring and S a multiplicative subset of A. If A is an integral domain and S does
not contain zero, then the localization S−1A is an integral domain.

Lemma 6.3 Let A be a ring and p a prime ideal of A. Then the localization of A by S := A \ p is a
local ring, with maximal ideal p, the image of p in S−1A. Moreover, we have

S−1A/p ∼= Frac(A/p)

Lemma 6.4 Let A be a unique factorization domain, and I a principal ideal of A. If p is a prime ideal
minimal among the prime ideals containing I, then p is itself principal.

Lemma 6.5 Let A be a ring and I an ideal of A. Then⋂
p prime
I⊂p

p =
√
I

Lemma 6.6 Let A be a regular ring of dimension one. Then A is a discrete valuation ring.

Lemma 6.7 Every matrix in Mn(k) can be written as a product of elementary matrices.
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Definition 6.13 Let A be a ring. Let M be a A-module. We say that M is flat as a A-module when
for every exact sequence f A-modules

0 −→ N1 −→ N2 −→ N3 −→ 0

The image sequence by tensor product by M is still exact :

0 −→ N1 ⊗AM −→ N2 ⊗AM −→ N3 ⊗AM −→ 0

Proposition 6.4 Let A be a ring. Let B be a ring that is also a A-module, and C be a ring that is a
B-module. Let us suppose that B is flat as a A-module, and that C is flat as a B-module. Then C is
flat as a A-module.

Proof
Let 0 −→ N1 −→ N2 −→ N3 −→ 0 be an exact sequence of A-modules. Since B is flat as a A-module,
the following sequence is exact

0 −→ N1 ⊗A B −→ N2 ⊗A B −→ N3 ⊗A B −→ 0

Moreover, Ni⊗AB is a B-module, and we have (Ni⊗AB)⊗BC = Ni⊗AC. Since C is flat as a B-module,
the following sequence is exact :

0 −→ (N1 ⊗A B)⊗B C −→ (N2 ⊗A B)⊗B C −→ (N3 ⊗A B)⊗B C −→ 0

Then the sequence 0→ N1 ⊗A C → N2 ⊗A C → N3 ⊗A C → 0 is exact, so C is flat as a A-module. �
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mathématiques de l’IHES, 1999.

[Sev06] Markus Severitt. Motivic homotopy types of projective curves. Diploma Thesis, 2006.

[SP] stacks project. https://stacks.math.columbia.edu/.
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