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1 Foreword

1.1 Introduction

The title may be understood in two ways. The first one is the study of
Number Theory in an algebraic point of view and the second is the study of
algebraic numbers and all the linked theory. We will see both interpretations in
this research document.

All the theory is presented along with exercises which are from the first edi-
tion of Algebraic Number Theory by Ian STEWART and David TALL. However
the solutions are the result of an internship in Oxford with Konstantin Ardakov.
We can consider this article as placing in context these exercises.

If a theorem or property is not demonstrated in this article, it is because the
demonstration is already detailled in Algebraic Number Theory. Conversely, all
the demonstrations in this article are not explicitly in Algebraic Number Theory.

1.2 Notations

- Z is the set of integers
- Q is the set of rationals
- L/K is the field extension L of K (K and L are fields)
- K(α1, ...αn) is the least field that contains the field K and the elements
α1, ..., αn
- [L : K] is the degree of the extension L over K
- ∂P is the degree of the polynomial P
- OK is the ring of integers of the number field K
- bxc is the integer part of x, we have bxc 6 x < bxc+ 1.
- a ≡ b [n] is equivalent to a ≡ b (mod n), i.e. n | (a− b).
- Im(ϕ) is the image of ϕ.
- Ker(ϕ) is the kernel of ϕ.
- ϕ : A ↪→ B implies that ϕ is injective.
- ϕ : A� B implies that ϕ is surjective.
- J1, nK is equivalent to {1, 2, ..., n}.
- A\B is the set of the elements that are in A but not in B.
- 〈p〉 in a ring A is the ideal generated by p in the ring A.

1.3 Theory Prerequisites

- Groups, rings, domains, fields, morphisms
- Background in fields extension
- Free Abelian Group
- Galois Theory
- Ideals of a ring
- Modules of a ring
- Noetherian notion and the equivalences of the definition
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- Primes and irreducibles in a ring
- Chinese Remainder Theorem
- Correspondence Theorem for Ideals
- First Isomorphism Theorem

2 Field extensions and number field

Let K be a field, the motivation of extending the field K is to find a bigger field
which contains zeros of polynomials on K. For example, Q(i), which is the least
field that contains i and Q, is an extension of Q that contains zeros of X2 + 1
(they are not contained in Q).

2.1 Definitions

Definition 2.1 (Algebraic number). An element α is called algebraic over K
if there exists a polynomial P over K such that P (α) = 0.

Definition 2.2 (Minimum polynomial). Let α be an element of a field K, a
polynomial P over K is called the minimum polynomial of α if P (α) = 0, the
degree of P is as least as possible and the leading coefficient is 1.

Remark 2.3. The minimum polynomial is unique by definition.

Let us remind that a field extension L/K has a natural structure of vector
space over K (with the addition in L and scalar multiplication of α ∈ K on
x ∈ L is just αx ∈ L).

Definition 2.4 (Degree of extension). The degree of an extension L over K is
the dimension of the vector space L over K, written [L : K].

Proposition 2.5. Let α be an algebraic element over Q and n be the degree
of the minimum polynomial of α over Q. Then {1, α, ..., αn−1} is a Q−basis of
Q(α).

Proof. Let P =

n∑
i=0

aiα
i, where an = 1, the minimum polynomial of α over Q

which is of degree n. We want to prove that B = {1, α, ..., αn−1} is a Q−basis
of Q(α). The family {1, α, ..., αn−1} is Q−independant because, if we cannot
have b0 + b1α + ... + bn−1α

n−1 = 0 (unless all bi = 0) because the minimum
polynomial is of degree n. Then B generates Q(α) because, Q is generated by
1, hence by B, α is generated by α, hence by B, all the linear combinations are
generated by B by definition of space vector, all αi is generated by B because

we have αn = −
n−1∑
i=0

aiα
i, then for all αp with p > n we can rewrite it with

elements of the form

n−1∑
i=0

biα
i. We therefore can write all linear combinations
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of power of α. Then we must prove that we can write the inverse of linear

combination with the basis B. We know that there exists an inverse of

n−1∑
i=0

biα
i

of the form

n−1∑
i=0

ciα
i if and only if b0 is a unit (it is just an easy exercise). So

we only have to study the case b0 = 0. There exists k > 0 such that bk 6= 0
then we take the least 0 < k 6 n such that bk 6= 0, now factorize by αi, we have
n−1∑
i=k

biα
i = αk

n−1∑
i=k

biα
i − k and now the coefficient of α0 is not equal to zero. So

we have an inverse for

n−1∑
i=k

biα
i− k, and we have to find an inverse for αk where

k > 0.
1

αk
=

αn−k

αkαn−k
=
αn−k

αn
=

αn−k

−
n−1∑
i=0

aiα
i

and it exists if and only if a0 6= 0,

but a0 6= 0 because

n∑
i=0

aiα
i is the minimum polynomial of α and if a0 = 0 then

we can factorize it by α and since α 6= 0 we would have

n∑
i=1

aiα
i−1 = 0 but it

is a contradiction with P is the minimum polynomial of α. It follows that we
have found an inverse. Then all elements of Q(α) can be written with the basis
B. It follows that B is well a basis of Q(α)

Proposition 2.6. Let α be an algebraic element over Q. Then the degree of
Q(α)/Q is equal to the degree of the minimum polynomial of α over Q.

Proof. Let n be the degree of the minimum polynomial of α over Q. Since
Proposition 2.5, B = {1, α, ..., αn−1} is a Q−basis of Q(α). There are n elements
in B then [Q(α) : Q] = n.

If [L : K] is finite, we say that L is a finite extension of K. Hence, we have
a K−basis of L and the cardinal of this basis is [L : K].

Now, unless otherwise specified, we will work with the extensions of the form
Q(α1, ..., αn) where αi ∈ C. Then all the extensions that we will see are subfields
of C.

Definition 2.7 (Number field). A field K is a number field if [K : Q] is finite.

Remark 2.8. We could say that a number field is a finite extension over Q.

Theorem 2.9. If K is a number field then K = Q(θ) for some algebraic number
θ.

Proof. You can find a proof in [1] (Theorem 2.2 of [1]).
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Exercise 2.2.
Express Q(

√
3, 3
√

5) in the form Q(θ).

Solution 2.2.
Let θ be

√
3 + 3
√

5. We want to prove that Q(
√

3, 3
√

5) = Q(θ). θ ∈ Q(
√

3, 3
√

5)
because it is a field that contains

√
3 and 3

√
5. So Q(θ) ⊂ Q(

√
3, 3
√

5). For the

other inclusion, we can see that
√

3 =
1

267
(8θ5+5θ4−80θ3−130θ2+335θ−455)

and 3
√

5 =
1

267
(−8θ5 − 5θ4 + 80θ3 + 130θ2 − 68θ + 455) (it takes a while to

obtain those polynomials) , so we have
√

3 and 3
√

5 ∈ Q(θ). It follows that
Q(
√

3, 3
√

5) ⊂ Q(θ) and now Q(
√

3, 3
√

5) = Q(θ).

2.2 Correspondence of Galois

We can use Galois theory to find the subfields of an extension field while using
the Galois groups. There is a correspondence reverse inclusions between the
subgroup of the Galois group and the subfield of the extension. You can find
further details in the Chapter 12 and 13 in Galois Theory by Ian STEWART
(Reference [2]).

Exercise 0.1.
Find all the subfields of Q(ζ) where ζ = e2πi/5

Solution.
1 +X +X2 +X3 +X4 is the minimum polynomial of Q(ζ) (Lemma 3.4 of [1]),
hence there are 4 monomorphisms (Theorem 2.3 of [1]): φ1 : ζ 7→ ζ, φ2 : ζ 7→ ζ2,
φ3 : ζ 7→ ζ3, φ4 : ζ 7→ ζ4. Then 2 ≡ 2 [5], 22 ≡ 4 [5], 23 ≡ 3 [5], 24 ≡ 1 [5]. Now
let σ be ζ 7→ ζ2, we have φ1 = σ4, φ2 = σ, φ3 = σ3, φ4 = σ2. It follows that
the Galois group of Q(ζ) is 〈σ〉 ' Z/4Z.
The subgroup of Z/4Z are Z/4Z, Z/2Z and 〈e〉 where e is the neutral element.
Z/2Z ' 〈σ2〉, hence we want to find the subfield that corresponds to 〈σ2〉. We
have to calculate the fixed field of 〈σ2〉. Let us take α = ζ + ζ4 and β = ζ2 + ζ3

we have σ(α) = β and σ(β) = α, it follows that σ2(α) = α and σ2(β) = β. So
the fixed field is Q(α, β) but we can write it with a better expression (we can
just write it Q(α), because β = −1 − α, since 1 + ζ + ζ2 + ζ3 + ζ4 = 0 but we
can still find better). α + β = −1 and αβ = −1, it follows that α and β are

solutions of X2 +X − 1, but ∆ = 1 + 4 = 5, hence the solutions are
−1±

√
5

2
.

Then the subfield we are looking for is Q(
√

5).

Q(ζ) 〈e〉
...

...

Q(
√

5) Z/2Z
...

...
Q Z/4Z
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There are 3 subfields of Q(ζ) which are Q, Q(
√

5) and Q(ζ).

2.3 Norm and Trace

Now, unless otherwise specified, we will work with number fields, hence we can
write it Q(θ) due to the Theorem 2.9.

Definition 2.10 (Monomorphism). Let K be a number field, a monomorphism
is an injective homomorphism σ : K → C such that σ|Q = Id|Q.

Proposition 2.11. Let K = Q(θ) be a number field of degree n over Q. Then
there are exactly n distinct monomorphisms σi : K → C for i in {1, ...n}. The
elements σi(θ) = θi are the distinct zeros in C of the minimum polynomial of θ
over Q.

Proof. You can find a proof in [1] (Theorem 2.3 of [1]).

Definition 2.12 (Conjugates). Let K = Q(θ) of degree n, α ∈ K, σi all the
monomorphisms. Then we call σi(α) for i = 1, ..., n the K−conjugates of α.

Remark 2.13. All the conjugates of an element θ are not necessarily in the field
K, for example, in Q( 3

√
2), all the elements are real, but the conjugates of 3

√
2

are 3
√

2, j 3
√

2 and j2 3
√

2, where j = e2πi/3 ∈ C.

Exercise 2.3.
Find all monomorphisms Q( 3

√
7)→ C.

Solution.
We use the Proposition 2.11, then there are 3 monomorphisms σ : Q( 3

√
7)→ C,

because X3 − 7 is the minimum polynomial over Q of 3
√

7.

3
√

7 7→ 3
√

7 (Identity function)
3
√

7 7→ j 3
√

7
3
√

7 7→ j2 3
√

7

where j = e2πi/3. They are the conjugates of 3
√

7 (complex roots of X3 − 7).
(We remind that σ|Q = Id|Q)

Definition 2.14 (Discriminant). Let K = Q(θ) of degree n, let {α1, ..., αn} be
a basis of K. The discriminant is defined to be

∆[α1, ..., αn] =
(

det(σi(αj))
)2

Proposition 2.15. The discriminant of any basis for K = Q(θ) is rational and
non-zero.

Proof. You can find a proof in [1] (Theorem 2.6 of [1]).

6



Definition 2.16 (Norm). Let K = Q(θ) be a number field of degree n. Let
α ∈ K. We define the norm as

NK(α) =

n∏
i=1

σi(α).

In other words, the norm is the product of all the conjugates of α.

Definition 2.17 (Trace). Let K = Q(θ) be a number field of degree n. Let
α ∈ K. We define the trace as

TK(α) =

n∑
i=1

σi(α).

In other words, the trace is the sum of all the conjugates of α.

Proposition 2.18. The norm is multiplicative and the trace is Q−linear, i.e.
for α, β ∈ K and p, q ∈ Q we have NK(αβ) = N(α)N(β) and TK(pα + qβ) =
pTK(α) + qTK(β).

Proof. It follows from the definition of norm and trace and the properties of
the monomorphisms. NK(αβ) =

∏
σi(αβ) =

∏
σi(α)σi(β) = NK(α)NK(β).

TK(pα + qβ) =
∑
σi(pα + qβ) =

∑
(σi(p)σi(α) + σi(q)σi(β)) =

∑
(pσi(α) +

qσi(β)) = pTK(α) + qTK(β).

Remark 2.19. The norm and trace depend on K, we will write N(α) and T (α)
if the number field K is obvious in the context.

Exercise 2.12.
Give examples to show that for fixed α, NK(α) and TK(α) depend on K. (This
is to emphasize that the norm and trace must always be defined in the context
of a specific field K; there is no such thing as the norm or trace of α without a
specified field.)

Solution.
Let us consider the field K1 = Q(

√
2) and the element α = 1 +

√
2 ∈ K1. The

monomorphisms ofK1 are σ1 :
√

2 7→
√

2 and σ2 :
√

2 7→ −
√

2, soNK1
(1+
√

2) =
σ1(1 +

√
2)σ2(1 +

√
2) = (1 +

√
2)(1 −

√
2) = 1 − 2 = −1 and TK1

(1 +
√

2) =
σ1(1 +

√
2) + σ2(1 +

√
2) = (1 +

√
2) + (1−

√
2) = 2.

Then, let consider the field K2 = Q(
√

2,
√

3) and still the element α = 1 +
√

2 ∈
K2. The monomorphisms of K2 are

σ1 :
√

2 7→
√

2 σ1 :
√

3 7→
√

3

σ2 :
√

2 7→ −
√

2 σ2 :
√

3 7→
√

3

σ3 :
√

2 7→
√

2 σ3 :
√

3 7→ −
√

3

σ4 :
√

2 7→ −
√

2 σ4 :
√

3 7→ −
√

3

so NK2
(1 +

√
2) = σ1(1 +

√
2)σ2(1 +

√
2)σ3(1 +

√
2)σ4(1 +

√
2) = (1 +

√
2)(1−√

2)(1 +
√

2)(1 −
√

2) = (−1)2 = 1 and TK2
(1 +

√
2) = σ1(1 +

√
2) + σ2(1 +√

2) +σ3(1 +
√

2) +σ4(1 +
√

2) = (1 +
√

2) + (1−
√

2) + (1 +
√

2) + (1−
√

2) = 4.
We see that NK1(α) = −1, NK2(α) = 1 and TK1(α) = 2, TK2(α) = 4 �

7



Remark 2.20. We consider monomorphisms σ such that σ|Q =Id|Q because we
work with number field (finite extension over Q) but we may be generalized the
norm and trace on other extension field K/L. We explain that generalization
in Exercise 2.13 and use it in Exercise 4.14.

Exercise 2.13.
The norm and trace may be generalized by condiering number field K ⊇ L.
Suppose K = L(θ) and [K : L] = n. Consider monomorphisms σ : K →
C such that σ(x) = x for all x ∈ L. Show that there are precisely n such
monomorphisms σ1, ..., σn and describe them. For α ∈ K, define

NK/L(α) =

n∏
i=1

σi(α),

TK/L(α) =

n∑
i=1

σi(α).

(Compared with our earlier notation, we have NK = NK/Q, TK = TK/Q.) Prove
that

NK/L(α1α2) = NK/L(α1)NK/L(α2),
TK/L(α1 + α2) = TK/L(α1)TK/L(α2).

Let K = Q( 4
√

3), L = Q(
√

3). Calculate NK/L(α), TK/L(α) for α = 4
√

3 and

α = 4
√

3 +
√

3.

Solution.
We just have to use the proof of the Proposition 2.11 (Theorem 2.3 of [1])
while replacing Q by L and so we have our n monomorphisms σi such that
σi(θ) = θi where θi are the L−conjugates of θ (the other zeros in L of the
minimum ploynomial of θ in L[X]).

NK/L(α1α2) =

n∏
i=1

σi(α1α2) =

n∏
i=1

σi(α1)σi(α2) =

n∏
i=1

σi(α1)

n∏
i=1

σi(α2) = NK/L(α1)NK/L(α2)

TK/L(α1 +α2) =

n∑
i=1

σi(α1 +α2) =

n∑
i=1

σi(α1) +σi(α2) = TK/L(α1) +TK/L(α2)

X2 −
√

3 is the minimum polynomial of 4
√

3 in L[X]. Then [K : L] = 2 and
there are 2 monomorphisms that are σ1 : 4

√
3 7→ 4

√
3 and σ2 : 4

√
3 7→ − 4

√
3.

Calculate NK/L( 4
√

3) and TK/L( 4
√

3). NK/L( 4
√

3) = σ1( 4
√

3)σ2( 4
√

3) = −
√

3 and

TK/L( 4
√

3) = σ1( 4
√

3) +σ2( 4
√

3) = 0. Calculate NK/L( 4
√

3 +
√

3) and TK/L( 4
√

3 +√
3). NK/L( 4

√
3 +
√

3) = σ1( 4
√

3 +
√

3)σ2( 4
√

3 +
√

3) = (
√

3 + 4
√

3)(
√

3− 4
√

3) =

3−
√

3 and TK/L( 4
√

3 +
√

3) = σ1( 4
√

3 +
√

3) + σ2( 4
√

3 +
√

3) = 2
√

3.
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3 Algebraic Integers

3.1 Definition

Definition 3.1 (Algebraic integer). An algebraic integer is an algebraic element
that is solution of a monic polynomial with integer coefficients, i.e. α is an
algebraic integer if there exists n ∈ N and a0, ..., an−1 ∈ Z such that αn +
an−1α

n−1 + ...+ a0 = 0.

Remark 3.2. We will use the expression “rational integer” for the elements of
Z to avoid confusion with algebraic integers.

Theorem 3.3. The algebraic integers form a subring of the field of algebraic
numbers.

Proof. You can find a proof in [1] (Theorem 2.8 of [1]).

Definition 3.4 (Ring of integers). LetK be a number field. The ring of integers
of K is the set of all the algebraic integers in K. It is a ring because K is a
ring and the algebraic integers form a ring. We will write OK for the ring of
integers of K.

Proposition 3.5. An algebraic integer is a rational number if and only if it is
a rational integer, i.e. OQ = Z.

Proof. You can find a proof in [1] (Lemma 2.13 of [1]).

Proposition 3.6. Let K be a number field and let α be an algebraic integer
of K. Then T (α) and N(α) are in Z.

Proof. Let Pα an integer monic polynomial of α then for all monomorphism σ,
0 = σ(0) = σ(Pα(α)) = Pα(σ(α)) = 0, hence σ(α) is an algebraic integer, then
N(α) and T (α) are also algebraic integers because they are the product or the
sum of σ(α) for all monomorphism σ and the algebraic integers form a ring.
But the norm and the trace are always in Q, because N(α) = (−1)nfα(0) and
T (α) is the coefficient of tn−1 of fα which is a polynomial in Q (Theorem 2.4 of
[1]) (fα is the field polynomial introduce in [1] p.42). Then use Proposition 3.5
to see that N(α) ∈ Z.

Remark 3.7. Let θ be an algebraic integer. The ring of integers of K = Q(θ) is
sometimes OK = Z[θ] but it is not always the case (We shall see examples in
subsection Quadratic fields). However, we always have Z[θ] ⊂ OK .

3.2 Integral Basis

Let K be a number field with [K : Q] = n. There exists a Q−basis of K. Let OK

the ring of integers of K, we want to find a basis of OK such that all element of
OK can be expressed in this basis and all element that could be generated by
this basis is in OK . This is possible because OK is a free abelian group under
addition of rank n.
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Definition 3.8 (Integral basis). Let K be a number field of degree n. An
integral basis of the ring of integers of K is a Z−basis for (OK ,+).

Theorem 3.9. Every number field Kof degree n possesses an integral basis,
and the additive group of OK is free abelian of rank n.

Proof. You can find a proof in [1] (Theorem 2.15 of [1]).

Remark 3.10. The discriminant of an integral basis is an integer, since Propo-
sition 2.15 and Proposition 3.5.

Definition 3.11 (Squarefree). Let n be in Z, n is said squarefree, if n is not
divisible by the square of a prime number.

Theorem 3.12. Suppose α1, ..., αn ∈ O form a Q−basis for K. If ∆[α1, ..., αn]
is squarefree then {α1, ...αn} is an integral basis.

Proof. You can find a proof in [1] (Theorem 2.16 of [1]).

Remark 3.13. Warning, we can find integral basis that have a discriminant
which is not squarefree. We shall have examples in the subsection Quadratic
fields.

Theorem 3.14. Let B = {b1, b2, ..., bn} be a Q−basis of K a number field such
that B is not an integral basis but bi ∈ OK for all i in J1, nK. Then there is an
element α ∈ OK that can be written in the following form:

α =
1

p
(λ1b1 + ...+ λnbn) (1)

where p is a prime such that p2 | ∆[b1, ..., bn], λi ∈ J0; p− 1K and there exists λj
such that λj = 1.

Proof. Take β ∈ OK\(b1Z + ... + bnZ) (this is possible because B is not an

integral basis). We can write β =
1

N

n∑
i=1

cibi with ci ∈ Z, N ∈ Z, N /∈ {±1} and

hcf(N, c1, c2, ..., cn) = 1. Let p a prime such that p | N and it exists j such that

p - cj . Take β′ =
N

p
β =

1

p

n∑
i=1

cibi ∈ OK (because p | N). But hcf(cj , p) = 1,

then it exists k, l ∈ Z such that cjk + pl = 1. Take β′′ = kβ′ + lbj ∈ OK ,

β′′ =
1

p

n∑
i=1

sibi with sj = 1. Use Euclidean division on si by p, then it exists

mi and λi such that si = mip + λi with λi ∈ J0, p − 1K and λj = 1 (because

sj = 1 and mj = 0). Then take α = β′′ −
∑
mibi =

1

p

n∑
i=1

λibi.
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We finally have to prove that p2 | ∆[b1, ..., bn]. Take B′ = (B\bj) ∪ α. The

change of basis matrix is C =



1 0 λ1/p 0

0 1
... 0

...
. . .

...
...

0 λj/p
...

. . .
...

. . . 0
0 0 λn/p 1


, with detC = ±1

p
.

Then ∆(B′) = (detC)2∆[b1, ..., bn] =
1

p2
∆[b1, ..., bn], but ∆(B′) ∈ Z (Lemma

2.14), it follows that p2 | ∆[b1, ..., bn].

Proposition 3.15. Let K be a number field. All the integral basis of K have
the same discriminant.

Proof. Let us take two integral basis A = {α1, ..., αn} and B = {β1, ..., βn}
(They have the same cardinal because OK is free abelian group of rank n

(Theorem 3.9)). We can write all αj in the basis B, αj =

n∑
k=1

cj,kβk where

cj,k ∈ Z. For all monomorphism σi, we have σi(αj) =

n∑
k=1

cj,kσi(βk), because

σi(cj,k) = cj,k since cj,k ∈ Z ⊂ Q, by the formula of determinants, we have
∆[α1, ..., αn] = [det(cj,k)]2∆[β1, ..., βn]. But A is also an integral basis then the
matrix of {cj,k} is inversible. Since cj,k ∈ Z, we have det(cj,k) = ±1. It follows
that ∆[α1, ..., αn] = ∆[β1, ..., βn].

Remark 3.16. This is why we can say the discriminant of K (or of OK).

3.3 Computing an integral basis

Let K be a number field, we want to compute an integral basis of OK .

Step 1. Take a candidate B to be an integral basis (in practice a Q−basis
consisting of algebraic integers)

Step 2. Calculate the discriminant ∆(B) of B. If ∆(B) is squarefree, we use
the Theorem 3.12 and B is an integral basis. Otherwise go to step 3.

Step 3. Find one p prime such that p2 | ∆(B).

Step 4. Let α be of the form of Theorem 3.14.

Step 5. Calculate the trace, it must be in Z (Proposition 3.6). With the
trace’s information that depends of λi, we can find some conditions on λi to
satisfy TK(α) ∈ Z. Then we could simplify α.

11



Step 6. Calculate the norm, it must be in Z (Proposition 3.6). With the
norm’s information that depends of λi, we can find some conditions on λi to
satisfy NK(α) ∈ Z. Then we could simplify α. (We begin by calculating the
trace because it is often simpler to calculate).

Step 7. After all those calculations, find an α that satisfies the condition of
Theorem 3.14 even if you have to consider all the possible configuration. If there
is no possible α, go to Step 8. If you find an α, go to Step 9.

Step 8. If there is no possible α, return to step 3 and try with another p prime
such that p2 | ∆(B). If there is no possible α and there is no more p to work
with, then use the Theorem 3.14 to say that B was already an integral basis,
because there is no possible α.

Step 9. You have an α that you can add to your basis B, then make all the
simplifications in B ∪ {α} because there is at least an element bi of B that you
can write just with B ∪ {α}\{bi} (with coefficient in Z). You have now a new
basis B′.

Step 10. Start the process over again with the basis B′ from Step 2.

3.4 Example of computing an integral basis

Exercise 2.8.
Compute an integral bases of Q(

√
2, i).

Solution.

Step 1.
We choose B = {1,

√
2, i, i

√
2} which is a Q−basis of K. Indeed [Q(

√
2, i) : Q] =

[Q(
√

2, i) : Q(
√

2)][Q(
√

2) : Q] = 2.2 = 4.

Step 2.
Let us calculate the discriminant ∆(B) of the basis B. Then we can see that
the 4 monomorphisms are :

σ1 :
√

2 7→
√

2 σ1 : i 7→ i

σ2 :
√

2 7→ −
√

2 σ2 : i 7→ i

σ3 :
√

2 7→
√

2 σ3 : i 7→ −i
σ4 :
√

2 7→ −
√

2 σ4 : i 7→ −i

It follows that ∆(B) =

∣∣∣∣∣∣∣∣
1
√

2 i i
√

2

1 −
√

2 i −i
√

2

1
√

2 −i −i
√

2

1 −
√

2 −i i
√

2

∣∣∣∣∣∣∣∣
2

= 4

∣∣∣∣∣∣∣∣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

∣∣∣∣∣∣∣∣
2

= 4

∣∣∣∣∣∣∣∣
1 1 1 1
0 −2 0 −2
0 0 −2 −2
0 −2 −2 0

∣∣∣∣∣∣∣∣
2

=

4

∣∣∣∣∣∣∣∣
1 1 1 1
0 −2 0 −2
0 0 −2 −2
0 0 −2 2

∣∣∣∣∣∣∣∣
2

= 4

∣∣∣∣∣∣∣∣
1 1 1 1
0 −2 0 −2
0 0 −2 −2
0 0 0 4

∣∣∣∣∣∣∣∣
2

= 4.162 = 210.

12



Step 3.
The only prime p such that p2 | ∆(B) is 2.

Step 4.
As mentioned in Theorem 3.14, let us consider α of the form 1

2 (a+ b
√

2 + ci+

di
√

2) where a, b, c, d ∈ {0, 1} and (a, b, c, d) 6= (0, 0, 0, 0).

Step 5.

T (α) =
4a

2
. Then T (α) ∈ Z. The trace does not give any information on the

coefficients.

Step 6.
N(α) = 1

24 (a+ b
√

2 + ci+ di
√

2)(a− b
√

2 + ci− di
√

2)(a+ b
√

2− ci− di
√

2)(a−
b
√

2 − ci + di
√

2) = 1
24 ((a2 − 2b2 + c2 − 2d2)2 + 8(ad − bc)2) (To compute

the norm in an simpler manner, start by multiply (a + b
√

2 + ci + di
√

2) with
(a−b

√
2−ci+di

√
2) then multiply (a−b

√
2+ci−di

√
2) with (a+b

√
2−ci−di

√
2)

and then multiply both results)
We study all 16 cases since a, b, c, d ∈ {0, 1}.

a, b, c, d 24.N(α) N(α) ∈ Z ?
0, 0, 0, 1 4 NO
0, 0, 1, 0 1 NO
0, 0, 1, 1 1 NO
0, 1, 0, 0 4 NO
0, 1, 0, 1 16 YES
0, 1, 1, 0 9 NO
0, 1, 1, 1 17 NO
1, 0, 0, 0 1 NO
1, 0, 0, 1 9 NO
1, 0, 1, 0 4 NO
1, 0, 1, 1 8 NO
1, 1, 0, 0 1 NO
1, 1, 0, 1 17 NO
1, 1, 1, 0 8 NO
1, 1, 1, 1 4 NO

Step 7.

We find α =
√
2+i
√
2

2 =
√

2 1+i
2 which is an algebraic integer (minimum polyno-

mial is X4 + 1). We find an α so we go to Step 9.

Step 9.
We have {1,

√
2, i, i

√
2,
√

2 1+i
2 } then we can remove i

√
2 because i

√
2 = 2α−

√
2.

Step 10.
We start the process again with the basis B′ = {1,

√
2, i,
√

2 1+i
2 }.
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Step 2.

Calculate the discriminant ∆(B′) =

∣∣∣∣∣∣∣∣
1
√

2 i
√

2 1+i
2

1 −
√

2 i −
√

2 1+i
2

1
√

2 −i
√

2 1−i
2

1 −
√

2 −i −
√

2 1−i
2

∣∣∣∣∣∣∣∣
2

= −

∣∣∣∣∣∣∣∣
1 1 1 1 + i
1 −1 1 −1− i
1 1 −1 1− i
1 −1 −1 −1 + i

∣∣∣∣∣∣∣∣
2

=

−

∣∣∣∣∣∣∣∣
1 1 1 1 + i
0 −2 0 −2− 2i
0 0 −2 −2i
0 −2 −2 −2

∣∣∣∣∣∣∣∣
2

= −

∣∣∣∣∣∣∣∣
1 1 1 1 + i
0 −2 0 −2− 2i
0 0 −2 −2i
0 0 −2 2i

∣∣∣∣∣∣∣∣
2

= −

∣∣∣∣∣∣∣∣
1 1 1 1 + i
0 −2 0 −2− 2i
0 0 −2 −2i
0 0 0 4i

∣∣∣∣∣∣∣∣
2

=

162 = 28

Step 3.
The only prime p such that p2 | ∆(B′) is 2.

Step 4.
As mentioned in Theorem 3.14, let us consider α of the form 1

2 (a+ b
√

2 + ci+

d
√

2 1+i
2 ) where a, b, c, d ∈ {0, 1} and (a, b, c, d) 6= (0, 0, 0, 0).

Step 5.

T (α) =
4a

2
. Then T (α) ∈ Z. The trace does not give any information on the

coefficients.

Step 6.
N(α) = 1

24 (a + b
√

2 + ci + d
√

2 1+i
2 )(a − b

√
2 + ci − d

√
2 1+i

2 )(a + b
√

2 − ci +

d
√

2 1−i
2 )(a−b

√
2−ci−d

√
2 1−i

2 ) = 1
24 ((a2−2b2+c2−d2−2bd)2+2(ad−2bc−cd)2).

We study all 16 cases since a, b, c, d ∈ {0, 1}.

a, b, c, d 24.N(β) N(β) ∈ Z ?
0, 0, 0, 1 1 NO
0, 0, 1, 0 1 NO
0, 0, 1, 1 2 NO
0, 1, 0, 0 4 NO
0, 1, 0, 1 25 NO
0, 1, 1, 0 9 NO
0, 1, 1, 1 34 NO
1, 0, 0, 0 1 NO
1, 0, 0, 1 2 NO
1, 0, 1, 0 4 NO
1, 0, 1, 1 1 NO
1, 1, 0, 0 1 NO
1, 1, 0, 1 18 NO
1, 1, 1, 0 8 NO
1, 1, 1, 1 17 NO
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Step 7.
We cannot find an α of the form of Theorem 3.14. So go to Step 8.

Step 8.
We find no α and there is no prime p 6= 2 such that p2 | ∆(B′). Then B′ =
{1, i,

√
2,
√

2 1+i
2 } is an integral basis for Q(

√
2, i).

Exercise 2.6.
Find a Z−basis for the integers of Q( 3

√
5).

Solution.

Step 1.
We choose B = {1, 3

√
5, ( 3
√

5)2} which is a Q−basis of K. Indeed [Q( 3
√

5) : Q] = 3
because X3 − 5 is the minimum polynomial of 3

√
5 over Q (Theorem 2.6).

Step 2.
Let us calculate the discriminant ∆(B) of the basis B. The 3 monomorphisms
are σ1 : 3

√
5 7→ 3

√
5;σ2 : 3

√
5 7→ j 3

√
5 and σ3 : 3

√
5 7→ j2 3

√
5 with j = e2πi/3

(j2 + j + 1 = 0 and j3 = 1). Then σ1(( 3
√

5)2) = ( 3
√

5)2;σ2(( 3
√

5)2) = j2( 3
√

5)2

and σ3(( 3
√

5)2) = j( 3
√

5)2. Calculate ∆[1, 3
√

5, ( 3
√

5)2] =

∣∣∣∣∣∣
1 3

√
5 ( 3

√
5)2

1 j 3
√

5 j2( 3
√

5)2

1 j2 3
√

5 j( 3
√

5)2

∣∣∣∣∣∣
2

=

(5j2 + 5j2 + 5j2 − 5j − 5j − 5j)2 = 152(j2 − j)2 = 152(j4 − 2j3 + j2) =
152(j + 1 + j2 − 3) = −33.52.

Step 3.
Let us take 3 as prime such that 32 | ∆(B).

Step 4.

As mentioned in Theorem 3.14, let us consider α of the form α =
a+ b 3

√
5 + c( 3

√
5)2

3
where a, b, c ∈ {0, 1, 2} and (a, b, c) 6= (0, 0, 0).

Step 5.

Let us calculate the trace TK(α) =
a+ b 3

√
5 + c( 3

√
5)2

3
+
a+ bj 3

√
5 + cj2( 3

√
5)2

3
+

a+ bj2 3
√

5 + cj( 3
√

5)2

3
=

3a

3
because 1 + j+ j2 = 0 and

3a

3
∈ Z. Then the trace

does not give any informations on the coefficients.

Step 6.

Let us calculate the normNK(α) =
1

33
(a+b 3

√
5+c( 3

√
5)2)(a+bj 3

√
5+cj2( 3

√
5)2)(a+

bj2 3
√

5+cj( 3
√

5)2) =
1

27
(a3+5b3+25c3−15abc) (this results in a long and some-

what exhausting calculation). So we need that 33 | (a3 + 5b3 + 25c3 − 15abc).
We study all the possible cases, listed below:
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a, b, c σ = (a3 + 5b3 + 52c3 − 3.5abc) 33 | σ ?
0, 0, 1 52 NO
0, 0, 2 23.52 NO
0, 1, 0 5 NO
0, 1, 1 2.3.5 NO
0, 1, 2 5.41 NO
0, 2, 0 23.5 NO
0, 2, 1 5.13 NO
0, 2, 2 24.3.5 NO
1, 0, 0 1 NO
1, 0, 1 2.13 NO
1, 0, 2 3.67 NO
1, 1, 0 2.3 NO
1, 1, 1 24 NO
1, 1, 2 24.11 NO
1, 2, 0 41 NO
1, 2, 1 22.32 NO
1, 2, 2 181 NO
2, 0, 0 23 NO
2, 0, 1 3.11 NO
2, 0, 2 24.13 NO
2, 1, 0 13 NO
2, 1, 1 23 NO
2, 1, 2 32.17 NO
2, 2, 0 24.3 NO
2, 2, 1 13 NO
2, 2, 2 27 NO

Step 7.

We cannot find an α of the form
1

3
(a+ b 3

√
5 + c( 3

√
5)2). So go to Step 8.

Step 8.
We return to Step 3 because we still have a p prime such that p2 | ∆(B).

Step 3.
Let us take p = 5 which is such that p2 | ∆(B)

Step 4.

Let us take α of the form α =
a+ b 3

√
5 + c( 3

√
5)2

5
with a, b, c ∈ {0, 1, 2, 3, 4} and

(a, b, c) 6= (0, 0, 0).

Step 5.
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Let us calculate the trace TK(α) =
a+ b 3

√
5 + c( 3

√
5)2

5
+
a+ bj 3

√
5 + cj2( 3

√
5)2

5
+

a+ bj2 3
√

5 + cj( 3
√

5)2

5
=

3a

5
that must be in Z then a ∈ 5Z∩{0, 1, 2, 3, 4}, hence

a = 0. Then we can write α =
b 3
√

5 + c( 3
√

5)2

5
.

Step 6.

Let us calculate the norm NK(α) =
1

53
(5b3 + 25c3) =

b3 + 5c3

25
that must be in

Z so we want b3 + 5c3 = 25m with m ∈ Z. If we are looking in Z/5Z we have
b3 ≡ 0 [5], but 13 ≡ 1 [5], 23 ≡ 3 [5], 33 ≡ 2 [5] and 43 ≡ 4 [5]. Hence b = 0

because b ∈ 5Z ∩ {0, 1, 2, 3, 4}. Now we can write α =
c( 3
√

5)2

5
. The norm is

NK(α) =
1

53
(25c3) =

c3

5
that must still be in Z, but for the same raison as case

b, we have c = 0.

Step 7.

So we cannot find an α of the form
a+ b 3

√
5 + c( 3

√
5)2

5
with a, b, c ∈ {0, 1, 2, 3, 4}

and (a, b, c) 6= (0, 0, 0). Then go to Step 8.

Step 8.
We have no α and no more p prime such that p2 | ∆(B). It follows that our
basis B was already an integral basis. {1, 3

√
5, ( 3
√

5)2} is an integral basis of
Q( 3
√

5).

4 Examples

4.1 Quadratic Fields

Definition 4.1 (Quadratic field). A quadratic field is an extension of degree 2.

Since we work with number fields, we will focus on quadratic fields over Q
(Definition 2.9).

Proposition 4.2. All quadratic field can be written Q(
√
d) where d is a square-

free rational integer (d can be negative).

Proof. Let K = Q(θ) be a quadratic field. By definition [K : Q] = 2 then
the minimum polynomial of θ over Q is 2 (Proposition 2.6), let us call it X2 +

aX + b, then ∆ = a2 − 4b and θ =
−a±

√
∆

2
. Then Q(θ) = Q(

√
∆) because

√
∆ = ±(2θ + a) then Q(

√
∆) ⊂ Q(θ) and conversely θ =

−a±
√

∆

2
, hence
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Q(θ) ⊂ Q(
√

∆). Then if ∆ is squarefree, we have finished. If not, we can write
∆ = α2d where d is squarefree and α ∈ Z then

√
∆ = α

√
d. It follows that

Q(
√

∆) = Q(
√
d) because

√
∆ = α

√
d then Q(

√
∆) ⊂ Q(

√
d) and conversely√

d =
√

∆/α then Q(
√
d) ⊂ Q(

√
∆).

Theorem 4.3. Let d be a squarefree rational integer. Then the ring of integers
of Q(

√
d) is :

(a) Z[
√
d] if d 6≡ 1 [4],

(b) Z[ 1+
√
d

2 ] if d ≡ 1 [4].

Proof. You can find a proof in [1] (Theorem 3.2 of [1]). But we would like to
add a detail. We want to prove why a and b must be odd. We are in the case
where c = 2. Since no prime divides all of a, b, c; a or b must be odd. If b
is even, then a is odd. Since a2 − b2d ≡ 0 [4] and b = 2k where k ∈ Z, we
have 0 ≡ a2 − (2k)2d ≡ a2 − 4k2d ≡ a2 [4]. But a is odd, so a = 2k′ + 1 and
a2 = 4k′2 + 4k′ + 1 ≡ 1 [4], there is a contradiction, therefore b is odd. If a was
even then a = 2k and a2 = 4k2 ≡ 0 [4], hence b2d ≡ 0 [4] but b is odd then
b2 ≡ 1 [4] then 0 ≡ b2d ≡ d [4], so we can write d = 4q where q ∈ Z but d is
squarefree, hence a contradiction. It follows that a and b must both be odd.

Remark 4.4. This theorem proves the Remark 3.7

Theorem 4.5. An integral basis B of the ring of integers of Q(
√
d) and the

discriminant ∆ are :

(a) If d 6≡ 1 [4] then B = {1,
√
d} and ∆ = 4d.

(b) If d ≡ 1 [4] then B = {1, 1+
√
d

2 } and ∆ = d.

Proof. B comes from the Theorem 4.3. Then compute the discriminants:∣∣∣∣1 √
d

1 −
√
d

∣∣∣∣2 = (−2
√
d)2 = 4d

and ∣∣∣∣∣1 1+
√
d

2

1 1−
√
d

2

∣∣∣∣∣
2

= (−
√
d)2 = d

.

Remark 4.6. The (a) of this theorem proves the Remark 3.13.

Proposition 4.7 (Norm and Trace). Let K = Q(
√
d) a quadratic field (where

d is a squarefree rational integer). Let α = a+ b
√
d ∈ K where a, b ∈ Q. Then

N(α) = a2 − db2 and T (α) = 2a.
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Proof. The minimum polynomial of
√
d over Q is X2− d = (X −

√
d)(X +

√
d).

Then by Proposition 2.11, the monomorphisms of Q(
√
d) are σ1 :

√
d 7→

√
d

and σ2 :
√
d 7→ −

√
d. Now, by definition of the norm, N(a + b

√
d) = σ1(a +

b
√
d)σ2(a + b

√
d) = (a + b

√
d)(a − b

√
d) = a2 − db2. And, by definition of the

trace, T (a+b
√
d) = σ1(a+b

√
d)+σ2(a+b

√
d) = (a+b

√
d)+(a−b

√
d) = 2a.

Exercise 3.1.
Find integral bases and discriminants for :

(a) Q(
√

3)

(b) Q(
√
−7)

(c) Q(
√

11)

(d) Q(
√
−11)

(e) Q(
√

6)

(f) Q(
√
−6)

Solution.
We use Theorem 4.5.

(a) Here d = 3 6≡ 1 (mod 4), so Q(
√

3) has an integral basis of the form
{1,
√

3} and the discriminant is 4d = 4× 3 = 12.

(b) Here d = −7 ≡ 1 (mod 4), so Q(
√
−7) has an integral basis of the form

{1, 1+
√
−7

2 } and the discriminant is d = −7.

(c) Here d = 11 6≡ 1 (mod 4), so Q(
√

11) has an integral basis of the form
{1,
√

11} and the discriminant is 4d = 4× 11 = 44.

(d) Here d = −11 ≡ 1 (mod 4), so Q(
√
−11) has an integral basis of the form

{1, 1+
√
−11
2 } and the discriminant is d = −11.

(e) Here d = 6 6≡ 1 (mod 4), so Q(
√

6) has an integral basis of the form
{1,
√

6} and the discriminant is 4d = 4× 6 = 24.

(f) Here d = −6 6≡ 1 (mod 4), so Q(
√
−6) has an integral basis of the form

{1,
√
−6} and the discriminant is 4d = 4×−6 = −24.
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4.2 Cyclotomic Fields

Definition 4.8 (Cyclotomic field). A cyclotomic field is a field Q(ζp) where
ζp = e2πi/p is a pth root of unity with p an odd prime number.

Remark 4.9. We consider only odd prime numbers because the only even prime
number is 2 and ζ2 = −1, but Q(−1) = Q, hence we ignore this case.

Proposition 4.10. The minimum polynomial of ζp = e2πi/p over Q is Xp−1 +
Xp−2 + ...+X + 1.

Proof. You can find a proof in [1] (Lemma 3.4 of [1]).

Corollary 4.11. The degree of Q(ζp) is p− 1.

Proof. Use the Proposition 4.10 and the Proposition 2.6. Then the degree of
the minimum polynomial of ζp is p− 1, hence [Q(ζp) : Q] = p− 1.

Theorem 4.12. The ring of integers of Q(ζp) is Z[ζp], i.e. OQ(ζp) = Z[ζp].

Proof. You can find a proof in [1] (Theorem 3.5 of [1]).

Exercise 3.3.
Let K = Q(ζ) where ζ = e2πi/p for a rational prime p. In the ring of integers
Z[ζ], show that α ∈ Z[ζ] is a unit if and only if NK(α) = ±1.

Solution.
Suppose that α is a unit of Z[ζ], then there exists α−1 such that αα−1 = 1.
While using the norm, we have NK(α)NK(α−1) = NK(1) = 1 and NK(α)
and NK(α−1) are integers (Proposition 3.6), so NK(α) = ±1. Conversely, we
consider that NK(α) = ±1, and we can write α as a0 + a1ζ + ... + ap−2ζ

p−2

(because 1+X+ ...+Xp−1 is the minimal polynomial of ζ then K is a Q−vector

space of dimension p− 1 so we need p− 1 ai). Then NK(α) =
∏
i

σi(a0 + a1ζ +

...+ ap−2ζ
p−2) =

∏
i

(σi(a0) +σi(a1)ζi + ...+σi(ap−2)ζi(p−2)) =
∏
i

(a0 + a1ζ
i +

...+ ap−2ζ
i(p−2)) = ±1 and for i = 1, we find α, so we have a product of factors

including α which is equal to ±1, then α has an inverse and it follows that it is
a unit.

Exercise 3.4.
If ζ = e2πi/3, K = Q(ζ), prove that the norm of α ∈ Z[ζ] is of the form
1
4 (a2 + 3b2) where a, b are rational integers which are either both even or both
odd. Using the result of question 3.3, deduce that there are precisely six units
in Z[ζ] and find them all.
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Solution.
Let a+ bζ ∈ K. N(a+ bζ) = (a+ bζ)(a+ bζ2) = a2 + b2−ab = b2(a

2

b2 + 1− a
b ) =

b2((ab −
1
2 )2 + 3

4 ) = 1
4 ((2a− b)2 + 3b2). Then if b is odd, 2a− b is also odd and

if b is even, 2a− b is also even (because 2a is always even).
We are looking for a and b in Z such that 1

4 (a2 +3b2) = ±1 (Exercise 3.3). That
is equivalent to a2 + 3b2 = 4 because a2 + 3b2 is positive. It implies |a| 6 2 and
|b| 6 2. Among the few possibilities, only the couples (1, 1), (1,−1), (−1, 1),
(−1,−1), (2, 0) and (−2, 0) work. So there are precisely 6 units in Z[ζ].

5 Properties of the ring of integers

Let K be a number field. We want to study the unique factorization into
irreducibles in OK . We will see that the factorization is always possible while
it is not always unique.

5.1 Existence of factorization into irreducibles

Definition 5.1 (Unit). An element u in a ring A is called a unit if there exists
v ∈ A such that uv = 1.

Definition 5.2 (Associate). In a ring A, two elements x and y are called
associates if there exists a unit u of A such that x = uy.

Definition 5.3 (Irreducible). Let D be an integral domain. x ∈ D is said
irreducible if:

• x is not a unit

• if x = yz with y, z ∈ D then either y or z is a unit

Definition 5.4 (Factorization into irreducibles). The factorization into irre-
ducibles of x is x = x1x2x3...xn where xi for i ∈ {1, .., n} are irreducible.

Proposition 5.5. Let K be a number field. The ring of integers OK is noethe-
rian.

Proof. You can find a proof in [1] (Theorem 4.7 of [1]).

Theorem 5.6. If a domain D is noetherian, then factorization into irreducibles
is possible in D.

Proof. You can find a proof in [1] (Theorem 4.6 of [1]).

Corollary 5.7. Let K be a number field. Then factorization into irreducibles
is possible in OK .

Proof. Factorization is possible in a noetherian domain (Theorem 5.6) and OK

is noetherian (Proposition 5.5) then factorization into irreducibles is possible in
OK .
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Proposition 5.8. Let K be a number field. Let x and y in OK . Then

(a) x is a unit if and only if N(x) = ±1,

(b) If x and y are associates, then N(x) = ±N(y),

(c) If N(x) is a rational prime, then x is irreducible in OK .

Proof. You can find a proof in [1] (Proposition 4.9 of [1]).

Exercise 4.1.
Which of the following elements of Z[i] are irreducible (i =

√
−1): 1 + i, 3 −

7i, 5, 7, 12i, − 4 + 5i ?

Solution.
For a+ bi in Z[i], N(a+ bi) = a2 + b2.

• N(1 + i) = 2, if we have αβ = 1 + i with α, β not unit (N(α) 6= ±1 and
N(β) 6= ±1), then N(α)N(β) = N(1 + i) = 2, it is impossible because 2
is irreducible in Z. It follows that 1 + i is irreducible.

• N(3− 7i) = 9 + 49 = 58 = 2.29 = (12 + 12)(52 + 22), while looking at this
expression, we find 3− 7i = (1− i)(5− 2i), hence 3− 7i is not irreducible.

• 5 = (2 + i)(2− i), hence 5 is not irreducible.

• 7 is irreducible because N(7) = 49 = 7.7, so we looking for a + bi such
that N(a + bi) = 7. But a2 + b2 = 7 has no integer solution (Try all the
possibilities with |a| 6 3 and |b| 6 3.)

• 12i = 4.3i, hence 12i is not irreducible.

• For the same raison than the case 1 + i, N(−4 + 5i) = 42 + 52 = 41 which
is irreducible (because prime in Z), hence −4 + 5i is irreducible.

5.2 Unique factorization into irreducibles

Definition 5.9 (Unique factorization). We say that the factorization into irre-
ducibles of x = x1x2...xn is unique if for an other factorization into irreducibles
of x = y1y2...ym, then we have m = n and there exists a permutation π of
{1, 2, ..., n} such that xi is associate to yπ(i) for all i in {1, .., n}.

Definition 5.10 (Euclidean). A domain D is said Euclidean if there exists a
function φ : D\{0} → N such that:

(a) If a, b ∈ D\{0} and a | b then φ(a) 6 φ(b),

(b) If a, b ∈ D\{0} then there exist q, r ∈ D such that a = bq+r where either
r = 0 or φ(r) < φ(b).
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Remark 5.11. Z is Euclidean with φ(n) = |n| and K[X] is Euclidean with
φ(P ) = ∂P where K is a field.

Proposition 5.12. An Euclidean domain is a principal ideal domain which is
a unique factorization domain, i.e.

Euclidean =⇒ principal =⇒ unique factorization

Proof. You can find a proof in [1] (Theorem 4.14 and 4.15 of [1]).

Example 5.13. In Q(
√
−6), 6 = 2.3 = −

√
−6.
√
−6. We want to prove that

2, 3,
√
−6 are irreducible. The norm in Q(

√
−6) is N(a+b

√
−6) = a2+6b2. The

norm of 2, 3,
√
−6 are respectively 4, 9, 6. If 2 = αβ, then N(2) = 4 = N(α)N(β)

with N(α) and N(β) proper factors of 4 and we can also do that for 3 and√
−6. The proper factors of 4, 9, 6 are 2 and 3. But a2 + 6b2 = 2 or 3 have

no solutions, because that implies that b = 0 and 2 and 3 are not square. It
follows that 2, 3,

√
−6 are irreducible. And 2, 3,

√
−6 are not associate due to

Proposition 5.8. Then the factorization is not unique. It follows that Q(
√
−6)

cannot be Euclidean.

5.3 Examples

Theorem 5.14. The ring of integers OQ(
√
d) is Euclidean for d = −1, − 2, −

3, − 7, − 11, 2, 3, 4, 6, 7, 13, 17, 21, 29 with the function φ(α) = |N(α)|

Proof. You can find a proof in [1] (Theorem 4.17, 4.19, 4.20 of [1]).

Theorem 5.15. The ring of integers OQ(
√
d) is not Euclidean for d = −5, −

6, − 10, 10, 15, 26, 30 and d < −11 for the function φ(α) = |N(α)|

Proof. You can find a proof in [1] (Theorem 4.10, 4.11, 4.18 of [1]).

Remark 5.16. We already proved that Q(
√
−6) is not Euclidean in the example

5.13.

Exercise 4.14.
Prove that the ring of integers of K = Q(e2πi/5) is Euclidean.

Solution.
We want to prove that Q(e2πi/5) is Euclidean with Euclidean function φ(α) =
|N(α)|. We use the same approach than the proof of Theorem 4.17 of [1]. We
have (a) with the same methods. We want to prove (c), because (c) is equivalent
to (b) where for all α, β ∈ OK\{0}, (a) is “If α | β then |N(α)| 6 |N(β)|”,
(b) is “There exist γ, δ ∈ OK such that α = βγ + δ where either δ = 0 or
|N(δ)| < |N(β)|” and (c) is “For any ε ∈ Q(e2πi/5) there exists κ ∈ OK such
that |N(ε− κ)| < 1”.
We will use the Exercise 0.1 to see that Q(

√
5) is a subfield of Q(ζ) where

ζ = e2πi/5 and we have [Q(ζ) : Q(
√

5)] = 2. Let α be in Q(ζ), then we can write
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α = α1 + α2ζ where α1, α2 ∈ Q(
√

5). As in the Exercise 2.13, NQ(ζ)/Q(
√
5)(α) =

(α1 + α2ζ)(α1 + α2ζ
4) = α2

1 + α2
2 + (

√
5− 1)α1α2.

We want to prove that for all α ∈ Q(ζ) there exists κ ∈ OQ(ζ) such that |N(α−
κ)| < 1. We assume that it is true for κ = κ1+κ2ζ where κ1, κ2 ∈ Z[

√
5] and use

Z[
√

5] ⊂ OQ(
√
5), hence κ ∈ OQ(ζ) because ζ is an algebraic integer in Q(ζ). We

write α = α1+α2ζ where α1, α2 ∈ Q(
√

5) and κ = κ1+κ2ζ where κ1, κ2 ∈ Z[
√

5].
Then N(α− κ) = (α1− κ1)2 + (α2− κ2)2 + (

√
5− 1)(α1− κ1)(α2− κ2). Let us

write σ = α− κ, σ1 = α1 − κ1 and σ2 = α2 − κ2.
Claim: For all r ∈ R, for all ε > 0, there exists s ∈ Z[

√
5] such that |r − s| 6 ε.

Proof of the claim: Let r be in R and ε > 0. |
√

5− 2| < 1, hence (
√

5− 2)n → 0
when n→∞. Then there exists n0 such that (

√
5− 2)n0 < ε. Let u be

√
5− 2.

u is in Z[
√

5] then un ∈ Z[
√

5] for all n ∈ N because Z[
√

5] is a group for
multiplication (because it is a ring).

r
un0
− 1 6 b r

un0
c 6 r

un0
r
un0

6 1 + b r
un0
c 6 1 + r

un0

r 6 (1 + b r
un0
c)un0 6 un0 + r

0 6 (1 + b r
un0
c)un0 − r 6 un0 6 ε

It follows that we have |r − (1 + b r
un0
c)un0 | 6 ε and (1 + b r

un0
c) ∈ Z, hence

(1 + b r
un0
c)un0 ∈ Z[

√
5]. So Z[

√
5] is dense in R. �

We use the claim with r = αi where i = 1, 2 and ε = 1/2, then there exist
κ1 and κ2 such that |αi − κi| 6 1/2, it follows that σ2

1 6 1/4, σ2
2 6 1/4 and

|σ1σ2| 6 1/4 then N(α − κ) 6 1
4 + 1

4 +
√
5−1
4 < 1+1+2

4 = 1. We have proved
(c), hence the ring of integers of Q(ζ) is Euclidean with the norm as Euclidean
function.

6 Ideals

6.1 Definition

We will denote ideals by small bold Gothic letters, for example ‘a’.

Definition 6.1. Let a and b be ideals. Then we define the product of ideals
ab as the set of finite sums

∑
xiyi where xi ∈ a and yi ∈ b.

Definition 6.2 (Prime ideal). Let a an ideal of a ring R. a is said prime if:

• a 6= R

• if bc ⊂ a where b, c ideals of R then either b ⊂ a or c ⊂ a.

Exercise 5.1.
In an integral domain D, show that a principal ideal 〈p〉 is prime if and only if
p is a prime or zero.
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Solution.
The definition of ‘〈p〉 is prime’ is: ab ⊂ 〈p〉 implies a ⊂ 〈p〉 or b ⊂ 〈p〉. The
definition of ‘p is a prime’ is: p | ab implies p | a or p | b.
Suppose p = 0, then 〈p〉 = {0}. If ab ⊂ {0}, then a = {0} or b = {0} (because
if a ∈ a\{0} and b ∈ b\{0}, then ab ∈ ab ⊂ {0}, so ab = 0 but it is impossible
because D is a domain, a 6= 0 and b 6= 0), hence a ⊂ {0} or b ⊂ {0}. It follows
that 〈p〉 is prime.
Suppose p is a prime and ab ⊂ 〈p〉. If a 6⊂ 〈p〉, then it exists a in a\〈p〉. For all
b in b, ab ∈ ab ⊂ 〈p〉, then ab = pk for k ∈ D. So p | ab but p is a prime, then
p | a or p | b but a /∈ 〈p〉 hence p | b, so b ⊂ 〈p〉 and it follows that 〈p〉 is prime.
Conversely, 〈p〉 is prime. Let p | ab, then ab ∈ 〈p〉 and it follows that 〈a〉〈b〉 ⊂ 〈p〉.
〈p〉 is prime so 〈a〉 ⊂ 〈p〉 or 〈b〉 ⊂ 〈p〉. Then a ∈ 〈p〉 or b ∈ 〈p〉, hence p | a or
p | b.

Definition 6.3 (Maximal ideal). Let a an ideal of a ring R. a is said maximal
if there is no ideal strictly between a and R

Proposition 6.4. Let a an ideal of a ring R. Then

(a) a is maximal if and only if R/a is a field.

(b) a is prime if and only if R/a is a domain.

Proof. You can find a proof in [1] (Lemma 5.1 of [1]).

Corollary 6.5. Every maximal ideal is prime.

Proof. We use the Proposition 6.4 because a field is always a domain, hence a
maximal ideal is prime.

Theorem 6.6. The ring of integers OK of a number field K has the following
properties :

(a) It is a domain with the field of fractions K,

(b) It is noetherian,

(c) If α ∈ K satisfies a monic polynomial equation with coefficients in OK

then α ∈ OK ,

(d) Every non-zero prime ideal of OK is maximal.

Proof. You can find a proof in [1] (Theorem 5.3 of [1]).

Exercise 5.8.
Suppose p, q are distinct prime ideals in O. Show p + q = O and p ∩ p = pq.
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Solution.
p, q are distinct, hence, without loss of generality, there exists an element α
in q which is not in p. We know that p + q is an ideal of O and p ⊂ p + q.
But while using Theorem 6.6, p is a maximal ideal, and p + q 6= p because
α ∈ p + q but α /∈ p, hence p  p + q, then by definition of a maximal ideal,
p + q = O.
pq ⊂ p ∩ q because by definition of an ideal, for all α ∈ pq, α is in p and α is
in q, then α is in p ∩ q. Conversely, let z ∈ p ∩ q, we can find x ∈ p and y ∈ q
such that x + y = 1 because 1 ∈ O = p + q. Then z = xz + zy ∈ pq because
xz ∈ pq and zy ∈ pq. It follows that p ∩ q ⊂ pq.

Definition 6.7 (fractional ideal). Let K be a number field. Let a be an
OK−submodule of K. a is a fractional ideal of OK if there exists a non-zero
c ∈ OK such that ca is an ideal of OK . In other words, the fractional ideals
of OK are subsets of K of the form c−1b where b is an ideal of OK and c a
non-zero element of OK .

Exercise 5.10.
Find all fractional ideals of Z and of Z[

√
−1].

Solution.
Z and Z[

√
−1] are Euclidean (Theorem 5.14) then they are principal ideal do-

main (Proposition 5.12). So the ideals of Z are nZ where n ∈ Z and the ideals
of Z[

√
−1] are αZ[

√
−1] where α ∈ Z[

√
−1]. By definition of fractional ideals

(Definition 6.7), fractional ideals can be written as c−1a where a is an ideal of
the ring of integers we work with and c a non-zero element of the ring of integers.

Then the fractional ideals of Z are
a

b
Z where a, b ∈ Z and b 6= 0 (equivalent to

rZ where r ∈ Q (Example page 112 of [1])). The fractional ideals of Z[
√
−1] are

α

β
Z[
√
−1] where α, β ∈ Z[

√
−1] and β 6= 0.

Theorem 6.8. The non-zero fractional ideals of OK form an abelian group
under multiplication.

Proof. You can find a proof in [1] (Theorem 5.4 of [1]).

Theorem 6.9. Every non-zero ideal of OK can be written as a product of
prime ideals, uniquely up to the order of the factors.

Proof. You can find a proof in [1] (Theorem 5.5 of [1]).

Theorem 6.10. Let K be a number field of degree n with the ring of integers
OK = Z[θ] generated by θ ∈ OK . Given a rational prime p, suppose the
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minimum polynomial f of θ over Q gives rise to the factorization into irreducibles
over Z/pZ:

f = f
e1
1 ...f

er
r

where the bar denotes the natural map Z[X] → (Z/pZ)[X]. Then if fi ∈ Z[X]
is any polynomial mapping onto f i, the ideal

pi = 〈p〉+ 〈fi(θ)〉

is prime and the prime factorization of 〈p〉 in OK is

〈p〉 = p1
e1 ...pr

er

Proof. You can find a proof in [1] (Theorem 10.1 of [1]).

Exercise 5.2.
In Z[

√
−5], define the ideals p = 〈2, 1 +

√
−5〉, q = 〈3, 1 +

√
−5〉 and r =

〈3, 1−
√
−5〉. Prove that these are maximal ideals, hence prime. Show that

(i) p2 = 〈2〉

(ii) qr = 〈3〉

(iii) pq = 〈1 +
√
−5〉

(iv) pr = 〈1−
√
−5〉

Show that the factorizations of 6 given in the proof of Theorem 4.10 of [1] come
from two different groupings of the factorization into prime ideals 〈6〉 = p2qr.

Solution.
Proof of p is maximal. Let I be an ideal of Z[

√
−5] such that p  I. we want

to prove that I = Z[
√
−5]. Let α be in I but not in p. α = a + b

√
−5 where

a, b ∈ Z, then α− b(1+
√
−5) = a− b is in I because p ⊂ I but not in p because

if it was then α will be also in p (α = α− b(1 +
√
−5) + b(1 +

√
−5) ∈ p). Now

a− b ∈ Z, do the Euclidean division by 2, then a− b = 2q + r with r ∈ {0, 1},
but 0 is not possible because if we have a− b = 2q, then a− b would be in p but
we have just told that it was not possible. It follows that a − b = 2q + 1 then
1 = a − b − 2q ∈ I because 2 ∈ p ⊂ I. Hence 1 ∈ I, so I = Z[

√
−5]. It follows

that p is maximal, hence prime (Corollary 6.5).
Proof of q is maximal. We proceed with the same approach. The difference is
that the rest of Euclidean division a− b = 3q+ r is r = 1 or r = 2, then if r = 1
we have 1 = a− b− 3q ∈ I, and if r = 2, we have 1 = 3(q+ 1)− a+ b ∈ I. Then
we conclude in the same way than before.
Proof of r is maximal. We proceed with the same approach. The difference is
that we consider α + b(1 −

√
−5) = a + b instead of α − b(1 +

√
−5) = a − b.

The rest is in the same way than before.
Proof of p2 = 〈2〉. p2 = 〈4, 2(1 +

√
−5), (1 +

√
−5)2〉 and (1 +

√
−5)2 =

−4 + 2
√
−5 then we see that p2 ⊂ 〈2〉. For the other inclusion, we do assume
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that 2 is in p2 (Indeed 2 = 2(1 +
√
−5) − (−4 + 2

√
−5) − 4), it follows that

〈2〉 ⊂ p2, hence 〈2〉 = p2.
Proof of qr = 〈3〉. qr = 〈9, 3(1 +

√
−5), 3(1 −

√
−5), (1 +

√
−5)(1 −

√
−5)〉 =

〈9, 3 + 3
√
−5), 3− 3

√
−5), 6〉 then we see that qr ⊂ 〈3〉. For the other inclusion,

we assume that 3 is in qr (Indeed 3 = 9 − 6), it follows that 〈3〉 ⊂ qr, hence
〈3〉 = qr.
Proof of pq = 〈1 +

√
−5〉. pq = 〈6, 3(1 +

√
−5), 2(1 +

√
−5), (1 +

√
−5)〉 =

〈(1 +
√
−5)(1 −

√
−5), 3(1 +

√
−5), 2(1 +

√
−5), (1 +

√
−5)2〉 then we see that

pq ⊂ 〈1 +
√
−5〉. For the other inclusion, we assume that 1 +

√
−5 is in pq

(Indeed 1 +
√
−5 = 3(1 +

√
−5)− 2(1 +

√
−5)), it follows that 〈1 +

√
−5〉 ⊂ pq,

hence 〈1 +
√
−5〉 = pq.

Proof of pr = 〈1 −
√
−5〉. pr = 〈6, 3(1 +

√
−5), 2(1 −

√
−5), (1 +

√
−5)(1 −√

−5)〉 = 〈(1+
√
−5)(1−

√
−5), (−2+

√
−5)(1−

√
−5), 2(1−

√
−5)〉 then we see

that pr ⊂ 〈1−
√
−5〉. For the other inclusion, we assume that 1−

√
−5 is in pr

(Indeed 1−
√
−5 = (1+

√
−5)(1−

√
−5)−(−2+

√
−5)(1−

√
−5)−2(1−

√
−5)),

it follows that 〈1−
√
−5〉 ⊂ pr, hence 〈1−

√
−5〉 = pr.

Then we have 〈6〉 = p2qr and if we consider 〈6〉 = p2.qr = 〈2〉〈3〉, we find
6 = 2.3, and if we consider 〈6〉 = pq.pr = 〈1 +

√
−5〉〈1 −

√
−5〉, we find

6 = (1 +
√
−5)(1−

√
−5). So we understand the factorizations of 6 in the proof

of Theorem 4.10 of [1].

6.2 Norm

Definition 6.11 (Norm). Let K be a number field. Let a be an ideal of the
ring of integers OK . We define the norm of a to be N(a) = |OK/a|.

Proposition 6.12. If a and b are non-zero ideals of OK , then N(ab) =
N(a)N(b).

Proof. You can find a proof in [1] (Theorem 5.10 of [1]). There is an easy case:
if a and b are coprime then we use the Chinese Remainder Theorem so OK/ab '
OK/a×OK/b. It follows thatN(ab) = |OK/ab| = |OK/a|.|OK/b| = N(a)N(b).

Exercise 5.3.
Calculate the norms of the ideals mentioned in Exercise 5.2 and check multi-
plicativity.

Solution.
By definition, N(p) = |Z[

√
−5]/p| = |Z[

√
−5]/〈2, 1 +

√
−5〉| = |(Z[

√
−5]/〈1 +√

−5〉)/〈2〉| = |(Z/6Z)/〈2〉| = |Z/〈2, 6〉| = |Z/2Z| = 2 because 〈2, 6〉 = 〈2〉.
The only thing that deserves a proof is Z[

√
−5]/〈1 +

√
−5〉 ' Z/6Z. We will

use the Correspondence Theorem for Ideals, Z[
√
−5]/〈1 +

√
−5〉 = (Z[X]/〈X2+

5〉)/〈1 +
√
−5〉 = (Z[X]/〈X2+5〉)/〈1+X〉 = Z[X]/〈X2+5, 1+X〉 = (Z[X]/〈1+
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X〉)/〈X2 + 5〉 = Z/〈6〉 = Z/6Z because X2 + 5 = (X + 1)2 − 2(X + 1) + 6 ≡
6 [X+1]. We have to prove that Z[X]/〈X2+5〉 ' Z[

√
−5] and Z[X]/〈1+X〉 ' Z.

Proof of Z[X]/〈X2 + 5〉 ' Z[
√
−5] : Take the morphism ϕ : Z ↪→ Z[

√
−5]

(inclusion). Then take the evaluation map ϕX→
√
−5 : Z[X] → Z[

√
−5], it

is surjective, and we want to prove that Ker(ϕX→
√
−5) = 〈X2 + 5〉, to use

the First Isomorphism Theorem. ϕX→
√
−5(X2 + 5) =

√
−5

2
+ 5 = 0, hence

X2+5 ∈ Ker(ϕX→
√
−5) and the smallest ideal that contains X2+5 is included in

Ker(ϕX→
√
−5) because Ker(ϕX→

√
−5) is an ideal, so 〈X2 +5〉 ⊂ Ker(ϕX→

√
−5),

conversely let P be in Ker(ϕX→
√
−5), use Euclidean division by X2 + 5, then

P = Q(X2 + 5) +R with R(X) = a+ bX, but we know that 0 = ϕX→
√
−5(P ) =

ϕX→
√
−5(R) = a + b

√
5, it follows that R = 0, since a = b = 0. Then P ∈

〈X2 +5〉, so Ker(ϕX→
√
−5) ⊂ 〈X2 +5〉. Now Ker(ϕX→

√
−5) = 〈X2 +5〉 and, by

the First Isomorphism Theorem, Z[X]/ Ker(ϕX→
√
−5) ' Z[

√
−5]. The result

follows.
Proof of Z[X]/〈X + 1〉 ' Z : Take the morphism ϕ : Z ↪→ Z (inclusion). Then
take the evaluation map ϕX→−1 : Z[X] → Z, it is surjective, and we want to
prove that Ker(ϕX→−1) = 〈X + 1〉, to use the First Isomorphism Theorem.
ϕX→−1(X + 1) = −1 + 1 = 0, hence 〈X + 1〉 ⊂ Ker(ϕX→−1), conversely let P
be in Ker(ϕX→−1), use Euclidean division by X + 1, then P = Q(X + 1) + a
with a ∈ Z, but we know that 0 = P (−1) = a, it follows that a = 0. Then
P ∈ 〈X + 1〉, so Ker(ϕX→−1) ⊂ 〈X + 1〉. Now Ker(ϕX→−1) = 〈X + 1〉 and, by
the First Isomorphism Theorem, Z[X]/ Ker(ϕX→−1) ' Z. The result follows.
Then, N(q) = |Z[

√
−5]/q| = |Z[

√
−5]/〈3, 1+

√
−5〉| = |(Z[

√
−5]/〈1+

√
−5〉)/〈3〉| =

|Z/〈3, 6〉| = |Z/3Z| = 3 and N(r) = |Z[
√
−5]/r| = |Z[

√
−5]/〈3, 1 −

√
−5〉| =

|(Z/〈3, 6〉| = |Z/3Z| = 3. (This is almost the same proof than above)
N(p2) = N(〈2〉) = N(2) = 4 = N(p).N(p) (Corollary 5.9), N(qr) = N(〈3〉) =
N(3) = 9 = N(q).N(r). N(pq) = N(〈1 +

√
−5〉) = N(1 +

√
−5) = 1 + 5 = 6 =

N(p).N(q), N(pr) = N(〈1−
√
−5〉) = N(1−

√
−5) = 1 + 5 = 6 = N(p).N(r),

N(〈6〉) = N(6) = 62 = 36 = 22.3.3 = N(p).N(p).N(q).N(r).

Theorem 6.13. (a) Every ideal a of OK with a 6= 0 has a Z−basis {α1, ..., αn}
where n is the degree of K,

(b) We have N(a) =
∣∣∣∆[α1, ..., αn]

∆

∣∣∣1/2 where ∆ is the discriminant of K.

Proof. You can find a proof in [1] (Theorem 5.8 of [1]).

Corollary 6.14. If a = 〈a〉 is a principal ideal then N(a) = |N(a)|.

Proof. A Z−basis for a is given by {aω1, ..., aωn} where {aω1, ..., aωn} is an

integral basis of OK . Use the Theorem 6.13, N(a) =
∣∣∣∆[α1, ..., αn]

∆

∣∣∣1/2 =

|det(σi(aωj))
2

det(σi(ωj))2
|1/2 = |det(σi(a)σi(ωj))

det(σi(ωj))
| = |

∏
k σk(a)det(σi(ωj))

det(σi(ωj))
| = |N(a)|.
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Exercise 5.4.
Prove that the ideals p, q, r of Exercise 5.2 cannot be principal.

Solution.
If p was principle then p = 〈l〉 where l = a + b

√
−5 with a, b ∈ Z and N(p) =

|N(l)| = a2 + 5b2 (Corollary 6.14). But we have seen that N(p) = 2 in Exercise
5.3 and a2 + 5b2 = 2 has no solution, since it implies b = 0 and a2 = 2 has no
solution in Z. For q and r, use the same argue, because a2 + 5b2 = 3 has no
solution either.

We will say that if b ⊂ a then a divides b (or a | b) and if a is an element
of a then a divides a (or a | a).

Theorem 6.15. Let a be an ideal of OK , a 6= 0.

(a) If N(a) is prime, then so is a.

(b) N(a) is an element of a, or equivalently a | N(a).

(c) If a is prime it divides exactly one rational prime p, and then N(a) = pm

where m 6 n, the degree of K.

Proof. You can find a proof in [1] (Theorem 5.11 of [1]).

Theorem 6.16. Let a 6= 0 be an ideal of OK , and 0 6= β ∈ a. Then there
exists α ∈ a such that a = 〈α, β〉.

Proof. You can find a proof in [1] (Theorem 5.14 of [1])

Remark 6.17. Hence every ideal of OK have at most 2 generators.

Theorem 6.18. Factorization of elements of OK into irreducibles is unique if
and only if every ideal of OK is principal.

Proof. You can find a proof in [1] (Theorem 5.15 of [1]).

Exercise 5.12.
Find all the ideals in Z[

√
−5] which contain the element 6.

Solution.
We will use the Correspondence Theorem for Ideals, there is a bijection be-
tween ideals of Z[

√
−5] that contain 6 and the ideals of Z[

√
−5]/〈6〉. Look at

Z[
√
−5]/〈6〉 ' (Z[X]/〈X2+5〉)/〈6〉 ' (Z/6Z)[X]/〈X2+5〉 ' (Z/2Z)[X]/〈X2 + 5〉×

(Z/3Z)[X]/〈X2 + 5〉, by the Chinese Remainder Theorem and the same ideas
of Exercise 5.3.
Study (Z/2Z)[X]/〈X2 + 5〉. (Z/2Z)[X]/〈X2 + 5〉 ' (Z/2Z)[X]/〈X2 + 1〉 '
(Z/2Z)[X]/〈(X + 1)2〉 ' (Z/2Z)[Y ]/〈Y 2〉 by using the morphism X 7→ X + 1.
There are 3 ideals of (Z/2Z)[Y ]/〈Y 2〉, 〈0〉, 〈1〉 and 〈X〉. (〈X + 1〉 is equal to

30



〈1〉 because (X + 1)(X + 1) = X2 + 2X + 1 = X2 + 1 in (Z/2Z)[X] and equal
to 1 in (Z/2Z)[X]/〈X2〉)
Study (Z/3Z)[X]/〈X2 + 5〉. (Z/3Z)[X]/〈X2+2〉 ' (Z/3Z)[X]/〈(X+1)(X+2)〉
and while using the Chinese Remainder Theorem (because (X + 2)− (X + 1) =
1, then 〈X + 1〉 + 〈X + 2〉 = 〈1〉), we have (Z/3Z)[X]/〈(X + 1)(X + 2)〉 '
(Z/3Z)[X]/〈X + 1〉× (Z/3Z)[X]/〈X + 2〉 ' Z/3Z×Z/3Z but Z/3Z is a field so
the only ideals are 〈0〉 and 〈1〉.
Then there are 12 ideals of Z[

√
−5] which contain the element 6. (12 = 3.2.2).

They are : Z[
√
−5], 〈6〉, 〈2〉, 〈3〉, 〈1 +

√
−5〉, 〈1−

√
−5〉, 〈2, 1 +

√
−5〉, 〈6, 3(1 +√

−5)〉, 〈3, 1 +
√
−5〉, 〈3, 1−

√
−5〉, 〈6, 2(1 +

√
−5)〉, 〈6, 2(1−

√
−5)〉. We find it

while using the prime ideals p = 〈2, 1+
√
−5〉, q = 〈3, 1+

√
−5〉, r = 〈3, 1−

√
−5〉.

6.3 How to make an ideal principal

We will work with several rings, hence write 〈x〉R to denote the ideal generated
by x in the ring R.

Theorem 6.19. Let K be a number field, a an ideal in the ring of integers OK

of K. Then there exists an algebraic integer κ such that for O′ = OK(κ) the
ring of integers of K(κ), we have:

(i) 〈κ〉O′ = 〈a〉O′

(ii) 〈κ〉O′ ∩OK = a

(iii) If B is the ring of all algebraic integers, then 〈κ〉B ∩K = a.

Proof. You can find a proof in [1] (Theorem 9.10 of [1]).

Theorem 6.20. Let K be a number field with integers OK , then there exists
a number field L ⊇ K with ring of integers OL such that for every ideal a in
OK we have:

(i) 〈a〉OL
is a principal idea,

(ii) 〈a〉OL
∩OK = a.

Proof. You can find a proof in [1] (Theorem 9.12 of [1]).

6.4 Unique factorization of elements in an extension ring

We have seen that there is always factorization into irreducibles in a noetherian
ring but not always the unicity of that factorization. Then we try to find bigger
rings where there is unique factorization.
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Theorem 6.21. Suppose K is a number field with integers OK . Then there
exists an extension field L ⊇ K with integers OL such that every non-zero,
non-unit a ∈ OK has a factorization

a = p1p2...pr (pi ∈ OL)

where the pi are non-units in OL, and the following property is satisfied:
Given any factorization in OK : a = a1...as where the ai are non units in OK ,
there exist integers 1 6 n1 < ...ns = r and a permutation π of {1, ..., r} such
that the following elements are associates in OL:

a1, pπ(1)pπ(2)...pπ(n1)

. . . . . . . . . . . . . . .
as, pπ(ns−1+1)pπ(ns−1+2)...pπ(ns)

Proof. You can find a proof in [1] (Theorem 9.13 of [1]).

The following exercises are not a consequence of the three last theorems
because Z[

√
2,
√
−3] is not the ring of integers of Q(

√
2,
√
−3) and Z[

√
−5,
√

2]
is not the ring of integers of Q(

√
−5,
√

2). But we find an extension ring where
respectively 6 and 14 have unique factorization and all the factorizations in
Z[
√
−6] and Z[

√
−10] come from different groupings of the element of the unique

factorization.

Exercise 5.6.
In Z[

√
−6] we have 6 = 2.3 = (

√
−6)(−

√
−6). Factorize these elements further

in the extension ring Z[
√

2,
√
−3] as 6 = (−1)

√
2
√

2
√
−3
√
−3. Show that if I1

is the principal ideal in Z[
√

2,
√
−3] generated by

√
2, then p1 = I1∩Z[

√
−6] =

〈2,
√
−6〉. Demonstrate that p1 is maximal in Z[

√
−6], hence prime; and find

another prime ideal p2 in Z[
√
−6] such that 〈6〉 = p2

1p
2
2.

Solution.
We want to prove I1 ∩ Z[

√
−6] = 〈2,

√
−6〉 where I1 is the principal ideal

in Z[
√

2,
√
−3] generated by

√
2. If α ∈ 〈2,

√
−6〉 then α ∈ Z[

√
−6] because

〈2,
√
−6〉 is an ideal of Z[

√
−6]. 2 =

√
2
√

2 ∈ I1 and
√
−6 =

√
2
√
−3 ∈ I1.

Then 〈2,
√
−6〉 ⊂ I1. It follows that 〈2,

√
−6〉 ⊂ I1 ∩ Z[

√
−6]. Conversely, if

α ∈ I1 then α =
√

2(a+ b
√

2 + c
√
−3 + d

√
−6) = a

√
2 + 2b+ c

√
−6 + 2d

√
−3,

and to have α ∈ Z[
√
−6] then a = d = 0 so α = 2b + c

√
−6 ∈ 〈2,

√
−6〉. It

follows that I1 ∩ Z[
√
−6] = 〈2,

√
−6〉.

To prove that p1 is maximal, it is the same approach than in Exercise 5.2, let I
such that p1  I, we want to prove that I = Z[

√
−6]. Let α be in I but not in

p1. α = a + b
√
−6 then α − b

√
−6 = a and α − b

√
−6 are still in I but not in

p1 otherwise α would be in p1. Then use Euclidean division by 2. a = 2q + r
and r = 1 otherwise a would be in p1. Then 1 = α− b

√
−6− 2q ∈ I, it follows

that I = Z[
√
−6]. We just proved that p1 is maximal and then prime because

all ideal maximal are prime (Corollary 6.5).
We can use the same operation with p2 = I2 ∩Z[

√
−6] = 〈3,

√
−6〉 where I2 is

the principal ideal in Z[
√

2,
√
−3] generated by

√
−3.

32



Then p2
1 = 〈2,

√
−6〉〈2,

√
−6〉 = 〈4,−6, 2

√
−6〉 ⊂ 〈2〉 and p2

2 = 〈3,
√
−6〉〈3,

√
−6〉 =

〈9,−6, 3
√
−6〉 ⊂ 〈3〉. It follows that p2

1p
2
2 ⊂ 〈6〉. Conversely, 54 = −3.3.

√
−6.
√
−6 ∈

p2
1p

2
2 and 24 = −2.2.

√
−6
√
−6 ∈ p2

1p
2
2, then 54− 2× 24 = 6 ∈ p2

1p
2
2, it follows

that 〈6〉 ⊂ p2
1p

2
2 and now 〈6〉 = p2

1p
2
2.

Exercise 5.7.
Factorize 14 = 2.7 = (2 +

√
−10)(2 −

√
−10) further in Z[

√
−5,

√
2] and by

intersecting appropriate ideals with Z[
√
−10], factorize the ideal 〈14〉 into prime

(maximal) ideals in Z[
√
−10].

Solution.
We remind that Z[

√
−10] is well a ring of integers (Theorem 4.3) 14 =

√
2.
√

2.(
√

2+√
−5).(

√
2 −
√
−5) is a factorization in Z[

√
−5,

√
2]. Then we define p1 =

I1 ∩ Z[
√
−10] = 〈2,

√
−10〉 where I1 is the principal ideal in Z[

√
−5,

√
2] gen-

erated by
√

2, p2 = I2 ∩ Z[
√
−10] = 〈2 +

√
−10,−5 +

√
−10〉 where I2 is the

principal ideal in Z[
√
−5,
√

2] generated by
√

2+
√
−5 and p3 = I3∩Z[

√
−10] =

〈2−
√
−10, 5 +

√
−10〉 where I3 is the principal ideal in Z[

√
−5,

√
2] generated

by
√

2−
√
−5. We assume that 〈14〉 = p2

1p2p3.
For p1 is the same proof than Exercise 5.6 while replacing

√
−6 by

√
−10 and√

−3 by
√
−5. And we have that p1 is maximal, hence prime.

For p2, we have 2 +
√
−10 ∈ Z[

√
−10] and −5 +

√
−10 ∈ Z[

√
−10]. Then

2+
√
−10 =

√
2(
√

2+
√
−5) and −5+

√
−10 =

√
−5(
√

2+
√
−5), it follows that

〈2 +
√
−10,−5 +

√
−10〉 ⊂ I2 ∩ Z[

√
−10]. Conversely, α = (

√
2 +
√
−5)(a +

b
√

2 + c
√
−5 + d

√
−10) = (2b− 5c) + (a− 5d)

√
2 + (a+ 2d)

√
−5 + (b+ c)

√
−10

where a, b, c, d ∈ Z. Then a = d = 0 because α have to be in Z[
√
−10]. Then

α = b(2 +
√
−10) + c(−5 +

√
−10) ∈ 〈2 +

√
−10,−5 +

√
−10〉. It follows that

I2 ∩ Z[
√
−10] ⊂ 〈2 +

√
−10,−5 +

√
−10〉. And we have the equality.

To prove that p2 is prime, we use Theorem 6.15. So we want to prove that N(p2)
is prime. We use the same ideas than Exercise 5.3. N(p2) = |Z[

√
−10]/p2| =

|Z[
√
−10]/〈2+

√
−10,−5+

√
−10〉| = |(Z[

√
−10]/〈−5+

√
−10〉)/〈2 +

√
−10〉| =

|(Z[X]/〈X2 + 10〉/〈−5 +
√
−10〉)/〈7〉| = |(Z[X]/〈X2 + 10〉/〈X − 5〉)/〈7〉| =

|(Z[X]/〈X − 5〉/〈X2 + 10〉)/〈7〉| = |(Z/〈35〉)/〈7〉| = |Z/〈7〉| = 7. Because

2 +
√
−10 = 2+5 in (Z[

√
−10]/〈−5+

√
−10〉) since−5+

√
−10 ≡ 0, −5 +

√
−10 =

X − 5 in Z[X]/〈X2 + 10〉 since
√
−10 ≡ X, X2 + 10 = 35 in Z[X]/〈X − 5〉 be-

cause X ≡ 5 and 〈35, 7〉 = 〈7〉. It follows that p2 is prime because 7 is also a
prime.
We can do the same proof for p3, while using the same ideas.
Now we have to prove that 〈14〉 = p2

1p2p3 since they are all primes. p2
1 =

〈4,−10, 2
√
−10〉, p2p3 = 〈14,−35, 7

√
−10〉 then p2

1p2p3 = 〈56, 140, 350, 28
√
−10, 70

√
−10〉.

But 14 = 350 − 2 × 140 − 56, it follows that 14 ∈ p2
1p2p3. Now we use

the norm, we have seen that N(p1) = 2, N(p2) = 7,N(p3) = 7, hence
N(p2

1p2p3) = N(p1)2N(p2)N(p3) = 22.7.7 = 142 (Proposition 6.12). And
N(〈14〉) = |N(14)| = 142 (Corollary 6.14). It follows that 〈14〉 = p2

1p2p3

because they have the same norm and we have an inclusion.
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