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Collisional Invariants

Statement 1. We consider the following elastic collision dynamics: two particles of velocities v € R?
and v, € R? may collide, and their velocities v € R® and v/ € R? after the collision are given in
terms of (v, v,) by the relations

vt v =0 + 0 (1a)
[0 + Jos? = |v'|? + [vi]? (1b)

1
loc

$(v) + ¢(vs) = $(v') + (%) (2)

for all v, v, in R and for all (¢v/,v}) € (R®)? linked to (v,v«) by the relations (1), is of the form

The goal here is to prove the following result: Any function ¢ € L} (R3) satisfying

d(v) = Alv|* + Bw + C, for almost all v € R, (3)

where A € R, B € R?, C € R are constants.
Consider then a function ¢ € L} (R®) satisfying (2).

loc

Question 1. Let (v,v,,v",v}) € (R¥)?* satisfying (1), and let u = v/ — v, usx = v, —v. Show that
u.uy = 0.

Solution 1. We have u =v' — v and u, = v, —v = v, — v’ by (la).

Recall that v, —v}, = v'—v by (1a) and, since [v+v,|? = |[v/+v4|? (1a) and [v]|?+|vi|? = [v/|>+|v]|?
by (1b), we have v.v, = v’ .v.

Therefore

=v'—v

=v. (v —v)—v.(v —v)=0

Therefore we have the expected result: w.u’ = 0.

Question 2. Let v € R? be given, and set

Y(u) = dp(v+u) — d(v), Yu e R

Prove that
@ZJ(’LL) + %ZJ(U*) = ’(/)(’LL + u*),

for all u,u, € R3 such that w.us = 0.




Solution 2. Let take V = v 4+ u and Vi, = v + u,. We use the expression (2) for V, V, and
Vi=v+u+us, V] =v.
(V) + (V) = (V') + o(V])

Indeed, we have V +V, =v+u+v+us =v+u+u, +v="V+V/ and

v+ ul? + v+ uel? = [0 + |ul® + Ju)* + [v]* + 200+ 20,
v+ u 4 ue|? + [v]2 = |02 + |ul? + [ue? + [v]? + 200+ 200, + 2u.u,

There is an equality because u.u, = 0 by assumption.
Therefore we are allowed to write

P(v+u) + o+ u) = ¢(v +u+us) + (v)
(v +u) — d(v) + d(v+ us) — d(v) = d(v + u + uy) — ¢(v) while subtracting 2¢(v)
Y(u) + P (us) = ¥ (u + uy) by definition of v

Therefore we have the expected result.

Question 3. We now decompose 9 as the sum of its even part 1, and its odd part ; :

uplu) = LTI ) P90

Prove that ¢,(u) depends only on |ul.

Solution 3. Let take two vectors u and v with the same norm |u|? = |v|?. We want to prove that

Yp(u) = 1p(v), then we will have that ¢, depends only on the norm of u.

We use the Question 2, with U = 4470 and U, = +2 v

. Indeed, we have

1 1
UU, = :I:Z(u — 'U)(u + U) = :I:Z(‘UF _ |U|2) = 0.

Then we have

w(u)—w<ugv> +¢<U;U>
v = (5) e (-5
v =v (5%) v (45
wieo =u (450) +u (-15)

It follows that
2¢p(u) = P(u) + Y(—u) = P(v) + P(—v) = 24 (v)

Therefore we have the expected result.
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Question 4. Set
Yp(w) = O([ul?).

Prove that
O(x+y) =0(x) +6(y), foralz>0,y=>0.

Solution 4. Let take z,y > 0 and two vectors u and v such that |u|?> = z, |[v|?> = y and w.v = 0.

We have

2(0(x) + 0(y)) = 2(¢p(u) + 1p(v))
= ¥(u) + ¥(=u) + 9(v) + ¢(-v)
= ¢(u+v) +¥(—u—v) by Question 2 and u.v =0

and
20(z + y) = 26(|ul® + [v[*)
= 260(|u + v|?) because u.v =0

= 2¢p(u + )
=P(u+v) +¢(-u—v)

Then we have the equality and while dividing by 2, we obtain the expected result

O(z+y) =6(x)+0(y).

Question 5. Check that s — 4/sf(s) is locally integrable on R, and deduce that the function w
defined by

w(x) = /1 O(tx)/tdt

0

is continuous on R} .

Solution 5. Step 1 : We want to show that s — /s0(s) € L] .(R+).

e We know that ¢ € L} (R%), then ¢ € L}, (R?).

Indeed, for all K compact of R?, we have

[ Wwlau< [ oo+ wl+ o)
K K

</' 16(0)|do + |K||6(v)] < +oo0
K—v

because K — v := {x — v,z € K} is compact.!

'we used the change of variables : o = v +u




e We know that ¢ € L{. (R®), then 1, € L. (R?).

loc loc

Indeed for all K compact of R3, we have
1
[ tn(wldu <5 [ (o) +1o(-u))du
K K
1
<5 [Uo@laus [ jotodr < +o0

because —K := {—xz,2 € K} is compact.’

e We know that v, € L] (R?), then s+ /s0(s) € L. (Ry).

loc loc

Indeed for all K compact of R, we have
/ Vs|0(s)|ds = / v|6(v?)|2vdv while changing s into v?
K K
:2/ 10(v?)|v2dv
K
=20 [ [6((uf*)jdu
K
_ 20/ by ()|t < +00
K

because K and K are compact. We use a spherical change of coordinates, the constant C
represents the integrals on ¢ and ¢, the angles in the change of coordinates.

1
Step 2 : We want to show that w(z) = / 6(tx)v/'tdt is continuous on R},
0
We have

w(x) = /01 O (tx)V/'tdt

1 x
= =7 / 0(s)v/sds while using the change of variables : u = tx
T 0

We use the dominated convergence theorem :

e s+ /s6(s) is measurable for all z € R} by assumption on 6.
1
o Wl[o7x](s)\/§9(s) is continuous for almost all s €]0, +o00].
x

e For all compact [a,b] C]0, 4+o00[, we have

0(s)+\/s 0(s)v/'s
Wz € [a,b], Vs €]0, +od], ‘1[0@(903)/2[ S| Loy (a?,)/{
eLL([0,b))

1
It follows that w : x +— / 6(tx)v/tdt is continuous on R} .
0

2we used the change of variables : ¢ = —u



Question 6. Prove that w(z +y) = w(z) + w(y), Ve > 0,Vy > 0, and that there exists a constant
C such that w(w) = Cx for all z > 0.

Solution 6. Step 1 : Prove that w(z +y) = w(z) + w(y), Vo > 0,Vy > 0.
For all z > 0 and y > 0, we have

1
w(x+y) = /0 0(t(x +y))Vtdt

= /1(0(tm) + H(ty))\/idt while using Question 4
0
= w(@) + w(y)

Step 2 : Prove that there exists a constant C' such that w(w) = Cz for all z > 0.
1

We have w(0) = 0. Indeed, w(0) = / 0(0)Vtdt = 0 because A(0) = 0, since #(0+0) = 6(0)+6(0).

0
By induction, we have that w(n) =w(l+1+---4+1) =w(l) +w(l) +- - +w(l) = nw(l) for all
n € N.

Then, we have qw(1) = w(q) = w (pq> = pw < ) for all p € N*, ¢ € N. It follows that
p q

()0

Since w is continuous and Q is dense in R, we have
w(r) = zw(l), Vo ecRT

We have the expected result, with C' = w(1).

Question 7. Deduce that there exists a constant A such that ¥, (u) = Alu|? for almost all u € R3.

Solution 7. By Question 6, since w(z) = Cx, we know that w is differentiable.
1 1
=C = / 0' (tz)t\/tdt = / 0’ (tz)t3/2dt
0 0

O(tx)

By integration by parts with u(t) = and v(t) = t3/2, we have

1 1
C= / 0 (tx)t3/2dt = [ (tz) t3/2} bt
0
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O(x) = ng

It follows that
Yp(u) = 0(Jul®) = Alu?,  for almost all u € R?

where A = gC.




Question 8. Our aim is now to determine the odd part ;. To this purpose, let e be a unit vector
in R? annd set 0;(x) = 1;(ze),Vx > 0. Show that 0; satisfies

O;(x +y) =60;(z) +0;(y), Yx>0,Yy>0.

(write 1;((z + y)e) = 1;(xe + ze; + ye — ze1) where e; is unitary and orthogonal to e, and where z
is suitably choosen in terms of z, y and e.)

Solution 8. Let take z,y € Rf. Let take e; a unit vector such that e.e; = 0 and 2z := /zy. We
have

20i(x +y) = 2¢i((x + y)e)
= 2¢;(ze + ye)
= 2¢;(ze + ze; + ye — zey)
= (xze + ze; +ye — zey) — Y(—xe — zey — ye + zep)
= (xze + ze1) + P(ye — ze1) — Y(—xe — ze1) — Y(—ye + zeq)
= ¢(we) + ¥(ze1) + P(ye) + (—zer) — Pp(—we) — P(—ze1) — Y(—ye) — Y(ze1)
= ¢(ze) + ¥ (ye) — p(—we) — p(—ye)
= 2¢;(we) + 29 (ye)
= 2(0i() + 0i(y))
We use Question 2 twice, because (ze+zey).(ye—zey) = zyle|>+2zyer.e—xze.e1—22|e1|? = zy—22 =0
and (ze).(ze1) = zz(e.ep) = 0. It follows that we have 0;(z +y) = 6;(x) + 0;(y), Vx> 0,Vy > 0.

Question 9. Deduce that there exists a constant B € R3 such that 1;(u) = B.u for almost all
u € R3.

Solution 9. We use the same arguments that for Questions 4, 5, 6, 7, then there exists a constant
Be such that for all x > 0, 6;(z) = Bex (The constant depends only on the unit vector e).

Let take u = (ug,uo,u3) € R® and e; = (1,0,0),ea = (0,1,0),e3 = (0,0,1). We have ej.ex =
€1.€3 — €2.€3 = 0.

3
vi(u) =i | Y uje;
j=1

3
= Z Yi(uje;) by Question 2

j=1

3
= Z Hi,ej (u])
j=1

3

= Z Be; u;
j=1

= B.u

where B = (B, , Be,, Be,)-
Therefore we have the expected result.




Question 10. Conclude.

Solution 10. By definition of v; and 1), and Questions 7 and 9, we have
P(u) = Pp(u) + ¢i(u) = Alul> + B
But by definition of v, we have

d(u) = Y (u) + ¢(0) with v =0
= Aju* + Bu+C

because we use a ¢ well-defined everywhere.




