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Collisional Invariants

Statement 1. We consider the following elastic collision dynamics: two particles of velocities v ∈ R3

and v∗ ∈ R3 may collide, and their velocities v′ ∈ R3 and v′∗ ∈ R3 after the collision are given in
terms of (v, v∗) by the relations

v + v∗ = v′ + v′∗ (1a)

|v|2 + |v∗|2 = |v′|2 + |v′∗|2 (1b)

The goal here is to prove the following result: Any function φ ∈ L1
loc(R

3) satisfying

φ(v) + φ(v∗) = φ(v′) + φ(v′∗) (2)

for all v, v∗ in R3 and for all (v′, v′∗) ∈ (R3)2 linked to (v, v∗) by the relations (1), is of the form

φ(v) = A|v|2 +B.v + C, for almost all v ∈ R3, (3)

where A ∈ R, B ∈ R3, C ∈ R are constants.
Consider then a function φ ∈ L1

loc(R
3) satisfying (2).

Question 1. Let (v, v∗, v
′, v′∗) ∈ (R3)4 satisfying (1), and let u = v′ − v, u∗ = v′∗ − v. Show that

u.u∗ = 0.

Solution 1. We have u = v′ − v and u∗ = v′∗ − v = v∗ − v′ by (1a).
Recall that v∗−v′∗ = v′−v by (1a) and, since |v+v∗|2 = |v′+v′∗|2 (1a) and |v|2+|v∗|2 = |v′|2+|v′∗|2

by (1b), we have v.v∗ = v′.v′∗.
Therefore

u.u∗ = (v′ − v).(v∗ − v′)
= v′.v∗ − v.v∗︸︷︷︸

=v′.v′∗

−(v′ − v).v′

= v′.(v∗ − v′∗︸ ︷︷ ︸
=v′−v

)− (v′ − v).v′

= v′.(v′ − v)− v′.(v′ − v) = 0

Therefore we have the expected result: u.u′ = 0.

Question 2. Let v ∈ R3 be given, and set

ψ(u) = φ(v + u)− φ(v), ∀u ∈ R3.

Prove that
ψ(u) + ψ(u∗) = ψ(u+ u∗),

for all u, u∗ ∈ R3 such that u.u∗ = 0.
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Solution 2. Let take V = v + u and V∗ = v + u∗. We use the expression (2) for V , V∗ and
V ′ = v + u+ u∗, V

′
∗ = v.

φ(V ) + φ(V∗) = φ(V ′) + φ(V ′∗)

Indeed, we have V + V∗ = v + u+ v + u∗ = v + u+ u∗ + v = V ′ + V ′∗ and

|v + u|2 + |v + u∗|2 = |v|2 + |u|2 + |u∗|2 + |v|2 + 2v.u+ 2v.u∗

|v + u+ u∗|2 + |v|2 = |v|2 + |u|2 + |u∗|2 + |v|2 + 2v.u+ 2v.u∗ + 2u.u∗

There is an equality because u.u∗ = 0 by assumption.
Therefore we are allowed to write

φ(v + u) + φ(v + u∗) = φ(v + u+ u∗) + φ(v)

φ(v + u)− φ(v) + φ(v + u∗)− φ(v) = φ(v + u+ u∗)− φ(v) while subtracting 2φ(v)

ψ(u) + ψ(u∗) = ψ(u+ u∗) by definition of ψ

Therefore we have the expected result.

Question 3. We now decompose ψ as the sum of its even part ψp and its odd part ψi :

ψp(u) =
ψ(u) + ψ(−u)

2
, ψi(u) =

ψ(u)− ψ(−u)

2
.

Prove that ψp(u) depends only on |u|.

Solution 3. Let take two vectors u and v with the same norm |u|2 = |v|2. We want to prove that
ψp(u) = ψp(v), then we will have that ψp depends only on the norm of u.

We use the Question 2, with U = ±u− v
2

and U∗ = ±u+ v

2
. Indeed, we have

U.U∗ = ±1

4
(u− v).(u+ v) = ±1

4
(|u|2 − |v|2) = 0.

Then we have

ψ(u) = ψ

(
u− v

2

)
+ ψ

(
u+ v

2

)
ψ(−u) = ψ

(
v − u

2

)
+ ψ

(
−u+ v

2

)
ψ(v) = ψ

(
v − u

2

)
+ ψ

(
u+ v

2

)
ψ(−v) = ψ

(
u− v

2

)
+ ψ

(
−u+ v

2

)
It follows that

2ψp(u) = ψ(u) + ψ(−u) = ψ(v) + ψ(−v) = 2ψp(v)

Therefore we have the expected result.
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Question 4. Set
ψp(u) = θ(|u|2).

Prove that
θ(x+ y) = θ(x) + θ(y), for all x > 0, y > 0.

Solution 4. Let take x, y > 0 and two vectors u and v such that |u|2 = x, |v|2 = y and u.v = 0.
We have

2(θ(x) + θ(y)) = 2(ψp(u) + ψp(v))

= ψ(u) + ψ(−u) + ψ(v) + ψ(−v)

= ψ(u+ v) + ψ(−u− v) by Question 2 and u.v = 0

and

2θ(x+ y) = 2θ(|u|2 + |v|2)
= 2θ(|u+ v|2) because u.v = 0

= 2ψp(u+ v)

= ψ(u+ v) + ψ(−u− v)

Then we have the equality and while dividing by 2, we obtain the expected result

θ(x+ y) = θ(x) + θ(y).

Question 5. Check that s 7→
√
sθ(s) is locally integrable on R+, and deduce that the function ω

defined by

ω(x) =

∫ 1

0
θ(tx)

√
tdt

is continuous on R+
∗ .

Solution 5. Step 1 : We want to show that s 7→
√
sθ(s) ∈ L1

loc(R+).

• We know that φ ∈ L1
loc(R

3), then ψ ∈ L1
loc(R

3).

Indeed, for all K compact of R3, we have∫
K
|ψ(u)|du 6

∫
K

(|φ(v + u)|+ |φ(v)|)du

6
∫
K−v
|φ(σ)|dσ + |K||φ(v)| < +∞

because K − v := {x− v, x ∈ K} is compact.1

1we used the change of variables : σ = v + u
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• We know that ψ ∈ L1
loc(R

3), then ψp ∈ L1
loc(R

3).

Indeed for all K compact of R3, we have∫
K
|ψp(u)|du 6

1

2

∫
K

(|φ(u)|+ |φ(−u)|)du

6
1

2

∫
K

(|φ(u)|du+

∫
−K
|φ(σ|)dσ < +∞

because −K := {−x, x ∈ K} is compact.2

• We know that ψp ∈ L1
loc(R

3), then s 7→
√
sθ(s) ∈ L1

loc(R+).

Indeed for all K compact of R+, we have∫
K

√
s|θ(s)|ds =

∫
K̃
v|θ(v2)|2vdv while changing s into v2

= 2

∫
K̃
|θ(v2)|v2dv

= 2C

∫
K̂
|θ(|u|2)|du

= 2C

∫
K̂
|ψp(u)|du < +∞

because K̃ and K̂ are compact. We use a spherical change of coordinates, the constant C
represents the integrals on ϕ and φ, the angles in the change of coordinates.

Step 2 : We want to show that ω(x) =

∫ 1

0
θ(tx)

√
tdt is continuous on R+

∗ .

We have

ω(x) =

∫ 1

0
θ(tx)

√
tdt

=
1

x3/2

∫ x

0
θ(s)
√
sds while using the change of variables : u = tx

We use the dominated convergence theorem :

• s 7→
√
sθ(s) is measurable for all x ∈ R+

∗ by assumption on θ.

• x 7→ 1

x3/2
1[0,x](s)

√
sθ(s) is continuous for almost all s ∈]0,+∞[.

• For all compact [a, b] ⊂]0,+∞[, we have

∀x ∈ [a, b], ∀s ∈]0,+∞[,

∣∣∣∣1[0,x]
θ(s)
√
s

x3/2

∣∣∣∣ 6
∣∣∣∣∣1[0,b]

θ(s)
√
s

a3/2︸ ︷︷ ︸
∈L1([0,b])

∣∣∣∣∣

It follows that ω : x 7→
∫ 1

0
θ(tx)

√
tdt is continuous on R+

∗ .

2we used the change of variables : σ = −u
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Question 6. Prove that ω(x+ y) = ω(x) + ω(y),∀x > 0,∀y > 0, and that there exists a constant
C such that ω(w) = Cx for all x > 0.

Solution 6. Step 1 : Prove that ω(x+ y) = ω(x) + ω(y),∀x > 0,∀y > 0.
For all x > 0 and y > 0, we have

ω(x+ y) =

∫ 1

0
θ(t(x+ y))

√
tdt

=

∫ 1

0
(θ(tx) + θ(ty))

√
tdt while using Question 4

= ω(x) + ω(y)

Step 2 : Prove that there exists a constant C such that ω(w) = Cx for all x > 0.

We have ω(0) = 0. Indeed, ω(0) =

∫ 1

0
θ(0)
√
tdt = 0 because θ(0) = 0, since θ(0+0) = θ(0)+θ(0).

By induction, we have that ω(n) = ω(1 + 1 + · · ·+ 1) = ω(1) +ω(1) + · · ·+ω(1) = nω(1) for all
n ∈ N.

Then, we have qω(1) = ω(q) = ω

(
p
q

p

)
= pω

(
p

q

)
for all p ∈ N∗, q ∈ N. It follows that

ω

(
p

q

)
=
p

q
ω(1)

Since ω is continuous and Q is dense in R, we have

ω(x) = xω(1), ∀x ∈ R+

We have the expected result, with C = ω(1).

Question 7. Deduce that there exists a constant A such that ψp(u) = A|u|2 for almost all u ∈ R3.

Solution 7. By Question 6, since ω(x) = Cx, we know that ω is differentiable.

ω′(x) = C =

∫ 1

0
θ′(tx)t

√
tdt =

∫ 1

0
θ′(tx)t3/2dt

By integration by parts with u(t) =
θ(tx)

x
and v(t) = t3/2, we have

C =

∫ 1

0
θ′(tx)t3/2dt =

[
θ(tx)

x
t3/2
]1
0

−
∫ 1

0

θ(tx)

x

3

2

√
tdt

C =
θ(x)

x
− 0− 3

2x
ω(x) =

θ(x)

x
− 3

2
C

θ(x) =
5

2
Cx

It follows that
ψp(u) = θ(|u|2) = A|u|2, for almost all u ∈ R3

where A =
5

2
C.
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Question 8. Our aim is now to determine the odd part ψi. To this purpose, let e be a unit vector
in R3 annd set θi(x) = ψi(xe),∀x > 0. Show that θi satisfies

θi(x+ y) = θi(x) + θi(y), ∀x > 0, ∀y > 0.

(write ψi((x+ y)e) = ψi(xe+ ze1 + ye− ze1) where e1 is unitary and orthogonal to e, and where z
is suitably choosen in terms of x, y and e.)

Solution 8. Let take x, y ∈ R+
∗ . Let take e1 a unit vector such that e.e1 = 0 and z :=

√
xy. We

have

2θi(x+ y) = 2ψi((x+ y)e)

= 2ψi(xe+ ye)

= 2ψi(xe+ ze1 + ye− ze1)
= ψ(xe+ ze1 + ye− ze1)− ψ(−xe− ze1 − ye+ ze1)

= ψ(xe+ ze1) + ψ(ye− ze1)− ψ(−xe− ze1)− ψ(−ye+ ze1)

= ψ(xe) + ψ(ze1) + ψ(ye) + ψ(−ze1)− ψ(−xe)− ψ(−ze1)− ψ(−ye)− ψ(ze1)

= ψ(xe) + ψ(ye)− ψ(−xe)− ψ(−ye)
= 2ψi(xe) + 2ψi(ye)

= 2(θi(x) + θi(y))

We use Question 2 twice, because (xe+ze1).(ye−ze1) = xy|e|2+zye1.e−xze.e1−z2|e1|2 = xy−z2 = 0
and (xe).(ze1) = xz(e.e1) = 0. It follows that we have θi(x+ y) = θi(x) + θi(y), ∀x > 0, ∀y > 0.

Question 9. Deduce that there exists a constant B ∈ R3 such that ψi(u) = B.u for almost all
u ∈ R3.

Solution 9. We use the same arguments that for Questions 4, 5, 6, 7, then there exists a constant
Be such that for all x > 0, θi(x) = Bex (The constant depends only on the unit vector e).

Let take u = (u1, u2, u3) ∈ R3 and e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). We have e1.e2 =
e1.e3 = e2.e3 = 0.

ψi(u) = ψi

 3∑
j=1

ujej


=

3∑
j=1

ψi(ujej) by Question 2

=

3∑
j=1

θi,ej (uj)

=
3∑

j=1

Bejuj

= B.u

where B = (Be1 , Be2 , Be3).
Therefore we have the expected result.
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Question 10. Conclude.

Solution 10. By definition of ψi and ψp, and Questions 7 and 9, we have

ψ(u) = ψp(u) + ψi(u) = A|u|2 +B.u

But by definition of ψ, we have

φ(u) = ψ(u) + φ(0) with v = 0

= A|u|2 +B.u+ C

because we use a φ well-defined everywhere.
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