Numerical methods for kinetic transport equations

Professor : Mohammed Lemou

Written by Pierre Le Barbenchon

Collisional Invariants

Statement 1. We consider the following elastic collision dynamics: two particles of velocities $v \in \mathbb{R}^{3}$ and $v_{*} \in \mathbb{R}^{3}$ may collide, and their velocities $v^{\prime} \in \mathbb{R}^{3}$ and $v_{*}^{\prime} \in \mathbb{R}^{3}$ after the collision are given in terms of $\left(v, v_{*}\right)$ by the relations

$$
\begin{align*}
v+v_{*} & =v^{\prime}+v_{*}^{\prime} \tag{1a}\\
|v|^{2}+\left|v_{*}\right|^{2} & =\left|v^{\prime}\right|^{2}+\left|v_{*}^{\prime}\right|^{2} \tag{1b}
\end{align*}
$$

The goal here is to prove the following result: Any function $\phi \in L_{l o c}^{1}\left(\mathbb{R}^{3}\right)$ satisfying

$$
\begin{equation*}
\phi(v)+\phi\left(v_{*}\right)=\phi\left(v^{\prime}\right)+\phi\left(v_{*}^{\prime}\right) \tag{2}
\end{equation*}
$$

for all v, v_{*} in \mathbb{R}^{3} and for all $\left(v^{\prime}, v_{*}^{\prime}\right) \in\left(\mathbb{R}^{3}\right)^{2}$ linked to $\left(v, v_{*}\right)$ by the relations (1), is of the form

$$
\begin{equation*}
\phi(v)=A|v|^{2}+B \cdot v+C, \quad \text { for almost all } v \in \mathbb{R}^{3}, \tag{3}
\end{equation*}
$$

where $A \in \mathbb{R}, B \in \mathbb{R}^{3}, C \in \mathbb{R}$ are constants.
Consider then a function $\phi \in L_{l o c}^{1}\left(\mathbb{R}^{3}\right)$ satisfying (2).

Question 1. Let $\left(v, v_{*}, v^{\prime}, v_{*}^{\prime}\right) \in\left(\mathbb{R}^{3}\right)^{4}$ satisfying (1), and let $u=v^{\prime}-v, u_{*}=v_{*}^{\prime}-v$. Show that $u . u_{*}=0$.

Solution 1. We have $u=v^{\prime}-v$ and $u_{*}=v_{*}^{\prime}-v=v_{*}-v^{\prime}$ by (1a).
Recall that $v_{*}-v_{*}^{\prime}=v^{\prime}-v$ by (1a) and, since $\left|v+v_{*}\right|^{2}=\left|v^{\prime}+v_{*}^{\prime}\right|^{2}(1 a)$ and $|v|^{2}+\left|v_{*}\right|^{2}=\left|v^{\prime}\right|^{2}+\left|v_{*}^{\prime}\right|^{2}$ by (1b), we have $v \cdot v_{*}=v^{\prime} \cdot v_{*}^{\prime}$.

Therefore

$$
\begin{aligned}
u \cdot u_{*} & =\left(v^{\prime}-v\right) \cdot\left(v_{*}-v^{\prime}\right) \\
& =v^{\prime} \cdot v_{*}-\underbrace{v \cdot v_{*}}_{=v^{\prime} \cdot v_{*}^{\prime}}-\left(v^{\prime}-v\right) \cdot v^{\prime} \\
& =v^{\prime} \cdot(\underbrace{v_{*}-v_{*}^{\prime}}_{=v^{\prime}-v})-\left(v^{\prime}-v\right) \cdot v^{\prime} \\
& =v^{\prime} \cdot\left(v^{\prime}-v\right)-v^{\prime} \cdot\left(v^{\prime}-v\right)=0
\end{aligned}
$$

Therefore we have the expected result: $u \cdot u^{\prime}=0$.
Question 2. Let $v \in \mathbb{R}^{3}$ be given, and set

$$
\psi(u)=\phi(v+u)-\phi(v), \quad \forall u \in \mathbb{R}^{3} .
$$

Prove that

$$
\psi(u)+\psi\left(u_{*}\right)=\psi\left(u+u_{*}\right),
$$

for all $u, u_{*} \in \mathbb{R}^{3}$ such that $u . u_{*}=0$.

Solution 2. Let take $V=v+u$ and $V_{*}=v+u_{*}$. We use the expression (2) for V, V_{*} and $V^{\prime}=v+u+u_{*}, V_{*}^{\prime}=v$.

$$
\phi(V)+\phi\left(V_{*}\right)=\phi\left(V^{\prime}\right)+\phi\left(V_{*}^{\prime}\right)
$$

Indeed, we have $V+V_{*}=v+u+v+u_{*}=v+u+u_{*}+v=V^{\prime}+V_{*}^{\prime}$ and

$$
\begin{aligned}
& |v+u|^{2}+\left|v+u_{*}\right|^{2}=|v|^{2}+|u|^{2}+\left|u_{*}\right|^{2}+|v|^{2}+2 v \cdot u+2 v . u_{*} \\
& \left|v+u+u_{*}\right|^{2}+|v|^{2}=|v|^{2}+|u|^{2}+\left|u_{*}\right|^{2}+|v|^{2}+2 v . u+2 v . u_{*}+2 u \cdot u_{*}
\end{aligned}
$$

There is an equality because $u \cdot u_{*}=0$ by assumption.
Therefore we are allowed to write

$$
\begin{aligned}
\phi(v+u)+\phi\left(v+u_{*}\right) & =\phi\left(v+u+u_{*}\right)+\phi(v) \\
\phi(v+u)-\phi(v)+\phi\left(v+u_{*}\right)-\phi(v) & =\phi\left(v+u+u_{*}\right)-\phi(v) \text { while subtracting } 2 \phi(v) \\
\psi(u)+\psi\left(u_{*}\right) & =\psi\left(u+u_{*}\right) \text { by definition of } \psi
\end{aligned}
$$

Therefore we have the expected result.

Question 3. We now decompose ψ as the sum of its even part ψ_{p} and its odd part ψ_{i} :

$$
\psi_{p}(u)=\frac{\psi(u)+\psi(-u)}{2}, \quad \psi_{i}(u)=\frac{\psi(u)-\psi(-u)}{2} .
$$

Prove that $\psi_{p}(u)$ depends only on $|u|$.

Solution 3. Let take two vectors u and v with the same norm $|u|^{2}=|v|^{2}$. We want to prove that $\psi_{p}(u)=\psi_{p}(v)$, then we will have that ψ_{p} depends only on the norm of u.

We use the Question 2, with $U= \pm \frac{u-v}{2}$ and $U_{*}= \pm \frac{u+v}{2}$. Indeed, we have

$$
U \cdot U_{*}= \pm \frac{1}{4}(u-v) \cdot(u+v)= \pm \frac{1}{4}\left(|u|^{2}-|v|^{2}\right)=0 .
$$

Then we have

$$
\begin{aligned}
\psi(u) & =\psi\left(\frac{u-v}{2}\right)+\psi\left(\frac{u+v}{2}\right) \\
\psi(-u) & =\psi\left(\frac{v-u}{2}\right)+\psi\left(-\frac{u+v}{2}\right) \\
\psi(v) & =\psi\left(\frac{v-u}{2}\right)+\psi\left(\frac{u+v}{2}\right) \\
\psi(-v) & =\psi\left(\frac{u-v}{2}\right)+\psi\left(-\frac{u+v}{2}\right)
\end{aligned}
$$

It follows that

$$
2 \psi_{p}(u)=\psi(u)+\psi(-u)=\psi(v)+\psi(-v)=2 \psi_{p}(v)
$$

Therefore we have the expected result.

Question 4. Set

$$
\psi_{p}(u)=\theta\left(|u|^{2}\right) .
$$

Prove that

$$
\theta(x+y)=\theta(x)+\theta(y), \quad \text { for all } x \geqslant 0, y \geqslant 0 .
$$

Solution 4. Let take $x, y \geqslant 0$ and two vectors u and v such that $|u|^{2}=x,|v|^{2}=y$ and $u . v=0$. We have

$$
\begin{aligned}
2(\theta(x)+\theta(y)) & =2\left(\psi_{p}(u)+\psi_{p}(v)\right) \\
& =\psi(u)+\psi(-u)+\psi(v)+\psi(-v) \\
& =\psi(u+v)+\psi(-u-v) \text { by Question } 2 \text { and } u . v=0
\end{aligned}
$$

and

$$
\begin{aligned}
2 \theta(x+y) & =2 \theta\left(|u|^{2}+|v|^{2}\right) \\
& =2 \theta\left(|u+v|^{2}\right) \text { because } u \cdot v=0 \\
& =2 \psi_{p}(u+v) \\
& =\psi(u+v)+\psi(-u-v)
\end{aligned}
$$

Then we have the equality and while dividing by 2 , we obtain the expected result

$$
\theta(x+y)=\theta(x)+\theta(y) .
$$

Question 5. Check that $s \mapsto \sqrt{s} \theta(s)$ is locally integrable on \mathbb{R}_{+}, and deduce that the function ω defined by

$$
\omega(x)=\int_{0}^{1} \theta(t x) \sqrt{t} d t
$$

is continuous on \mathbb{R}_{*}^{+}.

Solution 5. Step 1 : We want to show that $s \mapsto \sqrt{s} \theta(s) \in L_{l o c}^{1}\left(\mathbb{R}_{+}\right)$.

- We know that $\phi \in L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$, then $\psi \in L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$.

Indeed, for all K compact of \mathbb{R}^{3}, we have

$$
\begin{aligned}
\int_{K}|\psi(u)| d u & \leqslant \int_{K}(|\phi(v+u)|+|\phi(v)|) d u \\
& \leqslant \int_{K-v}|\phi(\sigma)| d \sigma+|K||\phi(v)|<+\infty
\end{aligned}
$$

because $K-v:=\{x-v, x \in K\}$ is compact. ${ }^{1}$

[^0]- We know that $\psi \in L_{l o c}^{1}\left(\mathbb{R}^{3}\right)$, then $\psi_{p} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$.

Indeed for all K compact of \mathbb{R}^{3}, we have

$$
\begin{aligned}
\int_{K}\left|\psi_{p}(u)\right| d u & \leqslant \frac{1}{2} \int_{K}(|\phi(u)|+|\phi(-u)|) d u \\
& \leqslant \frac{1}{2} \int_{K}\left(|\phi(u)| d u+\int_{-K} \mid \phi(\sigma \mid) d \sigma<+\infty\right.
\end{aligned}
$$

because $-K:=\{-x, x \in K\}$ is compact. ${ }^{2}$

- We know that $\psi_{p} \in L_{l o c}^{1}\left(\mathbb{R}^{3}\right)$, then $s \mapsto \sqrt{s} \theta(s) \in L_{l o c}^{1}\left(\mathbb{R}_{+}\right)$.

Indeed for all K compact of \mathbb{R}_{+}, we have

$$
\begin{aligned}
\int_{K} \sqrt{s}|\theta(s)| d s & =\int_{\tilde{K}} v\left|\theta\left(v^{2}\right)\right| 2 v d v \text { while changing } s \text { into } v^{2} \\
& =2 \int_{\tilde{K}}\left|\theta\left(v^{2}\right)\right| v^{2} d v \\
& =2 C \int_{\hat{K}}\left|\theta\left(|u|^{2}\right)\right| d u \\
& =2 C \int_{\hat{K}}\left|\psi_{p}(u)\right| d u<+\infty
\end{aligned}
$$

because \tilde{K} and \hat{K} are compact. We use a spherical change of coordinates, the constant C represents the integrals on φ and ϕ, the angles in the change of coordinates.

Step 2 : We want to show that $\omega(x)=\int_{0}^{1} \theta(t x) \sqrt{t} d t$ is continuous on \mathbb{R}_{*}^{+}.
We have

$$
\begin{aligned}
\omega(x) & =\int_{0}^{1} \theta(t x) \sqrt{t} d t \\
& =\frac{1}{x^{3 / 2}} \int_{0}^{x} \theta(s) \sqrt{s} d s \text { while using the change of variables : } u=t x
\end{aligned}
$$

We use the dominated convergence theorem :

- $s \mapsto \sqrt{s} \theta(s)$ is measurable for all $x \in \mathbb{R}_{*}^{+}$by assumption on θ.
- $x \mapsto \frac{1}{x^{3 / 2}} \mathbb{1}_{[0, x]}(s) \sqrt{s} \theta(s)$ is continuous for almost all $\left.s \in\right] 0,+\infty[$.
- For all compact $[a, b] \subset] 0,+\infty[$, we have

$$
\forall x \in[a, b], \forall s \in] 0,+\infty[, \quad\left|\mathbb{1}_{[0, x]} \frac{\theta(s) \sqrt{s}}{x^{3 / 2}}\right| \leqslant|\underbrace{\mathbb{1}_{[0, b]} \frac{\theta(s) \sqrt{s}}{a^{3 / 2}}}_{\in L^{1}([0, b])}|
$$

It follows that $\omega: x \mapsto \int_{0}^{1} \theta(t x) \sqrt{t} d t$ is continuous on \mathbb{R}_{*}^{+}.

[^1]Question 6. Prove that $\omega(x+y)=\omega(x)+\omega(y), \forall x>0, \forall y>0$, and that there exists a constant C such that $\omega(w)=C x$ for all $x \geqslant 0$.

Solution 6. Step 1 : Prove that $\omega(x+y)=\omega(x)+\omega(y), \forall x>0, \forall y>0$.
For all $x>0$ and $y>0$, we have

$$
\begin{aligned}
\omega(x+y) & =\int_{0}^{1} \theta(t(x+y)) \sqrt{t} d t \\
& =\int_{0}^{1}(\theta(t x)+\theta(t y)) \sqrt{t} d t \text { while using Question } 4 \\
& =\omega(x)+\omega(y)
\end{aligned}
$$

Step 2 : Prove that there exists a constant C such that $\omega(w)=C x$ for all $x \geqslant 0$.
We have $\omega(0)=0$. Indeed, $\omega(0)=\int_{0}^{1} \theta(0) \sqrt{t} d t=0$ because $\theta(0)=0$, since $\theta(0+0)=\theta(0)+\theta(0)$.
By induction, we have that $\omega(n)=\omega(1+1+\cdots+1)=\omega(1)+\omega(1)+\cdots+\omega(1)=n \omega(1)$ for all $n \in \mathbb{N}$.

Then, we have $q \omega(1)=\omega(q)=\omega\left(p \frac{q}{p}\right)=p \omega\left(\frac{p}{q}\right)$ for all $p \in \mathbb{N}^{*}, q \in \mathbb{N}$. It follows that

$$
\omega\left(\frac{p}{q}\right)=\frac{p}{q} \omega(1)
$$

Since ω is continuous and \mathbb{Q} is dense in \mathbb{R}, we have

$$
\omega(x)=x \omega(1), \quad \forall x \in \mathbb{R}^{+}
$$

We have the expected result, with $C=\omega(1)$.
Question 7. Deduce that there exists a constant A such that $\psi_{p}(u)=A|u|^{2}$ for almost all $u \in \mathbb{R}^{3}$.
Solution 7. By Question 6 , since $\omega(x)=C x$, we know that ω is differentiable.

$$
\omega^{\prime}(x)=C=\int_{0}^{1} \theta^{\prime}(t x) t \sqrt{t} d t=\int_{0}^{1} \theta^{\prime}(t x) t^{3 / 2} d t
$$

By integration by parts with $u(t)=\frac{\theta(t x)}{x}$ and $v(t)=t^{3 / 2}$, we have

$$
\begin{gathered}
C=\int_{0}^{1} \theta^{\prime}(t x) t^{3 / 2} d t=\left[\frac{\theta(t x)}{x} t^{3 / 2}\right]_{0}^{1}-\int_{0}^{1} \frac{\theta(t x)}{x} \frac{3}{2} \sqrt{t} d t \\
C=\frac{\theta(x)}{x}-0-\frac{3}{2 x} \omega(x)=\frac{\theta(x)}{x}-\frac{3}{2} C \\
\theta(x)=\frac{5}{2} C x
\end{gathered}
$$

It follows that

$$
\psi_{p}(u)=\theta\left(|u|^{2}\right)=A|u|^{2}, \quad \text { for almost all } u \in \mathbb{R}^{3}
$$

where $A=\frac{5}{2} C$.

Question 8. Our aim is now to determine the odd part ψ_{i}. To this purpose, let e be a unit vector in \mathbb{R}^{3} annd set $\theta_{i}(x)=\psi_{i}(x e), \forall x>0$. Show that θ_{i} satisfies

$$
\theta_{i}(x+y)=\theta_{i}(x)+\theta_{i}(y), \quad \forall x>0, \forall y>0 .
$$

(write $\psi_{i}((x+y) e)=\psi_{i}\left(x e+z e_{1}+y e-z e_{1}\right)$ where e_{1} is unitary and orthogonal to e, and where z is suitably choosen in terms of x, y and e.)

Solution 8. Let take $x, y \in \mathbb{R}_{*}^{+}$. Let take e_{1} a unit vector such that e. $e_{1}=0$ and $z:=\sqrt{x y}$. We have

$$
\begin{aligned}
2 \theta_{i}(x+y) & =2 \psi_{i}((x+y) e) \\
& =2 \psi_{i}(x e+y e) \\
& =2 \psi_{i}\left(x e+z e_{1}+y e-z e_{1}\right) \\
& =\psi\left(x e+z e_{1}+y e-z e_{1}\right)-\psi\left(-x e-z e_{1}-y e+z e_{1}\right) \\
& =\psi\left(x e+z e_{1}\right)+\psi\left(y e-z e_{1}\right)-\psi\left(-x e-z e_{1}\right)-\psi\left(-y e+z e_{1}\right) \\
& =\psi(x e)+\psi\left(z e_{1}\right)+\psi(y e)+\psi\left(-z e_{1}\right)-\psi(-x e)-\psi\left(-z e_{1}\right)-\psi(-y e)-\psi\left(z e_{1}\right) \\
& =\psi(x e)+\psi(y e)-\psi(-x e)-\psi(-y e) \\
& =2 \psi_{i}(x e)+2 \psi_{i}(y e) \\
& =2\left(\theta_{i}(x)+\theta_{i}(y)\right)
\end{aligned}
$$

We use Question 2 twice, because $\left(x e+z e_{1}\right) \cdot\left(y e-z e_{1}\right)=x y|e|^{2}+z y e_{1} \cdot e-x z e \cdot e_{1}-z^{2}\left|e_{1}\right|^{2}=x y-z^{2}=0$ and $(x e) \cdot\left(z e_{1}\right)=x z\left(e . e_{1}\right)=0$. It follows that we have $\theta_{i}(x+y)=\theta_{i}(x)+\theta_{i}(y), \quad \forall x>0, \forall y>0$.

Question 9. Deduce that there exists a constant $B \in \mathbb{R}^{3}$ such that $\psi_{i}(u)=B . u$ for almost all $u \in \mathbb{R}^{3}$.

Solution 9. We use the same arguments that for Questions 4, 5, 6, 7, then there exists a constant B_{e} such that for all $x \geqslant 0, \theta_{i}(x)=B_{e} x$ (The constant depends only on the unit vector e).

Let take $u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}$ and $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$. We have $e_{1} \cdot e_{2}=$ $e_{1} \cdot e_{3}=e_{2} \cdot e_{3}=0$.

$$
\begin{aligned}
\psi_{i}(u) & =\psi_{i}\left(\sum_{j=1}^{3} u_{j} e_{j}\right) \\
& =\sum_{j=1}^{3} \psi_{i}\left(u_{j} e_{j}\right) \text { by Question } 2 \\
& =\sum_{j=1}^{3} \theta_{i, e_{j}}\left(u_{j}\right) \\
& =\sum_{j=1}^{3} B_{e_{j}} u_{j} \\
& =B . u
\end{aligned}
$$

where $B=\left(B_{e_{1}}, B_{e_{2}}, B_{e_{3}}\right)$.
Therefore we have the expected result.

Question 10. Conclude.

Solution 10. By definition of ψ_{i} and ψ_{p}, and Questions 7 and 9 , we have

$$
\psi(u)=\psi_{p}(u)+\psi_{i}(u)=A|u|^{2}+B . u
$$

But by definition of ψ, we have

$$
\begin{aligned}
\phi(u) & =\psi(u)+\phi(0) \text { with } v=0 \\
& =A|u|^{2}+B \cdot u+C
\end{aligned}
$$

because we use a ϕ well-defined everywhere.

[^0]: ${ }^{1}$ we used the change of variables : $\sigma=v+u$

[^1]: ${ }^{2}$ we used the change of variables : $\sigma=-u$

