2019/2020

Master 2 Recherche fondamentale en mathématiques

Numerical methods for kinetic transport equations

Professor : Mohammed LEMOU

Written by Pierre LE BARBENCHON

Collisional Invariants

Statement 1. We consider the following elastic collision dynamics: two particles of velocities $v \in \mathbb{R}^3$ and $v_* \in \mathbb{R}^3$ may collide, and their velocities $v' \in \mathbb{R}^3$ and $v'_* \in \mathbb{R}^3$ after the collision are given in terms of (v, v_*) by the relations

$$v + v_* = v' + v'_* \tag{1a}$$

$$|v|^{2} + |v_{*}|^{2} = |v'|^{2} + |v'_{*}|^{2}$$
(1b)

The goal here is to prove the following result: Any function $\phi \in L^1_{loc}(\mathbb{R}^3)$ satisfying

$$\phi(v) + \phi(v_*) = \phi(v') + \phi(v'_*) \tag{2}$$

for all v, v_* in \mathbb{R}^3 and for all $(v', v'_*) \in (\mathbb{R}^3)^2$ linked to (v, v_*) by the relations (1), is of the form

$$\phi(v) = A|v|^2 + B.v + C, \quad \text{for almost all } v \in \mathbb{R}^3, \tag{3}$$

where $A \in \mathbb{R}, B \in \mathbb{R}^3, C \in \mathbb{R}$ are constants.

Consider then a function $\phi \in L^1_{loc}(\mathbb{R}^3)$ satisfying (2).

Question 1. Let $(v, v_*, v', v'_*) \in (\mathbb{R}^3)^4$ satisfying (1), and let u = v' - v, $u_* = v'_* - v$. Show that $u.u_{*} = 0.$

Solution 1. We have u = v' - v and $u_* = v'_* - v = v_* - v'$ by (1*a*). Recall that $v_* - v'_* = v' - v$ by (1*a*) and, since $|v + v_*|^2 = |v' + v'_*|^2$ (1*a*) and $|v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2$ by (1b), we have $v.v_* = v'.v'_*$.

Therefore

$$u.u_* = (v' - v).(v_* - v')$$

= $v'.v_* - \underbrace{v.v_*}_{=v'.v'_*} - (v' - v).v'$
= $v'.\underbrace{(v_* - v'_*)}_{=v'-v} - (v' - v).v'$
= $v'.(v' - v) - v'.(v' - v) = 0$

Therefore we have the expected result: u.u' = 0.

Question 2. Let $v \in \mathbb{R}^3$ be given, and set

$$\psi(u) = \phi(v+u) - \phi(v), \quad \forall u \in \mathbb{R}^3.$$

Prove that

$$\psi(u) + \psi(u_*) = \psi(u + u_*),$$

for all $u, u_* \in \mathbb{R}^3$ such that $u.u_* = 0$.

Solution 2. Let take V = v + u and $V_* = v + u_*$. We use the expression (2) for V, V_* and $V' = v + u + u_*$, $V'_* = v$.

$$\phi(V) + \phi(V_*) = \phi(V') + \phi(V'_*)$$

Indeed, we have $V + V_* = v + u + v + u_* = v + u + u_* + v = V' + V'_*$ and

$$|v+u|^{2} + |v+u_{*}|^{2} = |v|^{2} + |u|^{2} + |u_{*}|^{2} + |v|^{2} + 2v.u + 2v.u_{*}$$
$$|v+u+u_{*}|^{2} + |v|^{2} = |v|^{2} + |u|^{2} + |u_{*}|^{2} + |v|^{2} + 2v.u + 2v.u_{*} + 2u.u_{*}$$

There is an equality because $u.u_* = 0$ by assumption.

Therefore we are allowed to write

$$\phi(v+u) + \phi(v+u_*) = \phi(v+u+u_*) + \phi(v)$$

$$\phi(v+u) - \phi(v) + \phi(v+u_*) - \phi(v) = \phi(v+u+u_*) - \phi(v) \text{ while subtracting } 2\phi(v)$$

$$\psi(u) + \psi(u_*) = \psi(u+u_*) \text{ by definition of } \psi$$

Therefore we have the expected result.

Question 3. We now decompose ψ as the sum of its even part ψ_p and its odd part ψ_i :

$$\psi_p(u) = rac{\psi(u) + \psi(-u)}{2}, \quad \psi_i(u) = rac{\psi(u) - \psi(-u)}{2}$$

Prove that $\psi_p(u)$ depends only on |u|.

Solution 3. Let take two vectors u and v with the same norm $|u|^2 = |v|^2$. We want to prove that $\psi_p(u) = \psi_p(v)$, then we will have that ψ_p depends only on the norm of u.

 $\psi_p(u) = \psi_p(v)$, then we will have that ψ_p depends only on the norm of u. We use the Question 2, with $U = \pm \frac{u-v}{2}$ and $U_* = \pm \frac{u+v}{2}$. Indeed, we have

$$U.U_* = \pm \frac{1}{4}(u-v).(u+v) = \pm \frac{1}{4}(|u|^2 - |v|^2) = 0.$$

Then we have

$$\psi(u) = \psi\left(\frac{u-v}{2}\right) + \psi\left(\frac{u+v}{2}\right)$$
$$\psi(-u) = \psi\left(\frac{v-u}{2}\right) + \psi\left(-\frac{u+v}{2}\right)$$
$$\psi(v) = \psi\left(\frac{v-u}{2}\right) + \psi\left(\frac{u+v}{2}\right)$$
$$\psi(-v) = \psi\left(\frac{u-v}{2}\right) + \psi\left(-\frac{u+v}{2}\right)$$

It follows that

$$2\psi_p(u) = \psi(u) + \psi(-u) = \psi(v) + \psi(-v) = 2\psi_p(v)$$

Therefore we have the expected result.

Question 4. Set

$$\psi_p(u) = \theta(|u|^2).$$

Prove that

 $\theta(x+y) = \theta(x) + \theta(y), \text{ for all } x \ge 0, y \ge 0.$

Solution 4. Let take $x, y \ge 0$ and two vectors u and v such that $|u|^2 = x$, $|v|^2 = y$ and u.v = 0. We have

$$2(\theta(x) + \theta(y)) = 2(\psi_p(u) + \psi_p(v))$$

= $\psi(u) + \psi(-u) + \psi(v) + \psi(-v)$
= $\psi(u+v) + \psi(-u-v)$ by Question 2 and $u.v = 0$

and

$$2\theta(x+y) = 2\theta(|u|^2 + |v|^2)$$

= $2\theta(|u+v|^2)$ because $u.v = 0$
= $2\psi_p(u+v)$
= $\psi(u+v) + \psi(-u-v)$

Then we have the equality and while dividing by 2, we obtain the expected result

$$\theta(x+y) = \theta(x) + \theta(y).$$

Question 5. Check that $s \mapsto \sqrt{s}\theta(s)$ is locally integrable on \mathbb{R}_+ , and deduce that the function ω defined by

$$\omega(x) = \int_0^1 \theta(tx) \sqrt{t} dt$$

is continuous on \mathbb{R}^+_* .

Solution 5. <u>Step 1</u>: We want to show that $s \mapsto \sqrt{s}\theta(s) \in L^1_{loc}(\mathbb{R}_+)$.

• We know that $\phi \in L^1_{loc}(\mathbb{R}^3)$, then $\psi \in L^1_{loc}(\mathbb{R}^3)$. Indeed, for all K compact of \mathbb{R}^3 , we have

$$\begin{split} \int_{K} |\psi(u)| du &\leqslant \int_{K} (|\phi(v+u)| + |\phi(v)|) du \\ &\leqslant \int_{K-v} |\phi(\sigma)| d\sigma + |K| |\phi(v)| < +\infty \end{split}$$

because $K - v := \{x - v, x \in K\}$ is compact.¹

¹we used the change of variables : $\sigma = v + u$

• We know that $\psi \in L^1_{loc}(\mathbb{R}^3)$, then $\psi_p \in L^1_{loc}(\mathbb{R}^3)$. Indeed for all K compact of \mathbb{R}^3 , we have

$$\begin{split} \int_{K} |\psi_{p}(u)| du &\leq \frac{1}{2} \int_{K} (|\phi(u)| + |\phi(-u)|) du \\ &\leq \frac{1}{2} \int_{K} (|\phi(u)| du + \int_{-K} |\phi(\sigma|) d\sigma < +\infty \end{split}$$

because $-K := \{-x, x \in K\}$ is compact.²

• We know that $\psi_p \in L^1_{loc}(\mathbb{R}^3)$, then $s \mapsto \sqrt{s}\theta(s) \in L^1_{loc}(\mathbb{R}_+)$. Indeed for all K compact of \mathbb{R}_+ , we have

$$\begin{split} \int_{K} \sqrt{s} |\theta(s)| ds &= \int_{\tilde{K}} v |\theta(v^2)| 2v dv \text{ while changing } s \text{ into } v^2 \\ &= 2 \int_{\tilde{K}} |\theta(v^2)| v^2 dv \\ &= 2C \int_{\tilde{K}} |\theta(|u|^2)| du \\ &= 2C \int_{\tilde{K}} |\psi_p(u)| du < +\infty \end{split}$$

because \tilde{K} and \hat{K} are compact. We use a spherical change of coordinates, the constant C represents the integrals on φ and ϕ , the angles in the change of coordinates.

<u>Step 2</u>: We want to show that $\omega(x) = \int_0^1 \theta(tx) \sqrt{t} dt$ is continuous on \mathbb{R}^+_* . We have

$$\begin{split} \omega(x) &= \int_0^1 \theta(tx) \sqrt{t} dt \\ &= \frac{1}{x^{3/2}} \int_0^x \theta(s) \sqrt{s} ds \text{ while using the change of variables : } u = tx \end{split}$$

We use the dominated convergence theorem :

- $s \mapsto \sqrt{s}\theta(s)$ is measurable for all $x \in \mathbb{R}^+_*$ by assumption on θ .
- $x \mapsto \frac{1}{r^{3/2}} \mathbb{1}_{[0,x]}(s) \sqrt{s}\theta(s)$ is continuous for almost all $s \in [0, +\infty[$.
- For all compact $[a, b] \subset]0, +\infty[$, we have

$$\forall x \in [a, b], \forall s \in]0, +\infty[, \quad \left| \mathbbm{1}_{[0, x]} \frac{\theta(s)\sqrt{s}}{x^{3/2}} \right| \leqslant \left| \underbrace{\mathbbm{1}_{[0, b]} \frac{\theta(s)\sqrt{s}}{a^{3/2}}}_{\in L^1([0, b])} \right|$$

 $\frac{\text{It follows that } \omega: x \mapsto \int_0^1 \theta(tx) \sqrt{t} dt \text{ is continuous on } \mathbb{R}^+_*.$ ²we used the change of variables : $\sigma = -u$

Question 6. Prove that $\omega(x+y) = \omega(x) + \omega(y), \forall x > 0, \forall y > 0$, and that there exists a constant C such that $\omega(w) = Cx$ for all $x \ge 0$.

Solution 6. Step 1 : Prove that $\omega(x+y) = \omega(x) + \omega(y), \forall x > 0, \forall y > 0$. For all x > 0 and y > 0, we have

$$\begin{aligned} \omega(x+y) &= \int_0^1 \theta(t(x+y))\sqrt{t}dt \\ &= \int_0^1 (\theta(tx) + \theta(ty))\sqrt{t}dt \text{ while using Question 4} \\ &= \omega(x) + \omega(y) \end{aligned}$$

Step 2: Prove that there exists a constant C such that $\omega(w) = Cx$ for all $x \ge 0$.

We have $\omega(0) = 0$. Indeed, $\omega(0) = \int_0^1 \theta(0)\sqrt{t}dt = 0$ because $\theta(0) = 0$, since $\theta(0+0) = \theta(0) + \theta(0)$. By induction, we have that $\omega(n) = \omega(1+1+\dots+1) = \omega(1) + \omega(1) + \dots + \omega(1) = n\omega(1)$ for all $n \in \mathbb{N}$.

Then, we have
$$q\omega(1) = \omega(q) = \omega\left(p\frac{q}{p}\right) = p\omega\left(\frac{p}{q}\right)$$
 for all $p \in \mathbb{N}^*, q \in \mathbb{N}$. It follows that

$$\omega\left(\frac{p}{q}\right) = \frac{p}{q}\omega(1)$$

Since ω is continuous and \mathbb{Q} is dense in \mathbb{R} , we have

$$\omega(x) = x\omega(1), \quad \forall x \in \mathbb{R}^+$$

We have the expected result, with $C = \omega(1)$.

Question 7. Deduce that there exists a constant A such that $\psi_p(u) = A|u|^2$ for almost all $u \in \mathbb{R}^3$.

Solution 7. By Question 6, since $\omega(x) = Cx$, we know that ω is differentiable.

$$\omega'(x) = C = \int_0^1 \theta'(tx) t \sqrt{t} dt = \int_0^1 \theta'(tx) t^{3/2} dt$$

By integration by parts with $u(t) = \frac{\theta(tx)}{x}$ and $v(t) = t^{3/2}$, we have

$$C = \int_0^1 \theta'(tx) t^{3/2} dt = \left[\frac{\theta(tx)}{x} t^{3/2}\right]_0^1 - \int_0^1 \frac{\theta(tx)}{x} \frac{3}{2} \sqrt{t} dt$$
$$C = \frac{\theta(x)}{x} - 0 - \frac{3}{2x} \omega(x) = \frac{\theta(x)}{x} - \frac{3}{2}C$$
$$\theta(x) = \frac{5}{2}Cx$$

It follows that

 $\psi_p(u) = \theta(|u|^2) = A|u|^2$, for almost all $u \in \mathbb{R}^3$

where $A = \frac{5}{2}C$.

Question 8. Our aim is now to determine the odd part ψ_i . To this purpose, let e be a unit vector in \mathbb{R}^3 and set $\theta_i(x) = \psi_i(xe), \forall x > 0$. Show that θ_i satisfies

$$\theta_i(x+y) = \theta_i(x) + \theta_i(y), \quad \forall x > 0, \forall y > 0.$$

(write $\psi_i((x+y)e) = \psi_i(xe+ze_1+ye-ze_1)$ where e_1 is unitary and orthogonal to e, and where z is suitably choosen in terms of x, y and e.)

Solution 8. Let take $x, y \in \mathbb{R}^+_*$. Let take e_1 a unit vector such that $e \cdot e_1 = 0$ and $z := \sqrt{xy}$. We have

$$\begin{aligned} 2\theta_i(x+y) &= 2\psi_i((x+y)e) \\ &= 2\psi_i(xe+ye) \\ &= 2\psi_i(xe+ze_1+ye-ze_1) \\ &= \psi(xe+ze_1+ye-ze_1) - \psi(-xe-ze_1-ye+ze_1) \\ &= \psi(xe+ze_1) + \psi(ye-ze_1) - \psi(-xe-ze_1) - \psi(-ye+ze_1) \\ &= \psi(xe) + \psi(ze_1) + \psi(ye) + \psi(-ze_1) - \psi(-xe) - \psi(-ze_1) - \psi(-ye) - \psi(ze_1) \\ &= \psi(xe) + \psi(ye) - \psi(-xe) - \psi(-ye) \\ &= 2\psi_i(xe) + 2\psi_i(ye) \\ &= 2(\theta_i(x) + \theta_i(y)) \end{aligned}$$

We use Question 2 twice, because $(xe+ze_1).(ye-ze_1) = xy|e|^2 + zye_1.e - xze.e_1 - z^2|e_1|^2 = xy - z^2 = 0$ and $(xe).(ze_1) = xz(e.e_1) = 0$. It follows that we have $\theta_i(x+y) = \theta_i(x) + \theta_i(y), \quad \forall x > 0, \forall y > 0$.

Question 9. Deduce that there exists a constant $B \in \mathbb{R}^3$ such that $\psi_i(u) = B.u$ for almost all $u \in \mathbb{R}^3$.

Solution 9. We use the same arguments that for Questions 4, 5, 6, 7, then there exists a constant B_e such that for all $x \ge 0$, $\theta_i(x) = B_e x$ (The constant depends only on the unit vector e).

Let take $u = (u_1, u_2, u_3) \in \mathbb{R}^3$ and $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$. We have $e_1 \cdot e_2 = e_1 \cdot e_3 = e_2 \cdot e_3 = 0$.

$$\psi_i(u) = \psi_i \left(\sum_{j=1}^3 u_j e_j \right)$$
$$= \sum_{j=1}^3 \psi_i(u_j e_j) \text{ by Question } 2$$
$$= \sum_{j=1}^3 \theta_{i,e_j}(u_j)$$
$$= \sum_{j=1}^3 B_{e_j} u_j$$
$$= B.u$$

where $B = (B_{e_1}, B_{e_2}, B_{e_3})$.

Therefore we have the expected result.

Question 10. Conclude.

Solution 10. By definition of ψ_i and ψ_p , and Questions 7 and 9, we have

$$\psi(u) = \psi_p(u) + \psi_i(u) = A|u|^2 + B.u$$

But by definition of ψ , we have

$$\phi(u) = \psi(u) + \phi(0) \text{ with } v = 0$$
$$= A|u|^2 + B.u + C$$

because we use a ϕ well-defined everywhere.