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1 Sobolev spaces

1.1 General framework

Exercise 1. N =2

1) Define the outward unit vector at any point x
2) Deﬁne/ g(z)do(x) for g smooth
I;

3) Prove (IP) by using 1D integration by part and Fubini’s theorem.

y I'=T1UTly

3!

I'y
y = fi(z)

y = fa(x)

Solution. 1) The tangent of I'; on z has (1, f](z)) as director vector. Then, the normal vector is
(—f1(x),1) because the inner product has to be zero. We want to have a outward unit vector,
so we divide by the norm and find

T 11C.) 1 )
V@)1 V(@) +1

Same method for I'y and we find :

—f3(x) 1
V@) +17 /(i) + 1

i = ( )




2) We parameterize I'; with (z, fi(z)) for x € [a,b]. Then we use line integral.

b
/g(w)dv(ﬁﬂ):/ g(f1(2))[| fi(2)]|dz
Iy a

:lzumm¢ng+(wgayw

b
:/gm@»1+muwm

Same method for I'; :
[ stwdot@) = [ gthatany/1+ (s4(w)2s
) b

We change the bounds order because we go from b to a on the boundary I's.

3) We use the Fubini theorem to split the open 2

/Q u(z, y)gy(x Y dxdy—/ (/yl (z y)dy> dx

Then we use integration by parts :

b
:/: ([u(wvy)v(%y)]ﬁgz

’ 1) gy
-/ (“<$vf1<ﬂf>>v<f’fl<x>> ~ula, p)ela o)~ [ Szt y)dy) s

NN

=) oy,
- —(z,y)v(z,y)dy | dx
/fz(w) dy

2(z)

’ 1
:/x:a u(z, fi(z))v(z, fi(z)) RO (f](z))2dx
’ 1
_/ u(z, fa(z))v(z, fo( >)W (f5(x))?dx

f1(z) au
(z,y)dydz
/:1: a/f2($) ay

:/ uvnél) 1+ (f](z))%dx
+/awﬁ T (3P

/x a/2 (z) ay x y)dydx
:/ uvng )da+/ uvng do —/ ?(:ﬂ,y)v(x,y)dydx
I Iy Q oy

—/uvnQdo' —/ @(x,y)v(x,y)dyd:c
r o Oy



We finally find the (IP) formula. (We justify the Fubini Theorem because u,v € C', then

v
they are continuous on 2 compact, then L € L'(Q))
Y
O

Exercise 2. Let Q =] — 1;1[C R.
L it r 40
sgn(z) = ¢ |7 € L*(Q)
0 ifx=0

Show that = — sgn(z) has no weak derivative.

Solution. We work in the distributions. For all ¢ € D(] — 1,1]),

(sgn’, p) = sgn, ¢

Then sgn’ = 28y. But this distribution isn’t in L}, so z — sgn(z) has no weak derivative.

To prove that the dirac g is not in L} . we work for a contradiction. Let f € L} such that

loc? loc

Vo e D(] —1,1]), /f(p

We use a sequence ¢, € D(] —1, 1[) such that supp(¢,) C [-1, 1], ,(0) = 1 and the supremum
of each ¢, equal to 1.

Then we have by the dominated convergence theorem that fil fon goes to 0 because we can
dominate \1[_%’%]f<pn] by |f|1{—1,1) which is in Lt

We have a contradiction because ¢, (0) =1 for all n € N. O

Exercise 3. Let U; and Us be two opensets in R™ such that Uy N Uz # (. Let Q = Uy U Uy,
o= (ai,...,a,) a multiindex, and u € L}, .(Q)
Assume that u has a weak derivative v1 = D% in Uy and v9 = D%u in Us.

1) Prove that v; = vy in U3 N Uy

in U-
2) Let v = {1)1 ?n !
vy in Uy

Prove that D%u exists in 2 and D%u = v.




Solution. 1) Soit ¢ € D(U; NU3),

(u, D%p) = / uD%p = —/ V1
UiNUs U1NU2

(u, D%p) = / uD%p = —/ Vo
UiNU2 Uy NU2

Then fUng (vg —v1)p = 0 for all ¢ € D(U; NUs). Hence, we have v; = vy in Uy N Uy. We
just use the injectivity of

and

Lip() = D'(Q)
f —> Tf

2) Let ¢ € D(Q2). We take a unit partition of Q = U; U Uy relatively to supp(y). Then
we have 01,02 € D(Q) with 01 + 603 = 1, 0 < 61,02 < 1, supp(61) C U N supp(y) and
supp(f2) C Uz N supp(yp)

We have p = 010 + O

<Dau7 90> = <Dau7 01@> + <Dau) 9280>

= / v1601¢p +/ v202¢ because suppti 2 C Ui
U1 U2

:/ v@lgo—l—/ vl
Uy Us

= / vh1p + / vlsp by definition of #; and #y supports
U1UU> U1UU2

= / v(f1 + 02)¢
U1UU>

= (v, )

Hence D%y exists in 2 and we have D%u = v in .

1.2 Definition and basic properties of W™?(Q)

Exercise 4. Let Q = B(0,1) C R2.

Prove that u € H*(Q) (but u ¢ C°(2))




Remark :

I just show the result for H'(B(0,1)) because I didn’t succeed for u’ € L*(B(0,1)) (since it’s
not true), but it keeps the spirit of the exercise because we have a function in H1(B(0, 3)) which
is not in C°(B(0, 1)).

u(zx,y)

Solution. The function u is not continuous in (0, 0), so u ¢ C°(Q2). And we can’t find a continuous
representative of u (somebody continuous equal to u almost everywhere).

o 0
We want to prove that u € L2(Q) and e 8_yu € L?(Q).

Step 1 : Let start with u € L?(9).

/Q\u(ac)\zdatz/;o /;T;ln (’ln%‘)deédp
=or [ (i (m2)) i
0

while doing a change of coordinates and seeing that ln% is non negative for p €]0,1[.
We use the inequality In(z) < 2 —1 for > 0.

[ utwrde=2x [ (m (1) ~1)"
1
=2n [ (= 1np) = 1pdp

1
=2 /0 (In(p) + 1) pdp



We use an other change of coordinates : p = exp(—x)

+oo
/ |u(z)|?dx = 27r/ (1—x)%e ¥dz < 400
Q 0

We know that x — (1 — x)%e~2* is continuous on R and summable in +o0o and 0. Hence,

u € L*(Q)
Step 2 : We want to show that Vu € L2(B(0, 3)) (B(0,1) as I said in the previous remark).
1
Let u(z,y) =In | In | ——= for all (z,y) € B(0, 3).
Vaz+y?

Assume for the moment that the weak derivative is equal to the classical derivative.
We have

0 —2z 1 x
—u(z,y) = . =
O (2,9) 21 _2( /22 1 y2)3/2 i 1 (22 + 12) In(\/22 + y2)
Va2+y n J
and

dy

(@ + 1) In(v/2+ )

Let compute the L? norm.

0 2 9 2
—u(x,y) dxdy —|—/ —u(z,y) dxdy
/13(0,1/2) Ox (:9) B(0,1/2) dy (.9)

22 y?
= + dxdy
/13(0,1/2) (22 4+ 92)2In(/22 +42) (22 +¢2)2In? (/22 + ¢2)
1
= dxdy
/ B(0,1/2) (22 + 32)In?(y/22 + 42)
1/2
= dpdf
/9 /p 0 PQ 1112 rer
1/2
=27 / dp  we use the change of variables p = ¢
p=0 pln P
In(2) oF
:277/ sdx  because dp = ¢”dx
r=—00 erx

In(2)
—277/ —de < 400
- x
rT=—00

We see in the last line why I work in B(0, 3).
It proves that Vu € L?(B(0, %)) and then u € H'(B(0, %))

Step 3 : We have to justify that the weak derivative is equal to the classical derivative.
Let take ¢ € D(B(0,1)),

0 0
__/ e
B(0,1) 8m<’0

= —lim U=
=0 JB01)\B(0,e) O



We can apply the Green Formula

/ uggo = —/ ﬁucp —i—/ wupn,do —|—/ uPndo
B(0,1)\B(0,e) O B(0,1)\B(0,¢) O S(0,€) S(0,1)

But ¢ € D(B(0,1)), so ¢ vanishes on S(0,1)!.
And ‘fS(O 0 ugonxda‘ < [ufloo,500,0) 1200, 5(0,6)2€ because 27e is the perimeter of a cercle with

radius 1. This quantity goes to zero when € goes to zero.
It follows that

0

—u,p) = —lim — —u
Gt ?) = i B(0,1)\B(0,¢) 97 i
= lim iugp
=0 /B(0,1)\B(0,c) O
x
= lim o(z,y)drdy
0B \BO (2° +y?) In(y/2* + y?)

X

x,y)dzdy
/3(0,1) (22 4+ y2) In(y/22 + y2) #lz.9)

while using the dominated convergence theorem.

0
We can do the same method for 8—u, then the weak derivative is equal to the classical one. [J
Y

Exercise 5. Let (7;); be a countable and dense set in B(0,1) € RV, a > 0.

For p > 1, prove that u € W1P(B(0,1)) for all a < ag with ap = ag(N, p) to be calculated.

1
(Hint : start by studying x — W)
T

Remark :
I will prove the result for ap = & — 1 and that is a sufficient condition as the exercise asks.
But it’s a necessary and sufficient condition.

Solution. )
Step 1 : We want to show that / de < oo if and only if @ < N. To compute
B(0,1) [¥
1
/ de, we use a spherical coordinates change in dimension N.
B(0,1) |

15(0,1) represents the sphere of radius 1




x1 = pcos(6q)
x9 = psin(fy) cos(f2)
x3 = psin(6y) sin(f2) cos(03)

xn—1 = psin(fy) ...sin(On_2) cos(On—_1)

zy = psin(61)...sin(On_2)sin(On_1)

The spherical volume element is

dV = p™Nsin(01)N 2 sin(62) V73 .. sin(Oy_3)? sin(On_o)dpdb; ... dON_1

1
/ ——dx
B(0,1) |7]®
1
S A
01,...N—2=0 N10p

.....

But the following quantity is finite, let call it K.

T 2T
K = / sin(01)Y "2 sin(ha)V 3. . sin(An_3)? sin(On_2)db . .
N—2=0J0

N-1=0

,,,,,

Then the computation gives

B(0,1) |$|
—K/ 7pN Ldp
:K/ 7dp

=0 pa7N+l

The integral converges if and only if « — N +1 < 1. Then

1
/ Tadr <ooif and only if < N
B(0,1) 2]

Step 2 : Let introduce f, : RY — R such that f(z)
fa € LP(B(0,1)) if and only if paw < N.
N
So we have f, € LP(B(0,1)) if and only if o < —.
p

.dON_1

1
= W Thank to the step 1, we have
x



Step 3 : We want to show that v € LP(B(0,1)) if a < %.
We start by using the Fatou’s Lemma with the functions

We have

/ lim inf A,, < liminf / ho,
1

While passing to the power 5, we have

: ;
</ lim inf hn> < liminf (/ hn>
n 1 p D n 1 p %
(/liminf (Z §|x — | ) d:n) < lim inf (/ (Z §|x — | ) dl’)

RS

=0 1=0
=1 Y "1
(/ (Z%|x—ri|_a> da:) < lim inf nga(—n)
=0 i=0 »
e ]
fuly < iming 7 - 1fal- 7)1,
=0
+oo 1
lullp < D 57 Ifal-=7i) 1,
1=0

We used the Minkowski inequality to get out the sum of the norm LP.
But thanks to step 2, while using a translation of r;, we have

N
[ fa(- —7i)ll, < +oc if and only if a < n

And all those quantities are dominated by the same function g = f, on B(0,2), so

—+00

1
S 5 Male =7 Il < +oo

1=0

N
Then v € LP if a < —.
p

Step 4 : We want to show that v’ € LP(B(0,1)).
We start to find the derivative of f,(. —r) for r = (r1,...,ry) € B(0,1). For the same reasons
of the Exercise 4 Step 3, the weak derivative is equal to the classical derivative.
0 0 1
—fall—1) = —
N T S D
a1
— 52w — 1) (x5 —15)%) 2
|z — r|2

—a(zy — 1)
|z — r[ot2




Then we have .Andit’sin LPif a+1 < %. (because of the Step 2)

0
kaa(.—'r) <

|z — r|ot!

We want to show that

0 (&1 X1 0
873319 (Z ?fa(- - Tz)) = Z gaixkfaf - 7‘1’) (1)
i=0 =0

For all ¢ € D(B(0,1)),

=0
+oo
1 0
= 2Z/fa( TZ)ai‘P
=0
+oo
1 0
= 5 <fa( 7"1), 6 90>
=0
+oo
1 0
= 9 <8mkfo‘(' —?“2)7<P>

The justification of the change of / and Z is because of the dominated convergence theorem.

0
ZQlfo‘ - 1 00 Zsza - 8 ¢ a.e.

and
0 0 =1
? p| < ‘ MSOH lSuppng?fa(-_ri)
i=0 o i=0
N———
€LP (Step 3)
€L (Supp ¢)

Then it justifies the egality (1) and so, thanks the same methods that Step 3 and the beginning

of Step 4, we have
0 (X1
‘ B <Z o fal- = m)
i=0

Step 5 : Conclusion
N
Thanks to Step 3 and 4, we have u € WHP(B(0,1)) for all @ < ap with ap = — — 1.
p

N
< 400 if and only if « < — — 1
p

p

10



1.3 Duality spaces WP

Exercise 6. Let a = (ay,...,ay),z = (z1,...,2y). Case of O =RV,
S := {u € L*(RY) such that *D"u € L*(RY)Va, 8 multiindex}

Show that
H™RY) = {u € &', such that (1+ [£]>)™/?a € L*(RN)}

where 4 is the Fourier transform of w.

Solution. We recall that
H™RN) := {u e L>(RY), D% € L*(RN),V|a| < m}

Step 1 : We want to remark that F(D%u)(£) = il*l¢* F(u)(€) for u € S, a = (ay,...,ay) € NV,
€ € RN with |a| =Y, a; and €% = £ .. Y.
For ¢ € S,
(F(D%), ) = (D%, @)
= (=1 (u, D*(Fy))
= (=D u, (=i)"le*Fy)
= ilg* (u, Fp)
= ille(Fu, )

Then we have F(D%u)(£) = il®l¢*F(u)(€).
Step 2 : We want to prove the direct inclusion.

Let u € H™(RY), then we have by Fourier-Plancherel, F(D%u) € L? for all a such that |a| < m
But D € S, so il®l¢*t € L? (by Step 1).

L (ariemia©) de= [ avieprae

Ni( )rf\% i%(€)dg

k=0

)
2

Py

I
NE

m
k

) |§|2k 2(€)d¢ because k < m

il

0

<00

Since u is in &’ (because L? C &), then

ue {ued, such that (1+]¢>)™ %4 e L2RN)}

11




Step 3 : We want to prove the other inclusion.
Let u € S’ such that (1 + |£[2)™/%4 € L*(RN).
Let a € NV such that |a| < m.
We know that
(1+[¢*)ma(€) € L'(RY),
then
(1+[gf*)*a(6) € L'(RY).
It follows that
€*a*(€) e L'RY),
then
illera(g) e L*(RY).
We recognize the Fourier Transform of D%u, and, by Fourier—Plancherel, we conclude that
Dy € L*(RM).
Therefore u € H™(RY).

1.4 Study of W'r(Q)

Exercise 7. Let Q = {(2,9),0 < |z| < 1,0 <y < 1} C R%
1 ifz>0
Let u(z,y) =
@V=10 e<o
1) Show that u € WHP(Q), Vp > 1
2) Show there is € > 0, such that there is no function ¢ € C'(Q) such that ||u — ¢||1, < €.

3) What’s up ?

12




Solution. 1) Step 1 : We want to show that u € LP(Q).

1 1
/ / u(z,y !pdyd:r:+/ / u(z,y |pdyd:):—/ / ldydx =1
=-1 =0 Jy=0

Then u € LP(Q).

Step 2 : We want to show that Du € LP(9Q).

Let ¢ € D(Q2), then since the support of ¢ is compact in €, we have ¢(0,y) = ¢(1,y) = 0 for
all y € [0,1] and ¢(z,1) = p(x,0) = 0 for all z € [0, 1].

(Oyu, p) = —(u, Oyp)

—/uﬁygp

Q
1 1

/ / Oyp(z,y)dydx
=0 Jy=0

1
= [ (pla1) = pla,0))ds
=0

(Oru, ) = =(u, )

_l/nuaz@

Q
1 1

- / / Owp(z,y)dady
y=0 J =0

1
__ /:0(90(1,?;) — 0(0,))dy
—0

Then O,u(z,y) = dyu(x,y) =0 for all (z,y) € Q.
So dyu, Oyu € LP(Q) and therefore u € W1P(Q).

2) We want to show that there exists ¢ such that for all ¢ € C*(Q),
lu = dllip0 > e

We work for a contradiction. We suppose that

_ 1
Vo > 0,3, € CHQ) st |u— dullipa < -

13



So we have a sequence (¢,), such that

whr(Q)
n n—oo
It means that
bn Dy and Vo, E:—“l 0 2)

Because 0, u(x,y) = dyu(x,y) = 0 for all (z,y) € Q.

By the Lebesgue Inverse Theorem, we have a subsequence, still called ¢,,, that converges to u
almost everywhere in Q.

We have for almost everywhere y €]0,1[,z1 < 0,22 > 0

bn(x1,Y) — u(ry,y) =0

On(T2,y) —— u(x2,y) =1
Then
|6n(21,9) = Pu(2,y)] —— |u(@1,y) — u(z2,y)| =1 (3)

On the other hand,
1
(bn(1, ) — bn(@2,9)] </ D (tar + (1 — ), y).(x1 — 22,0)|dt
0

1
< / | D (tzr + (1 — t)x2,y)||||(z1 — 22,0)||dt by Cauchy—Schwarz
0

1 1/p
< lar = a2 0l ([ 1Don(en + (1= thza)lPa) by Tolder
0

We use a convexity inequality

CL2—|—b2 P/2<$p+yp
2 2

In other words,
p

(a® +b)P/2 < 227 (aP + bP)

1
/0 | Dén(tzs + (1 — t)aa, y) [Pdt (4)
:/ (Ou2 (1 + (L — D)2, y) + 0y (b1 + (1 — ), )P/ (5)
0
SC’/1 Op @b (tx1 + (1 — t)x2,y) + Oydh (txr + (1 — t)z2,y)dt (6)
0

14



We use Fatou to have

1 1
/0 lim inf |¢n(x17y) - an(x%y)’dy < hminf/o |<bn(x1,y) - ¢n(m27y)‘dy (7)

=1 by (3)
By (6),
1 1 1
/ |pn (21, y) — dn(22,y)|dy < C/ / Opdh (tz1 + (1 — t)w2,y) + Oydh (tx1 + (1 — t)2,y)dtdy
0 o Jo
< C’/ IV én|lp —— 0 because of (2)
A n—-+4oo

where A = {(z,y),r1 <z <z2,0 <y <1}
Therefore, by (7), we have a contradiction.

To conclude, we have that there exists ¢ such that for all ¢ € C'(£2),
lu = ollipo > e
3) We have a theorem that says : If 0 is of class C! and u € W'P(€), then there exists a sequence
(tn)n of functions in D(RY) such that

WLP(Q)
Up|g ———— U
n—oo

The problem is that, in our exercise, 2 is not of class C' and then we can’t use that theorem.
O

1.4.1 Density results

Exercise 8. 1) Show that Vv € H™(RN),Vm > 1,
[v% pe = vllm-1,2 < Cef[o]im,2
2) Show that Vv € H™(RN),Vk > 0,

k
|v % pellmtk,2 < :Z [[v]lm,2

3) Show that Vv € H™(RN),Vk > 0,V|a| < k

Ck

loe x D%0llo,00 < —m7rs

[v]l0,2

Remark :

In this exercise, for the purposes of notation, I will write sometimes ||f(x)||2 instead of || f|| 2
or ||f(-)||z2. It is just because I want to mention the variables sometimes.

Moreover, there is a constant while using Fourier Plancherel due to my definition of the Fourier
transform, but I will never put it (as it was 1). It doesn’t matter because it will be in the constant
C of the exercise.

15



Solution. 1) Y|a| <m —1, Vo € H™(RY)

| DY(v* pe —v)||12 = | F(DY(v* pe —v))|| 2 with Fourier Plancherel
= ||€*F (v * pe — v)||r2 by properties of F
= ||€*F(v)(F(pe) — 1)|| 12 because of the convolution product

Fp)(©) = [ plae s

1 x —iéx
= — —)e d
€N RNIO<€) v

1 .
=~ p(u)e~ %N dy change of variable x = eu
€ RN

= F(p)(€€)

So we have

F(pe)(§) = F(p)(€€) (8)

We remark that 1 = F(p)(0) because [pn p(x)dz = 1.

Now we use the mean value theorem in RV, we have

30 €]0, 1], s.t. F(pe) = 1= F(p)(§) = F(p)(0) = DF(p)(€0).(<€)

But DF(p)(e£0).(€€) is bounded by C|e|¢ where C is a constant.?

To conclude we have

e[l€*EF (0)l 2
eleF F ()|l 2
e| F(D** o) 2
e Dol 2

€|v|lm,2 because |a| +1 < m

1D (v x pe = v)| 12

<C
<C
<C
<C
<C

So we have the result. We just used the notation a 4+ 1, we have to understand that for
instance we write the mean value theorem for the first derivative, then the “+1” is on the first
component of a.

*Indeed, DF(p) = F(zp) is bounded, because it’s the Fourier transform of a C§° function, so we can bound it by
the L' —norm.

16



2) Vla| < m, Yo € H™(RN), V|8 < k

DB (v x pe)|l 2 = | F(D*P (v * pe))|| 2 with Fourier Plancherel
= ||€2 P F (v * pe)|| 2 by properties of F
= [|€“TP F(v)F(p.)| 12 by properties of F and convolution product
pe)llz2 by prop p

(€)”
Al

1
= gl!}"(D%)f(Dﬂp)(ﬁé)Hm because || < k

= [[€%F(v) F(p) ()l > because (8)

N

C (6%
SIFD )12

C
< Dol

<C'|H
— v
S @

m,2 because |a] < m

So we have the result. We just used C' the bound of F(D?p) that exists since p € C*°.

3) First we will use the following inequality

Vige L |fxg(@) <Ifll2llgll2

To prove that inequality, we use the definition of the convolution product and the Cauchy—
Schwarz inequality.

So we have, for |a| < k,

|pex D% ()| = |D(pe) * v(w)] (9)
< [1D%pellz2[vllo2 (10)
Ch
We want to prove that || D%pc ;2 < N2k

1Dl = [ Do) (@)
- /R i D (pe)(€)2d¢ by Fourier Plancherel
- [ ez
_ /R _ERp(e€)dg becase (8)

200
~ 1 _
= /RN Zla\ ’O(u)QeTVdU because of the change of variable £ = u

1 «
= WHU f(P)(“)H%?

17



So we have

(6 1 o
1D*(pe)ll L2 = WH}-{D p)ll L2
1

(0%
< WHD plir2

sup [|D%pl| >

< -
N/ 2

Ck

Then, since (10) and while passing to the supremum, we have the result

Ck
[[pe x Dvl| Lo < WHUHLQ-
[
1.4.2 About traces
Exercise 9. Let @ = (u,...,uy) € D(Q) with Q bounded of class C'. We recall that div i =
>; Diu;. We define
HE(Q) = {i e LP(Q)N,div @ € LP(Q)}
1) Show that HY () is a Banach space.
2) Prove that u.7ip can be defined in an appropriate space to be determined. (u.7)p = “normal

trace of u”)

Solution. 1) We put on HE. (Q) the norm

N
lillaie =Y luillzoi) + div @ 1o (q)
=1

We can easily check that (Hf, (), |- [laiv ) is a normed vector space.

We want to prove now that it is complete.

Let (i) be a Cauchy sequence in H. (Q).

Ve > 0, Ing > O,Vn,p = Ny, ||,L_[7’L - ﬁp”div <€

By definition of || - ||gv and because (LP, || - ||z») is complete, we have
Lr .
Up; — Ui Vi € {1, ,N}
n—oo
and

. LP
div 4,, —— v
n—0o0
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Then we have by weak convergence,

D0 i weakly Vie {1,---,N}

n—

Un,i

)

and so /
Dy i D, Dju; weakly Vie {l,--- N}
n—oo

It follows that o
div @, — div @ weakly
n—oo

. . . Lp .
By limit uniqueness and div 4, —— v, we have v = div .
n—oo

Hence, we have

LP .

Upg — Ui Vi € {1, ,N}
n—oo
and
PR LP .o
div 4, —— div u
n—oo

which prove that @, goes to @ in HY. (Q) and that @ € HY, (Q).

2) T am sorry but I didn’t find/take the time to thing about that question...

1.5 Sobolev compact embeddings

Exercise 10. Let Q bounded of class C', 1 < p < +oo.

Show that
1/p
N:iues </ ]Vu\p+/\tr(u)]p>
Q r

is a norm over W1P(Q), equivalent to |.111,p,0-
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Solution. Step 1 : We want to show that N is a norm over W1P(Q).

e absolutely homogeneous: For all u € WP(Q), for all A € R,

_ (/ﬂ|V()\u)‘p+/r‘tr()\u)|p>1/p

_ (/Q|)\|p!V(u)‘p+/F|>\’p|tr(u)|p>1/p

= (!Mp </ yv(u)p+/‘tr(u)’p>>1/p
= [Al (/ IV ()P + /|t7“ >l/p

= [AIN (u

e point-separating: If u = 0 then N(u) = 0. Conversely, for all u € WP(Q) such that N(u) = 0.
Then, we have

Vull?, = /Q |[VulP =0 and /F]tr(u)]p =0

Therefore, we have tr(u(z)) =0 forall z € I, so u € Wol’p(Q).

Then by Poincaré inequality, we have
[ullr < C[[Vul|Le

So we have |lu||rr =0, and u = 0 because ||.||z» is a norm.

e triangle inequality: For all u,v € WhP(Q),

S =

N(u+0) = (I9 @+ 0) 50 + 1t + )2, )

< ((IVull oy + 1Vl o)) + (ltr () oy + [1tr )] o))

3=

We have just used the triangle inequality for ||.||z».

1

N(u+0) < (IVul 0 + 10l )
< N(u) + N(v)

B =

(@) 18 ey + @)1 )

We used the Minkowski discrete inequality.

(o) < (Sier) + (Sur)

For zy = [[Vullze, 22 = [[tr(u)|rr and y1 = [|VolLe, 2 = [[tr(v)| e

Therefore, N is well a norm over W1P(Q).
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Step 2 : We want to show that there exists Cy such that N(-) < (4] -
We will use the continuity of the trace,

|17p79'

ie. Yue WH(Q),  ltr(u)] ey < Cllullipe
Then we can prove the wanted inequality. For all u € W1P(Q),
N(u)? = [Vull],q) + lltr(wlf o
< IVullZ, ) + CPllullf, o
< ullfp o + CPllullf g
<Cullf g

Then, by passing to the power %, we have the result.

Step 3 : We want to show that there exists Cy such that || - ||; p0 < CaN(:).
We work for a contradiction. Suppose that we have for all n € N, u,, € W1P(Q) such that

[unll o) + IVunll Lo @) = n (IVunl o) + 67 (un) || 2o(r)) (11)
Let consider v,, = uin. So we have
[unll1p0
lvnllipo =1 (12)

The inequality (11) becomes

1
IVonllzo) + ltr(va) ey <
Then we have
Vo, @ 0 and tr(v,) %(U) 0 (13)

We use the Poincaré Wirtinger inequality to have

lon = Onllze(e) < ClVnll o) — 0

1
where v,, = TQ] / v,. We can remark that
Q

1 C C
Up| < < — <—>b 12).
] < gglonlinie) < fpllvalune) < g because (12
Hence, (7,,) is bounded and we can extract a subsequence, still called (7;,), that goes to a constant c.
LP(Q C
By the dominated convergence theorem, we have o, —(—)—> ¢ because (2 is bounded then |7,| < @
n— oo
that is L1(€2).
LP(Q
But v, — 7, ©) 0, hence
n—oo
LP(Q)
Uy — ¢
n—oo
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By the continuity of the trace, we have

tr(vy) 20, 4, (¢) = co(I") = 0 because of (13)

n—0o0

where o(I") est the measure of I'. It follows that ¢ = 0.
We conclude because

Q Q
Un, M 0 and Vo, M 0
n—oo n—oo
So )
WhP(Q
Up, @ 0
n—oo
It is a contradiction with (12). O

Exercise 11. Find an example of u € W5V (RY) such that u ¢ L>(RY).

Solution. Let take

we) = 1“<|alcr>a

. We can notice that u is not bounded around zero, then u ¢ L>°. We want to find a condition on
a such as u(z) € WHY (Bgn (0, 3)).
Step 1 : We want to show that u € LV (Bgn (0, 3)).

1 aN
/ |l :/ ln( ) dx
B(0,1/2) B(0,1/2) ||

1/2 aN
=K / In ( ) p™N"Ldp as the change of variable in Exercise 5 Step 1

=K 2*Ne=#(N=De=% 42 by the change of variable p = e™*
In(2)
+oo
=K e Ne ™ dr < +oo
In(2)

()

Then we have the result that u € LY (Bgw (0, 3)).

Step 2 : We want to show that
Let take i € [1, N].

0 .
2 € LN (Bgn (0, 3)) for all i € [1, N].

We start to find —u For the same reasons of the Exercise 4 Step 3, the weak derivative is

equal to the classical derlvatlve
81<1)°‘ 1(1> 12951H
n{— | =aln
Ozi  \|z| || 2 |af?
< 1 >a1 7
= —aln T
|z |z|

22




N

4 dzx

u
8.1’i

N a—1
1 xT;
L ()
B(0,1/2) |z| ||

N(a—1)
/ aN1n <1> LNdx
B(0,1/2) |z ||

< K/o In () —NpN_ldp

/B(o,l /2)

N

p p
+o0 1
<K gD = o=z,
In(2) e~
—+o00
<K N gy
In(2)

And z — V(@1 is integrable on [In(2), +oo[ if and only if N(a — 1) < —1. In other words, we

1
tak <1l-——|
aKe | & N

1
It follows that, for o« < 1 — N e have u € WHN(B(0,1/2)).

Step 3 : We want to extend u to be in WLV (RY).
Let take a function ¢ € C§°(R™) such that the support of ¢ is in B(0,1/2) and ¢ = 1 on a
neighboorhood of zero.

Then |ugp is in WY (RY) | because

uwe WHN(B(0,1/2)) and supp(e) C B(0,1/2).

And | ug is not in L°(RY) | since the problem of u in zero. O

2 Elliptic problems

2.1 Linear problems

Exercise 12. Prove the following inequality :

1
/ (@) < 4/ Vu|2dz
R |z RN

for all N > 3 and for all u € H'(RY)

Remark :

In that exercise, the norm || - || denotes the euclidean norm on RY, i.e. ||z| =
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Solution. Step 1 : Let prove the result for u € C§°(RY). Let take u € C§°(RY).
We can write

oo
u?(z) = —/ 2u(tx)Vu(te).xdt
1
because an antiderivative of 2u(tz)Vu(tz).z is u2(tx) and when ¢ — +oo, u(tr) — 0 since u €

Ceo(RM).
Then, we have

1 5
[ s
2 +o0o
= —_— t tx).xdt| d
/RN BE /1 u(tz)Vu(tr).z T

2 [t
g/ H$H2/ lu(tx)||| Vu(tz)||||z||dtdz by Cauchy Schwarz
RN

+oo ‘u
/ / HVu(tm) ||dtdx
rv J1 7l

400 |u |
[|Vu(tz)|dtdz because t > 0
w2y tal

+o0 t
/ / |1ﬁt QUH ) [|[Vu(tz)|dedt by Fubini

+0o0 1
g/ Zt/ 7’|]Vu(y)H—Ndydt by the change of variable y = tx
1 ry 9l t

oo 9 |u(y)|2 1/2 ) 1/2
< dt / d ) (/ Vu d ) by Cauchy-Schwarz
/1 tN-1 < BN Hsz Y BN H (y)H ) Yy Yy

It follows that

(/R hﬁgjyu)?'Zdy) " </1+OO o dt) (/R !Vu<y>u2dy>l/2

too 9 2 +oo 2
And /1 tNi—ldt = [(2—)751\7—2] 1 =~ _3 < 2 because n > 3.

N -2
Finally, while passing to the square, we find

2
uly
Ly <a [ ivulPay
ry Yl RN
Step 2 : The general case.

By density of C3°(RY) in H'(RY) for the H'—mnorm, for all u € H'(RY), there exists a sequence
(un)n € C(RV)N such that

HY(RYN)
Uy ———> U
n—oo
In other words,
L2(R L
Unp, (—)> u and Vu, M Vu
n—oo n—oo
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We have, for all n € N,

/ L (@)2de < 4 / |Vun(2)|2de
R RNV

e

—”V“n”LQ(RN)

We use Fatou’s lemma (because the functions we use are non negative) to have

1 2 / 2
——wx)’dr = liminf ——= dx
e T @

Lu (z)%dx

R[22
4liminf ||V |72 gy by (14)

< liminf

NN

4||VU||%2(RN)
<4/ ||Vu(:z)||2dx
RN

So we have the result for all u € H'(RY).

Exercise 13. Let n = 2, % < a<1. Let
s
Q, = {(r,&),0<r< 1,0< 0 < —}
Q@

and

u(r,0) = (r~* —r%) sin(ad)
1) Show that 3¢* > 1 such that Vq € [1,¢*[, u € Wh4(Q,).
2) Calculate —Au
3) What’s up ?
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ey

2
7

2
o

We want to show that u € L1(Q,) for ¢ <

1) Step 1:

Solution.

<o

r~0 'r'aq_l

2
, e g < —.

tegrable on ]0, 1] if and only if ag — 1 < 1, 4

is in

1
rog—1

The function r —

(01

2
o

Hence, u € L1(Q,) for ¢ <

0 0 2
—u, — L1(Q,) f
Gxu’ayue ( )orq<a+1

We want to show that

Step 2

, we have

iving u

While der

(15)
(16)

—~ ~~
— 3

| ~
3

[ |
S 3

| ,T
— ~—
. >
S

wn

-
~— a
—

>

D

7w OIS
1

S

~
SEES

But

3
SIES
SEECS
DlI>F
s
g +
§= !
+ o8
3 \Wo
8
&) N
\_/6 =
> @
@0 |
Q
© _
_ S
3 >
a_Ta_nd
Q|
——

w will be in L9.

9,9
Ox Oy

L9, then

u are 1

10
r 00

Hence, if 2u and
or
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0

or

1
ra—l—l

q
+ o rdr

.

g x 1
ul = / [e" sin(a0)|qd9/
0 0

<o 1
r:or(a—l—l)q—l

1
The function r — ————— is integrable on ]0,1[ if and only if (o +1)g —1 < 1, i.e.

rlatl)g
< 2
<ot tr
[ ]
1o |1 1
/ :/ | cos(ad) |qd0/ — —r rdr
O 1"80 0 ra | ro
<oo 1

rm0 p(at1)g—1

1
The function r — ———— is integrable on |0, 1[ if and only if (a +1)g —1 < 1, i.e.

rlatl)g—1
< 2
= ortr

o 0 2

It follows that oz a—yu € L1(Q,) for ¢ < PR

2

We take | ¢" = 1 to have u € W14(Q,,) for all ¢ € [1, ¢*].

a

0? 10 1 62
WehaveAU—ﬁu+ I +r2802

And we can compute

82
52U = sin(af (a(a + 1)r 2 — a(a — 1)r*"?) while deriving (15)
10
St = sin(af)(—ar~*2 — ar*~?) while using (15)
1 82 2 —a—2 a—2 : S
gt = sin(af)(r — r®%) while deriving (16)

While computing the laplacian, we find that Au = 0.

—Av =0
U|8Qa =0

has two solutions in VVO1 1(Q) : u and the zero function.

It follows that the PDE

The problem is that €, is not of class C! because at the point (0,0) we have an angle. Then

we lose the uniqueness of the solution.
O
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