Sobolev spaces's exercises

Professor : Roger Lewandowski

Written by Pierre Le Barbenchon

1 Sobolev spaces

1.1 General framework

Exercise 1. $N=2$

1) Define the outward unit vector at any point x
2) Define $\int_{\Gamma_{i}} g(x) d \sigma(x)$ for g smooth
3) Prove ($I P$) by using $1 D$ integration by part and Fubini's theorem.

Solution. 1) The tangent of Γ_{1} on x has $\left(1, f_{1}^{\prime}(x)\right)$ as director vector. Then, the normal vector is $\left(-f_{1}^{\prime}(x), 1\right)$ because the inner product has to be zero. We want to have a outward unit vector, so we divide by the norm and find

$$
\vec{n}^{(1)}=\left(\frac{-f_{1}^{\prime}(x)}{\sqrt{\left(f_{1}^{\prime}(x)\right)^{2}+1}}, \frac{1}{\sqrt{\left(f_{1}^{\prime}(x)\right)^{2}+1}}\right)
$$

Same method for Γ_{2} and we find :

$$
\vec{n}^{(2)}=\left(\frac{-f_{2}^{\prime}(x)}{\sqrt{\left(f_{2}^{\prime}(x)\right)^{2}+1}}, \frac{1}{\sqrt{\left(f_{2}^{\prime}(x)\right)^{2}+1}}\right)
$$

2) We parameterize Γ_{1} with $\left(x, f_{1}(x)\right)$ for $x \in[a, b]$. Then we use line integral.

$$
\begin{aligned}
\int_{\Gamma_{1}} g(x) d \sigma(x) & =\int_{a}^{b} g\left(f_{1}(x)\right)\left\|f_{1}^{\prime}(x)\right\| d x \\
& =\int_{a}^{b} g\left(f_{1}(x)\right) \sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d f_{1}(x)}{d x}\right)^{2}} d x \\
& =\int_{a}^{b} g\left(f_{1}(x)\right) \sqrt{1+\left(f_{1}^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

Same method for Γ_{2} :

$$
\int_{\Gamma_{2}} g(x) d \sigma(x)=\int_{b}^{a} g\left(f_{2}(x)\right) \sqrt{1+\left(f_{2}^{\prime}(x)\right)^{2}} d x
$$

We change the bounds order because we go from b to a on the boundary Γ_{2}.
3) We use the Fubini theorem to split the open Ω

$$
\int_{\Omega} u(x, y) \frac{\partial v}{\partial y}(x, y) d x d y=\int_{x=a}^{b}\left(\int_{y=f_{2}(x)}^{f_{1}(x)} u(x, y) \frac{\partial v}{\partial y}(x, y) d y\right) d x
$$

Then we use integration by parts :

$$
\begin{aligned}
= & \int_{x=a}^{b}\left([u(x, y) v(x, y)]_{f_{2}(x)}^{f_{1}(x)}-\int_{f_{2}(x)}^{f_{1}(x)} \frac{\partial u}{\partial y}(x, y) v(x, y) d y\right) d x \\
=\int_{x=a}^{b}(u(x, & \left.\left.f_{1}(x)\right) v\left(x, f_{1}(x)\right)-u\left(x, f_{2}(x)\right) v\left(x, f_{2}(x)\right)-\int_{f_{2}(x)}^{f_{1}(x)} \frac{\partial u}{\partial y}(x, y) v(x, y) d y\right) d x \\
= & \int_{x=a}^{b} u\left(x, f_{1}(x)\right) v\left(x, f_{1}(x)\right) \frac{1}{\sqrt{1+\left(f_{1}^{\prime}(x)\right)^{2}}} \sqrt{1+\left(f_{1}^{\prime}(x)\right)^{2}} d x \\
& -\int_{x=a}^{b} u\left(x, f_{2}(x)\right) v\left(x, f_{2}(x)\right) \frac{1}{\sqrt{1+\left(f_{2}^{\prime}(x)\right)^{2}}} \sqrt{1+\left(f_{2}^{\prime}(x)\right)^{2}} d x \\
& -\int_{x=a}^{b} \int_{f_{2}(x)}^{f_{1}(x)} \frac{\partial u}{\partial y}(x, y) v(x, y) d y d x \\
= & \int_{x=a}^{b} u v n_{2}^{(1)} \sqrt{1+\left(f_{1}^{\prime}(x)\right)^{2}} d x \\
& +\int_{x=b}^{a} u v n_{2}^{(2)} \sqrt{1+\left(f_{2}^{\prime}(x)\right)^{2}} d x \\
& -\int_{x=a}^{b} \int_{f_{2}(x)}^{f_{1}(x)} \frac{\partial u}{\partial y}(x, y) v(x, y) d y d x \\
= & \int_{\Gamma_{1}} u v n_{2}^{(1)} d \sigma+\int_{\Gamma_{2}} u v n_{2}^{(2)} d \sigma-\int_{\Omega} \frac{\partial u}{\partial y}(x, y) v(x, y) d y d x \\
= & \int_{\Gamma} u v n_{2} d \sigma-\int_{\Omega} \frac{\partial u}{\partial y}(x, y) v(x, y) d y d x
\end{aligned}
$$

We finally find the $(I P)$ formula. (We justify the Fubini Theorem because $u, v \in \mathcal{C}^{1}$, then they are continuous on Ω compact, then $\left.u \frac{\partial v}{\partial y} \in L^{1}(\Omega)\right)$

Exercise 2. Let $\Omega=]-1 ; 1[\subset \mathbb{R}$.

$$
\operatorname{sgn}(x)=\left\{\begin{array}{ll}
\frac{x}{|x|} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} \in L^{\infty}(\Omega)\right.
$$

Show that $x \mapsto \operatorname{sgn}(x)$ has no weak derivative.

Solution. We work in the distributions. For all $\varphi \in \mathcal{D}(]-1,1[)$,

$$
\begin{aligned}
\left\langle\operatorname{sgn}^{\prime}, \varphi\right\rangle & =-\left\langle\operatorname{sgn}, \varphi^{\prime}\right\rangle \\
& =+\int_{-1}^{0} \varphi^{\prime}-\int_{0}^{1} \varphi^{\prime} \\
& =[\varphi]_{-1}^{0}-[\varphi]_{0}^{1} \\
& =2 \varphi(0) \\
& =\left\langle 2 \delta_{0}, \varphi\right\rangle
\end{aligned}
$$

Then $\operatorname{sgn}^{\prime}=2 \delta_{0}$. But this distribution isn't in $L_{l o c}^{1}$, so $x \mapsto \operatorname{sgn}(x)$ has no weak derivative.
To prove that the dirac δ_{0} is not in $L_{l o c}^{1}$, we work for a contradiction. Let $f \in L_{l o c}^{1}$ such that

$$
\forall \varphi \in \mathcal{D}(]-1,1[), \quad \varphi(0)=\int_{-1}^{1} f \varphi
$$

We use a sequence $\varphi_{n} \in \mathcal{D}(]-1,1[)$ such that $\operatorname{supp}\left(\varphi_{n}\right) \subset\left[-\frac{1}{n}, \frac{1}{n}\right], \varphi_{n}(0)=1$ and the supremum of each φ_{n} equal to 1 .

Then we have by the dominated convergence theorem that $\int_{-1}^{1} f \varphi_{n}$ goes to 0 because we can dominate $\left|\mathbb{1}_{\left[-\frac{1}{n}, \frac{1}{n}\right]} f \varphi_{n}\right|$ by $\mid f \mathbb{1}_{[-1,1]}$ which is in L^{1}.

We have a contradiction because $\varphi_{n}(0)=1$ for all $n \in \mathbb{N}$.

Exercise 3. Let U_{1} and U_{2} be two opensets in \mathbb{R}^{n} such that $U_{1} \cap U_{2} \neq \emptyset$. Let $\Omega=U_{1} \cup U_{2}$, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ a multiindex, and $u \in L_{l o c}^{1}(\Omega)$

Assume that u has a weak derivative $v_{1}=D^{\alpha} u$ in U_{1} and $v_{2}=D^{\alpha} u$ in U_{2}.

1) Prove that $v_{1}=v_{2}$ in $U_{1} \cap U_{2}$
2) Let $v=\left\{\begin{array}{l}v_{1} \text { in } U_{1} \\ v_{2} \text { in } U_{2}\end{array}\right.$.

Prove that $D^{\alpha} u$ exists in Ω and $D^{\alpha} u=v$.

Solution. 1) Soit $\varphi \in \mathcal{D}\left(U_{1} \cap U_{2}\right)$,

$$
\left\langle u, D^{\alpha} \varphi\right\rangle=\int_{U_{1} \cap U_{2}} u D^{\alpha} \varphi=-\int_{U_{1} \cap U_{2}} v_{1} \varphi
$$

and

$$
\left\langle u, D^{\alpha} \varphi\right\rangle=\int_{U_{1} \cap U_{2}} u D^{\alpha} \varphi=-\int_{U_{1} \cap U_{2}} v_{2} \varphi
$$

Then $\int_{U_{1} \cap U_{2}}\left(v_{2}-v_{1}\right) \varphi=0$ for all $\varphi \in \mathcal{D}\left(U_{1} \cap U_{2}\right)$. Hence, we have $v_{1}=v_{2}$ in $U_{1} \cap U_{2}$. We just use the injectivity of

$$
\begin{cases}L_{l o c}^{1}(\Omega) & \rightarrow \mathcal{D}^{\prime}(\Omega) \\ f & \mapsto T_{f}\end{cases}
$$

2) Let $\varphi \in \mathcal{D}(\Omega)$. We take a unit partition of $\Omega=U_{1} \cup U_{2}$ relatively to $\operatorname{supp}(\varphi)$. Then we have $\theta_{1}, \theta_{2} \in \mathcal{D}(\Omega)$ with $\theta_{1}+\theta_{2}=1,0 \leqslant \theta_{1}, \theta_{2} \leqslant 1, \operatorname{supp}\left(\theta_{1}\right) \subset U_{1} \cap \operatorname{supp}(\varphi)$ and $\operatorname{supp}\left(\theta_{2}\right) \subset U_{2} \cap \operatorname{supp}(\varphi)$
We have $\varphi=\theta_{1} \varphi+\theta_{2} \varphi$

$$
\begin{aligned}
\left\langle D^{\alpha} u, \varphi\right\rangle & =\left\langle D^{\alpha} u, \theta_{1} \varphi\right\rangle+\left\langle D^{\alpha} u, \theta_{2} \varphi\right\rangle \\
& =\int_{U_{1}} v_{1} \theta_{1} \varphi+\int_{U_{2}} v_{2} \theta_{2} \varphi \text { because } \operatorname{supp} \theta_{1,2} \subset U_{1,2} \\
& =\int_{U_{1}} v \theta_{1} \varphi+\int_{U_{2}} v \theta_{2} \varphi \\
& =\int_{U_{1} \cup U_{2}} v \theta_{1} \varphi+\int_{U_{1} \cup U_{2}} v \theta_{2} \varphi \text { by definition of } \theta_{1} \text { and } \theta_{2} \text { supports } \\
& =\int_{U_{1} \cup U_{2}} v\left(\theta_{1}+\theta_{2}\right) \varphi \\
& =\langle v, \varphi\rangle
\end{aligned}
$$

Hence $D^{\alpha} u$ exists in Ω and we have $D^{\alpha} u=v$ in Ω.

1.2 Definition and basic properties of $W^{m, p}(\Omega)$

Exercise 4. Let $\Omega=B(0,1) \subset \mathbb{R}^{2}$.

$$
u: \begin{cases}\Omega & \rightarrow \mathbb{R} \\ x & \mapsto \ln \left(\left|\ln \frac{1}{|x|}\right|\right)\end{cases}
$$

Prove that $u \in H^{1}(\Omega)\left(\right.$ but $\left.u \notin \mathcal{C}^{0}(\Omega)\right)$

Remark :

I just show the result for $H^{1}\left(B\left(0, \frac{1}{2}\right)\right)$ because I didn't succeed for $u^{\prime} \in L^{2}(B(0,1))$ (since it's not true), but it keeps the spirit of the exercise because we have a function in $H^{1}\left(B\left(0, \frac{1}{2}\right)\right)$ which is not in $\mathcal{C}^{0}\left(B\left(0, \frac{1}{2}\right)\right)$.

Solution. The function u is not continuous in $(0,0)$, so $u \notin \mathcal{C}^{0}(\Omega)$. And we can't find a continuous representative of u (somebody continuous equal to u almost everywhere).

We want to prove that $u \in L^{2}(\Omega)$ and $\frac{\partial}{\partial x} u, \frac{\partial}{\partial y} u \in L^{2}(\Omega)$.
Step 1 : Let start with $u \in L^{2}(\Omega)$.

$$
\begin{aligned}
\int_{\Omega}|u(x)|^{2} d x & =\int_{\rho=0}^{1} \int_{\theta=0}^{2 \pi} \ln \left(\left|\ln \frac{1}{\rho}\right|\right)^{2} \rho d \theta d \rho \\
& =2 \pi \int_{0}^{1}\left(\ln \left(\ln \frac{1}{\rho}\right)\right)^{2} \rho d \rho
\end{aligned}
$$

while doing a change of coordinates and seeing that $\ln \frac{1}{\rho}$ is non negative for $\left.\rho \in\right] 0,1[$.
We use the inequality $\ln (x) \leqslant x-1$ for $x \geqslant 0$.

$$
\begin{aligned}
\int_{\Omega}|u(x)|^{2} d x & =2 \pi \int_{0}^{1}\left(\ln \left(\frac{1}{\rho}\right)-1\right)^{2} \rho d \rho \\
& =2 \pi \int_{0}^{1}(-\ln (\rho)-1)^{2} \rho d \rho \\
& =2 \pi \int_{0}^{1}(\ln (\rho)+1)^{2} \rho d \rho
\end{aligned}
$$

We use an other change of coordinates : $\rho=\exp (-x)$

$$
\int_{\Omega}|u(x)|^{2} d x=2 \pi \int_{0}^{+\infty}(1-x)^{2} \mathrm{e}^{-2 x} d x<+\infty
$$

We know that $x \mapsto(1-x)^{2} \mathrm{e}^{-2 x}$ is continuous on \mathbb{R}^{+}and summable in $+\infty$ and 0 . Hence,

$$
u \in L^{2}(\Omega)
$$

Step 2 : We want to show that $\nabla u \in L^{2}\left(B\left(0, \frac{1}{2}\right)\right)\left(B\left(0, \frac{1}{2}\right)\right.$ as I said in the previous remark).
Let $u(x, y)=\ln \left(\ln \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right)\right)$ for all $(x, y) \in B\left(0, \frac{1}{2}\right)$.
Assume for the moment that the weak derivative is equal to the classical derivative.
We have

$$
\frac{\partial}{\partial x} u(x, y)=\frac{-2 x}{\frac{1}{\sqrt{x^{2}+y^{2}}} 2\left(\sqrt{x^{2}+y^{2}}\right)^{3 / 2}} \cdot \frac{1}{\ln \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right)}=\frac{x}{\left(x^{2}+y^{2}\right) \ln \left(\sqrt{x^{2}+y^{2}}\right)}
$$

and

$$
\frac{\partial}{\partial y} u(x, y)=\frac{y}{\left(x^{2}+y^{2}\right) \ln \left(\sqrt{x^{2}+y^{2}}\right)}
$$

Let compute the L^{2} norm.

$$
\begin{aligned}
& \int_{B(0,1 / 2)} \frac{\partial}{\partial x} u(x, y)^{2} d x d y+\int_{B(0,1 / 2)} \frac{\partial}{\partial y} u(x, y)^{2} d x d y \\
= & \int_{B(0,1 / 2)} \frac{x^{2}}{\left(x^{2}+y^{2}\right)^{2} \ln ^{2}\left(\sqrt{x^{2}+y^{2}}\right)}+\frac{1}{\left(x^{2}+y^{2}\right)^{2} \ln ^{2}\left(\sqrt{\left.x^{2}+y^{2}\right)}\right.} d x d y \\
= & \int_{B(0,1 / 2)} \frac{1}{\left(x^{2}+y^{2}\right) \ln ^{2}\left(\sqrt{x^{2}+y^{2}}\right)} d x d y \\
= & \int_{\theta=0}^{2 \pi} \int_{\rho=0}^{1 / 2} \frac{1}{\rho^{2} \ln ^{2} \rho} \rho d \rho d \theta \\
= & 2 \pi \int_{\rho=0}^{1 / 2} \frac{1}{\rho \ln ^{2} \rho} d \rho \quad \text { we use the change of variables } \rho=\mathrm{e}^{x} \\
= & 2 \pi \int_{x=-\infty}^{-\ln (2)} \frac{\mathrm{e}^{x}}{\mathrm{e}^{x} x^{2}} d x \quad \text { because } d \rho=\mathrm{e}^{x} d x \\
= & 2 \pi \int_{x=-\infty}^{-\ln (2)} \frac{1}{x^{2}} d x<+\infty
\end{aligned}
$$

We see in the last line why I work in $B\left(0, \frac{1}{2}\right)$.
It proves that $\nabla u \in L^{2}\left(B\left(0, \frac{1}{2}\right)\right)$ and then $u \in H^{1}\left(B\left(0, \frac{1}{2}\right)\right)$.
Step 3: We have to justify that the weak derivative is equal to the classical derivative.
Let take $\varphi \in \mathcal{D}(B(0,1))$,

$$
\begin{aligned}
\left\langle\frac{\partial}{\partial x} u, \varphi\right\rangle & =-\left\langle u, \frac{\partial}{\partial x} \varphi\right\rangle \\
& =-\int_{B(0,1)} u \frac{\partial}{\partial x} \varphi \\
& =-\lim _{\epsilon \rightarrow 0} \int_{B(0,1) \backslash B(0, \epsilon)} u \frac{\partial}{\partial x} \varphi
\end{aligned}
$$

We can apply the Green Formula

$$
\int_{B(0,1) \backslash B(0, \epsilon)} u \frac{\partial}{\partial x} \varphi=-\int_{B(0,1) \backslash B(0, \epsilon)} \frac{\partial}{\partial x} u \varphi+\int_{S(0, \epsilon)} u \varphi n_{x} d \sigma+\int_{S(0,1)} u \varphi n_{x} d \sigma
$$

But $\varphi \in \mathcal{D}(B(0,1))$, so φ vanishes on $S(0,1)^{1}$.
And $\left|\int_{S(0, \epsilon)} u \varphi n_{x} d \sigma\right| \leqslant\|u\|_{\infty, S(0, \epsilon)}\|\varphi\|_{\infty, S(0, \epsilon)} 2 \pi \epsilon$ because $2 \pi \epsilon$ is the perimeter of a cercle with radius 1 . This quantity goes to zero when ϵ goes to zero.

It follows that

$$
\begin{aligned}
\left\langle\frac{\partial}{\partial x} u, \varphi\right\rangle & =-\lim _{\epsilon \rightarrow 0}-\int_{B(0,1) \backslash B(0, \epsilon)} \frac{\partial}{\partial x} u \varphi \\
& =\lim _{\epsilon \rightarrow 0} \int_{B(0,1) \backslash B(0, \epsilon)} \frac{\partial}{\partial x} u \varphi \\
& =\lim _{\epsilon \rightarrow 0} \int_{B(0,1) \backslash B(0, \epsilon)} \frac{x}{\left(x^{2}+y^{2}\right) \ln \left(\sqrt{x^{2}+y^{2}}\right)} \varphi(x, y) d x d y \\
& =\int_{B(0,1)} \frac{x}{\left(x^{2}+y^{2}\right) \ln \left(\sqrt{x^{2}+y^{2}}\right)} \varphi(x, y) d x d y
\end{aligned}
$$

while using the dominated convergence theorem.
We can do the same method for $\frac{\partial}{\partial y} u$, then the weak derivative is equal to the classical one.

Exercise 5. Let $\left(r_{i}\right)_{i}$ be a countable and dense set in $B(0,1) \subset \mathbb{R}^{N}, \alpha>0$.

$$
u(x)=\sum_{i=0}^{+\infty} \frac{1}{2^{i}}\left|x-r_{i}\right|^{-\alpha}
$$

For $p>1$, prove that $u \in W^{1, p}(B(0,1))$ for all $\alpha<\alpha_{0}$ with $\alpha_{0}=\alpha_{0}(N, p)$ to be calculated.
(Hint : start by studying $x \mapsto \frac{1}{|x|^{\alpha}}$)

Remark :

I will prove the result for $\alpha_{0}=\frac{N}{p}-1$ and that is a sufficient condition as the exercise asks. But it's a necessary and sufficient condition.

Solution.
Step 1 : We want to show that $\int_{B(0,1)} \frac{1}{|x|^{\alpha}} d x<\infty$ if and only if $\alpha<N$. To compute $\int_{B(0,1)} \frac{1}{|x|^{\alpha}} d x$, we use a spherical coordinates change in dimension N.

[^0]\[

$$
\begin{aligned}
x_{1} & =\rho \cos \left(\theta_{1}\right) \\
x_{2} & =\rho \sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right) \\
x_{3} & =\rho \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \cos \left(\theta_{3}\right) \\
\vdots & \vdots \\
x_{N-1} & =\rho \sin \left(\theta_{1}\right) \ldots \sin \left(\theta_{N-2}\right) \cos \left(\theta_{N-1}\right) \\
x_{N} & =\rho \sin \left(\theta_{1}\right) \ldots \sin \left(\theta_{N-2}\right) \sin \left(\theta_{N-1}\right)
\end{aligned}
$$
\]

The spherical volume element is

$$
\begin{aligned}
d V=\rho^{N-1} \sin \left(\theta_{1}\right)^{N-2} & \sin \left(\theta_{2}\right)^{N-3} \ldots \sin \left(\theta_{N-3}\right)^{2} \sin \left(\theta_{N-2}\right) d \rho d \theta_{1} \ldots d \theta_{N-1} \\
& \int_{B(0,1)} \frac{1}{|x|^{\alpha}} d x \\
= & \int_{\rho=0}^{1} \int_{\theta_{1, \ldots, N-2}=0}^{\pi} \int_{\theta_{N-1}=0}^{2 \pi} \frac{1}{\rho^{\alpha}} d V
\end{aligned}
$$

But the following quantity is finite, let call it K.

$$
K=\int_{\theta_{1, \ldots, N-2}=0}^{\pi} \int_{\theta_{N-1}=0}^{2 \pi} \sin \left(\theta_{1}\right)^{N-2} \sin \left(\theta_{2}\right)^{N-3} \ldots \sin \left(\theta_{N-3}\right)^{2} \sin \left(\theta_{N-2}\right) d \theta_{1} \ldots d \theta_{N-1}
$$

Then the computation gives

$$
\begin{aligned}
& \int_{B(0,1)} \frac{1}{|x|^{\alpha}} d x \\
= & K \int_{\rho=0}^{1} \frac{1}{\rho^{\alpha}} \rho^{N-1} d \rho \\
= & K \int_{\rho=0}^{1} \frac{1}{\rho^{\alpha-N+1}} d \rho
\end{aligned}
$$

The integral converges if and only if $\alpha-N+1<1$. Then

$$
\int_{B(0,1)} \frac{1}{|x|^{\alpha}} d x<\infty \text { if and only if } \alpha<N
$$

Step 2 : Let introduce $f_{\alpha}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that $f(x)=\frac{1}{|x|^{\alpha}}$. Thank to the step 1 , we have $f_{\alpha} \in L^{p}(B(0,1))$ if and only if $p \alpha<N$.

So we have $f_{\alpha} \in L^{p}(B(0,1))$ if and only if $\alpha<\frac{N}{p}$.

Step 3 : We want to show that $u \in L^{p}(B(0,1))$ if $\alpha<\frac{N}{p}$.
We start by using the Fatou's Lemma with the functions

$$
h_{n}(x)=\left(\sum_{i=0}^{n} \frac{1}{2^{i}}\left|x-r_{i}\right|^{-\alpha}\right)^{p}
$$

We have

$$
\int \liminf h_{n} \leqslant \liminf \int h_{n}
$$

While passing to the power $\frac{1}{p}$, we have

$$
\begin{aligned}
\left(\int \liminf h_{n}\right)^{\frac{1}{p}} & \leqslant \liminf \left(\int h_{n}\right)^{\frac{1}{p}} \\
\left(\int \liminf \left(\sum_{i=0}^{n} \frac{1}{2^{i}}\left|x-r_{i}\right|^{-\alpha}\right)^{p} d x\right)^{\frac{1}{p}} & \leqslant \liminf \left(\int\left(\sum_{i=0}^{n} \frac{1}{2^{i}}\left|x-r_{i}\right|^{-\alpha}\right)^{p} d x\right)^{\frac{1}{p}} \\
\left(\int\left(\sum_{i=0}^{+\infty} \frac{1}{2^{i}}\left|x-r_{i}\right|^{-\alpha}\right)^{p} d x\right)^{\frac{1}{p}} & \leqslant \liminf \left\|\sum_{i=0}^{n} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right)\right\|_{p} \\
\|u\|_{p} & \leqslant \liminf \sum_{i=0}^{n} \frac{1}{2^{i}}\left\|f_{\alpha}\left(.-r_{i}\right)\right\|_{p} \\
\|u\|_{p} & \leqslant \sum_{i=0}^{+\infty} \frac{1}{2^{i}}\left\|f_{\alpha}\left(.-r_{i}\right)\right\|_{p}
\end{aligned}
$$

We used the Minkowski inequality to get out the sum of the norm L^{p}.
But thanks to step 2, while using a translation of r_{i}, we have

$$
\left\|f_{\alpha}\left(.-r_{i}\right)\right\|_{p}<+\infty \text { if and only if } \alpha<\frac{N}{p}
$$

And all those quantities are dominated by the same function $g=f_{\alpha}$ on $B(0,2)$, so

$$
\sum_{i=0}^{+\infty} \frac{1}{2^{i}}\left\|f_{\alpha}\left(.-r_{i}\right)\right\|_{p}<+\infty
$$

Then $u \in L^{p}$ if $\alpha<\frac{N}{p}$.
Step 4: We want to show that $u^{\prime} \in L^{p}(B(0,1))$.
We start to find the derivative of $f_{\alpha}(.-r)$ for $r=\left(r_{1}, \ldots, r_{N}\right) \in B(0,1)$. For the same reasons of the Exercise 4 Step 3, the weak derivative is equal to the classical derivative.

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}} f_{\alpha}(.-r) & =\frac{\partial}{\partial x_{k}} \frac{1}{\left(\sum\left(x_{j}-r_{j}\right)^{2}\right)^{\alpha / 2}} \\
& =\frac{-\frac{\alpha}{2} 2\left(x_{k}-r_{k}\right)\left(\sum\left(x_{j}-r_{j}\right)^{2}\right)^{\frac{\alpha}{2}-1}}{|x-r|^{2 \alpha}} \\
& =\frac{-\alpha\left(x_{k}-r_{k}\right)}{|x-r|^{\alpha+2}}
\end{aligned}
$$

Then we have $\left|\frac{\partial}{\partial x_{k}} f_{\alpha}(.-r)\right|<\frac{\alpha}{|x-r|^{\alpha+1}}$. And it's in L^{p} if $\alpha+1<\frac{N}{p}$. (because of the Step 2)
We want to show that

$$
\begin{equation*}
\frac{\partial}{\partial x_{k}}\left(\sum_{i=0}^{+\infty} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right)\right)=\sum_{i=0}^{+\infty} \frac{1}{2^{i}} \frac{\partial}{\partial x_{k}} f_{\alpha}\left(.-r_{i}\right) \tag{1}
\end{equation*}
$$

For all $\varphi \in \mathcal{D}(B(0,1))$,

$$
\begin{aligned}
\left\langle\frac{\partial}{\partial x_{k}}\left(\sum_{i=0}^{+\infty} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right)\right), \varphi\right\rangle & =\left\langle\sum_{i=0}^{+\infty} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right), \frac{\partial}{\partial x_{k}} \varphi\right\rangle \\
& =\int \sum_{i=0}^{+\infty} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right) \frac{\partial}{\partial x_{k}} \varphi \\
& =\sum_{i=0}^{+\infty} \frac{1}{2^{i}} \int f_{\alpha}\left(.-r_{i}\right) \frac{\partial}{\partial x_{k}} \varphi \\
& =\sum_{i=0}^{+\infty} \frac{1}{2^{i}}\left\langle f_{\alpha}\left(.-r_{i}\right), \frac{\partial}{\partial x_{k}} \varphi\right\rangle \\
& =\sum_{i=0}^{+\infty} \frac{1}{2^{i}}\left\langle\frac{\partial}{\partial x_{k}} f_{\alpha}\left(.-r_{i}\right), \varphi\right\rangle
\end{aligned}
$$

The justification of the change of \int and \sum is because of the dominated convergence theorem.

$$
\sum_{i=0}^{n} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right) \frac{\partial}{\partial x_{k}} \varphi \underset{n \rightarrow \infty}{ } \sum_{i=0}^{+\infty} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right) \frac{\partial}{\partial x_{k}} \varphi \quad \text { a.e. }
$$

and

$$
\left|\sum_{i=0}^{n} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right) \frac{\partial}{\partial x_{k}} \varphi\right| \leqslant\left\|\frac{\partial}{\partial x_{k}} \varphi\right\|_{\infty} \underbrace{\mathbb{1}_{\text {Supp } \varphi} \varphi \underbrace{\sum_{i=0}^{\infty} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right)}_{\in L^{p}(\text { Step } 3)}}_{\in L^{1}(\text { Supp } \varphi)}
$$

Then it justifies the egality (1) and so, thanks the same methods that Step 3 and the beginning of Step 4, we have

$$
\left\|\frac{\partial}{\partial x_{k}}\left(\sum_{i=0}^{+\infty} \frac{1}{2^{i}} f_{\alpha}\left(.-r_{i}\right)\right)\right\|_{p}<+\infty \text { if and only if } \alpha<\frac{N}{p}-1
$$

Step 5 : Conclusion
Thanks to Step 3 and 4, we have $u \in W^{1, p}(B(0,1))$ for all $\alpha<\alpha_{0}$ with $\alpha_{0}=\frac{N}{p}-1$.

1.3 Duality spaces $W^{-m, p}$

Exercise 6. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right), x=\left(x_{1}, \ldots, x_{N}\right)$. Case of $\Omega=\mathbb{R}^{N}$.

$$
\mathcal{S}:=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) \text { such that } x^{\alpha} D^{\beta} u \in L^{2}\left(\mathbb{R}^{N}\right) \forall \alpha, \beta \text { multiindex }\right\}
$$

Show that

$$
H^{m}\left(\mathbb{R}^{N}\right)=\left\{u \in \mathcal{S}^{\prime}, \text { such that }\left(1+|\xi|^{2}\right)^{m / 2} \hat{u} \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

where \hat{u} is the Fourier transform of u.
Solution. We recall that

$$
H^{m}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right), D^{\alpha} u \in L^{2}\left(\mathbb{R}^{N}\right), \forall|\alpha| \leqslant m\right\}
$$

Step 1 : We want to remark that $\mathcal{F}\left(D^{\alpha} u\right)(\xi)=i^{|\alpha|} \xi^{\alpha} \mathcal{F}(u)(\xi)$ for $u \in \mathcal{S}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{N}^{N}$, $\xi \in \mathbb{R}^{N}$ with $|\alpha|=\sum_{i} \alpha_{i}$ and $\xi^{\alpha}=\xi_{1}^{\alpha_{1}} \ldots \xi_{N}^{\alpha_{N}}$.

For $\varphi \in \mathcal{S}$,

$$
\begin{aligned}
\left\langle\mathcal{F}\left(D^{\alpha} u\right), \varphi\right\rangle & =\left\langle D^{\alpha} u, \varphi\right\rangle \\
& =(-1)^{|\alpha|}\left\langle u, D^{\alpha}(\mathcal{F} \varphi)\right\rangle \\
& =(-1)^{|\alpha|}\left\langle u,(-i)^{|\alpha|} \xi^{\alpha} \mathcal{F} \varphi\right\rangle \\
& =i^{|\alpha|} \xi^{\alpha}\langle u, \mathcal{F} \varphi\rangle \\
& =i^{|\alpha|} \xi^{\alpha}\langle\mathcal{F} u, \varphi\rangle
\end{aligned}
$$

Then we have $\mathcal{F}\left(D^{\alpha} u\right)(\xi)=i^{|\alpha|} \xi^{\alpha} \mathcal{F}(u)(\xi)$.
Step 2: We want to prove the direct inclusion.
Let $u \in H^{m}\left(\mathbb{R}^{N}\right)$, then we have by Fourier-Plancherel, $\mathcal{F}\left(D^{\alpha} u\right) \in L^{2}$ for all α such that $|\alpha| \leqslant m$. But $D^{\alpha} u \in \mathcal{S}^{\prime}$, so $i^{|\alpha|} \xi^{\alpha} \hat{u} \in L^{2}$ (by Step 1).

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(\left(1+|\xi|^{2}\right)^{\frac{m}{2}} \hat{u}(\xi)\right)^{2} d \xi & =\int_{\mathbb{R}^{N}}\left(1+|\xi|^{2}\right)^{m} \hat{u}^{2}(\xi) d \xi \\
& =\int_{\mathbb{R}^{N}} \sum_{k=0}^{m}\binom{m}{k}|\xi|^{2 k} \hat{u}^{2}(\xi) d \xi \\
& =\sum_{k=0}^{m}\binom{m}{k} \underbrace{\int_{\mathbb{R}^{N}}|\xi|^{2 k} \hat{u}^{2}(\xi) d \xi}_{<\infty} \text { because } k \leqslant m
\end{aligned}
$$

Since u is in \mathcal{S}^{\prime} (because $L^{2} \subset \mathcal{S}^{\prime}$), then

$$
u \in\left\{u \in \mathcal{S}^{\prime}, \text { such that }\left(1+|\xi|^{2}\right)^{m / 2} \hat{u} \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

Step 3: We want to prove the other inclusion.
Let $u \in \mathcal{S}^{\prime}$ such that $\left(1+|\xi|^{2}\right)^{m / 2} \hat{u} \in L^{2}\left(\mathbb{R}^{N}\right)$.
Let $\alpha \in \mathbb{N}^{N}$ such that $|\alpha| \leqslant m$.
We know that

$$
\left(1+|\xi|^{2}\right)^{m} \hat{u}^{2}(\xi) \in L^{1}\left(\mathbb{R}^{N}\right)
$$

then

$$
\left(1+|\xi|^{2}\right)^{\alpha} \hat{u}^{2}(\xi) \in L^{1}\left(\mathbb{R}^{N}\right)
$$

It follows that

$$
|\xi|^{2 \alpha} \hat{u}^{2}(\xi) \in L^{1}\left(\mathbb{R}^{N}\right)
$$

then

$$
i^{|\alpha|} \xi^{\alpha} \hat{u}(\xi) \in L^{2}\left(\mathbb{R}^{N}\right)
$$

We recognize the Fourier Transform of $D^{\alpha} u$, and, by Fourier-Plancherel, we conclude that

$$
D^{\alpha} u \in L^{2}\left(\mathbb{R}^{N}\right) .
$$

Therefore $u \in H^{m}\left(\mathbb{R}^{N}\right)$.

1.4 Study of $W^{1, p}(\Omega)$

Exercise 7. Let $\Omega=\{(x, y), 0<|x|<1,0<y<1\} \subset \mathbb{R}^{2}$.
Let $u(x, y)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}$

1) Show that $u \in W^{1, p}(\Omega), \forall p \geqslant 1$
2) Show there is $\epsilon>0$, such that there is no function $\phi \in \mathcal{C}^{1}(\bar{\Omega})$ such that $\|u-\phi\|_{1, p}<\epsilon$.
3) What's up ?

Solution. 1) Step 1 : We want to show that $u \in L^{p}(\Omega)$.

$$
\int_{x=-1}^{0} \int_{y=0}^{1} \underbrace{|u(x, y)|^{p}}_{=0} d y d x+\int_{x=0}^{1} \int_{y=0}^{1} \underbrace{|u(x, y)|^{p}}_{=1} d y d x=\int_{x=0}^{1} \int_{y=0}^{1} 1 d y d x=1
$$

Then $u \in L^{p}(\Omega)$.
Step 2: We want to show that $D u \in L^{p}(\Omega)$.
Let $\varphi \in \mathcal{D}(\Omega)$, then since the support of φ is compact in Ω, we have $\varphi(0, y)=\varphi(1, y)=0$ for all $y \in[0,1]$ and $\varphi(x, 1)=\varphi(x, 0)=0$ for all $x \in[0,1]$.

$$
\begin{aligned}
\left\langle\partial_{y} u, \varphi\right\rangle & =-\left\langle u, \partial_{y} \varphi\right\rangle \\
& =-\int_{\Omega} u \partial_{y} \varphi \\
& =-\int_{x=0}^{1} \int_{y=0}^{1} \partial_{y} \varphi(x, y) d y d x \\
& =-\int_{x=0}^{1}(\varphi(x, 1)-\varphi(x, 0)) d x \\
& =0 \\
\left\langle\partial_{x} u, \varphi\right\rangle & =-\left\langle u, \partial_{x} \varphi\right\rangle \\
& =-\int_{\Omega} u \partial_{x} \varphi \\
& =-\int_{y=0}^{1} \int_{x=0}^{1} \partial_{x} \varphi(x, y) d x d y \\
& =-\int_{y=0}^{1}(\varphi(1, y)-\varphi(0, y)) d y \\
& =0
\end{aligned}
$$

Then $\partial_{x} u(x, y)=\partial_{y} u(x, y)=0$ for all $(x, y) \in \Omega$.
So $\partial_{x} u, \partial_{y} u \in L^{p}(\Omega)$ and therefore $u \in W^{1, p}(\Omega)$.
2) We want to show that there exists ε such that for all $\phi \in \mathcal{C}^{1}(\bar{\Omega})$,

$$
\|u-\phi\|_{1, p, \Omega} \geqslant \varepsilon .
$$

We work for a contradiction. We suppose that

$$
\forall n>0, \exists \phi_{n} \in \mathcal{C}^{1}(\bar{\Omega}) \text { s.t. }\left\|u-\phi_{n}\right\|_{1, p, \Omega} \leqslant \frac{1}{n}
$$

So we have a sequence $\left(\phi_{n}\right)_{n}$ such that

$$
\phi_{n} \xrightarrow[n \rightarrow \infty]{W^{1, p}(\Omega)} u
$$

It means that

$$
\begin{equation*}
\phi_{n} \xrightarrow[n \rightarrow \infty]{L^{p}(\Omega)} u \quad \text { and } \quad \nabla \phi_{n} \xrightarrow[n \rightarrow \infty]{L^{p}(\Omega)} 0 \tag{2}
\end{equation*}
$$

Because $\partial_{x} u(x, y)=\partial_{y} u(x, y)=0$ for all $(x, y) \in \Omega$.
By the Lebesgue Inverse Theorem, we have a subsequence, still called ϕ_{n}, that converges to u almost everywhere in Ω.
We have for almost everywhere $y \in] 0,1\left[, x_{1}<0, x_{2}>0\right.$

$$
\left\{\begin{array}{l}
\phi_{n}\left(x_{1}, y\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} u\left(x_{1}, y\right)=0 \\
\phi_{n}\left(x_{2}, y\right) \xrightarrow[n \rightarrow \infty]{ } u\left(x_{2}, y\right)=1
\end{array}\right.
$$

Then

$$
\begin{equation*}
\left|\phi_{n}\left(x_{1}, y\right)-\phi_{n}\left(x_{2}, y\right)\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow}\left|u\left(x_{1}, y\right)-u\left(x_{2}, y\right)\right|=1 \tag{3}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\left|\phi_{n}\left(x_{1}, y\right)-\phi_{n}\left(x_{2}, y\right)\right| & \leqslant \int_{0}^{1}\left|D \phi_{n}\left(t x_{1}+(1-t) x_{2}, y\right) \cdot\left(x_{1}-x_{2}, 0\right)\right| d t \\
& \leqslant \int_{0}^{1}\left\|D \phi_{n}\left(t x_{1}+(1-t) x_{2}, y\right)\right\|\left\|\left(x_{1}-x_{2}, 0\right)\right\| d t \text { by Cauchy-Schwarz } \\
& \leqslant\left\|\left(x_{1}-x_{2}, 0\right)\right\|\left(\int_{0}^{1}\left\|D \phi_{n}\left(t x_{1}+(1-t) x_{2}, y\right)\right\|^{p} d t\right)^{1 / p} \text { by Hölder }
\end{aligned}
$$

We use a convexity inequality

$$
\left(\frac{a^{2}+b^{2}}{2}\right)^{p / 2} \leqslant \frac{x^{p}+y^{p}}{2}
$$

In other words,

$$
\begin{gather*}
\left(a^{2}+b^{2}\right)^{p / 2} \leqslant 2^{\frac{p}{2}-1}\left(a^{p}+b^{p}\right) \\
=\int_{0}^{1}\left\|D \phi_{n}\left(t x_{2}+(1-t) x_{2}, y\right)\right\|^{p} d t \tag{4}\\
\leqslant C \int_{0}^{1}\left(\partial_{x} \phi_{n}^{2}\left(t x_{1}+(1-t) x_{2}, y\right)+\partial_{y} \phi_{n}^{2}\left(t x_{1}+(1-t) x_{2}, y\right)\right)^{p / 2} d t \tag{5}\\
\left.\leqslant t x_{1}+(1-t) x_{2}, y\right)+\partial_{y} \phi_{n}^{p}\left(t x_{1}+(1-t) x_{2}, y\right) d t \tag{6}
\end{gather*}
$$

We use Fatou to have

$$
\begin{equation*}
\underbrace{\int_{0}^{1} \liminf \left|\phi_{n}\left(x_{1}, y\right)-\phi_{n}\left(x_{2}, y\right)\right| d y}_{=1 \text { by }(3)} \leqslant \liminf \int_{0}^{1}\left|\phi_{n}\left(x_{1}, y\right)-\phi_{n}\left(x_{2}, y\right)\right| d y \tag{7}
\end{equation*}
$$

By (6),

$$
\begin{aligned}
\int_{0}^{1}\left|\phi_{n}\left(x_{1}, y\right)-\phi_{n}\left(x_{2}, y\right)\right| d y & \leqslant C \int_{0}^{1} \int_{0}^{1} \partial_{x} \phi_{n}^{p}\left(t x_{1}+(1-t) x_{2}, y\right)+\partial_{y} \phi_{n}^{p}\left(t x_{1}+(1-t) x_{2}, y\right) d t d y \\
& \leqslant C \int_{A}\left\|\nabla \phi_{n}\right\| p \xrightarrow[n \rightarrow+\infty]{ } 0 \text { because of (2) }
\end{aligned}
$$

where $A=\left\{(x, y), x_{1}<x<x_{2}, 0<y<1\right\}$
Therefore, by (7), we have a contradiction.
To conclude, we have that there exists ε such that for all $\phi \in \mathcal{C}^{1}(\bar{\Omega})$,

$$
\|u-\phi\|_{1, p, \Omega} \geqslant \varepsilon .
$$

3) We have a theorem that says: If Ω is of class \mathcal{C}^{1} and $u \in W^{1, p}(\Omega)$, then there exists a sequence $\left(u_{n}\right)_{n}$ of functions in $\mathcal{D}\left(\mathbb{R}^{N}\right)$ such that

$$
u_{n \mid \Omega} \xrightarrow[n \rightarrow \infty]{W^{1, p}(\Omega)} u
$$

The problem is that, in our exercise, Ω is not of class \mathcal{C}^{1} and then we can't use that theorem.

1.4.1 Density results

Exercise 8. 1) Show that $\forall v \in H^{m}\left(\mathbb{R}^{N}\right), \forall m \geqslant 1$,

$$
\left\|v \star \rho_{\epsilon}-v\right\|_{m-1,2} \leqslant C \epsilon\|v\|_{m, 2}
$$

2) Show that $\forall v \in H^{m}\left(\mathbb{R}^{N}\right), \forall k>0$,

$$
\left\|v \star \rho_{\epsilon}\right\|_{m+k, 2} \leqslant \frac{C_{m, k}}{\epsilon^{k}}\|v\|_{m, 2}
$$

3) Show that $\forall v \in H^{m}\left(\mathbb{R}^{N}\right), \forall k>0, \forall|\alpha| \leqslant k$

$$
\left\|\rho_{\epsilon} \star D^{\alpha} v\right\|_{0, \infty} \leqslant \frac{C_{k}}{\epsilon^{N / 2+k}}\|v\|_{0,2}
$$

Remark :

In this exercise, for the purposes of notation, I will write sometimes $\|f(x)\|_{L^{2}}$ instead of $\|f\|_{L^{2}}$ or $\|f(\cdot)\|_{L^{2}}$. It is just because I want to mention the variables sometimes.

Moreover, there is a constant while using Fourier Plancherel due to my definition of the Fourier transform, but I will never put it (as it was 1). It doesn't matter because it will be in the constant C of the exercise.

Solution. 1) $\forall|\alpha| \leqslant m-1, \forall v \in H^{m}\left(\mathbb{R}^{N}\right)$

$$
\begin{aligned}
\left\|D^{\alpha}\left(v \star \rho_{\epsilon}-v\right)\right\|_{L^{2}} & =\left\|\mathcal{F}\left(D^{\alpha}\left(v \star \rho_{\epsilon}-v\right)\right)\right\|_{L^{2}} \text { with Fourier Plancherel } \\
& =\left\|\xi^{\alpha} \mathcal{F}\left(v \star \rho_{\epsilon}-v\right)\right\|_{L^{2}} \text { by properties of } \mathcal{F} \\
& =\left\|\xi^{\alpha} \mathcal{F}(v)\left(\mathcal{F}\left(\rho_{\epsilon}\right)-1\right)\right\|_{L^{2}} \text { because of the convolution product } \\
\mathcal{F}\left(\rho_{\epsilon}\right)(\xi) & =\int_{\mathbb{R}^{N}} \rho_{\epsilon}(x) \mathrm{e}^{-i \xi x} d x \\
& =\frac{1}{\epsilon^{N}} \int_{\mathbb{R}^{N}} \rho\left(\frac{x}{\epsilon}\right) \mathrm{e}^{-i \xi x} d x \\
& =\frac{1}{\epsilon^{N}} \int_{\mathbb{R}^{N}} \rho(u) \mathrm{e}^{-i \xi \epsilon u} \epsilon^{N} d u \text { change of variable } x=\epsilon u \\
& =\mathcal{F}(\rho)(\epsilon \xi)
\end{aligned}
$$

So we have

$$
\begin{equation*}
\mathcal{F}\left(\rho_{\epsilon}\right)(\xi)=\mathcal{F}(\rho)(\epsilon \xi) \tag{8}
\end{equation*}
$$

We remark that $1=\mathcal{F}(\rho)(0)$ because $\int_{\mathbb{R}^{N}} \rho(x) d x=1$.
Now we use the mean value theorem in \mathbb{R}^{N}, we have

$$
\exists \theta \in] 0,1\left[, \text { s.t. } \mathcal{F}\left(\rho_{\epsilon}\right)-1=\mathcal{F}(\rho)(\epsilon \xi)-\mathcal{F}(\rho)(0)=D \mathcal{F}(\rho)(\epsilon \xi \theta) .(\epsilon \xi)\right.
$$

But $D \mathcal{F}(\rho)(\epsilon \xi \theta) \cdot(\epsilon \xi)$ is bounded by $C|\epsilon| \xi$ where C is a constant. ${ }^{2}$
To conclude we have

$$
\begin{aligned}
\left\|D^{\alpha}\left(v \star \rho_{\epsilon}-v\right)\right\|_{L^{2}} & \leqslant C \epsilon\left\|\xi^{\alpha} \xi \mathcal{F}(v)\right\|_{L^{2}} \\
& \leqslant C \epsilon\left\|\xi^{\alpha+1} \mathcal{F}(v)\right\|_{L^{2}} \\
& \leqslant C \epsilon\left\|\mathcal{F}\left(D^{\alpha+1} v\right)\right\|_{L^{2}} \\
& \leqslant C \epsilon\left\|D^{\alpha+1} v\right\|_{L^{2}} \\
& \leqslant C \epsilon\|v\|_{m, 2} \text { because }|\alpha|+1 \leqslant m
\end{aligned}
$$

So we have the result. We just used the notation $\alpha+1$, we have to understand that for instance we write the mean value theorem for the first derivative, then the " +1 " is on the first component of α.

[^1]2) $\forall|\alpha| \leqslant m, \forall v \in H^{m}\left(\mathbb{R}^{N}\right), \forall|\beta| \leqslant k$
\[

$$
\begin{aligned}
\left\|D^{\alpha+\beta}\left(v \star \rho_{\epsilon}\right)\right\|_{L^{2}} & =\left\|\mathcal{F}\left(D^{\alpha+\beta}\left(v \star \rho_{\epsilon}\right)\right)\right\|_{L^{2}} \text { with Fourier Plancherel } \\
& =\left\|\xi^{\alpha+\beta} \mathcal{F}\left(v \star \rho_{\epsilon}\right)\right\|_{L^{2}} \text { by properties of } \mathcal{F} \\
& =\left\|\xi^{\alpha+\beta} \mathcal{F}(v) \mathcal{F}\left(\rho_{\epsilon}\right)\right\|_{L^{2}} \text { by properties of } \mathcal{F} \text { and convolution product } \\
& =\left\|\xi^{\alpha} \mathcal{F}(v) \frac{(\epsilon \xi)^{\beta}}{\epsilon^{|\beta|}} \mathcal{F}(\rho)(\epsilon \xi)\right\|_{L^{2}} \text { because (8) } \\
& =\frac{1}{\epsilon^{k}}\left\|\mathcal{F}\left(D^{\alpha} v\right) \mathcal{F}\left(D^{\beta} \rho\right)(\epsilon \xi)\right\|_{L^{2}} \text { because }|\beta| \leqslant k \\
& \leqslant \frac{C}{\epsilon^{k}}\left\|\mathcal{F}\left(D^{\alpha} v\right)\right\|_{L^{2}} \\
& \leqslant \frac{C}{\epsilon^{k}}\left\|D^{\alpha} v\right\|_{L^{2}} \\
& \leqslant \frac{C}{\epsilon^{k}}\|v\|_{m, 2} \text { because }|\alpha| \leqslant m
\end{aligned}
$$
\]

So we have the result. We just used C the bound of $\mathcal{F}\left(D^{\beta} \rho\right)$ that exists since $\rho \in \mathcal{C}^{\infty}$.
3) First we will use the following inequality

$$
\forall f, g \in L^{2}, \quad|f \star g(x)| \leqslant\|f\|_{L^{2}}\|g\|_{L^{2}}
$$

To prove that inequality, we use the definition of the convolution product and the CauchySchwarz inequality.
So we have, for $|\alpha| \leqslant k$,

$$
\begin{align*}
\left|\rho_{\epsilon} \star D^{\alpha} v(x)\right| & =\left|D^{\alpha}\left(\rho_{\epsilon}\right) \star v(x)\right| \tag{9}\\
& \leqslant\left\|D^{\alpha} \rho_{\epsilon}\right\|_{L^{2}}\|v\|_{0,2} \tag{10}
\end{align*}
$$

We want to prove that $\left\|D^{\alpha} \rho_{\epsilon}\right\|_{L^{2}} \leqslant \frac{C_{k}}{\epsilon^{N / 2+k}}$.

$$
\begin{aligned}
\left\|D^{\alpha}\left(\rho_{\epsilon}\right)\right\|_{L^{2}}^{2} & =\int_{\mathbb{R}^{N}} D^{\alpha}\left(\rho_{\epsilon}\right)(x)^{2} d x \\
& =\int_{\mathbb{R}^{N}} \widehat{D^{\alpha}\left(\rho_{\epsilon}\right)}(\xi)^{2} d \xi \text { by Fourier Plancherel } \\
& =\int_{\mathbb{R}^{N}} \xi^{2 \alpha} \widehat{\rho_{\epsilon}}(\xi)^{2} d \xi \\
& =\int_{\mathbb{R}^{N}} \xi^{2 \alpha} \widehat{\rho}(\epsilon \xi)^{2} d \xi \text { because (8) } \\
& =\int_{\mathbb{R}^{N}} \frac{u^{2 \alpha}}{\epsilon^{2|\alpha|}} \widehat{\rho}(u)^{2} \frac{1}{\epsilon^{N}} d u \text { because of the change of variable } \epsilon \xi=u \\
& =\frac{1}{\epsilon^{2 k} \epsilon^{N}}\left\|u^{\alpha} \mathcal{F}(\rho)(u)\right\|_{L^{2}}^{2}
\end{aligned}
$$

So we have

$$
\begin{aligned}
\left\|D^{\alpha}\left(\rho_{\epsilon}\right)\right\|_{L^{2}} & =\frac{1}{\epsilon^{k} \epsilon^{N / 2}}\left\|\mathcal{F}\left(D^{\alpha} \rho\right)\right\|_{L^{2}} \\
& \leqslant \frac{1}{\epsilon^{N / 2+k}}\left\|D^{\alpha} \rho\right\|_{L^{2}} \\
& \leqslant \frac{1}{\epsilon^{N / 2+k}} \underbrace{\sup _{|\alpha| \leqslant k}\left\|D^{\alpha} \rho\right\|_{L^{2}}}_{C_{k}}
\end{aligned}
$$

Then, since (10) and while passing to the supremum, we have the result

$$
\left\|\rho_{\epsilon} \star D^{\alpha} v\right\|_{L^{\infty}} \leqslant \frac{C_{k}}{\epsilon^{N / 2+k}}\|v\|_{L^{2}} .
$$

1.4.2 About traces

Exercise 9. Let $\vec{u}=\left(u_{1}, \ldots, u_{N}\right) \in \mathcal{D}(\Omega)^{N}$ with Ω bounded of class \mathcal{C}^{1}. We recall that $\operatorname{div} \vec{u}=$ $\sum_{i} D_{i} u_{i}$. We define

$$
H_{\operatorname{div}}^{p}(\Omega)=\left\{\vec{u} \in L^{p}(\Omega)^{N}, \operatorname{div} \vec{u} \in L^{p}(\Omega)\right\}
$$

1) Show that $H_{\text {div }}^{p}(\Omega)$ is a Banach space.
2) Prove that $\vec{u} \cdot \vec{n}_{\mid \Gamma}$ can be defined in an appropriate space to be determined. ($\vec{u} \cdot \vec{n}_{\mid \Gamma}=$ "normal trace of u ")

Solution. 1) We put on $H_{\text {div }}^{p}(\Omega)$ the norm

$$
\|\vec{u}\|_{\text {div }}:=\sum_{i=1}^{N}\left\|u_{i}\right\|_{L^{p}(\Omega)}+\|\operatorname{div} \vec{u}\|_{L^{p}(\Omega)}
$$

We can easily check that ($H_{\text {div }}^{p}(\Omega),\|\cdot\|_{\text {div }}$) is a normed vector space.
We want to prove now that it is complete.
Let $\left(\vec{u}_{n}\right)$ be a Cauchy sequence in $H_{\text {div }}^{p}(\Omega)$.

$$
\forall \epsilon>0, \exists n_{0} \geqslant 0, \forall n, p \geqslant n_{0},\left\|\vec{u}_{n}-\vec{u}_{p}\right\|_{\text {div }} \leqslant \epsilon
$$

By definition of $\|\cdot\|_{\text {div }}$ and because $\left(L^{p},\|\cdot\|_{L^{p}}\right)$ is complete, we have

$$
u_{n, i} \xrightarrow[n \rightarrow \infty]{L^{p}} u_{i} \quad \forall i \in\{1, \cdots, N\}
$$

and
$\operatorname{div} \vec{u}_{n} \xrightarrow[n \rightarrow \infty]{L^{p}} v$

Then we have by weak convergence,

$$
u_{n, i} \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}^{\prime}}{ }} u_{i} \text { weakly } \quad \forall i \in\{1, \cdots, N\}
$$

and so

$$
D_{i} u_{n, i} \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}^{\prime}}{\mid}} D_{i} u_{i} \text { weakly } \quad \forall i \in\{1, \cdots, N\}
$$

It follows that

$$
\operatorname{div} \vec{u}_{n} \underset{n \rightarrow \infty}{\stackrel{\mathcal{D}^{\prime}}{\prime}} \operatorname{div} \vec{u} \text { weakly }
$$

By limit uniqueness and $\operatorname{div} \vec{u}_{n} \xrightarrow[n \rightarrow \infty]{L^{p}} v$, we have $v=\operatorname{div} \vec{u}$.
Hence, we have

$$
u_{n, i} \xrightarrow[n \rightarrow \infty]{L^{p}} u_{i} \quad \forall i \in\{1, \cdots, N\}
$$

and

$$
\operatorname{div} \vec{u}_{n} \xrightarrow[n \rightarrow \infty]{L^{p}} \operatorname{div} \vec{u}
$$

which prove that \vec{u}_{n} goes to \vec{u} in $H_{\text {div }}^{p}(\Omega)$ and that $\vec{u} \in H_{\text {div }}^{p}(\Omega)$.
2) I am sorry but I didn't find/take the time to thing about that question...

1.5 Sobolev compact embeddings

Exercise 10. Let Ω bounded of class $\mathcal{C}^{1}, 1 \leqslant p<+\infty$.
Show that

$$
N: u \mapsto\left(\int_{\Omega}|\nabla u|^{p}+\int_{\Gamma}|t r(u)|^{p}\right)^{1 / p}
$$

is a norm over $W^{1, p}(\Omega)$, equivalent to $\|\cdot\|_{1, p, \Omega}$.

Solution. Step 1 : We want to show that N is a norm over $W^{1, p}(\Omega)$.

- absolutely homogeneous: For all $u \in W^{1, p}(\Omega)$, for all $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
N(\lambda u) & =\left(\int_{\Omega}|\nabla(\lambda u)|^{p}+\int_{\Gamma}|\operatorname{tr}(\lambda u)|^{p}\right)^{1 / p} \\
& =\left(\int_{\Omega}|\lambda|^{p}|\nabla(u)|^{p}+\int_{\Gamma}|\lambda|^{p}|\operatorname{tr}(u)|^{p}\right)^{1 / p} \\
& =\left(|\lambda|^{p}\left(\int_{\Omega}|\nabla(u)|^{p}+\int_{\Gamma}|\operatorname{tr}(u)|^{p}\right)\right)^{1 / p} \\
& =|\lambda|\left(\int_{\Omega}|\nabla(u)|^{p}+\int_{\Gamma}|\operatorname{tr}(u)|^{p}\right)^{1 / p} \\
& =|\lambda| N(u)
\end{aligned}
$$

- point-separating: If $u=0$ then $N(u)=0$. Conversely, for all $u \in W^{1, p}(\Omega)$ such that $N(u)=0$. Then, we have

$$
\|\nabla u\|_{L^{p}}^{p}=\int_{\Omega}|\nabla u|^{p}=0 \text { and } \int_{\Gamma}|\operatorname{tr}(u)|^{p}=0
$$

Therefore, we have $\operatorname{tr}(u(x))=0$ for all $x \in \Gamma$, so $u \in W_{0}^{1, p}(\Omega)$.
Then by Poincaré inequality, we have

$$
\|u\|_{L^{p}} \leqslant C\|\nabla u\|_{L^{p}}
$$

So we have $\|u\|_{L^{p}}=0$, and $u=0$ because $\|\cdot\|_{L^{p}}$ is a norm.

- triangle inequality: For all $u, v \in W^{1, p}(\Omega)$,

$$
\begin{aligned}
N(u+v) & =\left(\|\nabla(u+v)\|_{L^{p}(\Omega)}^{p}+\|\operatorname{tr}(u+v)\|_{L^{p}(\Gamma)}^{p}\right)^{\frac{1}{p}} \\
& \leqslant\left(\left(\|\nabla u\|_{L^{p}(\Omega)}+\|\nabla v\|_{L^{p}(\Omega)}\right)^{p}+\left(\|\operatorname{tr}(u)\|_{L^{p}(\Gamma)}+\|\operatorname{tr}(v)\|_{L^{p}(\Gamma)}\right)^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

We have just used the triangle inequality for $\|\cdot\|_{L^{p}}$.

$$
\begin{aligned}
N(u+v) & \leqslant\left(\|\nabla u\|_{L^{p}(\Omega)}^{p}+\|v\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}+\left(\|\operatorname{tr}(u)\|_{L^{p}(\Gamma)}^{p}+\|\operatorname{tr}(v)\|_{L^{p}(\Gamma)}^{p}\right)^{\frac{1}{p}} \\
& \leqslant N(u)+N(v)
\end{aligned}
$$

We used the Minkowski discrete inequality.

$$
\left(\sum_{i}\left|x_{i}+y_{i}\right|^{p}\right)^{\frac{1}{p}} \leqslant\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i}\left|y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

For $x_{1}=\|\nabla u\|_{L^{p}}, \quad x_{2}=\|\operatorname{tr}(u)\|_{L^{p}}$ and $y_{1}=\|\nabla v\|_{L^{p}}, \quad y_{2}=\|\operatorname{tr}(v)\|_{L^{p}}$
Therefore, N is well a norm over $W^{1, p}(\Omega)$.

Step 2: We want to show that there exists C_{1} such that $N(\cdot) \leqslant C_{1}\|\cdot\|_{1, p, \Omega}$.
We will use the continuity of the trace,

$$
\text { i.e. } \forall u \in W^{1, p}(\Omega), \quad\|\operatorname{tr}(u)\|_{L^{p}(\Gamma)} \leqslant C\|u\|_{1, p, \Omega}
$$

Then we can prove the wanted inequality. For all $u \in W^{1, p}(\Omega)$,

$$
\begin{aligned}
N(u)^{p} & =\|\nabla u\|_{L^{p}(\Omega)}^{p}+\|\operatorname{tr}(u)\|_{L^{p}(\Gamma)}^{p} \\
& \leqslant\|\nabla u\|_{L^{p}(\Omega)}^{p}+C^{p}\|u\|_{1, p, \Omega)}^{p} \\
& \leqslant\|u\|_{1, p, \Omega}^{p}+C^{p}\|u\|_{1, p, \Omega)}^{p} \\
& \leqslant C^{\prime}\|u\|_{1, p, \Omega}^{p}
\end{aligned}
$$

Then, by passing to the power $\frac{1}{p}$, we have the result.
Step 3 : We want to show that there exists C_{2} such that $\|\cdot\|_{1, p, \Omega} \leqslant C_{2} N(\cdot)$.
We work for a contradiction. Suppose that we have for all $n \in \mathbb{N}, u_{n} \in W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{p}(\Omega)}+\left\|\nabla u_{n}\right\|_{L^{p}(\Omega)} \geqslant n\left(\left\|\nabla u_{n}\right\|_{L^{p}(\Omega)}+\left\|\operatorname{tr}\left(u_{n}\right)\right\|_{L^{p}(\Gamma)}\right) \tag{11}
\end{equation*}
$$

Let consider $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{1, p, \Omega}}$. So we have

$$
\begin{equation*}
\left\|v_{n}\right\|_{1, p, \Omega}=1 \tag{12}
\end{equation*}
$$

The inequality (11) becomes

$$
\left\|\nabla v_{n}\right\|_{L^{p}(\Omega)}+\left\|\operatorname{tr}\left(v_{n}\right)\right\|_{L^{p}(\Gamma)} \leqslant \frac{1}{n}
$$

Then we have

$$
\begin{equation*}
\nabla v_{n} \xrightarrow[n \rightarrow \infty]{L^{p}(\Omega)} 0 \quad \text { and } \quad \operatorname{tr}\left(v_{n}\right) \xrightarrow[n \rightarrow \infty]{L^{p}(\Gamma)} 0 \tag{13}
\end{equation*}
$$

We use the Poincaré Wirtinger inequality to have

$$
\left\|v_{n}-\overline{v_{n}}\right\|_{L^{p}(\Omega)} \leqslant C\left\|\nabla v_{n}\right\|_{L^{p}(\Omega)} \underset{n \rightarrow \infty}{ } 0
$$

where $\overline{v_{n}}=\frac{1}{|\Omega|} \int_{\Omega} v_{n}$. We can remark that

$$
\left|\overline{v_{n}}\right| \leqslant \frac{1}{|\Omega|}\left\|v_{n}\right\|_{L^{1}(\Omega)} \leqslant \frac{C}{|\Omega|}\left\|v_{n}\right\|_{L^{p}(\Omega)} \leqslant \frac{C}{|\Omega|} \text { because (12). }
$$

Hence, $\left(\overline{v_{n}}\right)$ is bounded and we can extract a subsequence, still called $\left(\overline{v_{n}}\right)$, that goes to a constant c. By the dominated convergence theorem, we have $\overline{v_{n}} \xrightarrow[n \rightarrow \infty]{L^{p}(\Omega)} c$ because Ω is bounded then $\left|\overline{v_{n}}\right| \leqslant \frac{C}{|\Omega|}$ that is $L^{1}(\Omega)$.

But $v_{n}-\overline{v_{n}} \xrightarrow[n \rightarrow \infty]{L^{p}(\Omega)} 0$, hence

$$
v_{n} \xrightarrow[n \rightarrow \infty]{L^{p}(\Omega)} c
$$

By the continuity of the trace, we have

$$
\operatorname{tr}\left(v_{n}\right) \xrightarrow[n \rightarrow \infty]{L^{p}(\Gamma)} \operatorname{tr}(c)=c \sigma(\Gamma)=0 \text { because of }(13)
$$

where $\sigma(\Gamma)$ est the measure of Γ. It follows that $c=0$.
We conclude because

$$
v_{n} \xrightarrow[n \rightarrow \infty]{L^{p}(\Omega)} 0 \quad \text { and } \quad \nabla v_{n} \xrightarrow[n \rightarrow \infty]{L^{p}(\Omega)} 0
$$

So

$$
v_{n} \xrightarrow[n \rightarrow \infty]{W^{1, p}(\Omega)} 0
$$

It is a contradiction with (12).

Exercise 11. Find an example of $u \in W^{1, N}\left(\mathbb{R}^{N}\right)$ such that $u \notin L^{\infty}\left(\mathbb{R}^{N}\right)$.

Solution. Let take

$$
u(x)=\ln \left(\frac{1}{|x|}\right)^{\alpha}
$$

. We can notice that u is not bounded around zero, then $u \notin L^{\infty}$. We want to find a condition on α such as $u(x) \in W^{1, N}\left(B_{\mathbb{R}^{N}}\left(0, \frac{1}{2}\right)\right)$.
Step 1 : We want to show that $u \in L^{N}\left(B_{\mathbb{R}^{N}}\left(0, \frac{1}{2}\right)\right)$.

$$
\begin{aligned}
\int_{B(0,1 / 2)}|u|^{N} & =\int_{B(0,1 / 2)} \ln \left(\frac{1}{|x|}\right)^{\alpha N} d x \\
& =K \int_{0}^{1 / 2} \ln \left(\frac{1}{\rho}\right)^{\alpha N} \rho^{N-1} d \rho \text { as the change of variable in Exercise } 5 \text { Step } 1 \\
& =K \int_{\ln (2)}^{+\infty} x^{\alpha N} \mathrm{e}^{-x(N-1)} \mathrm{e}^{-x} d x \text { by the change of variable } \rho=\mathrm{e}^{-x} \\
& =K \int_{\ln (2)}^{+\infty} \underbrace{x^{\alpha N} \mathrm{e}^{-x N}}_{=O\left(\frac{1}{x^{2}}\right)} d x<+\infty
\end{aligned}
$$

Then we have the result that $u \in L^{N}\left(B_{\mathbb{R}^{N}}\left(0, \frac{1}{2}\right)\right)$.
Step $2:$ We want to show that $\frac{\partial}{\partial x_{i}} u \in L^{N}\left(B_{\mathbb{R}^{N}}\left(0, \frac{1}{2}\right)\right)$ for all $i \in \llbracket 1, N \rrbracket$.
Let take $i \in \llbracket 1, N \rrbracket$.
We start to find $\frac{\partial}{\partial x_{i}} u$. For the same reasons of the Exercise 4 Step 3 , the weak derivative is equal to the classical derivative.

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} \ln \left(\frac{1}{|x|}\right)^{\alpha} & =\alpha \ln \left(\frac{1}{|x|}\right)^{\alpha-1} \frac{-1}{2} \frac{2 x_{i}}{|x|^{3}}|x| \\
& =-\alpha \ln \left(\frac{1}{|x|}\right)^{\alpha-1} \frac{x_{i}}{|x|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\int_{B(0,1 / 2)}\left|\frac{\partial}{\partial x_{i}} u\right|^{N} & =\int_{B(0,1 / 2)}\left|\alpha \ln \left(\frac{1}{|x|}\right)^{\alpha-1} \frac{x_{i}}{|x|^{2}}\right|^{N} d x \\
& \leqslant \int_{B(0,1 / 2)} \alpha^{N} \ln \left(\frac{1}{|x|}\right)^{N(\alpha-1)} \frac{1}{|x|^{N}} d x \\
& \leqslant K \int_{0}^{1 / 2} \ln \left(\frac{1}{\rho}\right)^{N(\alpha-1)} \frac{1}{\rho^{N}} \rho^{N-1} d \rho \\
& \leqslant K \int_{\ln (2)}^{+\infty} x^{N(\alpha-1)} \frac{1}{\mathrm{e}^{-x}} \mathrm{e}^{-x} d x \\
& \leqslant K \int_{\ln (2)}^{+\infty} x^{N(\alpha-1)} d x
\end{aligned}
$$

And $x \mapsto x^{N(\alpha-1)}$ is integrable on $[\ln (2),+\infty[$ if and only if $N(\alpha-1)<-1$. In other words, we take $\alpha<1-\frac{1}{N}$.

It follows that, for $\alpha<1-\frac{1}{N}$, we have $u \in W^{1, N}(B(0,1 / 2))$.
Step 3 : We want to extend u to be in $W^{1, N}\left(\mathbb{R}^{N}\right)$.
Let take a function $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that the support of φ is in $B(0,1 / 2)$ and $\varphi=1$ on a neighboorhood of zero.

Then $u \varphi$ is in $W^{1, N}\left(\mathbb{R}^{N}\right)$ because

$$
u \in W^{1, N}(B(0,1 / 2)) \text { and } \operatorname{supp}(\varphi) \subset B(0,1 / 2) .
$$

And $u \varphi$ is not in $L^{\infty}\left(\mathbb{R}^{N}\right)$ since the problem of u in zero.

2 Elliptic problems

2.1 Linear problems

Exercise 12. Prove the following inequality :

$$
\int_{\mathbb{R}^{N}} \frac{1}{\|x\|^{2}} u(x)^{2} d x \leqslant 4 \int_{\mathbb{R}^{N}}\|\nabla u\|^{2} d x
$$

for all $N \geqslant 3$ and for all $u \in H^{1}\left(\mathbb{R}^{N}\right)$

Remark :

In that exercise, the norm $\|\cdot\|$ denotes the euclidean norm on \mathbb{R}^{N}, i.e. $\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$.

Solution. Step 1: Let prove the result for $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Let take $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$.
We can write

$$
u^{2}(x)=-\int_{1}^{+\infty} 2 u(t x) \nabla u(t x) \cdot x d t
$$

because an antiderivative of $2 u(t x) \nabla u(t x) . x$ is $u^{2}(t x)$ and when $t \rightarrow+\infty, u(t x) \rightarrow 0$ since $u \in$ $\mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$.

Then, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} \frac{1}{\|x\|^{2}} u^{2}(x) d x \\
= & \int_{\mathbb{R}^{N}} \frac{2}{\|x\|^{2}}\left|\int_{1}^{+\infty} u(t x) \nabla u(t x) \cdot x d t\right| d x \\
\leqslant & \int_{\mathbb{R}^{N}} \frac{2}{\|x\|^{2}} \int_{1}^{+\infty}|u(t x)|\|\nabla u(t x)\|\|x\| d t d x \text { by Cauchy Schwarz } \\
\leqslant & \int_{\mathbb{R}^{N}} 2 \int_{1}^{+\infty} \frac{|u(t x)|}{\|x\|}\|\nabla u(t x)\| d t d x \\
\leqslant & \int_{\mathbb{R}^{N}} 2 \int_{1}^{+\infty} t \frac{|u(t x)|}{\|t x\|}\|\nabla u(t x)\| d t d x \text { because } t>0 \\
\leqslant & \int_{1}^{+\infty} 2 t \int_{\mathbb{R}^{N}} \frac{|u(t x)|}{\|t x\|}\|\nabla u(t x)\| d x d t \text { by Fubini } \\
\leqslant & \int_{1}^{+\infty} 2 t \int_{\mathbb{R}^{N}} \frac{|u(y)|}{\|y\|}\|\nabla u(y)\| \frac{1}{t^{N}} d y d t \text { by the change of variable } y=t x \\
\leqslant & \int_{1}^{+\infty} \frac{2}{t^{N-1}} d t\left(\int_{\mathbb{R}^{N}} \frac{|u(y)|^{2}}{\|y\|^{2}} d y\right)^{1 / 2}\left(\int_{\mathbb{R}^{N}}\|\nabla u(y)\|^{2} d y\right)^{1 / 2} \text { by Cauchy-Schwarz }
\end{aligned}
$$

It follows that

$$
\left(\int_{\mathbb{R}^{N}} \frac{|u(y)|^{2}}{\|y\|^{2}} d y\right)^{1 / 2} \leqslant\left(\int_{1}^{+\infty} \frac{2}{t^{N-1}} d t\right)\left(\int_{\mathbb{R}^{N}}\|\nabla u(y)\|^{2} d y\right)^{1 / 2}
$$

And $\int_{1}^{+\infty} \frac{2}{t^{N-1}} d t=\left[\frac{2}{(2-N) t^{N-2}}\right]_{1}^{+\infty}=\frac{2}{N-2} \leqslant 2$ because $n \geqslant 3$.
Finally, while passing to the square, we find

$$
\int_{\mathbb{R}^{N}} \frac{|u(y)|^{2}}{\|y\|^{2}} d y \leqslant 4 \int_{\mathbb{R}^{N}}\|\nabla u(y)\|^{2} d y
$$

Step 2: The general case.
By density of $\mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in $H^{1}\left(\mathbb{R}^{N}\right)$ for the H^{1}-norm, for all $u \in H^{1}\left(\mathbb{R}^{N}\right)$, there exists a sequence $\left(u_{n}\right)_{n} \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)^{\mathbb{N}}$ such that

$$
u_{n} \xrightarrow[n \rightarrow \infty]{H^{1}\left(\mathbb{R}^{N}\right)} u
$$

In other words,

$$
u_{n} \xrightarrow[n \rightarrow \infty]{L^{2}\left(\mathbb{R}^{N}\right)} u \quad \text { and } \quad \nabla u_{n} \xrightarrow[n \rightarrow \infty]{L^{2}\left(\mathbb{R}^{N}\right)} \nabla u
$$

We have, for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{1}{\|x\|^{2}} u_{n}(x)^{2} d x \leqslant 4 \underbrace{\int_{\mathbb{R}^{N}}\left\|\nabla u_{n}(x)\right\|^{2} d x}_{=\left\|\nabla u_{n}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}} \tag{14}
\end{equation*}
$$

We use Fatou's lemma (because the functions we use are non negative) to have

$$
\begin{aligned}
\int_{R^{N}} \frac{1}{\|x\|^{2}} u(x)^{2} d x & =\int_{\mathbb{R}^{N}} \liminf \frac{1}{\|x\|^{2}} u_{n}(x)^{2} d x \\
& \leqslant \liminf \int_{\mathbb{R}^{N}} \frac{1}{\|x\|^{2}} u_{n}(x)^{2} d x \\
& \leqslant 4 \liminf \left\|\nabla u_{n}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} \text { by }(14) \\
& \leqslant 4\|\nabla u\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} \\
& \leqslant 4 \int_{\mathbb{R}^{N}}\|\nabla u(x)\|^{2} d x
\end{aligned}
$$

So we have the result for all $u \in H^{1}\left(\mathbb{R}^{N}\right)$.

Exercise 13. Let $n=2, \frac{1}{2}<\alpha<1$. Let

$$
\Omega_{\alpha}=\left\{(r, \theta), 0<r<1,0<\theta<\frac{\pi}{\alpha}\right\}
$$

and

$$
u(r, \theta)=\left(r^{-\alpha}-r^{\alpha}\right) \sin (\alpha \theta)
$$

1) Show that $\exists q^{*}>1$ such that $\forall q \in\left[1, q^{*}\left[, u \in W^{1, q}\left(\Omega_{\alpha}\right)\right.\right.$.
2) Calculate $-\Delta u$
3) What's up ?

Solution. 1) Step 1 : We want to show that $u \in L^{q}\left(\Omega_{\alpha}\right)$ for $q<\frac{2}{\alpha}$.

$$
\int_{\Omega_{\alpha}}|u|^{q}=\underbrace{\int_{0}^{\frac{\pi}{\alpha}}|\sin (\alpha \theta)|^{q} d \theta}_{<\infty} \int_{0}^{1} \underbrace{\left(\frac{1}{r^{\alpha}}-r^{\alpha}\right)^{q} r}_{\substack{\sim 0 \\ r \sim 0 \\ r^{\alpha q-1}}} d r
$$

The function $r \mapsto \frac{1}{r^{\alpha q-1}}$ is integrable on $] 0,1\left[\right.$ if and only if $\alpha q-1<1$, i.e. $q<\frac{2}{\alpha}$.
Hence, $u \in L^{q}\left(\Omega_{\alpha}\right)$ for $q<\frac{2}{\alpha}$.
Step 2 : We want to show that $\frac{\partial}{\partial x} u, \frac{\partial}{\partial y} u \in L^{q}\left(\Omega_{\alpha}\right)$ for $q<\frac{2}{\alpha+1}$.
While deriving u, we have

$$
\begin{array}{r}
\frac{\partial}{\partial r} u=\sin (\alpha \theta)\left(-\alpha r^{-\alpha-1}-\alpha r^{\alpha-1}\right) \\
\frac{\partial}{\partial \theta} u=\alpha \cos (\alpha \theta)\left(r^{-\alpha}-r^{\alpha}\right) \tag{16}
\end{array}
$$

But

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial r} u=\cos (\theta) \frac{\partial}{\partial x} u+\sin (\theta) \frac{\partial}{y} u \\
\frac{1}{r} \frac{\partial}{\partial \theta} u=-\sin (\theta) \frac{\partial}{\partial x} u+\cos (\theta) \frac{\partial}{\partial y} u
\end{array}\right.
$$

Hence, if $\frac{\partial}{\partial r} u$ and $\frac{1}{r} \frac{\partial}{\partial \theta} u$ are in L^{q}, then $\frac{\partial}{\partial x} u, \frac{\partial}{\partial y} u$ will be in L^{q}.

$$
\int_{\Omega_{\alpha}}\left|\frac{\partial}{\partial r} u\right|^{q}=\underbrace{\int_{0}^{\frac{\pi}{\alpha}}|\alpha \sin (\alpha \theta)|^{q} d \theta}_{<\infty} \int_{0}^{1} \underbrace{1}_{\substack{\sim \\ r \sim 0 \\ r^{(\alpha+1) q-1}} \frac{1}{r^{\alpha+1}}+\left.r^{\alpha-1}\right|^{q} r} d r
$$

The function $r \mapsto \frac{1}{r^{(\alpha+1) q-1}}$ is integrable on $] 0,1[$ if and only if $(\alpha+1) q-1<1$, i.e. $q<\frac{2}{\alpha+1}$.

$$
\int_{\Omega_{\alpha}}\left|\frac{1}{r} \frac{\partial}{\partial \theta} u\right|^{q}=\left.\underbrace{\int_{0}^{\frac{\pi}{\alpha}}|\alpha \cos (\alpha \theta)|^{q} d \theta}_{<\infty} \int_{0}^{1} \underbrace{\frac{1}{r^{q}} \left\lvert\, \frac{1}{r^{\alpha}}-r^{\alpha+1) q-1}\right.}_{\substack{ \\r \sim 0}}\right|^{q} r d r
$$

The function $r \mapsto \frac{1}{r^{(\alpha+1) q-1}}$ is integrable on $] 0,1[$ if and only if $(\alpha+1) q-1<1$, i.e. $q<\frac{2}{\alpha+1}$.

It follows that $\frac{\partial}{\partial x} u, \frac{\partial}{\partial y} u \in L^{q}\left(\Omega_{\alpha}\right)$ for $q<\frac{2}{\alpha+1}$.
We take $q^{*}=\frac{2}{\alpha+1}$ to have $u \in W^{1, q}\left(\Omega_{\alpha}\right)$ for all $q \in\left[1, q^{*}[\right.$.
2) We have $\Delta u=\frac{\partial^{2}}{\partial r^{2}} u+\frac{1}{r} \frac{\partial}{\partial r} u+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} u$.

And we can compute

$$
\begin{aligned}
\frac{\partial^{2}}{\partial r^{2}} u & =\sin \left(\alpha \theta\left(\alpha(\alpha+1) r^{-\alpha-2}-\alpha(\alpha-1) r^{\alpha-2}\right)\right. \text { while deriving (15) } \\
\frac{1}{r} \frac{\partial}{\partial r} u & =\sin (\alpha \theta)\left(-\alpha r^{-\alpha-2}-\alpha r^{\alpha-2}\right) \text { while using (15) } \\
\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} u & =-\alpha^{2} \sin (\alpha \theta)\left(r^{-\alpha-2}-r^{\alpha-2}\right) \text { while deriving (16) }
\end{aligned}
$$

While computing the laplacian, we find that $\Delta u=0$.
3) It follows that the PDE

$$
\left\{\begin{array}{l}
-\Delta v=0 \\
v_{\mid \partial \Omega_{\alpha}}=0
\end{array}\right.
$$

has two solutions in $W_{0}^{1, q}\left(\Omega_{\alpha}\right): u$ and the zero function.
The problem is that Ω_{α} is not of class \mathcal{C}^{1} because at the point $(0,0)$ we have an angle. Then we lose the uniqueness of the solution.

[^0]: ${ }^{1} S(0,1)$ represents the sphere of radius 1

[^1]: ${ }^{2}$ Indeed, $D \mathcal{F}(\rho)=\mathcal{F}(x \rho)$ is bounded, because it's the Fourier transform of a \mathcal{C}_{0}^{∞} function, so we can bound it by the L^{1}-norm.

