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1 Sobolev spaces

1.1 General framework

Exercise 1. N = 2

1) Define the outward unit vector at any point x

2) Define

∫
Γi

g(x)dσ(x) for g smooth

3) Prove (IP ) by using 1D integration by part and Fubini’s theorem.

x

y

a b

>
Γ1

<

Γ2

z+
→
n

Γ = Γ1 ∪ Γ2

y = f1(x)

y = f2(x)

Solution. 1) The tangent of Γ1 on x has (1, f ′1(x)) as director vector. Then, the normal vector is
(−f ′1(x), 1) because the inner product has to be zero. We want to have a outward unit vector,
so we divide by the norm and find

~n(1) = (
−f ′1(x)√

(f ′1(x))2 + 1
,

1√
(f ′1(x))2 + 1

)

Same method for Γ2 and we find :

~n(2) = (
−f ′2(x)√

(f ′2(x))2 + 1
,

1√
(f ′2(x))2 + 1

)
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2) We parameterize Γ1 with (x, f1(x)) for x ∈ [a, b]. Then we use line integral.∫
Γ1

g(x)dσ(x) =

∫ b

a
g(f1(x))||f ′1(x)||dx

=

∫ b

a
g(f1(x))

√(
dx

dx

)2

+

(
df1(x)

dx

)2

dx

=

∫ b

a
g(f1(x))

√
1 + (f ′1(x))2dx

Same method for Γ2 : ∫
Γ2

g(x)dσ(x) =

∫ a

b
g(f2(x))

√
1 + (f ′2(x))2dx

We change the bounds order because we go from b to a on the boundary Γ2.

3) We use the Fubini theorem to split the open Ω∫
Ω
u(x, y)

∂v

∂y
(x, y)dxdy =

∫ b

x=a

(∫ f1(x)

y=f2(x)
u(x, y)

∂v

∂y
(x, y)dy

)
dx

Then we use integration by parts :

=

∫ b

x=a

(
[u(x, y)v(x, y)]

f1(x)
f2(x) −

∫ f1(x)

f2(x)

∂u

∂y
(x, y)v(x, y)dy

)
dx

=

∫ b

x=a

(
u(x, f1(x))v(x, f1(x))− u(x, f2(x))v(x, f2(x))−

∫ f1(x)

f2(x)

∂u

∂y
(x, y)v(x, y)dy

)
dx

=

∫ b

x=a
u(x, f1(x))v(x, f1(x))

1√
1 + (f ′1(x))2

√
1 + (f ′1(x))2dx

−
∫ b

x=a
u(x, f2(x))v(x, f2(x))

1√
1 + (f ′2(x))2

√
1 + (f ′2(x))2dx

−
∫ b

x=a

∫ f1(x)

f2(x)

∂u

∂y
(x, y)v(x, y)dydx

=

∫ b

x=a
uvn

(1)
2

√
1 + (f ′1(x))2dx

+

∫ a

x=b
uvn

(2)
2

√
1 + (f ′2(x))2dx

−
∫ b

x=a

∫ f1(x)

f2(x)

∂u

∂y
(x, y)v(x, y)dydx

=

∫
Γ1

uvn
(1)
2 dσ +

∫
Γ2

uvn
(2)
2 dσ −

∫
Ω

∂u

∂y
(x, y)v(x, y)dydx

=

∫
Γ
uvn2dσ −

∫
Ω

∂u

∂y
(x, y)v(x, y)dydx
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We finally find the (IP ) formula. (We justify the Fubini Theorem because u, v ∈ C1, then

they are continuous on Ω compact, then u
∂v

∂y
∈ L1(Ω))

Exercise 2. Let Ω =]− 1; 1[⊂ R.

sgn(x) =


x

|x|
if x 6= 0

0 if x = 0
∈ L∞(Ω)

Show that x 7→ sgn(x) has no weak derivative.

Solution. We work in the distributions. For all ϕ ∈ D(]− 1, 1[),

〈sgn′, ϕ〉 = −〈sgn, ϕ′〉

= +

∫ 0

−1
ϕ′ −

∫ 1

0
ϕ′

= [ϕ]0−1 − [ϕ]10

= 2ϕ(0)

= 〈2δ0, ϕ〉

Then sgn′ = 2δ0. But this distribution isn’t in L1
loc, so x 7→ sgn(x) has no weak derivative.

To prove that the dirac δ0 is not in L1
loc, we work for a contradiction. Let f ∈ L1

loc such that

∀ϕ ∈ D(]− 1, 1[), ϕ(0) =

∫ 1

−1
fϕ

We use a sequence ϕn ∈ D(]−1, 1[) such that supp(ϕn) ⊂ [− 1
n ,

1
n ], ϕn(0) = 1 and the supremum

of each ϕn equal to 1.
Then we have by the dominated convergence theorem that

∫ 1
−1 fϕn goes to 0 because we can

dominate |1[− 1
n
, 1
n

]fϕn| by |f |1[−1,1] which is in L1.

We have a contradiction because ϕn(0) = 1 for all n ∈ N.

Exercise 3. Let U1 and U2 be two opensets in Rn such that U1 ∩ U2 6= ∅. Let Ω = U1 ∪ U2,
α = (α1, . . . , αn) a multiindex, and u ∈ L1

loc(Ω)
Assume that u has a weak derivative v1 = Dαu in U1 and v2 = Dαu in U2.

1) Prove that v1 = v2 in U1 ∩ U2

2) Let v =

{
v1 in U1

v2 in U2

.

Prove that Dαu exists in Ω and Dαu = v.
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Solution. 1) Soit ϕ ∈ D(U1 ∩ U2),

〈u,Dαϕ〉 =

∫
U1∩U2

uDαϕ = −
∫
U1∩U2

v1ϕ

and

〈u,Dαϕ〉 =

∫
U1∩U2

uDαϕ = −
∫
U1∩U2

v2ϕ

Then
∫
U1∩U2

(v2 − v1)ϕ = 0 for all ϕ ∈ D(U1 ∩ U2). Hence, we have v1 = v2 in U1 ∩ U2. We
just use the injectivity of {

L1
loc(Ω) → D′(Ω)

f 7→ Tf

2) Let ϕ ∈ D(Ω). We take a unit partition of Ω = U1 ∪ U2 relatively to supp(ϕ). Then
we have θ1, θ2 ∈ D(Ω) with θ1 + θ2 = 1, 0 6 θ1, θ2 6 1, supp(θ1) ⊂ U1 ∩ supp(ϕ) and
supp(θ2) ⊂ U2 ∩ supp(ϕ)

We have ϕ = θ1ϕ+ θ2ϕ

〈Dαu, ϕ〉 = 〈Dαu, θ1ϕ〉+ 〈Dαu, θ2ϕ〉

=

∫
U1

v1θ1ϕ+

∫
U2

v2θ2ϕ because suppθ1,2 ⊂ U1,2

=

∫
U1

vθ1ϕ+

∫
U2

vθ2ϕ

=

∫
U1∪U2

vθ1ϕ+

∫
U1∪U2

vθ2ϕ by definition of θ1 and θ2 supports

=

∫
U1∪U2

v(θ1 + θ2)ϕ

= 〈v, ϕ〉

Hence Dαu exists in Ω and we have Dαu = v in Ω.

1.2 Definition and basic properties of Wm,p(Ω)

Exercise 4. Let Ω = B(0, 1) ⊂ R2.

u :

Ω → R

x 7→ ln
(∣∣∣ ln 1

|x|

∣∣∣)
Prove that u ∈ H1(Ω) (but u /∈ C0(Ω))
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Remark :
I just show the result for H1(B(0, 1

2)) because I didn’t succeed for u′ ∈ L2(B(0, 1)) (since it’s
not true), but it keeps the spirit of the exercise because we have a function in H1(B(0, 1

2)) which
is not in C0(B(0, 1

2)).

0

−1

1

−1

1

x

y

u(x, y)

Solution. The function u is not continuous in (0, 0), so u /∈ C0(Ω). And we can’t find a continuous
representative of u (somebody continuous equal to u almost everywhere).

We want to prove that u ∈ L2(Ω) and
∂

∂x
u,

∂

∂y
u ∈ L2(Ω).

Step 1 : Let start with u ∈ L2(Ω).∫
Ω
|u(x)|2dx =

∫ 1

ρ=0

∫ 2π

θ=0
ln
(∣∣∣ ln 1

ρ

∣∣∣)2
ρdθdρ

= 2π

∫ 1

0

(
ln
(

ln
1

ρ

))2
ρdρ

while doing a change of coordinates and seeing that ln 1
ρ is non negative for ρ ∈]0, 1[.

We use the inequality ln(x) 6 x− 1 for x > 0.∫
Ω
|u(x)|2dx = 2π

∫ 1

0

(
ln
(1

ρ

)
− 1
)2
ρdρ

= 2π

∫ 1

0
(− ln(ρ)− 1)2ρdρ

= 2π

∫ 1

0
(ln(ρ) + 1)2ρdρ
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We use an other change of coordinates : ρ = exp(−x)∫
Ω
|u(x)|2dx = 2π

∫ +∞

0
(1− x)2e−2xdx < +∞

We know that x 7→ (1− x)2e−2x is continuous on R+ and summable in +∞ and 0. Hence,

u ∈ L2(Ω)

Step 2 : We want to show that ∇u ∈ L2(B(0, 1
2)) (B(0, 1

2) as I said in the previous remark).

Let u(x, y) = ln

(
ln

(
1√

x2 + y2

))
for all (x, y) ∈ B(0, 1

2).

Assume for the moment that the weak derivative is equal to the classical derivative.
We have

∂

∂x
u(x, y) =

−2x
1√
x2+y2

2(
√
x2 + y2)3/2

.
1

ln

(
1√
x2+y2

) =
x

(x2 + y2) ln(
√
x2 + y2)

and
∂

∂y
u(x, y) =

y

(x2 + y2) ln(
√
x2 + y2)

Let compute the L2 norm.∫
B(0,1/2)

∂

∂x
u(x, y)2dxdy +

∫
B(0,1/2)

∂

∂y
u(x, y)2dxdy

=

∫
B(0,1/2)

x2

(x2 + y2)2 ln2(
√
x2 + y2)

+
y2

(x2 + y2)2 ln2(
√
x2 + y2)

dxdy

=

∫
B(0,1/2)

1

(x2 + y2) ln2(
√
x2 + y2)

dxdy

=

∫ 2π

θ=0

∫ 1/2

ρ=0

1

ρ2 ln2 ρ
ρdρdθ

=2π

∫ 1/2

ρ=0

1

ρ ln2 ρ
dρ we use the change of variables ρ = ex

=2π

∫ − ln(2)

x=−∞

ex

exx2
dx because dρ = exdx

=2π

∫ − ln(2)

x=−∞

1

x2
dx < +∞

We see in the last line why I work in B(0, 1
2).

It proves that ∇u ∈ L2(B(0, 1
2)) and then u ∈ H1(B(0, 1

2)).

Step 3 : We have to justify that the weak derivative is equal to the classical derivative.
Let take ϕ ∈ D(B(0, 1)),

〈 ∂
∂x
u, ϕ〉 = −〈u, ∂

∂x
ϕ〉

= −
∫
B(0,1)

u
∂

∂x
ϕ

= −lim
ε→0

∫
B(0,1)\B(0,ε)

u
∂

∂x
ϕ
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We can apply the Green Formula∫
B(0,1)\B(0,ε)

u
∂

∂x
ϕ = −

∫
B(0,1)\B(0,ε)

∂

∂x
uϕ+

∫
S(0,ε)

uϕnxdσ +

∫
S(0,1)

uϕnxdσ

But ϕ ∈ D(B(0, 1)), so ϕ vanishes on S(0, 1)1.

And
∣∣∣∫S(0,ε) uϕnxdσ

∣∣∣ 6 ‖u‖∞,S(0,ε)‖ϕ‖∞,S(0,ε)2πε because 2πε is the perimeter of a cercle with

radius 1. This quantity goes to zero when ε goes to zero.
It follows that

〈 ∂
∂x
u, ϕ〉 = −lim

ε→0
−
∫
B(0,1)\B(0,ε)

∂

∂x
uϕ

= lim
ε→0

∫
B(0,1)\B(0,ε)

∂

∂x
uϕ

= lim
ε→0

∫
B(0,1)\B(0,ε)

x

(x2 + y2) ln(
√
x2 + y2)

ϕ(x, y)dxdy

=

∫
B(0,1)

x

(x2 + y2) ln(
√
x2 + y2)

ϕ(x, y)dxdy

while using the dominated convergence theorem.

We can do the same method for
∂

∂y
u, then the weak derivative is equal to the classical one.

Exercise 5. Let (ri)i be a countable and dense set in B(0, 1) ⊂ RN , α > 0.

u(x) =

+∞∑
i=0

1

2i
|x− ri|−α

For p > 1, prove that u ∈W 1,p(B(0, 1)) for all α < α0 with α0 = α0(N, p) to be calculated.

(Hint : start by studying x 7→ 1

|x|α
)

Remark :
I will prove the result for α0 = N

p − 1 and that is a sufficient condition as the exercise asks.
But it’s a necessary and sufficient condition.

Solution.

Step 1 : We want to show that

∫
B(0,1)

1

|x|α
dx < ∞ if and only if α < N . To compute∫

B(0,1)

1

|x|α
dx, we use a spherical coordinates change in dimension N .

1S(0, 1) represents the sphere of radius 1
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x1 = ρ cos(θ1)

x2 = ρ sin(θ1) cos(θ2)

x3 = ρ sin(θ1) sin(θ2) cos(θ3)

...
...

xN−1 = ρ sin(θ1) . . . sin(θN−2) cos(θN−1)

xN = ρ sin(θ1) . . . sin(θN−2) sin(θN−1)

The spherical volume element is

dV = ρN−1 sin(θ1)N−2 sin(θ2)N−3 . . . sin(θN−3)2 sin(θN−2)dρdθ1 . . . dθN−1

∫
B(0,1)

1

|x|α
dx

=

∫ 1

ρ=0

∫ π

θ1,...,N−2=0

∫ 2π

θN−1=0

1

ρα
dV

But the following quantity is finite, let call it K.

K =

∫ π

θ1,...,N−2=0

∫ 2π

θN−1=0
sin(θ1)N−2 sin(θ2)N−3 . . . sin(θN−3)2 sin(θN−2)dθ1 . . . dθN−1

Then the computation gives

∫
B(0,1)

1

|x|α
dx

=K

∫ 1

ρ=0

1

ρα
ρN−1dρ

=K

∫ 1

ρ=0

1

ρα−N+1
dρ

The integral converges if and only if α−N + 1 < 1. Then∫
B(0,1)

1

|x|α
dx <∞ if and only if α < N

Step 2 : Let introduce fα : RN → R such that f(x) =
1

|x|α
. Thank to the step 1, we have

fα ∈ Lp(B(0, 1)) if and only if pα < N .

So we have fα ∈ Lp(B(0, 1)) if and only if α <
N

p
.
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Step 3 : We want to show that u ∈ Lp(B(0, 1)) if α < N
p .

We start by using the Fatou’s Lemma with the functions

hn(x) =

(
n∑
i=0

1

2i
|x− ri|−α

)p
We have ∫

lim inf hn 6 lim inf

∫
hn

While passing to the power 1
p , we have(∫

lim inf hn

) 1
p

6 lim inf

(∫
hn

) 1
p

(∫
lim inf

(
n∑
i=0

1

2i
|x− ri|−α

)p
dx

) 1
p

6 lim inf

(∫ ( n∑
i=0

1

2i
|x− ri|−α

)p
dx

) 1
p

(∫ (+∞∑
i=0

1

2i
|x− ri|−α

)p
dx

) 1
p

6 lim inf

∥∥∥∥∥
n∑
i=0

1

2i
fα(.− ri)

∥∥∥∥∥
p

‖u‖p 6 lim inf
n∑
i=0

1

2i
‖fα(.− ri) ‖p

‖u‖p 6
+∞∑
i=0

1

2i
‖fα(.− ri) ‖p

We used the Minkowski inequality to get out the sum of the norm Lp.
But thanks to step 2, while using a translation of ri, we have

‖fα(.− ri)‖p < +∞ if and only if α <
N

p

And all those quantities are dominated by the same function g = fα on B(0, 2), so

+∞∑
i=0

1

2i
‖fα(.− ri) ‖p < +∞

Then u ∈ Lp if α <
N

p
.

Step 4 : We want to show that u′ ∈ Lp(B(0, 1)).
We start to find the derivative of fα(.− r) for r = (r1, . . . , rN ) ∈ B(0, 1). For the same reasons

of the Exercise 4 Step 3, the weak derivative is equal to the classical derivative.

∂

∂xk
fα(.− r) =

∂

∂xk

1

(
∑

(xj − rj)2)α/2

=
−α

2 2(xk − rk)
(∑

(xj − rj)2
)α

2
−1

|x− r|2α

=
−α(xk − rk)
|x− r|α+2
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Then we have

∣∣∣∣ ∂∂xk fα(.− r)
∣∣∣∣ < α

|x− r|α+1
. And it’s in Lp if α+ 1 < N

p . (because of the Step 2)

We want to show that

∂

∂xk

(
+∞∑
i=0

1

2i
fα(.− ri)

)
=

+∞∑
i=0

1

2i
∂

∂xk
fα(.− ri) (1)

For all ϕ ∈ D(B(0, 1)),〈
∂

∂xk

(
+∞∑
i=0

1

2i
fα(.− ri)

)
, ϕ

〉
=

〈
+∞∑
i=0

1

2i
fα(.− ri),

∂

∂xk
ϕ

〉

=

∫ +∞∑
i=0

1

2i
fα(.− ri)

∂

∂xk
ϕ

=
+∞∑
i=0

1

2i

∫
fα(.− ri)

∂

∂xk
ϕ

=
+∞∑
i=0

1

2i

〈
fα(.− ri),

∂

∂xk
ϕ

〉

=

+∞∑
i=0

1

2i

〈
∂

∂xk
fα(.− ri), ϕ

〉

The justification of the change of

∫
and

∑
is because of the dominated convergence theorem.

n∑
i=0

1

2i
fα(.− ri)

∂

∂xk
ϕ −−−→

n→∞

+∞∑
i=0

1

2i
fα(.− ri)

∂

∂xk
ϕ a.e.

and ∣∣∣∣∣
n∑
i=0

1

2i
fα(.− ri)

∂

∂xk
ϕ

∣∣∣∣∣ 6
∥∥∥∥ ∂

∂xk
ϕ

∥∥∥∥
∞

1Supp ϕ

∞∑
i=0

1

2i
fα(.− ri)︸ ︷︷ ︸

∈Lp (Step 3)︸ ︷︷ ︸
∈L1(Supp ϕ)

Then it justifies the egality (1) and so, thanks the same methods that Step 3 and the beginning
of Step 4, we have ∥∥∥∥∥ ∂

∂xk

(
+∞∑
i=0

1

2i
fα(.− ri)

)∥∥∥∥∥
p

< +∞ if and only if α <
N

p
− 1

Step 5 : Conclusion

Thanks to Step 3 and 4, we have u ∈W 1,p(B(0, 1)) for all α < α0 with α0 =
N

p
− 1.
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1.3 Duality spaces W−m,p

Exercise 6. Let α = (α1, . . . , αN ), x = (x1, . . . , xN ). Case of Ω = RN .

S := {u ∈ L2(RN ) such that xαDβu ∈ L2(RN )∀α, β multiindex}

Show that
Hm(RN ) = {u ∈ S ′, such that (1 + |ξ|2)m/2û ∈ L2(RN )}

where û is the Fourier transform of u.

Solution. We recall that

Hm(RN ) := {u ∈ L2(RN ), Dαu ∈ L2(RN ),∀|α| 6 m}

Step 1 : We want to remark that F(Dαu)(ξ) = i|α|ξαF(u)(ξ) for u ∈ S, α = (α1, . . . , αN ) ∈ NN ,
ξ ∈ RN with |α| =

∑
i αi and ξα = ξα1

1 . . . ξαNN .
For ϕ ∈ S,

〈F(Dαu), ϕ〉 = 〈Dαu, ϕ〉
= (−1)|α|〈u,Dα(Fϕ)〉
= (−1)|α|〈u, (−i)|α|ξαFϕ〉
= i|α|ξα〈u,Fϕ〉
= i|α|ξα〈Fu, ϕ〉

Then we have F(Dαu)(ξ) = i|α|ξαF(u)(ξ).

Step 2 : We want to prove the direct inclusion.
Let u ∈ Hm(RN ), then we have by Fourier–Plancherel, F(Dαu) ∈ L2 for all α such that |α| 6 m.

But Dαu ∈ S ′, so i|α|ξαû ∈ L2 (by Step 1).

∫
RN

(
(1 + |ξ|2)

m
2 û(ξ)

)2
dξ =

∫
RN

(1 + |ξ|2)mû2(ξ)dξ

=

∫
RN

m∑
k=0

(
m

k

)
|ξ|2kû2(ξ)dξ

=

m∑
k=0

(
m

k

)∫
RN
|ξ|2kû2(ξ)dξ︸ ︷︷ ︸
<∞

because k 6 m

Since u is in S ′ (because L2 ⊂ S ′), then

u ∈ {u ∈ S ′, such that (1 + |ξ|2)m/2û ∈ L2(RN )}

11



Step 3 : We want to prove the other inclusion.
Let u ∈ S ′ such that (1 + |ξ|2)m/2û ∈ L2(RN ).
Let α ∈ NN such that |α| 6 m.
We know that

(1 + |ξ|2)mû2(ξ) ∈ L1(RN ),

then
(1 + |ξ|2)αû2(ξ) ∈ L1(RN ).

It follows that
|ξ|2αû2(ξ) ∈ L1(RN ),

then
i|α|ξαû(ξ) ∈ L2(RN ).

We recognize the Fourier Transform of Dαu, and, by Fourier–Plancherel, we conclude that

Dαu ∈ L2(RN ).

Therefore u ∈ Hm(RN ).

1.4 Study of W 1,p(Ω)

Exercise 7. Let Ω = {(x, y), 0 < |x| < 1, 0 < y < 1} ⊂ R2.

Let u(x, y) =

{
1 if x > 0

0 if x < 0

1) Show that u ∈W 1,p(Ω), ∀p > 1

2) Show there is ε > 0, such that there is no function φ ∈ C1(Ω) such that ‖u− φ‖1,p < ε.

3) What’s up ?

y

1

−1

1

10
x

u(x, y)

12



Solution. 1) Step 1 : We want to show that u ∈ Lp(Ω).∫ 0

x=−1

∫ 1

y=0
|u(x, y)|p︸ ︷︷ ︸

=0

dydx+

∫ 1

x=0

∫ 1

y=0
|u(x, y)|p︸ ︷︷ ︸

=1

dydx =

∫ 1

x=0

∫ 1

y=0
1dydx = 1

Then u ∈ Lp(Ω).

Step 2 : We want to show that Du ∈ Lp(Ω).

Let ϕ ∈ D(Ω), then since the support of ϕ is compact in Ω, we have ϕ(0, y) = ϕ(1, y) = 0 for
all y ∈ [0, 1] and ϕ(x, 1) = ϕ(x, 0) = 0 for all x ∈ [0, 1].

〈∂yu, ϕ〉 = −〈u, ∂yϕ〉

= −
∫

Ω
u∂yϕ

= −
∫ 1

x=0

∫ 1

y=0
∂yϕ(x, y)dydx

= −
∫ 1

x=0
(ϕ(x, 1)− ϕ(x, 0))dx

= 0

〈∂xu, ϕ〉 = −〈u, ∂xϕ〉

= −
∫

Ω
u∂xϕ

= −
∫ 1

y=0

∫ 1

x=0
∂xϕ(x, y)dxdy

= −
∫ 1

y=0
(ϕ(1, y)− ϕ(0, y))dy

= 0

Then ∂xu(x, y) = ∂yu(x, y) = 0 for all (x, y) ∈ Ω.

So ∂xu, ∂yu ∈ Lp(Ω) and therefore u ∈W 1,p(Ω).

2) We want to show that there exists ε such that for all φ ∈ C1(Ω),

‖u− φ‖1,p,Ω > ε.

We work for a contradiction. We suppose that

∀n > 0,∃φn ∈ C1(Ω) s.t. ‖u− φn‖1,p,Ω 6
1

n

13



So we have a sequence (φn)n such that

φn
W 1,p(Ω)−−−−−→
n→∞

u

It means that

φn
Lp(Ω)−−−−→
n→∞

u and ∇φn
Lp(Ω)−−−−→
n→∞

0 (2)

Because ∂xu(x, y) = ∂yu(x, y) = 0 for all (x, y) ∈ Ω.

By the Lebesgue Inverse Theorem, we have a subsequence, still called φn, that converges to u
almost everywhere in Ω.

We have for almost everywhere y ∈]0, 1[, x1 < 0, x2 > 0φn(x1, y) −−−→
n→∞

u(x1, y) = 0

φn(x2, y) −−−→
n→∞

u(x2, y) = 1

Then

|φn(x1, y)− φn(x2, y)| −−−→
n→∞

|u(x1, y)− u(x2, y)| = 1 (3)

On the other hand,

|φn(x1, y)− φn(x2, y)| 6
∫ 1

0
|Dφn(tx1 + (1− t)x2, y).(x1 − x2, 0)|dt

6
∫ 1

0
‖Dφn(tx1 + (1− t)x2, y)‖‖(x1 − x2, 0)‖dt by Cauchy–Schwarz

6 ‖(x1 − x2, 0)‖
(∫ 1

0
‖Dφn(tx1 + (1− t)x2, y)‖pdt

)1/p

by Hölder

We use a convexity inequality (
a2 + b2

2

)p/2
6
xp + yp

2

In other words,
(a2 + b2)p/2 6 2

p
2
−1(ap + bp)

∫ 1

0
‖Dφn(tx2 + (1− t)x2, y)‖pdt (4)

=

∫ 1

0
(∂xφ

2
n(tx1 + (1− t)x2, y) + ∂yφ

2
n(tx1 + (1− t)x2, y))p/2dt (5)

6C
∫ 1

0
∂xφ

p
n(tx1 + (1− t)x2, y) + ∂yφ

p
n(tx1 + (1− t)x2, y)dt (6)

14



We use Fatou to have∫ 1

0
lim inf |φn(x1, y)− φn(x2, y)|dy︸ ︷︷ ︸

=1 by (3)

6 lim inf

∫ 1

0
|φn(x1, y)− φn(x2, y)|dy (7)

By (6),∫ 1

0
|φn(x1, y)− φn(x2, y)|dy 6 C

∫ 1

0

∫ 1

0
∂xφ

p
n(tx1 + (1− t)x2, y) + ∂yφ

p
n(tx1 + (1− t)x2, y)dtdy

6 C

∫
A
‖∇φn‖p −−−−−→

n→+∞
0 because of (2)

where A = {(x, y), x1 < x < x2, 0 < y < 1}
Therefore, by (7), we have a contradiction.

To conclude, we have that there exists ε such that for all φ ∈ C1(Ω),

‖u− φ‖1,p,Ω > ε.

3) We have a theorem that says : If Ω is of class C1 and u ∈W 1,p(Ω), then there exists a sequence
(un)n of functions in D(RN ) such that

un|Ω
W 1,p(Ω)−−−−−→
n→∞

u

The problem is that, in our exercise, Ω is not of class C1 and then we can’t use that theorem.

1.4.1 Density results

Exercise 8. 1) Show that ∀v ∈ Hm(RN ), ∀m > 1,

‖v ? ρε − v‖m−1,2 6 Cε‖v‖m,2

2) Show that ∀v ∈ Hm(RN ), ∀k > 0,

‖v ? ρε‖m+k,2 6
Cm,k
εk
‖v‖m,2

3) Show that ∀v ∈ Hm(RN ),∀k > 0, ∀|α| 6 k

‖ρε ? Dαv‖0,∞ 6
Ck

εN/2+k
‖v‖0,2

Remark :
In this exercise, for the purposes of notation, I will write sometimes ‖f(x)‖L2 instead of ‖f‖L2

or ‖f(·)‖L2 . It is just because I want to mention the variables sometimes.
Moreover, there is a constant while using Fourier Plancherel due to my definition of the Fourier

transform, but I will never put it (as it was 1). It doesn’t matter because it will be in the constant
C of the exercise.
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Solution. 1) ∀|α| 6 m− 1, ∀v ∈ Hm(RN )

‖Dα(v ? ρε − v)‖L2 = ‖F(Dα(v ? ρε − v))‖L2 with Fourier Plancherel

= ‖ξαF(v ? ρε − v)‖L2 by properties of F
= ‖ξαF(v)(F(ρε)− 1)‖L2 because of the convolution product

F(ρε)(ξ) =

∫
RN

ρε(x)e−iξxdx

=
1

εN

∫
RN

ρ
(x
ε

)
e−iξxdx

=
1

εN

∫
RN

ρ(u)e−iξεuεNdu change of variable x = εu

= F(ρ)(εξ)

So we have

F(ρε)(ξ) = F(ρ)(εξ) (8)

We remark that 1 = F(ρ)(0) because
∫

RN ρ(x)dx = 1.

Now we use the mean value theorem in RN , we have

∃θ ∈]0, 1[, s.t. F(ρε)− 1 = F(ρ)(εξ)−F(ρ)(0) = DF(ρ)(εξθ).(εξ)

But DF(ρ)(εξθ).(εξ) is bounded by C|ε|ξ where C is a constant.2

To conclude we have

‖Dα(v ? ρε − v)‖L2 6 Cε‖ξαξF(v)‖L2

6 Cε‖ξα+1F(v)‖L2

6 Cε‖F(Dα+1v)‖L2

6 Cε‖Dα+1v‖L2

6 Cε‖v‖m,2 because |α|+ 1 6 m

So we have the result. We just used the notation α + 1, we have to understand that for
instance we write the mean value theorem for the first derivative, then the “+1” is on the first
component of α.

2Indeed, DF(ρ) = F(xρ) is bounded, because it’s the Fourier transform of a C∞0 function, so we can bound it by
the L1−norm.
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2) ∀|α| 6 m, ∀v ∈ Hm(RN ), ∀|β| 6 k

‖Dα+β(v ? ρε)‖L2 = ‖F(Dα+β(v ? ρε))‖L2 with Fourier Plancherel

= ‖ξα+βF(v ? ρε)‖L2 by properties of F
= ‖ξα+βF(v)F(ρε)‖L2 by properties of F and convolution product

= ‖ξαF(v)
(εξ)β

ε|β|
F(ρ)(εξ)‖L2 because (8)

=
1

εk
‖F(Dαv)F(Dβρ)(εξ)‖L2 because |β| 6 k

6
C

εk
‖F(Dαv)‖L2

6
C

εk
‖Dαv‖L2

6
C

εk
‖v‖m,2 because |α| 6 m

So we have the result. We just used C the bound of F(Dβρ) that exists since ρ ∈ C∞.

3) First we will use the following inequality

∀f, g ∈ L2, |f ? g(x)| 6 ‖f‖L2‖g‖L2

To prove that inequality, we use the definition of the convolution product and the Cauchy–
Schwarz inequality.

So we have, for |α| 6 k,

|ρε ? Dαv(x)| = |Dα(ρε) ? v(x)| (9)

6 ‖Dαρε‖L2‖v‖0,2 (10)

We want to prove that ‖Dαρε‖L2 6
Ck

εN/2+k
.

‖Dα(ρε)‖2L2 =

∫
RN

Dα(ρε)(x)2dx

=

∫
RN

D̂α(ρε)(ξ)
2dξ by Fourier Plancherel

=

∫
RN

ξ2αρ̂ε(ξ)
2dξ

=

∫
RN

ξ2αρ̂(εξ)2dξ because (8)

=

∫
RN

u2α

ε2|α|
ρ̂(u)2 1

εN
du because of the change of variable εξ = u

=
1

ε2kεN
‖uαF(ρ)(u)‖2L2
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So we have

‖Dα(ρε)‖L2 =
1

εkεN/2
‖F(Dαρ)‖L2

6
1

εN/2+k
‖Dαρ‖L2

6
1

εN/2+k
sup
|α|6k
‖Dαρ‖L2︸ ︷︷ ︸
Ck

Then, since (10) and while passing to the supremum, we have the result

‖ρε ? Dαv‖L∞ 6
Ck

εN/2+k
‖v‖L2 .

1.4.2 About traces

Exercise 9. Let ~u = (u1, . . . , uN ) ∈ D(Ω)N with Ω bounded of class C1. We recall that div ~u =∑
iDiui. We define

Hp
div (Ω) = {~u ∈ Lp(Ω)N ,div ~u ∈ Lp(Ω)}

1) Show that Hp
div (Ω) is a Banach space.

2) Prove that ~u.~n|Γ can be defined in an appropriate space to be determined. (~u.~n|Γ = “normal
trace of u”)

Solution. 1) We put on Hp
div (Ω) the norm

‖~u‖div :=

N∑
i=1

‖ui‖Lp(Ω) + ‖div ~u‖Lp(Ω)

We can easily check that (Hp
div (Ω), ‖ · ‖div ) is a normed vector space.

We want to prove now that it is complete.

Let (~un) be a Cauchy sequence in Hp
div (Ω).

∀ε > 0,∃n0 > 0,∀n, p > n0, ‖~un − ~up‖div 6 ε

By definition of ‖ · ‖div and because (Lp, ‖ · ‖Lp) is complete, we have

un,i
Lp−−−→

n→∞
ui ∀i ∈ {1, · · · , N}

and
div ~un

Lp−−−→
n→∞

v

18



Then we have by weak convergence,

un,i
D′
⇀

n→∞
ui weakly ∀i ∈ {1, · · · , N}

and so
Diun,i

D′
⇀

n→∞
Diui weakly ∀i ∈ {1, · · · , N}

It follows that
div ~un

D′
⇀

n→∞
div ~u weakly

By limit uniqueness and div ~un
Lp−−−→

n→∞
v, we have v = div ~u.

Hence, we have

un,i
Lp−−−→

n→∞
ui ∀i ∈ {1, · · · , N}

and
div ~un

Lp−−−→
n→∞

div ~u

which prove that ~un goes to ~u in Hp
div (Ω) and that ~u ∈ Hp

div (Ω).

2) I am sorry but I didn’t find/take the time to thing about that question...

1.5 Sobolev compact embeddings

Exercise 10. Let Ω bounded of class C1, 1 6 p < +∞.
Show that

N : u 7→
(∫

Ω
|∇u|p +

∫
Γ
|tr(u)|p

)1/p

is a norm over W 1,p(Ω), equivalent to ‖.‖1,p,Ω.
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Solution. Step 1 : We want to show that N is a norm over W 1,p(Ω).

• absolutely homogeneous: For all u ∈W 1,p(Ω), for all λ ∈ R,

N(λu) =

(∫
Ω
|∇(λu)|p +

∫
Γ
|tr(λu)|p

)1/p

=

(∫
Ω
|λ|p|∇(u)|p +

∫
Γ
|λ|p|tr(u)|p

)1/p

=

(
|λ|p

(∫
Ω
|∇(u)|p +

∫
Γ
|tr(u)|p

))1/p

= |λ|
(∫

Ω
|∇(u)|p +

∫
Γ
|tr(u)|p

)1/p

= |λ|N(u)

• point-separating: If u = 0 then N(u) = 0. Conversely, for all u ∈W 1,p(Ω) such that N(u) = 0.
Then, we have

‖∇u‖pLp =

∫
Ω
|∇u|p = 0 and

∫
Γ
|tr(u)|p = 0

Therefore, we have tr(u(x)) = 0 for all x ∈ Γ, so u ∈W 1,p
0 (Ω).

Then by Poincaré inequality, we have

‖u‖Lp 6 C‖∇u‖Lp

So we have ‖u‖Lp = 0, and u = 0 because ‖.‖Lp is a norm.

• triangle inequality: For all u, v ∈W 1,p(Ω),

N(u+ v) =
(
‖∇(u+ v)‖pLp(Ω) + ‖tr(u+ v)‖pLp(Γ)

) 1
p

6
((
‖∇u‖Lp(Ω) + ‖∇v‖Lp(Ω)

)p
+
(
‖tr(u)‖Lp(Γ) + ‖tr(v)‖Lp(Γ)

)p) 1
p

We have just used the triangle inequality for ‖.‖Lp .

N(u+ v) 6
(
‖∇u‖pLp(Ω) + ‖v‖pLp(Ω)

) 1
p

+
(
‖tr(u)‖pLp(Γ) + ‖tr(v)‖pLp(Γ)

) 1
p

6 N(u) +N(v)

We used the Minkowski discrete inequality.(∑
i

|xi + yi|p
) 1

p

6

(∑
i

|xi|p
) 1

p

+

(∑
i

|yi|p
) 1

p

For x1 = ‖∇u‖Lp , x2 = ‖tr(u)‖Lp and y1 = ‖∇v‖Lp , y2 = ‖tr(v)‖Lp

Therefore, N is well a norm over W 1,p(Ω).
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Step 2 : We want to show that there exists C1 such that N(·) 6 C1‖ · ‖1,p,Ω.
We will use the continuity of the trace,

i.e. ∀u ∈W 1,p(Ω), ‖tr(u)‖Lp(Γ) 6 C‖u‖1,p,Ω

Then we can prove the wanted inequality. For all u ∈W 1,p(Ω),

N(u)p = ‖∇u‖pLp(Ω) + ‖tr(u)‖pLp(Γ)

6 ‖∇u‖pLp(Ω) + Cp‖u‖p1,p,Ω)

6 ‖u‖p1,p,Ω + Cp‖u‖p1,p,Ω)

6 C ′‖u‖p1,p,Ω

Then, by passing to the power 1
p , we have the result.

Step 3 : We want to show that there exists C2 such that ‖ · ‖1,p,Ω 6 C2N(·).
We work for a contradiction. Suppose that we have for all n ∈ N, un ∈W 1,p(Ω) such that

‖un‖Lp(Ω) + ‖∇un‖Lp(Ω) > n
(
‖∇un‖Lp(Ω) + ‖tr(un)‖Lp(Γ)

)
(11)

Let consider vn =
un

‖un‖1,p,Ω
. So we have

‖vn‖1,p,Ω = 1 (12)

The inequality (11) becomes

‖∇vn‖Lp(Ω) + ‖tr(vn)‖Lp(Γ) 6
1

n

Then we have

∇vn
Lp(Ω)−−−−→
n→∞

0 and tr(vn)
Lp(Γ)−−−→
n→∞

0 (13)

We use the Poincaré Wirtinger inequality to have

‖vn − vn‖Lp(Ω) 6 C‖∇vn‖Lp(Ω) −−−→
n→∞

0

where vn =
1

|Ω|

∫
Ω
vn. We can remark that

|vn| 6
1

|Ω|
‖vn‖L1(Ω) 6

C

|Ω|
‖vn‖Lp(Ω) 6

C

|Ω|
because (12).

Hence, (vn) is bounded and we can extract a subsequence, still called (vn), that goes to a constant c.

By the dominated convergence theorem, we have vn
Lp(Ω)−−−−→
n→∞

c because Ω is bounded then |vn| 6
C

|Ω|
that is L1(Ω).

But vn − vn
Lp(Ω)−−−−→
n→∞

0, hence

vn
Lp(Ω)−−−−→
n→∞

c
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By the continuity of the trace, we have

tr(vn)
Lp(Γ)−−−→
n→∞

tr(c) = cσ(Γ) = 0 because of (13)

where σ(Γ) est the measure of Γ. It follows that c = 0.
We conclude because

vn
Lp(Ω)−−−−→
n→∞

0 and ∇vn
Lp(Ω)−−−−→
n→∞

0

So

vn
W 1,p(Ω)−−−−−→
n→∞

0

It is a contradiction with (12).

Exercise 11. Find an example of u ∈W 1,N (RN ) such that u /∈ L∞(RN ).

Solution. Let take

u(x) = ln

(
1

|x|

)α
. We can notice that u is not bounded around zero, then u /∈ L∞. We want to find a condition on
α such as u(x) ∈W 1,N (BRN (0, 1

2)).
Step 1 : We want to show that u ∈ LN (BRN (0, 1

2)).∫
B(0,1/2)

|u|N =

∫
B(0,1/2)

ln

(
1

|x|

)αN
dx

= K

∫ 1/2

0
ln

(
1

ρ

)αN
ρN−1dρ as the change of variable in Exercise 5 Step 1

= K

∫ +∞

ln(2)
xαNe−x(N−1)e−xdx by the change of variable ρ = e−x

= K

∫ +∞

ln(2)
xαNe−xN︸ ︷︷ ︸
=O

(
1

x2

) dx < +∞

Then we have the result that u ∈ LN (BRN (0, 1
2)).

Step 2 : We want to show that
∂

∂xi
u ∈ LN (BRN (0, 1

2)) for all i ∈ J1, NK.

Let take i ∈ J1, NK.

We start to find
∂

∂xi
u. For the same reasons of the Exercise 4 Step 3, the weak derivative is

equal to the classical derivative.

∂

∂xi
ln

(
1

|x|

)α
= α ln

(
1

|x|

)α−1 −1

2

2xi
|x|3
|x|

= −α ln

(
1

|x|

)α−1 xi
|x|2
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∫
B(0,1/2)

∣∣∣∣ ∂∂xiu
∣∣∣∣N =

∫
B(0,1/2)

∣∣∣∣∣α ln

(
1

|x|

)α−1 xi
|x|2

∣∣∣∣∣
N

dx

6
∫
B(0,1/2)

αN ln

(
1

|x|

)N(α−1) 1

|x|N
dx

6 K

∫ 1/2

0
ln

(
1

ρ

)N(α−1) 1

ρN
ρN−1dρ

6 K

∫ +∞

ln(2)
xN(α−1) 1

e−x
e−xdx

6 K

∫ +∞

ln(2)
xN(α−1)dx

And x 7→ xN(α−1) is integrable on [ln(2),+∞[ if and only if N(α − 1) < −1. In other words, we

take α < 1− 1

N
.

It follows that, for α < 1− 1

N
, we have u ∈W 1,N (B(0, 1/2)).

Step 3 : We want to extend u to be in W 1,N (RN ).
Let take a function ϕ ∈ C∞0 (RN ) such that the support of ϕ is in B(0, 1/2) and ϕ = 1 on a

neighboorhood of zero.

Then uϕ is in W 1,N (RN ) because

u ∈W 1,N (B(0, 1/2)) and supp(ϕ) ⊂ B(0, 1/2).

And uϕ is not in L∞(RN ) since the problem of u in zero.

2 Elliptic problems

2.1 Linear problems

Exercise 12. Prove the following inequality :∫
RN

1

‖x‖2
u(x)2dx 6 4

∫
RN
‖∇u‖2dx

for all N > 3 and for all u ∈ H1(RN )

Remark :

In that exercise, the norm ‖ · ‖ denotes the euclidean norm on RN , i.e. ‖x‖ =

√√√√ n∑
i=1

x2
i .
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Solution. Step 1 : Let prove the result for u ∈ C∞0 (RN ). Let take u ∈ C∞0 (RN ).
We can write

u2(x) = −
∫ +∞

1
2u(tx)∇u(tx).xdt

because an antiderivative of 2u(tx)∇u(tx).x is u2(tx) and when t → +∞, u(tx) → 0 since u ∈
C∞0 (RN ).

Then, we have∫
RN

1

‖x‖2
u2(x)dx

=

∫
RN

2

‖x‖2

∣∣∣∣∫ +∞

1
u(tx)∇u(tx).xdt

∣∣∣∣ dx
6
∫

RN

2

‖x‖2

∫ +∞

1
|u(tx)|‖∇u(tx)‖‖x‖dtdx by Cauchy Schwarz

6
∫

RN
2

∫ +∞

1

|u(tx)|
‖x‖

‖∇u(tx)‖dtdx

6
∫

RN
2

∫ +∞

1
t
|u(tx)|
‖tx‖

‖∇u(tx)‖dtdx because t > 0

6
∫ +∞

1
2t

∫
RN

|u(tx)|
‖tx‖

‖∇u(tx)‖dxdt by Fubini

6
∫ +∞

1
2t

∫
RN

|u(y)|
‖y‖

‖∇u(y)‖ 1

tN
dydt by the change of variable y = tx

6
∫ +∞

1

2

tN−1
dt

(∫
RN

|u(y)|2

‖y‖2
dy

)1/2(∫
RN
‖∇u(y)‖2dy

)1/2

by Cauchy-Schwarz

It follows that(∫
RN

|u(y)|2

‖y‖2
dy

)1/2

6

(∫ +∞

1

2

tN−1
dt

)(∫
RN
‖∇u(y)‖2dy

)1/2

And

∫ +∞

1

2

tN−1
dt =

[
2

(2−N)tN−2

]+∞

1

=
2

N − 2
6 2 because n > 3.

Finally, while passing to the square, we find∫
RN

|u(y)|2

‖y‖2
dy 6 4

∫
RN
‖∇u(y)‖2dy

Step 2 : The general case.
By density of C∞0 (RN ) in H1(RN ) for the H1−norm, for all u ∈ H1(RN ), there exists a sequence

(un)n ∈ C∞0 (RN )N such that

un
H1(RN )−−−−−→
n→∞

u

In other words,

un
L2(RN )−−−−−→
n→∞

u and ∇un
L2(RN )−−−−−→
n→∞

∇u
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We have, for all n ∈ N, ∫
RN

1

‖x‖2
un(x)2dx 6 4

∫
RN
‖∇un(x)‖2dx︸ ︷︷ ︸

=‖∇un‖2
L2(RN )

(14)

We use Fatou’s lemma (because the functions we use are non negative) to have∫
RN

1

‖x‖2
u(x)2dx =

∫
RN

lim inf
1

‖x‖2
un(x)2dx

6 lim inf

∫
RN

1

‖x‖2
un(x)2dx

6 4 lim inf ‖∇un‖2L2(RN ) by (14)

6 4‖∇u‖2L2(RN )

6 4

∫
RN
‖∇u(x)‖2dx

So we have the result for all u ∈ H1(RN ).

Exercise 13. Let n = 2, 1
2 < α < 1. Let

Ωα =
{

(r, θ), 0 < r < 1, 0 < θ <
π

α

}
and

u(r, θ) = (r−α − rα) sin(αθ)

1) Show that ∃q∗ > 1 such that ∀q ∈ [1, q∗[, u ∈W 1,q(Ωα).

2) Calculate −∆u

3) What’s up ?
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x

y

1O

π/α

Ωα

Solution. 1) Step 1 : We want to show that u ∈ Lq(Ωα) for q <
2

α
.

∫
Ωα

|u|q =

∫ π
α

0
| sin(αθ)|qdθ︸ ︷︷ ︸

<∞

∫ 1

0

(
1

rα
− rα

)q
r︸ ︷︷ ︸

∼
r∼0

1

rαq−1

dr

The function r 7→ 1

rαq−1
is integrable on ]0, 1[ if and only if αq − 1 < 1, i.e. q <

2

α
.

Hence, u ∈ Lq(Ωα) for q <
2

α
.

Step 2 : We want to show that
∂

∂x
u,

∂

∂y
u ∈ Lq(Ωα) for q <

2

α+ 1
.

While deriving u, we have

∂

∂r
u = sin(αθ)(−αr−α−1 − αrα−1) (15)

∂

∂θ
u = α cos(αθ)(r−α − rα) (16)

But 
∂

∂r
u = cos(θ)

∂

∂x
u+ sin(θ)

∂

y
u

1

r

∂

∂θ
u = − sin(θ)

∂

∂x
u+ cos(θ)

∂

∂y
u

Hence, if
∂

∂r
u and

1

r

∂

∂θ
u are in Lq, then

∂

∂x
u,

∂

∂y
u will be in Lq.
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• ∫
Ωα

∣∣∣∣ ∂∂ru
∣∣∣∣q =

∫ π
α

0
|α sin(αθ)|qdθ︸ ︷︷ ︸

<∞

∫ 1

0

∣∣∣∣ 1

rα+1
+ rα−1

∣∣∣∣q r︸ ︷︷ ︸
∼
r∼0

1

r(α+1)q−1

dr

The function r 7→ 1

r(α+1)q−1
is integrable on ]0, 1[ if and only if (α + 1)q − 1 < 1, i.e.

q <
2

α+ 1
.

• ∫
Ωα

∣∣∣∣1r ∂∂θu
∣∣∣∣q =

∫ π
α

0
|α cos(αθ)|qdθ︸ ︷︷ ︸

<∞

∫ 1

0

1

rq

∣∣∣∣ 1

rα
− rα

∣∣∣∣q r︸ ︷︷ ︸
∼
r∼0

1

r(α+1)q−1

dr

The function r 7→ 1

r(α+1)q−1
is integrable on ]0, 1[ if and only if (α + 1)q − 1 < 1, i.e.

q <
2

α+ 1
.

It follows that
∂

∂x
u,

∂

∂y
u ∈ Lq(Ωα) for q <

2

α+ 1
.

We take q∗ =
2

α+ 1
to have u ∈W 1,q(Ωα) for all q ∈ [1, q∗[.

2) We have ∆u =
∂2

∂r2
u+

1

r

∂

∂r
u+

1

r2

∂2

∂θ2
u.

And we can compute

∂2

∂r2
u = sin(αθ

(
α(α+ 1)r−α−2 − α(α− 1)rα−2

)
while deriving (15)

1

r

∂

∂r
u = sin(αθ)(−αr−α−2 − αrα−2) while using (15)

1

r2

∂2

∂θ2
u = −α2 sin(αθ)(r−α−2 − rα−2) while deriving (16)

While computing the laplacian, we find that ∆u = 0.

3) It follows that the PDE {
−∆v = 0

v|∂Ωα = 0

has two solutions in W 1,q
0 (Ωα) : u and the zero function.

The problem is that Ωα is not of class C1 because at the point (0, 0) we have an angle. Then
we lose the uniqueness of the solution.
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