TD 4 : Fonctions étagées, mesurables, intégrables, théorèmes de convergence

Pierre Le Barbenchon

Exercice 1 - Fonctions étagées, révisions du cours

- 1. Soit (X, \mathcal{T}) un espace mesurable, et f une fonction de la forme $f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$ (pour $\alpha_i \in \mathbb{R}$ et α_i distincts deux à deux). Montrer que f est mesurable si et seulement si les A_i sont dans la tribu \mathcal{T} . La fonction est alors ...?
- 2. Donner un exemple de fonction étagée qui ne soit pas en escalier.
- 3. Calculer $\int_0^1 1_{\mathbb{R}\setminus\mathbb{Q}} d\lambda$.

Exercice 2 -

Caractériser les fonctions mesurables $f:(X,\mathcal{T})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$, où \mathcal{T} est la tribu engendrée par une partition finie de X.

Exercice 3 -

Soient (X, \mathcal{T}, μ) un espace mesuré avec $\mu(X) < \infty, (f_n)_{n \ge 1}$ une suite de fonctions mesurables de X dans \mathbb{R} , et f une fonction mesurable de X dans \mathbb{R} . On suppose que pour μ -presque tout $x \in X$,

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Pour $i, n \ge 1$, on définit :

$$A_{n,i} = \left\{ |f - f_n| \ge \frac{1}{i} \right\}, \ B_{n,i} = \bigcup_{p > n} A_{p,i}.$$

- 1. Soit $i \ge 1$. Montrer que $\lim_{n \to \infty} \mu(B_{n,i}) = 0$.
- 2. Soit $\varepsilon > 0$. Prouver qu'il existe $A \in \mathcal{T}$ tel que $\mu(A) \leq \varepsilon$ et $f_n \to f$ uniformément sur A^c lorsque $n \to \infty$.
- 3. Montrer à l'aide d'un contre-exemple que le résultat de la question précédente est faux lorsque $\mu(X) = \infty$.

Exercice 4 - Inégalité de Markov

Soit $f \in L^1(\mathbb{R}, \mu)$. Montrer que pour tout a > 0,

$$a\mu\left(\{|f|>a\}\right)\leq \int_{\{|f|>a\}}|f|\mathrm{d}\mu.$$

En déduire que $\lim_{a \to +\infty} a\mu\left(\{|f| > a\}\right) = 0.$

Exercice 5 -

Soient λ la mesure de Lebesgue sur \mathbb{R} et $f \in L^1(\mathbb{R}, \lambda)$ à valeurs réelles.

- 1. On suppose que f(x) admet une limite quand $x \to +\infty$. Montrer que cette limite est nulle.
- 2. A-t-on $\lim_{x\to +\infty} f(x)=0$ dans les cas suivants ? (Prouver l'affirmation ou donner un contre-exemple)
 - (a) f est continue.
 - (b) f est uniformément continue.
 - (c) f est de classe C^1 et sa dérivée f' est λ -intégrable.

Exercice 6 - Lemme de Fatou

Montrer le lemme de Fatou : Si (f_n) est une suite de fonctions mesurables positives alors

$$\int_{X} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to +\infty} \int_{X} f_n d\mu.$$

(On rappelle que $\liminf_{n\to+\infty} f_n = \lim_{n\to+\infty} \inf_{k\geq n} f_k$).

Indication: poser $\phi_n = \inf_{k \ge n} f_k$.

Application: Soit (X, \mathcal{M}, μ) un espace mesuré et soit (f_n) une suite de fonctions mesurables positives qui converge simplement vers f. On suppose qu'il existe M > 0 tel que $\int_E f_n d\mu \leq M$ pour tout $n \geq 0$. Démontrer que $\int_E f d\mu \leq M$.

Exercice 7 -

Calculer la limite de la suite $v_n = \int_{[0,1]} \frac{ne^{-x}}{nx+1} dx$ pour $n \to +\infty$.

Exercice 8 -

Sur (X, \mathcal{A}) un espace mesurable et $a \in X$ on définit la masse de Dirac δ_a par $\delta_a : \mathcal{A} \to \mathbb{R}_+$,

$$\delta_a(A) = \begin{cases} 1 & \text{si } a \in A \\ 0 & \text{sinon} \end{cases}$$

- 1. Vérifier que δ_a et que $\mu = \sum_{i=1}^n \alpha_i \delta_{a_i}$ (avec $\alpha_i \geq 0$) sont des mesures positives.
- 2. Si f est mesurable positive, montrer que

$$\int f d\mu = \sum_{i=1}^{n} \alpha_i f(a_i)$$

- 3. Sur $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$, on prend $\mu_0 = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$. Que vaut $\int f d\mu_0$?
- 4. Sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, on met la mesure de comptage $\mu = \sum_{0}^{+\infty} \delta_n$. Vérifier qu'elle coïncide avec la mesure de l'exercice 1 du TD 3. Vérifier qu'une fonction u est intégrable si $\sum |u_n| < +\infty$.

Exercice 9 -

Calculer la limite des suites

$$u_n = \sum_{k=1}^n \frac{n}{k^2 + k + n}, \quad v_n = \sum_{k=1}^{2n} \frac{n^2}{kn^2 + k^2}.$$

Indication: Munissez $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*)$ de la mesure de comptage.

Exercice 10 - Contre-exemples classiques

1. Trouver une fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue intégrable telle que

$$\forall a \in \mathbb{R}_+, \quad \sup\{f(t), t > a\} = +\infty.$$

- 2. Trouver une suite de fonctions continues $(f_n)_{n\in\mathbb{N}}$ avec $f_n:[0,1]\to\mathbb{R}_+$ telle que $\lim_{n\to+\infty}\int_0^1 f_n(x)dx=0$ et telle que la suite $(f_n(x))_{n\in\mathbb{N}}$ ne converge pour aucun $x\in[0,1]$.
- 3. Donner un exemple d'une suite $(f_n)_{n\in\mathbb{N}}$ de $C^0([0,1],\mathbb{R}_+)$ convergeant simplement vers 0 presque partout et telle que $\int_0^1 f_n(x)dx \to +\infty$.
- 4. Donner un exemple d'une suite $(f_n)_{n\in\mathbb{N}}$ de $C^0([0,1],\mathbb{R}_+)$ convergeant simplement vers 0 et telle que $\int_0^1 f_n(x)dx$ n'admette pas de limite dans $\overline{\mathbb{R}}$.