TD 8 : Encore de la théorie des mesures et de l'intégration

Exercice 1 - Mesure image

Soient (E, \mathcal{A}, μ) un espace mesuré, (F, \mathcal{B}) un espace mesurable et $f: (E, \mathcal{A}, \mu) \to (F, \mathcal{B}, \mu)$ une fonction mesurable. Montrer que l'application

$$\mu_f: \left\{ \begin{array}{ccc} \mathcal{B} & \to & \overline{\mathbb{R}_+} \\ B & \mapsto & \mu(f^{-1}(B)) \end{array} \right.$$

définit une mesure sur (F, \mathcal{B}) , appelée mesure image de μ par f.

Exercice 2 -

Soient (E, \mathcal{A}) , (F, \mathcal{B}) deux espaces mesurables et $f: E \to F$ une fonction mesurable. Soit μ une mesure sur (E, \mathcal{A}) . On note $\mu_f = \mu \circ f^{-1}$ la mesure image de μ par f sur (F, \mathcal{B}) . Montrer qu'une fonction mesurable $g: F \to \mathbb{R}$ est μ_f -intégrable si et seulement si $g \circ f$ est μ -intégrable et que dans ce cas, on a l'égalité suivante

$$\int_{E} g \circ f d\mu = \int_{E} g d\mu_{f}.$$

Exercice 3 -

Soit (f_n) une suite décroissante de fonctions mesurables positives qui converge μ -presque partout vers une fonction f. On suppose qu'il existe n_0 tel que f_{n_0} soit intégrable sur E. Montrer que

$$\int_{n\to\infty_E} f_n d\mu = \int_E f d\mu.$$

Que peut-on dire sans l'hypothèse d'intégrabilité?

Exercice 4 -

Soit $p \in [1, +\infty[$ et (f_n) une suite de L^p qui converge presque partout vers une fonction $f \in L^p$. Démontrer l'équivalence suivante :

$$\lim_{n \to +\infty} ||f_n - f||_p = 0 \Leftrightarrow \lim_{n \to +\infty} ||f_n||_p = ||f||_p.$$

Indication: On pourra considérer $g_n = 2^p(|f_n|^p + |f|^p) - |f_n - f|^p$.

Exercice 5 -

Soit (X, \mathcal{A}, μ) un espace mesuré de mesure non nulle finie, i.e. $0 < \mu(X) < \infty$.

- 1. Montrer que $L^{\infty}(X,\mu) \subset \bigcap_{1 \le p \le \infty} L^p(X,\mu)$.
- 2. Montrer que, pour tout $f \in L^{\infty}(X, \mu)$, on a $||f||_{\infty} = \lim_{p \to \infty} ||f||_{p}$.