
HyperAST: Incrementally Mining Large Source
Code Repositories

Quentin Le Dilavrec
q.ledilavrec@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Andy Zaidman
a.e.zaidman@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Abstract—Modern software systems are large, with a
project like Chromium reaching more than 30 million
lines of code. Analyzing these large-scale projects over
multiple versions rapidly becomes very expensive, and
creating tools that can work at this scale is a chal-
lenge. This paper presents the HyperAST approach,
that exploits the locality and redundancy of source
code, to maintain thousands of Abstract Syntax Tree
(AST) versions in memory. In particular, we contribute
a programmatic interface to HyperAST that helps de-
fine the incremental computation of code metrics and
efficient explorations of the fine-grained abstract syntax
representation of source code.

Index Terms—software repository mining, software
maintenance.

I. Introduction
Analyzing large-scale software systems is hard, because

solutions to analyze source code histories both efficiently
and accurately are still limited. Either code is analyzed like
text with little access to the code structure and semantics,
using tools such as ElasticSearch or directly through the
Version Control System (VCS), e.g., git blame. Alterna-
tively, source code is analyzed through the intermediate
compilation artifacts, giving access to semantics in ex-
change for more distance to the source and significant
overhead, e.g., the Java Development Tools (JDT), or
CodeQL [1], in the form of an Abstract Syntax Tree (AST)
or a Control Flow Graph (CFG). To strike a middle ground
between the scalability of VCSs and expressivity of ASTs,
we identified the following challenges:

• provide full access to the fine-grained recursive struc-
ture of source code, for precise and robust analyses

• minimize memory footprint and reduce random mem-
ory accesses, to maintain as much code as possible in
fast memory

• make processing steps modular to minimize unneeded
computations

To address these challenges and provide more efficient
means of computing code metrics (e.g., McCabe Cyclo-
matic Complexity (Mcc), number of Lines of Code (LoC)),
we propose the HyperAST framework. At its core the
HyperAST [2] is a simple recursive data structure that
stores source code represented as concrete syntax. The
efficiency and scalability of HyperAST dealing with source

code histories stems from two observations: 1) fine-grained
source code is vastly redundant in and across versions, and
2) local intermediate results can be persisted and reused to
make analyses more efficient. HyperAST materializes these
observations through major design choices that we detail
in Section II; at the same time we will discuss implications
on functionality and performance of source code analyses.

While we explored some of the implications of Hyper-
AST in earlier work [2], [3], in this paper we propose a
sandboxed scripting abstraction for HyperAST to more
easily 1) compute intermediate results (i.e., preprocessing),
and 2) traverse versions using the intermediate results (i.e.,
querying).

We showcase this abstraction to compute the Mc-
Cabe Cyclomatic Complexity and Lines of Code met-
rics (preprocessing), and explore source code exhibiting
these metrics (querying); we showcase the scalability and
performance benefits of HyperAST when exploring large
software repositories with years of development history,
e.g., Hadoop (>1M LoCs, >30K commits).

II. The HyperAST Processing Model
In order to realize our vision of scalable and efficient

source code analysis, we built the processing model of
HyperAST around three fundamental design decisions:

• Subtrees of code are deduplicated through structural
identity. A subtree of code is a node defined re-
cursively with three identifying attributes: its type
(e.g., method_declaration), possibly a label (e.g.,
the name of a method), and references to its children.
A snapshot is consequently a subtree at the root of a
commit.

• Local intermediate results (e.g., tree size, Mcc, LoCs)
are computed once per unique subtree and persisted
contiguously to the primary attributes, we call them
derived attributes. A subtree is ready to be used
immediately once intermediate results have been com-
puted and inserted into the HyperAST .

• Subtrees with similar attributes are stored in contigu-
ous memory regions. Making memory more uniform
and facilitating its management, while enabling the
capability of storing attributes with identical values
at the region level (instead of each subtree).

mailto:q.ledilavrec@tudelft.nl
mailto:a.e.zaidman@tudelft.nl


The functional and performance implications of these
design choices over source code analyses are numerous,
and constitute, to the best of our knowledge, a singu-
lar processing model among existing approaches [4], [5],
whereby intermediate results are computed on AST sub-
trees without access to its context. To test the potential
of this processing model, we have previously explored
two source code analyses in earlier work, and established
important functional and performance outcomes [2], [3]:
1) we found that deduplicating subtrees in and across
versions drastically reduces the overall memory footprint
of the HyperAST , stemming from the observation that
changes to consecutive commits are mostly small, 2) we
observed that computing intermediate results once per
deduplicated subtree makes it an incremental process,
increasing efficiency, 3) we established that intermediate
results can be used to bubble up information from deep
inside subtrees, enabling the preemptive skipping of un-
fruitful subtrees during traversal, thus reducing random
memory accesses at the cost of persisting the required
intermediate results; storing them contiguously further
reduces random memory accesses, and 4) we found that
storing nodes with similar attributes (e.g., same type,
same layout) in contiguous memory regions, makes mem-
ory more uniform and facilitates its management; more
interestingly it also enables to store properties on regions
instead of individual nodes, further improving memory
utilization.

A. Previous Applications of HyperAST
We initially demonstrated the applicability of the Hy-

perAST model on the semantics of references of Java,
most notably to enable finding all references to a given
declaration (def-use relations), without any global associ-
ation table [2]. We then introduced HyperDiff, in which
we addressed the computation of tree diffs [3]. Combining
HyperAST with the Gumtree diff algorithm [6], lazily
decompressing the diffed snapshots into trees, e.g., early
matched subtrees are left untouched.

These two contributions enabled us to investigate strate-
gies to adapt inherently complex AST features and algo-
rithms on the HyperAST , demonstrating on large indus-
trial software histories the possible efficiency and scala-
bility gains over state-of-the-art solutions. To scale the
reference search, we augmented an otherwise naive and
exhaustive search, with means of preemptively skipping
subtrees not containing the wanted references, leveraging
precomputed sets of unresolved references on subtrees
instead of maintaining global association tables [2]. In the
tree diff case, we took a more parsimonious approach,
providing the functional properties of a tree without
mandating additional memory usage, and revisiting the
Gumtree algorithm to make it only grow the required
memory, i.e., decompressing the DAG on demand. We
thus demonstrated that HyperAST can be used to scale
tree diffs to entire commits (∼20 million AST nodes) [3].

B. Challenges of conforming to the processing model
Fully exploiting the performance benefits of the Hyper-

AST requires to conform to its processing model, which we
acknowledge can be difficult, at least requiring additional
facilities. Fundamentally, deduplicated subtrees do not
have direct access to their parents, i.e., the HyperAST is
topologically a Direct Acyclic Graph (DAG). Moreover,
results persisted on subtrees must satisfy the locality
invariant, i.e., p1 = p2 =⇒ d1 = d2, where for every
subtree i, pi is the set of primary attributes and di is the
set of derived attributes. Consequently, certain analyses
made for trees or graphs must be adapted and possibly
redesigned to conform to these limitations.

Contrastingly, we also observed some accidental com-
plexity over comparatively simpler to adapt code metrics,
specifically when composing them while keeping the pro-
cessing modular and minimal (we don’t want to preprocess
unnecessary metrics). The particular case of the offset of a
code element (in a file) is illustrative. In a traditional AST,
one would store the offset and length of code elements
as attributes (alternatively the start and end position).
Within HyperAST , only the length would be stored, then
to compute the offset, one would sum the length of every
left siblings up until reaching the ancestor representing
the file. Moreover, there are multiple kinds of offsets (e.g.,
in characters, in rows + columns, in topological order),
corresponding to multiple positioning schemes (e.g., a
range in a file, a row/column in a file, a topological index).
And converting between each of these schemes can be
necessary to interoperate with other tools. Consequently,
we would like to facilitate toggling and adding new posi-
tioning schemes (also for other metrics in general).

III. Programmatic Interface for HyperAST
To facilitate the overall usage of the HyperAST , we

propose to formalize a programmatic interface. The first
covered aspect is the preprocessing of subtrees (Sec-
tion III-A). This is important to enforce the locality invari-
ant, and compose different metrics and (possibly interde-
pendent) preprocessing steps. The second aspect concerns
the querying and traversal of a subtree (Section III-B).
We need to provide a tree abstraction over the underlying
DAG, helping to reduce the initial efforts of adapting
an analysis. Finally, we provide the capability of using
this programmatic interface through scripting languages
(e.g., Lua), making HyperAST utilization interactive and
robust. Using Sandboxed scripts also enables enforcing the
locality invariant during preprocessing.

A. Defining Metrics and their Computation
To compute a metric M , an accumulator A is defined,

it holds a partially computed metric while children are
processed. We propose the 3 following phases to compute
a metric on a given subtree:
init initializes A with a value, either default or derived

from the type or label of the node



Subtree
Present?

Extract
primary

Parsed
Node

No

Yes

bubble up
subtree

bubbled up
child subtrees

MA

+= child ac
c

finishinit

Preprocessing

Querying

Local
Global

get

HyperAST

derivedprimary
Subtree

goto_x
parent

Node position

Figure 1: Architecture

(a) Mcc
1 mcc = if is_branch() then 1

else 0
2 function acc(c)
3 mcc += c.mcc end
4 function finish()
5 if is_branch() then
6 mcc += 1 end
7 return {mcc: mcc} end

(b) Lines of Code
1 local LoC, b = 0, false
2 function acc(c)
3 if c.is_comment() then
4 b = true
5 else if b then
6 LoC += c.LoC
7 else b = true end
8 end
9 function finish()

10 if is_comment() then LoC = 0
11 else if TY == "Spaces"
12 and L.find("\n") ~= nil
13 then LoC = 1 end
14 return {LoC: LoC} end

Listing 1: Preprocessing

1 max_mcc, method_mcc = 0, ""
2 local up = false
3 function query(n)
4 if n.mcc < max_mcc then
5 if n.goto_parent() then
6 up = true
7 return query(n)
8 else return max_mcc,
9 method_mcc,

10 end
11 else
12 if n.mcc > max_mcc then
13 max_mcc = n.mcc
14 method_mcc = n.position()
15 end
16 if b and n.goto_first_child()

then
17 up = false
18 if n.goto_next_sibling() then
19 up = true
20 elseif n.goto_parent() then
21 up = true end
22 return query(n)
23 end
24 end

Listing 2: Find largest method in
terms of Mcc

acc accumulates results from children, such that each
child c (a subtree) can be processed to mutate A.

finish finishes the accumulation process, A is converted
to M .

Using the script evaluation scope, A can be defined with
local variables (Listing 1) and passed to the functions
representing each phase (making acc and finish clo-
sures). Listing 1 presents the preprocessing of two code
metrics: Listing 1a computes the cyclomatic complexity
(similarly presented in [5]), and Listing 1b presents a way
of computing the number of lines of code, i.e., it filters out
comments and only counts newlines once through is_nl,
that we provide to the scripting interface. Indeed, data
and complex processing can be provided by implementing
predicates (e.g., is_branch, is_comment), and exposing
derived data computed with the preexisting facilities (in
Rust). These examples also show how we can propagate
the derived data, for example, in Listing 1a, finish
returns the Mcc in an association table, naming it (line 7);
then in acc, through the child subtree passed as parameter
it can be accessed as c.mcc (line 3).

B. Querying HyperAST
To query and traverse the HyperAST , we propose to

overlay a tree interface over subtrees, namely a node.
Nodes still provide access to all attributes to their subtree.
Nodes add the capability of moving in the DAG with a
simple cursor interface, just as if it was a standard AST,
Nodes maintain and mutate their global position from
the initial root, e.g., a snapshot. Listing 2 illustrates this

querying interface in terms of finding the largest method
in terms of Mcc. This example uses the derived data
computed by the example in Listing 1a, and demonstrates
the use of a cursor interface to traverse a snapshot in
HyperAST . Moreover, it uses pos() to obtain the position
of the found code element, handling the transformation of
the position from a list of offsets to a file and a character
range.

IV. Using HyperAST

To demonstrate the concrete capabilities of HyperAST
at mining common code metrics, as illustrated by List-
ings 1 and 2, we preprocessed the Mcc and LoC metrics
and searched for the top method in terms of them. We
used 20 source code histories from our previous HyperAST
work [2], [3]. For each project we swiftly mined 100 com-
mits on the main branch. To give a good idea of HyperAST
responsiveness, we measured the cumulative time to reach
a certain commit depth. The results were obtained on a
13" M1 MacBook Pro from 2020 with 16GB of RAM.

Figure 2 presents 11 projects (in order of LoCs of their
last commit). Each project is presented separately, with
commits shown in depth order over x-axis. Multiple y-axes
are presented, one for the cumulated processing time, one
for LoCs, and one for Mcc. We can observe that more
complex queries are more expensive. Even on Hadoop the
HyperAST was capable of computing 100 commits in 500
seconds.



Figure 2: Using HyperAST to observe the evolution of Mcc and LoC metrics over 100 commits of main branches.
Top plots show cumulated time taken to mine the metric. Bottom plots show the values of measured metrics.
Legend: [Mcc: blue, LoC: red]

V. Availability

Our Tool is available on GitHub https://github.com/
HyperAST/HyperAST, with a reproduction package on
Zenodo [7] and through the main Rust package manager
https://crates.io/crates/hyperast. The presented experi-
ments can be found in the top level benchmarks. The
different examples/ and bench/ directories found through
the codebase are also good entry points to learn how to
use the HyperAST .

VI. Summary

In this paper we have presented the HyperAST frame-
work, which enables fine-grained temporal analyses of
large code histories, bridging the gap between file mining
(through commits in VCSs, e.g., Git) and AST mining
(that leverage compilers, e.g., JDT). At its core HyperAST
efficiently provides the AST representation of source code
in large software histories. It supports designing incremen-
tally computed code metrics and predictive AST searches,
while enabling precise temporal code analyses through
tree-based diffs. We presented an abstraction to properly
define the computation of metrics and traversal using
these metrics to skip subtrees. This abstraction is available
through two sandboxed scripting languages, to guarantee
the locality invariant of the HyperAST . It also enables to
use HyperAST as a database with robust remote querying
capabilities. To illustrate the capabilities of our approach
we provide the dataset of selected metrics computed on
commits of large source code histories. This dataset was
made on a common laptop, HyperAST is intentionally
focussed on efficiency, to illustrate how a large audience
could build their own dataset and execute investigations
without resorting to powerful computers.

We hypothesize that HyperAST has the potential to fa-
cilitate source code repository mining, enabling practition-
ers to focus on the fundamental aspects of code processing,
specifically the trade-off between memory and compute,
carefully balancing between eager and lazy computing of
metadata. The HyperAST can already be used to measure
fine-grained code metrics on large code bases over multiple
years or decades of development. We also plan to continue
extending the HyperAST capabilities — to further bridge
the gap between textual and AST-based mining—, pro-
viding more languages, robust semantic analyses (name-
resolution and def-uses), and more ergonomic code queries.

Acknowledgment
References

[1] T. Szabó, “Incrementalizing production codeql analyses,” in Pro-
ceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 1716–1726.

[2] Q. Le Dilavrec, D. E. Khelladi, A. Blouin, and J.-M. Jézéquel,
“Hyperast: Enabling efficient analysis of software histories at
scale,” in 37th IEEE/ACM International Conference on Auto-
mated Software Engineering. IEEE/ACM, 2022, pp. 1–12.

[3] ——, “Hyperdiff: Computing source code diffs at scale,” in
31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ES-
EC/FSE’23), 2023.

[4] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,”
IEEE Trans. Software Eng., vol. 48, no. 3, pp. 930–950, 2022.

[5] C. V. Alexandru, S. Panichella, S. Proksch, and H. C. Gall,
“Redundancy-free analysis of multi-revision software artifacts,”
Empirical Software Engineering, vol. 24, no. 1, pp. 332–380, 2019.

[6] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Mon-
perrus, “Fine-grained and accurate source code differencing,” in
ACM/IEEE International Conference on Automated Software
Engineering (ASE). ACM, 2014, pp. 313–324.

[7] Q. Le Dilavrec, “Hyperast,” Feb. 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.14810468

https://github.com/HyperAST/HyperAST
https://github.com/HyperAST/HyperAST
https://crates.io/crates/hyperast
https://doi.org/10.5281/zenodo.14810468

	Introduction
	The HyperAST Processing Model
	Previous Applications of HyperAST
	Challenges of conforming to the processing model

	Programmatic Interface for HyperAST
	Defining Metrics and their Computation
	Querying HyperAST

	Using HyperAST
	Availability
	Summary
	References

