Sommaire

1	Thé	orie des groupes	2
	1.1	Exemples de sous-groupes	2
	1.2	Exemples de sous-groupes normaux	2
	1.3	Groupe abélien	2
	1.4	Le carré est trivial	2
	1.5	Nombre fini de sous-groupes	3
	1.6	Théorème de Cayley	3
	1.7	Sous-groupes de $(\mathbb{R},+)$ (*)	3
	1.8	Groupe d'automorphisme trivial (*)	4
	1.9		4
	1.10		4
			7
			7
	1.13	Automorphismes involutifs n'ayant qu'un seul point fixe (Oral ENS Cachan 2015)(**)	7
	1.14	Autour de l'ordre	8
	1.15	Ordre dans le groupe quotient (Josette Calais, Elements de théorie des groupes) (*)	8
	1.16	Groupes non isomorphes (*)	8
	1.17	Cyclicité	8
			8
	1.19	Cyclicité et unités	9
2	Polynômes		
	2.1		6
	2.2		9
	2.3	Irréductibilité (2) (Tosel)	
	2.4	Groupe de torsion (Tosel)	
	2.5	Généralisation d'un résultat d'irréductibilité (moi)	
	2.6	Dénombrement des irréductibles dans $\mathbb{F}_q[X]$	(
3	Nombres algébriques 10		
J	3.1	Nombres de Salem (Tosel)	
	$\frac{3.1}{3.2}$	Nombres de Pisot	
	3.2	Nombres de Fisot	1
4	Extensions de corps 11		
	4.1	Nombre de corps de rupture	
	4.2	Caractérisation des extensions finies séparables	
	4.3	Parfaitude et extensions	
	4.4	Irréductibilité et extension	
	4.5	Théorème de Springer*	
	4.6	Extensions infinies 1	

1 Théorie des groupes

1.1 Exemples de sous-groupes

- 1. Montrer que, pour tout $a \in \mathbb{R}$, l'ensemble $a\mathbb{Z} = \{am : m \in \mathbb{Z}\}$ est un sous-groupe de $(\mathbb{R}, +)$.
- 2. Montrer que \mathbb{U}_n (l'ensemble des racines n-ème de l'unité) est un sous-groupe de \mathbb{U} (l'ensemble des nombres complexes de module 1 muni du produit).
- 3. Montrer que $\cup_{n\in\mathbb{N}}\mathbb{U}_n$ est un sous-groupe strict de \mathbb{U} .
- 4. (*) Soit p un nombre premier. Construire un p-groupe infini, c'est-à-dire un groupe dont tous les éléments sont d'ordre une puissance de p.

On pourra s'aider des racines de l'unité.

1.2 Exemples de sous-groupes normaux

Soit G un groupe. On note Z(G) le centre de G défini par

$$Z(G) = \{x \in G : \forall g \in g, \quad xg = gx\}$$

et D(G) le groupe engendré par les commutateurs, i.e. D(G) est le sous-groupe de G engendré par les $[g,h]=ghg^{-1}h^{-1}$ où $g,h\in G$.

- 1. Montrer que Z(G) et D(G) sont des sous-groupes normaux de G.
- 2. Montrer que l'on a $G/Z(G) \simeq \operatorname{Int}(G)$ où $\operatorname{Int}(G)$ désigne le groupe des automorphismes de G intérieurs, c'est-à-dire ceux de la forme

$$g \mapsto xgx^{-1}$$
.

3. Montrer que G/D(G) est abélien et que si H est un sous-groupe normal de G tel que G/H est abélien, alors on a $D(G) \subset H$.

En ce sens, on retiendra que G/D(G) est le plus grand quotient abélien de G.

1.3 Groupe abélien

1. Soit G un groupe tel que G/Z(G) est cyclique. Montrer que G est abélien.

De sorte qu'en fait G/Z(G) est trivial.

2. Soien p un nombre premier et G est un groupe d'ordre p^2 . Montrer que G est isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$ ou $\mathbb{Z}/p\mathbb{Z}^2$.

1.4 Le carré est trivial

Soit G un groupe tel que

$$\forall g \in G, \quad g^2 = 1.$$

1. Montrer que G est commutatif.

On pourra observer que $g = g^{-1}$ pour tout $g \in G$.

2. Montrer qu'un tel groupe peut être vu comme $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel.

On pourra poser $\lambda g = g^{\lambda}$.

3. Réciproquement, montrer qu'un $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel est en fait un groupe qui satisfait la condition de l'énoncé.

1.5 Nombre fini de sous-groupes

Caractériser les groupes n'ayant qu'un nombre fini de sous-groupes.

1.6 Théorème de Cayley

Soit G un groupe (fini). Montrer que G s'identifie à un sous-groupe de S_G (le groupe des permutations de G) via

$$\gamma: \left| \begin{array}{ccc} G & \longrightarrow & S_G \\ g & \longmapsto & (x \in G \mapsto xg) \end{array} \right.$$

1.7 Sous-groupes de $(\mathbb{R}, +)$ (*)

Soit G un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$.

- 1. Montrer que l'ensemble $G \cap \mathbb{R}_+^*$ est non vide et justifier l'existence de $a = \inf(G \cap \mathbb{R}_+^*)$.
- 2. On suppose ici que l'on a a > 0.
 - (a) Montrer que l'on a $a \in G$ puis que $a\mathbb{Z}$ est inclus dans G.
 - (b) Soit $x \in G$. Justifier qu'il existe $n \in \mathbb{Z}$ tel que $x na \in [0, a[$ puis montrer que ce réel est nul.
 - (c) Conclure.
- 3. On suppose maintenant que l'on a a=0. Montrer que G est dense dans \mathbb{R} .

Pour $\varepsilon > 0$, on pourra réaliser la division euclidienne d'un réel x par $g \in G \cap]0, \varepsilon[$.

- 4. Applications
 - (a) Soit $f: \mathbb{R} \to \mathbb{R}$ périodique continue non constante. Montrer que f admet une plus petite période strictement positive.
 - (b) Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Montrer que $\mathbb{Z} + \alpha \mathbb{Z}$ est dense dans \mathbb{R} .
 - (c) (*) Montrer que $\cos(\mathbb{N})$ est dense dans [-1; 1].

1.8 Groupe d'automorphisme trivial (*)

Que dire d'un groupe (G,.) dont le groupe des automorphismes est réduit à Id_G ?

On pourra chercher à construire un automorphisme de G a priori non trivial pour commencer à tirer de l'information.

Solution: Le groupe des automorphismes intérieurs est en particulier lui aussi trivial, de sorte que G est abélien. Alors, l'application $g \mapsto g^{-1}$ est un automorphisme de G; par hypothèse, il est donc trivial, c'est-à-dire que l'on a $g^2 = 1$ (si l'on garde la notation multiplicative) pour tout $g \in G$. Ainsi, G est un \mathbb{F}_2 -espace vectoriel et en se servant d'une base de G, on peut construire un automorphisme de G non trivial dès que G est d'ordre plus grand que G.

1.9 Groupe d'automorphisme cyclique (Eloan Rapion) (*)

Soit $p \geq 3$ un nombre premier. Montrer qu'il n'existe pas de groupe G tel que $Aut(G) \simeq \mathbb{Z}/p\mathbb{Z}$.

Solution: On a G abélien puisque $G/Z(G) \simeq Int(G) \leqslant Aut(G) \simeq \mathbb{Z}/p\mathbb{Z}$. Alors, $x \mapsto x^{-1}$ est soit un élément d'ordre 2, soit l'identité. Ca ne peut pas être un élément d'ordre 2 sans quoi on aurait 2|p. C'est donc l'identité i.e. on a $x^2 = 1$ pour tout $x \in G$. Alors, G est un $\mathbb{Z}/2\mathbb{Z}$ -ev et on vérifie facilement que $Aut(G) = GL_{dim(G)}(\mathbb{F}_2)$ qui n'est jamais premier.

1.10 Autour des groupes de Prüfer (Eloan Rapion) (**)

- 1. Décrire les groupes infini G dont l'ensemble des sous-groupes est totalement ordonné (pour l'inclusion). Que dire si G est fini ?
- 2. Décrire les groupes abéliens infinis G dont l'intersection de tous les sous-groupes non nuls soit non triviale.
- 3. Décrire les groupes abéliens infinis G dont les sous-groupes stricts sont tous finis.

Solution:

1. Déjà, on peut remarquer qu'étant donné $a, b \in G$, on a par hypothèse $\langle a \rangle \subset \langle b \rangle$ ou l'inverse, i.e. a est une puissance de b ou l'inverse, ce à quoi on fera référence par "le fait clé".

Ensuite, tout $g \in G$ est d'ordre fini puisque $< g^2 > \subset < g^3 >$ donne un $k \in \mathbb{Z}$ tel que $g^{2-3k} = 1$ et on a 2-3k! = 0 (on a quelque chose de similaire si l'on suppose $< g^3 > \subset < g^2 >$).

De plus, cet ordre est la puissance d'un nombre premier, sans quoi, en notant p^aq^bm sont ordre (sous les hypothèses évidentes $a,b>0,\ p,q\in\mathbb{P},\ p\neq q,\ p,q\ |/m)$, les sous-groupes $< g^{p^a}>$ et $< g^{q^b}>$ (à cause du fait clé et du fait que g^{p^a} a un ordre premier avec $p,\ g^{q^b}$ premier avec q).

En fait, on peut (maintenant) même dire qu'il existe $p \in \mathbb{P}$ tel que tout $g \in G$ soit d'ordre une puissance de p à cause de ce qui précède et du fait clé.

Aussi, pour tout $k \in \mathbb{N}$, il existe au plus un sous-groupe de G d'ordre p^k car, si H_1 et H_2 sont deux tels sous-groupes, on a, par hypothèse, $H_1 \subset H_2$ ou l'inverse, puis égalité par cardinalité.

Alors, il y a une infinité de tel k, sans quoi G serait fini puisque tout $g \in G$ appartient à $\langle g \rangle$, qui est un sous-groupe d'ordre $p^{o(g)}$. En fait, à cause du théorème de structure, on peut même dire que tout sous-groupe d'ordre p^k est engendré par un seul élément (sinon, toute pseudo-base de ce sous-groupe est de cardinal supérieur à 2 et donc on a en particulier deux éléments distincts qui constituent cette pseudo base engendrent des groupes qui sont incomparables).

Par conséquent, cette infinité de k est en fait $\mathbb N$ tout entier. On peut donc écrire $G=\bigcup_{k\in\mathbb N}G_{p^k}$ où G_{p^k} est le sous-groupe de G d'ordre p^k .

Finalement, on constate qu'à isomorphisme près, les seuls groupes possibles sont les $\bigcup_{k\in\mathbb{N}}\mathbb{U}_{p^k}$ où $p\in\mathbb{P}$. On peut expliciter un isomorphisme entre $G=\bigcup_{k\in\mathbb{N}}G_{p^k}$ et $\bigcup_{k\in\mathbb{N}}\mathbb{U}_{p^k}$ où $p\in\mathbb{P}$ en notant $a_1\in G$ un élément d'ordre p et en construisant par récurrence a_k comme racine p^e de a_{k-1} dans G. Il suffit maintenant de constater que

$$g \in G \mapsto exp(\frac{2i\pi k}{p^n}) \text{ si } g = a_n^k$$

est bien définie et définit effectivement un isomorphisme comme celui recherché.

Si G est fini, on montre que G est cyclique d'ordre une puissance d'un nombre premier et que cela est une condition suffisante.

2. Tout d'abord, tout $g \in G$ est d'ordre fini puisque $\bigcap_{n \in \mathbb{N}^*} n\mathbb{Z} = 0$.

Ensuite, puisque les p-Sylow de G, notés S_p , sont d'intersection triviale, il existe $p \in \mathbb{P}$ tel que $G = S_p$ (un p-Sylow est non-trivial à partir du moment où il existe un élément dont l'ordre est divisible par p).

Aussi, il n'existe qu'un seul sous-groupe d'ordre p puisque si l'on se donne deux tels sous-groupes H_1, H_2 , ils sont forcément cycliques, engendrés respectivement par des certains a_1 , a_2 . Alors, l'hypothèse $H_1 \cap H_2 \neq \{1\}$ donne 0 < j, k < p tels que $a_1^k = a_2^j$. Puisque l'on a 0 < k < p, on a $k \wedge p = 1$, si bien qu'un couple de Bézout (u, v) associé (k, p) donne $a_1 = a_1^{ku} = a_2^{ju}$. On en déduit $H_1 = \langle a_1 \rangle \subset \langle a_2 \rangle = H_2$, puis l'égalité cherchée par cardinalité

Remarquons également que tout sous-groupe fini est forcément cyclique à cause du théorème de structure.

Tâchons maintenant de montrer que tout élément admet une racine p^e . On note f le morphisme "puissance p" (qui est bien un morphisme car G est abélien). On veut donc montrer que l'on a Im(f) = G. Par l'absurde, supposons qu'il existe $a \notin Im(f)$. Soit $b \in G$. Par ce qui précède, il existe $c \in G$ tel que $c \in G$ tel que $c \in G$. Il s'ensuit qu'il existe $c \in G$ tel que $c \in G$ tel qu

On peut donc construire une suite $(a_n) \in G^{\mathbb{N}}$ telle que pour tout $n \in \mathbb{N}$, a_n est d'ordre p^n et $a_{n+1}^p = a_n$. Montrons que l'on a $G = \langle a_n \rangle_{n \in \mathbb{N}}$. Soit $b \in G$. On considère le plus petit $j \in \mathbb{N}^*$ tel que $b^j \in \langle a_n \rangle_{n \in \mathbb{N}}$ (qui n'est rien d'autre que l'ordre de b dans le groupe quotient). Remarquons que l'on a $\langle a_n \rangle_{n \in \mathbb{N}} = \bigcup_{n \in \mathbb{N}} \langle a_n \rangle$. Distinguons deux cas : soit $j \wedge p = 1$, dans

quel cas l'astuce avec le couple de Bézout donne $b \in (a_n)_{n \in \mathbb{N}}$, soit $p \mid j$, si bien que l'on peut écrire $b^{pj'} = a_n^k = a_{n+1}^{pk}$ pour des certains n, k (on pose j = pj'). Ainsi, on a $(b^{j'}a_{n+1}^{-k})^p = 1$ si bien que $b^{j'}a_{n+1}^{-k}$ est d'ordre 1 ou p, i.e. cet élément appartient à l'unique sous-groupe d'ordre p, qui n'est autre que (a_n) . Ainsi, on a $(a_n)^j \in (a_n)$ et le fait que $(a_n)^j \in (a_n)$ viennent contredire la définition de (a_n) . Autrement dit, le deuxième cas traité ici n'arrive jamais.

Finalement, on a bien l'égalité annoncé et on conclut comme en q.1.

3. Tout d'abord, tout $g \in G$ est d'ordre fini sinon deux cas se dessinent : soit $\langle g \rangle$ est un sous-groupe strict (infini) - ce qui contredit l'hypothèse faite sur G - soit $\langle g \rangle = G$, si bien que $\langle g^2 \rangle$ est un sous-groupe strict infini - ce qui contredit de nouveau l'hypothèse faite sur G.

De plus, il existe au plus un $p \in \mathbb{P}$ tel que le p-Sylow S_p (il n'en existe qu'un seul car G est abélien, il s'agit du sous-groupe formé par l'ensemble des éléments d'ordre p^2) de G soit de cardinal infini puisque l'on aurait $G = S_p$ (pousser le raisonnement un cheveux plus loin n'est pas compliqué).

Tâchons de montrer qu'il en existe bien un en raisonnant par l'absurde. Supposons donc que S_p soit fini pour tout $p \in \mathbb{P}$. Alors, puisque G est produit de ses p-Sylow, on peut affirmer que $A = \{p \in \mathbb{P} : |S_p| \neq 1\}$ est infini, sans quoi G serait fini. Ainsi, en fixant $p_0 \in A$ quelconque, on aboutit à l'absurdité que le produit des S_p pour tout $p \neq p_0$ est un sous-groupe strict infini de G.

Ainsi, on a un (unique) $p \in \mathbb{P}$ tel que $G = S_p$.

Montrons maintenant que tout élément de G admet une racine p^e . Pour cela, remarquons d'abord qu'il n'y a qu'un nombre fini d'éléments d'ordre p. Par l'absurde, si ce n'était pas le cas, on pourrait construire une suite $(g_n) \in G^{\mathbb{N}}$ telle que, pour tout $n \geq 0$, g_n est d'ordre p et $g_n \not\in \langle g_0, ..., g_{n-1} \rangle$. On aurait alors $G = \langle g_n \rangle_{n \in \mathbb{N}} = \langle g_1, ... \rangle$ d'où $g_0 = g_1^{i_1} \cdots g_m^{i_m}$ avec $0 < i_m < p$, si bien que l'on aurait $i_m \wedge p = 1$ puis en choisissant un couple de Bézout (u, v) associé, on aurait $g_0^u g_1^{-i_1 u} \cdots g_{m-1}^{-i_{m-1} u} = g_m$, ce qui contredit la construction de (g_n) .

On peut maintenant démontrer ce que l'on a annoncé plus haut. Pour cela, on considère $X = \{g \in G : \exists x \in G \mid x^p = g\} = Im(f)$ où f est le morphisme "puissance p". On constate que X est un sous-groupe de G. Par l'absurde, supposons $X \neq G$. On a donc X fini, si bien que, par le théorème d'isomorphisme (on pourrait aussi justifier ça à la main avec le lemme des tiroirs), Ker(f) serait infini. L'hypothèse faite sur G impose donc que l'on a G = Ker(f) donc tout les éléments de G sont d'ordre 1 ou g. Or, il n'y a qu'un nombre fini d'éléments d'ordre g, absurde puisque G est infini.

On peut donc construire une suite $(a_n) \in G^{\mathbb{N}}$ telle que pour tout $n \in \mathbb{N}$, a_n est d'ordre p^n et $a_{n+1}^p = a_n$. Comme $a_n >_{n \in \mathbb{N}}$ est infini, on a $a_n = a_n >_{n \in \mathbb{N}}$ et on peut conclure comme en q.1.

1.11 Groupe diédral

Soit $n \in \mathbb{N}^*$, notons $(A_k)_{0 \leqslant k \leqslant n-1}$ les points du plan euclidien E d'affixe $(e^{2i\pi k/n})_{0 \leqslant k \leqslant n-1}$ et notons $\mathcal{P}_n = \{A_0, \dots, A_{n-1}\}$ le polygone régulier à n sommets. Posons

$$D_{2n} = \{ f \in O(E) : f(\mathcal{P}_n) = \mathcal{P}_n \}$$

le groupe des isométries de \mathcal{P}_n (il arrive que certaines personnes choisissent de noter D_n au lieu de D_{2n}).

- 1. Montrer que D_{2n} est un sous-groupe de O(E). On l'appelle groupe diédral d'ordre 2n. Notons r la rotation d'angle $2\pi/n$ et s la symétrie orthogonale par rapport à l'axe des abscisses.
- 2. Soit $f \in D_{2n}$.
 - (a) Justifier qu'il existe des entiers k, l tels que $(f(A_0), f(A_1)) = (A_k, A_l)$ et $l = k+1 \mod n$ ou $l = k-1 \mod n$.

On pourra vérifier que la distance entre A_k et A_l est $2|\sin((k-l)\pi/n)$

- (b) En déduire qu'il existe $k \in [0, n]$ tel que $f = r^k$ ou $f = r^k \circ s$.
- (c) Conclure que l'on a

$$D_{2n} = \{ s^a r^b : 0 \le a \le 1, 0 \le b < n \}.$$

Quel est l'ordre de D_{2n} ?

(d) Montrer que D_{2n} est le groupe engendré par s, s' ou s' désigne la symétrie orthogonale par rapport à la droite vectorielle dirigée par le vecteur $(\cos(\pi/n), \sin(\pi/n))$.

1.12 Groupe diédral infini (*)

Soit θ un réel tel que θ/π ne soit pas rationnel. Dans le plan euclidien E, notons s la symétrie orthogonale par rapport à l'axe des abscisses et s' la symétrie orthogonale par rapport à la droite vectorielle dirigée par le vecteur $(\cos(\theta), \sin(\theta))$. On considère D_{∞} le groupe (diédral infini) engendré par s, s'.

- 1. En considérant $r = s' \circ s$, montrer que D_{∞} est infini et non commutatif.
- 2. Montrer que les sous-groupes stricts de D_{∞} sont les groupes finis $\{1, s\}$ et $\{1, s'\}$.
- 3. Montrer que D_{∞} est également engendré par $\{r, s\}$.

1.13 Automorphismes involutifs n'ayant qu'un seul point fixe (Oral ENS Cachan 2015)(**)

- 1. Soit G un groupe fini. On suppose qu'il existe un automorphisme $\varphi : G \to G$ involutif (i.e. $\varphi \circ \varphi = \mathrm{Id}_G$) admettant un unique point fixe.
 - (a) Montrer que φ est l'application $q \mapsto q^{-1}$.

On pourra écrire les éléments de G sous la forme $\varphi(x)x^{-1}$.

- (b) En déduire que G est abélien et de cardinal impair.
- 2. Exhiber un groupe non commutatif G possédant un automorphisme involutif n'ayant qu'un seul point fixe.

1.14 Autour de l'ordre

Soit G un groupe abélien.

- 1. Soient $x, y \in G$ d'ordre n, m. On suppose que l'on a $n \wedge m = 1$. Montrer que xy est d'ordre nm. Ce résultat tient-il toujours sans l'hypothèse $n \wedge m = 1$.
- 2. Soit $g \in G$ d'ordre n. Si d est un entier, montrer que g^d est d'ordre $n/\operatorname{pgcd}(n,d)$.
- 3. Construire un élément $g \in G$ d'ordre

$$d = \operatorname{ppcm}(o(x) : x \in G).$$

et justifier que d est le plus grand entier n tel qu'il existe un élément de G d'ordre n.

On pourra décomposer d en produit de puissances de nombres de premiers.

1.15 Ordre dans le groupe quotient (Josette Calais, Elements de théorie des groupes) (*)

Soit G un groupe. On suppose qu'il existe un sous-groupe H normal dans G et d'ordre fini m. Si pgcd(n,m)=1, montrer que l'on a l'implication :

$$o(\bar{x}) = n \implies \exists y \in \bar{x} : o(y) = n.$$

On pourra chercher à montrer que x^n admet une racine n^{eme} dans H.

1.16 Groupes non isomorphes (*)

Soit $(K, +, \times)$ un corps. Montrer que les groupes (K, +) et (K^*, \times) ne sont pas isomorphes.

1.17 Cyclicité

Soit \mathbb{K} un corps. Montrer que tout sous-groupe fini de (\mathbb{K}^*, \times) est cyclique.

Si n est l'ordre d'un tel sous-groupe, on pourra s'intéresser au polynôme X^n-1 et s'en inspirer.

1.18 Autour des groupes cycliques

Soit $n \in \mathbb{N}^*$. Soit $d \mid n$.

- 1. Montrer que le groupe engendré par n/d est le seul sous-groupe d'ordre d de $\mathbb{Z}/n\mathbb{Z}$.
- 2. Combien d'éléments d'ordre 2 y a t-il dans $\mathbb{Z}/n\mathbb{Z}$? Ce résultat peut-il s'étendre à un autre ordre que 2 ?

1.19 Cyclicité et unités

Le but de cet exercice est de montrer que le groupe $\mathbb{Z}/n\mathbb{Z}^{\times}$ est cyclique si et seulement si n est 2 ou 4 ou de la forme p^a ou $2p^a$ pour un certain entier a et un nombre premier impair p.

1. Montrer que si $\mathbb{Z}/n\mathbb{Z}^{\times}$ est cyclique alors n une puissance d'un nombre premier (pas nécessaire impair) ou le double d'une telle puissance.

On pourra utiliser le théorème des restes chinois et étudier les éléments d'ordre 2.

- 2. On suppose ici que l'on a $n = p^a$ avec p impair.
 - (a) Montrer que pour tout $k \ge 0$, il existe $\lambda_k \in \mathbb{Z}$ tel que

$$(1+p)^{p^k} = 1 + \lambda_k p^{k+1}$$

et $p \nmid \lambda_k$.

- (b) Montrer que $1 + p \in \mathbb{Z}/n\mathbb{Z}^{\times}$ est d'ordre p^{a-1} .
- (c) En considérant le morphisme naturel $\mathbb{Z}/p^a\mathbb{Z}^{\times} \to \mathbb{Z}/p\mathbb{Z}^{\times}$, justifier qu'il existe un élément d'ordre p-1 dans $\mathbb{Z}/n\mathbb{Z}^{\times}$ et conclure que ce dernier groupe est cyclique.
- 3. On suppose ici que l'on a $n=2^a$ avec $a \ge 2$.
 - (a) Montrer que pour tout $k \ge 0$, il existe $\lambda_k \in \mathbb{Z}$ impair tel que

$$5^{2^k} = 1 + \lambda_k 2^{2^{k+2}}.$$

- (b) Montrer que $5 \in \mathbb{Z}/n\mathbb{Z}^{\times}$ est d'ordre 2^{a-2} .
- (c) Montrer que le morphisme naturel $\mathbb{Z}/2^a\mathbb{Z}^\times \to \mathbb{Z}/4\mathbb{Z}^\times = \mathbb{Z}/2\mathbb{Z}$ est surjectif et que $5 \in \mathbb{Z}/2^a\mathbb{Z}^\times$ engendre son noyau. En déduire que l'on a

$$\mathbb{Z}/n\mathbb{Z}^{\times} \simeq \mathbb{Z}/2^{a-2}\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

On montrera cet isomorphisme proprement. En particulier, on n'invoquera pas d'argument sorti du chapeau comme "j'ai G/H isomorphe à K donc j'ai G isomorphe à $H \times K$.

4. Conclure.

2 Polynômes

2.1 Divisibilité dans \mathbb{Z}

Soient $P, Q \in \mathbb{Z}[X]$ tels que $\{n : P(n) \mid Q(n)\}$ soit infini. Montrer que P divise Q dans $\mathbb{Q}[X]$.

2.2 Irréductibilité (1) (Tosel)

Soient $n \in \mathbb{N}^*$ et $a_1, ..., a_n$ des entiers 2 à 2 distincts. Montrer l'irréductibilité de $P = \prod_{k=1}^n (X - a_i)$ -1 dans $\mathbb{Q}[X]$.

2.3 Irréductibilité (2) (Tosel)

1- Montrer qu'un polynôme de $\mathbb{Z}[X]$ prenant 4 fois la valeur 1 sur \mathbb{Z} ne peut pas prendre la valeur -1 sur \mathbb{Z}

2- En déduire que pour tout $n \ge 12$ et $P \in \mathbb{Z}[X]$ de degré n prenant les valeurs ± 1 en au moins $\left|\frac{n}{2}\right| + 1$ entiers est irréductible.

2.4 Groupe de torsion (Tosel)

1- Montrer que $\varphi(n) \xrightarrow[n \to \infty]{} \infty$ où φ désigne l'indicatrice d'Euler.

2-Soit \mathbb{K} une extension finie de \mathbb{Q} . Déduire de la question précédente que $Tor(\mathbb{K}^*)$ est fini.

2.5 Généralisation d'un résultat d'irréductibilité (moi)

Il est bien connu que si l'on se donne un corps \mathbb{K} de caractéristique p et $x \in \mathbb{K}$ tel que x n'ait pas de racine p^{eme} dans \mathbb{K} alors $X^p - x$ est irréductible sur \mathbb{K} .

Soit \mathbb{L}/\mathbb{K} une extension, les deux corps étant de caractéristique quelconque et soit p premier. On se donne $Q \in \mathbb{L}[X]$ tel que Q soit unitaire, irréductible sur $\mathbb{L}[X]$, $Q \notin \mathbb{K}[X]$ et $Q^p \in \mathbb{K}[X]$. Montrer que Q^p est irréductible sur $\mathbb{K}[X]$. Expliquer en quoi cela est une généralisation du résultat mentionné plus haut.

2.6 Dénombrement des irréductibles dans $\mathbb{F}_q[X]$

Soient $p \in \mathbb{P}$, n > 0, $q = p^n$, A(m,q) l'ensemble des irréductibles de degré m de $\mathbb{F}_q[X]$ et I(m,q) sont cardinal.

1- Montrer que l'on a
$$X^{q^m}-X=\prod_{d\mid m}\prod_{P\in A(d,q)}P(X).$$

2- Montrer que l'on a
$$I(m,q) = \frac{1}{m} \sum_{d|m} \mu(\frac{m}{d}) q^d$$
.

3- En déduire
$$I(m,q) \underset{m \to \infty}{\sim} \frac{q^m}{m}$$
.

Remarque: En particulier, pour m assez grand, on sait qu'il existe un irréductible de degré m dans $\mathbb{F}_q[X]$. En fait, on peut montrer que pour tout m, I(m,q) > 0 en utilisant que les extensions de degré m de \mathbb{F}_q sont données par quotient de $\mathbb{F}_q[X]$ par un irréductibles de degré m.

3 Nombres algébriques

3.1 Nombres de Salem (Tosel)

Un nombre de Salem est un entier algébrique x (irrationnel) vérifiant $x \in]1; +\infty[$ et tel que toutes les racines de π_x autres que x ($\pi_x \in \mathbb{Z}[X]$ désigne le polynôme minimal de x sur \mathbb{Q}) soient de module plus petit que 1 mais qu'il en existe au moins une de module exactement 1.

- 1- Pour un tel x, montrer que π_x est un polynôme réciproque et que toutes les racines différentes de x et $\frac{1}{x}$ sont de module 1.
- 2- Montrer que le degré de x est un entier pair plus grand que 4.

3.2 Nombres de Pisot

Un nombre de Pisot-Vijayaraghavan est un entier algébrique réel strictement supérieur à 1, dont tous les éléments conjugués ont un module strictement inférieur à 1.

- 1- Montrer que $1 + \sqrt{3}$ et le nombre d'or sont des nombres de Pisot.
- 2- Soit $n \ge 2$. Montrer que $X^n \sum_{i=0}^{n-1} X^k$ admet une unique racine réelle positive et que ce réel est un nombre de Pisot.
- 3- Montrer que tout corps de nombre réel K est engendré par un nombre de Pisot.

Indication: On se servira du théorème de Minkowski avec la matrice $M = (\sigma(\alpha^j))_{\sigma,j}$ où σ parcourt l'ensemble des $\mathbb{K} \to \overline{\mathbb{Q}}$ et α est un entier algébrique engendrant \mathbb{K} .

4 Extensions de corps

4.1 Nombre de corps de rupture

Soit \mathbb{K} un corps, $P \in \mathbb{K}[X]$ un polynôme séparable irréductible. Soit Ω une clotûre algébrique de \mathbb{K} . Montrer que le nombre N de corps de rupture de P inclus dans Ω divise le degré de P.

4.2 Caractérisation des extensions finies séparables

Soit \mathbb{L}/\mathbb{K} une extension algébrique séparable telle qu'il existe M vérifiant

 $[\mathbb{K}[x] : \mathbb{K}] < M$ pour tout $x \in \mathbb{L}$. Montrer que \mathbb{L} est une extension finie.

4.3 Parfaitude et extensions

Soit \mathbb{L}/\mathbb{K} une extension finie de corps. Montrer que \mathbb{L} est un corps parfait si et seulement si \mathbb{K} est parfait.

4.4 Irréductibilité et extension

Soit \mathbb{L}/\mathbb{K} une extension de degré impair. Montrer que si P est irréductible sur $\mathbb{K}[X]$ alors P est également irréductible sur $\mathbb{L}[X]$.

4.5 Théorème de Springer*

Soit \mathbb{K} un corps.

1. Montrer que les deux conditions suivantes sont équivalentes

(a) L'ensemble

$$\left\{ (x_1, \dots, x_r) \in \mathbb{K}^r : \sum_{i=1}^r x_i^2 = 0 \right\}$$

est réduit à 0 pour tout $r \in \mathbb{N}^*$

- (b) -1 ne s'écrit pas comme somme de carrés dans \mathbb{K} .
- 2. On suppose que \mathbb{K} vérifie la condition précédente. Soit \mathbb{L}/\mathbb{K} une extension finie de degré impair. Montrer que \mathbb{L} vérifie également cette propriété.

Proof. Quitte à faire des pas petit à petit, on peut supposer $\mathbb{L} = \mathbb{K}(x)$ (sinon on démontre la propriété avec $\mathbb{K}(x_1)$ puis on pourra faire de même avec l'extension $\mathbb{K}(x_1, x_2)/\mathbb{K}(x_1)$ etc). Par l'absurde, supposons que \mathbb{L} ne satisfait pas la condition de la question 1 et que \mathbb{L} est de degré minimal pour cette propriété. Soient $P_1, \ldots, P_r \in \mathbb{K}[X] \setminus \{0\}$ tels que

$$0 = \sum_{i=1}^{r} P_i(x)^2.$$

Il existe alors un polynôme $Q \in \mathbb{K}[X]$ tel que

$$\sum_{i=1}^{r} P_i^2 = \pi_x Q.$$

Notons n le degré de x et remarquons que le polynôme de gauche est de degré inférieur ou égal à 2(n-1). De plus, le polynôme de gauche est de degré pair grâce au fait que \mathbb{K} satisfait l'hypothèse de la question 1. Ainsi, Q est un polynôme de degré impair et de degré strictement inférieur à n. Par conséquent, il existe y (dans la clôture algébrique de \mathbb{K}) tel que $\pi_y \mid Q$, le degré de y est impair, strictement inférieur à n et la valuation de π_y dans Q est impaire. Ainsi, $\mathbb{K}(y)$ vérifie l'énoncé de la question 1, de sorte que l'on obtient $\pi_y \mid P_i$ pour tout i puis en jouant sur la valuation de π_y , on peut conclure à une absurdité (imaginons que la valuation est 1, en écrivant $P_i = \pi_y R_i$, on obtient clairement une absurdité en injectant cela dans l'équation définissant Q et si la valuation n'est pas 1, on s'y ramène petit à petit en divisant par π_y^2 dans l'équation définissant Q).

4.6 Extensions infinies

Soit \mathbb{L}/\mathbb{K} une extension algébrique infinie de caractéristique nulle. Montrer que \mathbb{L} contient des éléments de degré arbitrairement grand.

Que se passe-t-il si l'extension est de caractéristique finie?